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Abstract

Improving trust in the state of Cyber-Physical
Systems becomes increasingly important as
more tasks become autonomous. We present a
multi-microphone machine learning fusion ap-
proach to accurately predict complex states of
a quadcopter drone in flight from the sound
it makes using audio content analysis tech-
niques. We show that using data fusion of mul-
tiple microphones, we can predict states with
near-perfect results. Furthermore, we signifi-
cantly improve the state predictions of single
microphones, outperforming several other in-
tegration methods. These results show that
side-channel information can be effectively used
to improve the state assurance and security in
Cyber-Physical Systems.

1 Introduction

Obtaining high-assurance state information for
Cyber-Physical Systems (cps) becomes increas-
ingly important as more tasks become au-
tonomous. A self-driving car that cannot ac-
curately determine its own position, or a un-
manned delivery drone flying in the wrong di-
rection are examples of how incorrect state in-
formation can lead to catastrophic incidents
and/or mis-delivered packages.

To determine the state of a vehicle, informa-
tion from one or more primary sensor measure-
ments such as speedometers, accelerometers or
gps is most often used. However, it has been
shown that most, if not all sensors are suscepti-
ble to spoofing attacks. This problem is accel-
erated with the trend of increased sensors con-
nectivity with (wireless) networked systems and

the Internet [1]. In spoofing, real sensor data is
maliciously replaced by falsified data in an un-
detectable way. For gps for example, this can
result in a false estimation of position. Over the
years, multiple solutions to improve the security
of the sensors have been proposed. Most of these
rely on cryptographic solutions or data analysis
of the sensor signal to find anomalies that are
indicative of falsification [2]. In addition to the
obvious importance of primary sensor security
improvement, state estimation can also be im-
proved by using side-channel information from
sensors that use data from a different domain.

Using cues from different domains to establish
a (high) trust in a state is similar to how humans
assess their environment. For instance, when we
drive a car at a constant speed, and the sound
of the engine suddenly changes while the speed
does not, we instantly assume that the differ-
ence is indicative of something being wrong with
the vehicle. It has been shown that multicom-
ponent (or multi-modal) signals can improve er-
ror detection by producing multiple components
together, thus reducing the reaction time, in-
creasing the probability of detection and lower-
ing the intensity at which detection occurs [14].
We can use the intuition of multi-modal inter-
action in cps to improve the security and assur-
ance of primary sensors measurements, by using
side-channel information to make a state predic-
tion. For example, recent research has shown
that audio data from a microphone can be used
to estimate various states (i.e. speed and gear
position) from a moving vehicle with high preci-
sion [10]. Thus, reliable side-channel informa-
tion can be used to improve cps security by
matching and checking the validity of the data
from the primary sensor measurements.
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Research into using audio information for the
analysis of physical systems is not new. Never-
theless, nearly all of this research is aimed at de-
tecting low-level system states, such as malfunc-
tion or fault detection of engines, gears or bear-
ings [5,13]. We propose a more complex analysis
and diagnosis of the sound a cps produces. For
this, we take inspiration from a research area
related to digital signal processing called audio
content analysis. This type of audio research in
Music Information Retrieval (mir) aims to an-
alyze musical audio signals to analyze, detect
or estimate concepts with various degrees of ab-
straction in the audio signal that stem from mu-
sicological research. In addition to research into
lower level concepts such as notes, (etc), mir
is actively researching more complex concepts
such as chords, genre and emotion. Similarly, in-
stead of just detecting whether a drone behaves
faulty compared to a baseline measurement, we
aim to solve the task of predicting more com-
plex states a quadcopter can be in, such as hov-
ering, descending and ascending from the sound
it makes. To this aim, we propose to use the
audio from multiple microphones.

Recent research in data integration has shown
that information from multiple heterogeneous
sources can be integrated to create improved,
and more reliable data [4]. These data fusion
techniques have for example been successfully
applied in mir in a musical context of integrat-
ing crowd-sourced chord sequences [9]. It was
shown that integrated data outperforms individ-
ual source data, and that it can be used to ac-
curately estimate the relative quality of sources.
Therefore, instead of using just one microphone
side-channel, we propose to integrate the state
estimations of four microphones, each record-
ing the sound of a single rotor of a quadcopter.
We show that using multiple microphones, we
can predict with near-perfect precision whether
a quadcopter is either descending, hovering or
ascending.

