

All-inclusive Software Architecture

Video Wall

Building a Prototype

Samantha van Dalen

Sjaak Brinkkemper

Jan Martijn van der Werf

Technical Report UU-CS-2017- 017

September 2017

Department of Information and Computing Sciences

Utrecht University

www.cs.uu.nl

1

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

2

All-inclusive Software Architecture Video Wall

Building a Prototype

Samantha van Dalen, Sjaak Brinkkemper, Jan Martijn van der Werf

Utrecht University, Utrecht, The Netherlands
{S.vanDalen,S.Brinkkemper,J.M.E.M.vanderWerf}@uu.nl

Abstract. This technical report describes a study of software architecture models in literature, to
combine their Viewpoints into one overview matrix (Viewpoint Matrix), connecting similar
Viewpoints of different authors to each other. This report also describes the development of a
prototype of a software architecting tool that incorporates the Viewpoint Matrix.

Keywords: Video Wall, Software Architecture, Viewpoint Matrix, Viewpoint, View.

Content
1 Introduction ... 3

2 Research method .. 3

2.1 Context .. 3

2.2 Objectives .. 3

2.3 Design and development ... 4

3 The Viewpoint Matrix .. 6

3.1 The matrix as a new concept ... 6

3.2 Procedure for creating the Viewpoint Matrix ... 6

4 Design decisions .. 8

4.1 Menu strip ... 8

4.2 Side menu .. 8

4.3 Drawing ribbon .. 10

4.4 Canvas.. 10

5 Discussion & Outlook .. 12

5.1 Outlook .. 12

6 References ... 14

Appendix A: Overview of Viewpoints .. 15

Appendix B: Overview of Models .. 19

3

1 Introduction
Software architecture entails many different practices and methods. And, when done appropriately,

it contains many different views of software. It remains a craft to know which views are required,

and what the interplay between the different views is. Architecture erosion is therefore quickly on

the lure. Software producing organizations therefore often cannot see the wood for the trees,

meaning that due to the plethora of details, one does not know what is what anymore. To develop

an application that appeals to all software architects practicing different architecting methods, a

literature study is conducted to find these methods and combine them to one.

In this report, we describe the research methods followed in this project, including a short

description about the context of the project. Next, the Viewpoint Matrix is explained, followed by the

design decisions made. The paper ends with a discussion and an outlook on the future application

and possible research topics.

2 Research method
To define the research method, we use the Design Science method described by Hevner et al. (2004)

and Peffers et al. (2007).

2.1 Context
This project is part of the development of a main application for software architecting on a multi-

touch video wall. This application has a multi-purpose:

1. It aid software architects to develop and maintain architectural models (hereafter named

models) by giving the architects the means to draw and alter their models.

2. In discussions it is possible to alter and annotate the models to capture and document what

is discussed in the session.

3. Visualization and management of software requirements.

4. Integration of the software requirements with the models.

In the future, the integration of the above mentioned purposes will result in an application that

enables continuous architecting. Continuous architecting is a visionary term that embodies decision

making that is performed on an up-to-date software architecture document. Research by De Feijter

(de Feijter, 2017; van der Werf, de Feijter, Bex, & Brinkkemper, 2017) discusses how to envision

continuous architecting in an application. The main point in this research explains how a continuous

architecting tool can be used to capture the discussion between stakeholders by describing several

scenarios. This research is also the foundation of this project. In this paper, we consider the main

application to consist of two separate parts: Visualization of User Stories and Software Architecture

Modelling.

2.2 Objectives
The main goal for this project is twofold:

1. A literature study to find differences and similarities between different architecting methods;

2. To build an interactive prototype that showcases the potential of the software architecture

modelling side of the application.

4

The outcome of the literature study is input for the prototype. It will be a HTML website, supported

by JavaScript to perform certain functionalities. The prototype will have a basic layout, static

information and basic interactive functionalities.

2.3 Design and development
As mentioned in the previous section, the project consists of two parts: developing a prototype and a

literature research. In this section, we describe shortly the design and development method of the

prototype and of the literature research.

2.3.1 Prototype

The prototype is designed as a web-based tool. The layout and requirements are mostly based on a

previous research by De Feijter (van der Werf, de Feijter, Bex, & Brinkkemper, 2017). In this

research, PowerPoint was used to showcase the vision of the application. Combined with a fresh

perspective for a layout, our prototype is gradually built from scratch. The development of the

prototype is an iterative process. With each iteration a new version is made with new functionalities.