Contribution The contribution of this paper
is threefold. Research in audio content analysis
in mir often takes inspiration from other fields,
but the reverse is rare. First, with techniques
inspired from mir, we show that we can pre-
dict complex state information from the sound
a quadcopter makes. Secondly, we show how
predictions from multiple microphones can be
integrated to obtain an improved prediction us-
ing data fusion. Thirdly, we show how using
data fusion, we can improve cps security by

accurately estimating the relative quality of a
source.

Synopsis The remainder of this paper is
structured as follows. Section 2 introduces our
method of improving quadcopter state security
by predicting and integrating machine learning
outputs from multiple microphone sources. Sec-
tion 3 provides results of these integration meth-
ods, and Section 4 closes with conclusions.

2 Quadcopter state predic-
tion and integration from
audio

This section details the method used to inte-
grate multiple predictions of the state of a quad-
copter from the sound its rotors make during
flight. To achieve this, we fly a 3dr iris+
quadcopter a predefined flight plan in autopi-
lot mode, while four microphones attached to
each of the four arms of the quadcopter record
the sound of the rotors. During flight, an on
board computer records ground truth informa-
tion about the state of the quadcopter, as de-
tailed in Section 2.1.1. From the audio of each
of the microphones, we extract features that are
used in a machine learning classification task, as
detailed in Section 2.1.2. We classify the audio
features of each of the microphones individually,
as detailed in Section 2.2. To improve the clas-
sification results of the individual microphones,
we integrate their predictions, as detailed in Sec-
tion 2.2.1.

2.1 Data collection

The flight of a quadcopter is easily influenced by
weather conditions such as wind, and the pilot
(controller) by means of overcompensation. To
control for pilot influence during flight, we set
up a controlled environment where the quad-
copter is flying a preprogrammed path in au-
topilot mode. The flight plan consists of seven
steps:
1. Take-off and ascend to 5 meters
2. Hover for 10 seconds
3. Ascend to 10 meters
4. Hover for 10 seconds
5. Descend to 5 meters
6. Hover for 10 seconds
7. Descend and land

2



0 10 20 30 40 50 60
Time in seconds

2

0

2

4

6

8

10

12

M
e
te

rs

Figure 1: Example of recorded altitude of au-
topilot flight plan in green and derived ascend-
ing (1), hovering (0) and descending (-1) data
in red.

A visualization of this flight path can be found
in green in Figure 1. Flights were performed in
an open field in dry weather conditions. During
the autopilot flight, we recorded both ground
truth state information and the sound of each
of the rotors.

2.1.1 Telemetry

During flight, we used the on-board telemetry
system to record quadcopter flight data at a
fixed sampling frequency. In this research, we
focus on predicting three states of the quad-
copter during flight: ascending, hovering and
descending (ahd). The quadcopter itself does
not record this data, but it does record data
from which we can derive these states, i.e. the
absolute altitude measured by the on-board gps
receiver. To calculate ahd data, we compute
a gradient from the altitude information, from
which we calculate a step function that describes
if the gradient is increasing, stable or decreasing,
which we interpret as ahd.

The gradient is calculated through a first-
order discrete difference along the list of alti-
tudes. Suppose we measure the altitude at a
certain sampling frequency to be [0, 5, 5, 5, 0],
that is: starting at 0 meter followed by 3 frames
at 5 meter and finally back at 0 meter again.
Computing the gradient results in differences
[5, 0, 0,−5], from which we only keep the sign
of the numbers and the zeros. The result of
this example is [+1, 0, 0,−1], which we interpret
as +1, 0 and −1 as an ascending state, hover-
ing state and descending state, respectively. An
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Figure 2: Example of a spectrogram of rotor
audio, while a quadcopter performs the sequence
described in Section 2.1 and Figure 1

example of derived ahd state information from
gps altitude data can be found in red in Figure
1.

2.1.2 Rotor audio feature extraction

To record the sound of the quadcopter’s rotors
during flight, we equipped the quadcopter with
four microphones, one underneath each of the
arms, close to the rotors. We record the sound
at 44.1 kHz, 16-bit. As Figure 2 shows, the ro-
tor sound is rich in content at higher frequen-
cies. Therefore, the audio is passed through a
nonuniform filter bank of 24 bands per octave
to create a spectrogram that increases in detail
with frequency. From this filtered signal, we cre-
ate a logarithmically filtered short-time Fourier
transform spectrogram at ten frames per sec-
ond with a frame size of 8192 samples, with a
minimum and maximum frequency of 30Hz and
60kHz, respectively. From a visual inspection of
the spectrogram, this frequency range was found
to have the most important information. From
preliminary experiments, it was found that fre-
quency analysis beyond these bounds did not
significantly improve results. Nonuniform filter-
ing and short-time Fourier transform results in a
spectrogram representation of the signal in 181
bins per audio frame.

2.1.3 Context window

Detection of more complex events in audio con-
tent analysis often improves with the use of a
context window around an audio frame. Re-
search in automatic chord estimation [11] and
speech recognition [6] provide examples where
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context windows have proven to be successful in
improving classification.

Therefore, we concatenate consecutive frames
of the spectrogram within a context window to
form the input for a classifier. More specifically,
for a context window Wi of size of n, we con-
catenate the frames fi−n/2 to fi+n/2 to classify
frame fi from the spectrogram. We experiment
with different window sizes to find the optimal
amount of context in terms of classification ac-
curacy. These concatenated spectrogram frames
are used as input for a classifier.

2.2 Classification

Although recent advances in deep learning
have shown great results in learning high level
abstractions from audio, we choose a fast,
lightweight solution that in theory can run from
an on-board quadcopter computer in real-time.
From a preliminary experiment, it was found
that a Random Forest Classifier (rf) produced
the best results from a selection of learning al-
gorithms. rf [7,8] is an ensemble classifier that
uses unpruned classification trees created from
bootstrap samples of the training data and ran-
dom feature selection in tree induction. Predic-
tion is made by aggregating (majority vote or
averaging) the predictions of the ensemble. For
a detailed description of rf we refer to [7, 8].

The context window frames of each of the
microphones are classified using rf, result-
ing in four heterogeneous classification streams.
An example of this can be found in Table 1,
where the classification results of four consecu-
tive context windows from the four microphones
M0 . . .M3 can be found. To take advantage
of the shared information between the micro-
phones, we propose to integrate the classifica-
tions using data fusion.

2.2.1 Integration

To find the best state prediction from four in-
dividual microphones, we propose to use data
fusion. We compare the results of data fusion
with three baseline methods: majority voting,
random picking and the average microphone ac-
curacy.

Random picking (rnd) selects a state from
a randomly picked microphone for every context
window. For the example in Table 1, rnd essen-
tially picks one state from 44 possible state com-
binations by picking a state from a randomly

Wi Wi+1 Wi+2 Wi+3
m0 Ascend Descend Descend Hover
m1 Ascend Hover Hover Hover
m2 Ascend Hover Descend Descend
m3 Ascend Hover Descend Descend
mv Ascend Hover Descend ?
df Ascend Hover Descend Descend

Table 1: Example of four microphones m(0...3)
providing different state classes (Ascend, Hover,
and Descend) for a sequence of context windows.
df shows an example output of data fusion on
these sources. df is identical to majority vote
(mv) on the first three states. For the last states,
fusion chooses Descend by taking into account
source accuracy, while majority vote would ran-
domly pick either Hover or Descend.

chosen microphone per context window.
Majority voting (mv) selects the most fre-

quent state shared between the microphones
for every context window. In case multiple
states are most frequent, we randomly pick from
the most frequent states. For the example
in Table 1, the chosen states would be either
Ascend, Hover, Descend, Hover or Ascend,
Hover, Descend, Descend.

Data Fusion (df) can be viewed as an ex-
tension of majority voting in the sense that in
addition to finding the most common symbol
per audio frame, it also uses the agreement be-
tween microphones. Microphones with higher
agreement with other microphones are consid-
ered to be more trustworthy. We propose to
a method adapted from accucopy model in-
troduced by Dong et al. in [3, 4] to integrate
conflicting databases. Instead of databases, we
propose to integrate state predictions. This
adapted model was previously successfully ap-
plied in a musical context, where it showed to
outperform majority voting and random picking
in an automatic chord extraction task [9].