In chapter 0, the design decisions for this prototype are explained.

2.3.2 Literature research

To find the differences and similarities of different architecting methods, several books and papers

are compared. The books are selected from the body of knowledge in Software Architecture. In

addition, an online search has been performed using the term ‘software architecture model’. With

restricted availability of books and time, we selected a top five most referenced books and papers:

1. Bass, Clements and Kazman (2013) identified four different views: Module, Component-and-

Connector, Allocation, and Quality Views. These views are based on Clements, et al. (2001),

with the addition of the Quality View. For these views ten different structures are identified,

for example a concurrency, class (or generalization) and implementation structure.

2. Rozanski and Woods (2012) identified seven different viewpoints: Context, Functional,

Information, Concurrency, Development, Deployment, and Operational. They also presented

the most important models per view. This resulted in 19 models, for example a functional

structure model, a state model and a migration model.

3. Taylor, Medvidović and Dashofy (2010) briefly mentioned five viewpoints: Logical, Physical,

Deployment, Concurrency, and Behavioral. They described ten different modelling

techniques, including Natural Language, UML and several Architecting Design Languages

(ADLs).

4. Kruchten (1995) identifies in his 4+1 paper four views that are brought together with

Scenarios. The views are: Logical, Process, Development and Physical. Per view a notation is

presented.

5. Maier and Rechtin (2000) identified six different views: Purpose/objective, Form, Behavioral

or Functional, Performance objective or Requirements, Data, and Managerial. Per view is

explained what models can be used, resulting in six explicit model like block diagrams, data

models, and data and event flow networks.

To gather the information from the resources, we created two overviews and the Viewpoint Matrix.

The first overview, of Viewpoints (Appendix A), contains 26 viewpoints. The second overview

presents Architectural Models containing 49 models, structures and techniques. Together, they form

the basis for selected sections in the main application.

5

Overview of Viewpoints

Each book is scanned for information about views, viewpoints and models (modeling notations). To

capture this information, we constructed an overview (Appendix A). In this overview, the following

information is gathered, when available:

1. Name of the viewpoint. Dependent on the author, different terms are used for a similar

concept. For this project, we use the term ‘Viewpoint’ to represent all these concept, based

on the definition taken from the IEEE Standards that a viewpoint is a template, pattern, or

specification for constructing a view (IEEE 1471-2000).

2. Description of the viewpoint. This can be the definition stated by the author or a description

explaining the viewpoint.

3. Additional information. Information explaining more about the viewpoint, what can be

expected in this view and important notes by the author.

4. Elements & Models. The corresponding models or elements that make up the viewpoint.

Viewpoint Matrix

The Viewpoint Matrix, extracted from the viewpoints, connects correlated viewpoints from one

author to another based on similarity of concepts. The purpose of this matrix is to determine which

Viewpoints model similar concepts of the architecture using different notations. The matrix is further

explained in the next chapter.

Overview of Architectural Models

An additional overview is created to document different models, structures and notations

(Appendix B). The purpose of this overview is to gather notations on how to create a model, so a list

of notations can be implemented in the prototype.

Each book is scanned for information about models, structures and modeling notations. Each author

described either a structure, a model and/or a modelling notation that can be used to model a

certain viewpoint. The following information is gathered when available.

1. Module/structure. The name of the module, structure or technique.

2. Purpose. A description of the model and what purpose it serves.

3. Elements. The basic elements or concepts of the model, structure or technique.

4. Notation. The language or notation how the model is composed.

6

3 The Viewpoint Matrix
As mentioned in the previous chapter, the purpose of the Viewpoint Matrix is to determine the

linking of similar models. The vision behind this matrix is that the user of the application can

categorize or tag each model with a viewpoint. By linking similar viewpoints from different authors to

each other, it creates a more global application where architects using different methods can select

the same models using different selecting categorizations.

3.1 The matrix as a new concept
May (2005) briefly touch upon the correspondence between five viewpoint models when they are

grouped into functional, dynamic and external structures. In their research, they primarily looked

into five viewpoint models to determine the extent to which they cover the software architecture

domain. Since only Kruchtens “4+1” View Model corresponds between Mays research and this

project, and the difference between the grouping and linking of the models, the Viewpoint Matrix is

a new concept.

Other comparisons on software architecture exist, but most researches focus on comparing the

methods instead of the actual viewpoints. For instance, Shahin, Liang, & Babar (2014) performed a

systematic review on the visualization of models, and Hofmeister et al. (2007) compared artifacts and

activities.

3.2 Procedure for creating the Viewpoint Matrix
To create the Viewpoint Matrix (Figure 1), the following steps are taken.

Step 1: Gather viewpoints and remove duplicates.

Gather all the viewpoints of the Overview of Viewpoints (Appendix A) in a list. This results in

duplicate viewpoints, for example both Kruchten and Rozanski & Woods mention the viewpoint

Development. In order to create a compact overview, duplicated viewpoints are removed. For each

duplicate viewpoint, the description is compared to check the similarities between the viewpoints.

Step 2: Determine the rows and columns.

The axes represent the viewpoints. Each viewpoint of the list from step 1 is copied to the matrix axes.

Step 3: Comparison of viewpoint between authors.

Per author (A) each viewpoints description is matched (when possible) with a viewpoint of the other

author (B). Viewpoints are similar when:

a. Meaning of the description is similar.

b. Main terms in the description match or are synonyms.

c. Additional information confirms terms or description of the compared viewpoint.

Each similar viewpoint is written in the corresponding cell, linking the viewpoint of author A with one

or multiple viewpoint(s) of author B.

Take for example Managerial view and Development view. The definition of the Managerial view is

“the process by which the system is constructed and managed.” (Maier & Rechtin, 2000, p. 162). The

Development viewpoint describes “the architecture that supports the software development

process.” (Rozanski & Woods, 2012). Both descriptions mention the process to develop a system as

their main concepts. The second condition stated above applies to these statements.

7

Step 4: Check if the matrix displays a mirror image at the diagonal line.

When the both sides display the same image, both viewpoints are found similar either as author A to

B, as author B to A. When displaying a discrepancy between the images, corresponding viewpoint are

checked again for similarities.

Step 5: Style matrix.

Black out the mirror image to give a one sided image of the matrix. This results in the matrix below.

Figure 1 Viewpoint Matrix.

As mentioned in the beginning of this chapter, the matrix formed the base for the selecting of

models by architects using different modelling methods. The implementation of this matrix in the

prototype is discussed in the next chapter.

8

4 Design decisions
To implement the Viewpoint Matrix, an application is needed. In this chapter, we gradually build the

application and explain the design decisions that have been made.

The layout of the application (Figure 2) consists of four main elements.

1. The menu strip. This menu contains the

basic application options and menus.

2. The left side menu. This menu contains all

the elements necessary for a software

architect to operate the application.

3. The drawing ribbon. This ribbon contains

all elements to draw or edit a model.

4. The canvas. This is where all the action

takes place to visualize, build and alter

models.

4.1 Menu strip
The menu strip (Figure 3) is comparable to standard application options. The items are a combination

of icons for quick access to options as Save, Undo and Redo, and text dropdown menu-for options as

File, Edit and Help.

Figure 3 Layout of the Menu strip.

4.2 Side menu
The side menu consists of four menus-items and is expandable to more items in the future.

4.2.1 Select drawing elements

The first menu-item is the Select drawing elements (Figure 4). In

this menu, the user can select which notations are visible in the

drawing ribbon. A notation consists of drawing elements to draw a

model. For example, the notation UML Use Case consists of

elements as Actor, Use Case, and Dependency. By ticking one of

the checkboxes, a JavaScript is executed to show the

corresponding drawing elements in the ribbon.

To minimalize the length of the list of notations, similar notation

(as UML) are grouped together in a dropdown list and can be

maximized when desired. The list is alphabetically sorted, with

exception of Notes. Notes is an important option and can be easily

overlooked in a list, and therefore it is placed at the top of the list.

Figure 2 Layout of prototype.

Figure 4 Layout of Selecting drawing
elements

9

4.2.2 Models

Models is the second menu-item (Figure 5). In this menu all the

models are gathered so the user can find, filter and search form

models. The first option is to filter the models per viewpoint. In this

option the Viewpoint Matrix of the literature research is

implemented. A JavaScript is executed by ticking one of the

checkboxes. This script checks which options are active. Then per

active option the relations between viewpoints from the matrix are

checked. Then the corresponding models are shown in the list.

The second option is to Display models. This is a toggle function to

show or hide the thumbnails of the models in the list. The third

option is to search for a model. This is a real-time search function

that updates the list based on what the user types.

The options are followed by the actual list of models. It contains the

title of the model, followed by a thumbnail of the model. This

thumbnail is also draggable into the canvas of the application. By

clicking on one of the models, the font-weight and color is changed

to indicate the focus on that model.