Calculating the data fusion integration hap-
pens in two steps: after computing the state
class likelihoods for each context window per
microphone, a source accuracy is computed for
each microphone by taking the mean of all its
state likelihoods. The likelihoods of each state
are then weighted by their source accuracy. The
intuition here is that microphones with higher
agreement with other microphones are more
trustworthy. The process of computing state
likelihoods and source accuracy is repeated until
the likelihoods of the states converge. For each
audio frame, the value with the highest likeli-
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hood is chosen. For a detailed description of
data fusion, the reader is forwarded to [3, 4, 9].

Average accuracy (avg). To assess the im-
provement over the average microphone in terms
of classification accuracy, we also compare the
results of df, rnd and mv with the average
classification accuracy of the microphones. This
will show how much on average the integration
methods will improve the classification results
of the individual microphones.

Another intuitive way of integrating the clas-
sifications of rf would be to average or multiply
the class probabilities of every microphone per
context window. Nevertheless, from preliminary
experiments it was found that this scales quite
poorly. With an increased amount of classes,
averaging or multiplying the class probabilities
resulted in accuracies nearing random classifi-
cation accuracy. This is because with an in-
creased number of classes, the joint-probability
has a higher probability of going towards a uni-
form distribution. On the other hand, research
in several domains shows that data fusion scales
very nicely [4, 9, 12].

2.3 Cross-validation

To test how well our method generalizes, we
cross-validate our method on multiple iterations
of the same flight plan. The quadcopter ex-
ecutes the flight plan as mentioned in Section
2.1.1 15 times. For every flight, and every con-
text window size we perform 20-fold cross vali-
dation on a randomly selected 70-30% train/test
set split of our dataset. For each of the integra-
tion methods, we take the average of the cross
validation over all flights as the final classifica-
tion accuracy.

3 Results

Classification integration results for several con-
text window sizes for df, mv and rnd can be
found in Figure 3. The figure shows that rnd
does not improve the average microphone clas-
sification, performing equally with the average
microphone at every context window size. mv
improves the average microphone accuracy with
5.5 percentage points on average for every con-
text size. df improves the average microphone
accuracy the most, outperforming all other inte-
gration methods by 10 to 20 percentage points.
For every context window size df performs sig-
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Figure 3: 20-fold cross-validation classification
results for df, mv, rnd of integrating the classi-
fications of four microphones for several context
window sizes.

nificantly better than mv with p << 0.01 using
a Wilcoxon signed-rank test for the null hypoth-
esis that two related paired samples come from
the same distribution.

Furthermore, Figure 3 shows that classifica-
tion results for all methods improve with con-
text window size. df seems to be more robust
to this effect. Increasing the context window
size increases the reaction time of the system:
if more frames are needed to make a good state
estimation, more time is needed. Therefore, the
smaller the frame size the better. We find that
df integration stabilizes at around context win-
dows sizes of 13 frames. For the other integra-
tion methods, we find that accuracy increases
almost linearly with context window size. This
shows that df is capable of finding useful shared
knowledge between the microphones to make a
good integration.

4 Conclusions
We have shown that through audio content anal-
ysis of quadcopter drone rotor audio, we can ac-
curately predict states a quadcopter is in. More
specifically, we have shown that through inte-
gration of classifications from multiple micro-
phones, we can significantly improve the pre-
diction of complex states that describe whether
a quadcopter is ascending, hovering or descend-
ing.

Our research expands earlier research on state
prediction of Cyber-Physical Systems from the
sound they make [10]. Furthermore, it shows
the benefit of multi-modal state estimation by
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using side-channel information from a different
domain than primary sensors use. Our results
show that side-channel information can be used
to obtain complex state descriptions with high
accuracy. Therefore, we predict that future re-
search will show the benefit of improving the
security of cps by estimating complex states
from a multitude of side-channel sources. We
believe that combining the estimations from a
large number of side-channel sources working on
different domains can greatly improve the secu-
rity of many cps.
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