4.2.3 Requirements

Requirements is the third menu-item (Figure 6). This contains a list

of User Stories. For this list is also a filter per role and search option

available.

4.2.4 Styling

Styling is the last menu-item (Figure 7). In here the user will be able

to style his model with different colors, lines and text. For this

project a placeholder image is implemented that displays the future

functionalities in this menu.

4.2.5 Order of the menu-items

Selecting drawing elements is placed as top menu-item to minimize

the distance between the ribbon and the selecting options. This way

the coupling between the two elements is more naturally.

The focus of the application is on the models, therefore Models is

the second menu-item. Another reason that we take into account is

the size of the menu. If the Models menu is lower on the list, the

chance to trigger a double scrollbar (one of the side menu and one

of the list of all models) is bigger, than when Models is higher on the

list. The same is applied to Requirements. Therefore Styling is the

last option in the menu.

Figure 6 Layout of Models.

Figure 5 Layout of Requirements.

Figure 7 Layout of Styling.

10

4.3 Drawing ribbon
The drawing ribbon (Figure 8) contains all the drawing elements an architect needs in able to draw

models. As mentioned in the previous sector, the elements are grouped per notation and can be

activated by selecting the desired notation.

Figure 8 Layout of Drawing ribbon.

For accessibility from all positions in front of the video wall, the ribbon is placed at the top of the

canvas. It has a similar placement as the ribbon in Microsoft applications. It is also possible to

minimalize the ribbon when it is not needed. The default position is to hide this element, only to pop

up when a notation is selected.

The user is able to drag each element to the canvas to create or modify a model. The ribbon is

horizontally scrollable in order to easily select an element further in the ribbon.

4.4 Canvas
The canvas is the area where the user can drop models, drawing elements and User Stories. In here

the user will also be able to view information about the elements in the model. This is yet to be

implemented.

To empty the canvas, the user drags the model or element to the side menu or the drawing ribbon.

In Figure 9, we see a screenshot of the prototype in action. The drawing elements ‘UML Activity’ and

‘UML Use Case’ are active and displayed in the drawing ribbon, the Concurrency models are active,

and the thumbnails of the models are disabled, a search request is active for ‘ap’, and the activity

diagram is dragged to the canvas.

Figure 9 Layout of the prototype.

11

In Figure 10 we see a second screenshot of the prototype in action. The drawing ribbon is hidden and

on the canvas there are two models present. In Figure 11 we see the prototype in action on the video

wall.

Figure 10 Prototype with two models on the canvas.

Figure 11 Demo of the prototype on the video wall.

12

5 Discussion & Outlook
Building a prototype is the first step to actually build an application. It is the easiest (and cheapest)

way to implement changes after testing with potential users. For this project a prototype is only build

and not tested. The design decisions described in the previous chapter seem logical, but there is

always a difference in what looks good on paper and what actually works in a real work environment.

Therefore the design as described in this paper, is not the final design and needs to be tested before

the next step in the design cycle is taken.

Another point of discussion is that this prototype is built on literature and not a combination of

literature and real work experience. Therefore the prototype is missing the link with how real-life

software architects work. This is applies to how models are named and grouped together, but also

how requirements are written down and stored.

5.1 Outlook
As mentioned in the context, this project is a prototype to showcase what the application can do. In

the following paragraphs we discuss the differences that will be made between the prototype and

future application and what future functionalities can be incorporated.

5.1.1 Real vs. dummy data

For the application a set of 62 User Stories and 31 models is hardcoded in the prototype, and

therefore cannot be changed by the user. In the future application this will be possible by either

uploading or importing files with requirements (User Stories) and/or models.

The hardcoded models also means that it is not possible to interact with the models on individual

elements level. The model is draggable as one image, instead of individual elements that can be

altered in the future application.

5.1.2 Styling vs. no styling

As mentioned before, for this prototype only a placeholder image for styling is implemented. This

image showcases what options will be available to the user. In the application the user will be able to

style the models.

5.1.3 Future functionalities

Future functionalities that could be incorporated in the near future are:

- The ability to zoom in the model. Either to a sub-model or to enlarge the model.

- Display of element information. By clicking on an element, the user will be able to see some

information about that element, for example what User Stories are connected to that

element.

- Possibility to change order of drawing ribbon so the user can put frequently used elements in

front of the line.

- Automatically opening the styling menu when building a model and changing the available

styling function based on what element is selected.

- Presets to highlight certain elements. For example a basic preset where the models have

barely to any color, only displaying basic information, and a connecting preset where

elements that are connected are highlighted.

13

- Free shape drawing. The user draws an object. Depending on the shape, the application will:

o translate the gesture into the actual (pre-programmed) object.

o translate the drawing to a new non-existent object. The user is able to save this

object and place it into the drawing elements ribbon.

- Importing models, requirements (User Stories), drawing elements, and possible other files.

- Possibility to change the layout of the application.

- Changing preferences in either the behavior of the application, like disable the linking of the

Viewpoint Matrix, or the layout, like colors.

5.1.4 Future implementation of models

For now only five architecting methods are incorporated into the prototype, but there are many

more methods and models to implement. For example Functional Architecture Modeling proposed

by Brinkkemper and Parchidi (2010) for the visualization of the functional architecture of a software

product.

The application should be extensible in viewpoints and perspectives as well. Constantly, architects

and researchers develop new ideas and views on architecture. For example, Jagroep et al. (2017)

propose an energy consumption perspective on software architecture.

An important aspect that is not included in this research is the experiences of software architects. An

extensive collaboration with the software architects in the industry is necessary to develop an

application that is connected to both literature and practice. In such collaboration, additional (non-

literature) models can be identified and implemented in the prototype.

5.1.5 Future research topics

Other research topics that can be implemented in the application can be how to avoid and detect

Architectural Drift and Erosion (Taylor, Medvidović, & Dashofy, 2010). More research about

Continuous Architecting and how to implement this, and how to incorporate the rationale of a design

decision in the application, e.g. as proposed by Van der Werf et al. (2017).

14

6 References
Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice (Third ed.). River, New

Jersey: Pearson Education, Inc.

Brinkkemper, S. (2015). Continuous Architecture a vision [PowerPoint slides]. Retrieved from
http://www.cs.uu.nl/docs/vakken/mswa/20152016/lecture_14.pdf

Brinkkemper, S., & Parchidi, S. (2010). Functional Architecture Modeling for the Software Product
Indistry. ECSA 2010 (pp. pp.198-2013). Berlin Heidelberg: Springer-Verlag.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., . . . Stafford, J. (2001). Documenting
Software Architectures: Views and Beyond (2nd ed.). Boston: Pearson Educatio, Inc.

de Feijter, R. (2017). Scenarios for Continuous Architecting.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS
Quarterly, 28(1), pp. 75-105.

Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., & America, P. (2007). A general model of
software architecture design derived from five industrial approaches. The Journal of Systems
and Software, 80, pp.106-126.

Ieee std 1471–2000. (2000). Recommended practice for architectural description of software-
intensive systems. Technical report, IEEE.

Jagroep, E., Werf, J., Brinkkemper, S., Blom, L., & Vliet, R. (2017, June). Extending software
architecture views with an energy consumption perspective. Computing, 99(6), pp.553-573.

Kruchten, P. (1995, November). Architectural Blueprints: The “4+1” View. IEEE Software, 12(6),
pp.42-50.

Maier, M., & Rechtin, E. (2000). The Art of System Architecting (2nd ed.). Boca Raton: CRC Press LLC.

May, N. (2005). A Survey of Software Architecture Viewpoint Models. Proceedings of The Sixth
Australasian Workshop on Software and System Architectures (AWSA 2005), pp.13-24.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A Design Science Research
Methodology for Information Systems Research. Journal of Management Information
Systems, 24(3), pp.45-77.

Rozanski, N., & Woods, E. (2012). Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives (2nd ed.). Addison-Wesley.

Shahin, M., Liang, P., & Babar, M. (2014). A systematic review of software architecture visualization
techniques. The Journal of Systems and Software(94), pp.161-185.

Taylor, R., Medvidović, N., & Dashofy, E. (2010). Software Architecture: Foundations, Theory, and
Practice. Hoboken: John Wiley & Sons, Inc. .

van der Werf, J. M., de Feijter, R., Bex, F., & Brinkkemper, S. (2017, April). Facilitating Collaborative
Decision Making with the Software Architecture Video Wall. Software Architecture Workshop
(ICSAW) 2017, IEEE International Conference (pp. 137-140). IEEE.

15

Appendix A: Overview of Viewpoints
This overview contains all the views and viewpoints of the discussed papers. Per paper certain terms and concepts are highlighted. The underscored

concepts highlight the essence of the view. The italic concepts and terms highlight the elements of the view that make up the viewpoint. These highlighted

terms and concepts are used to compare the viewpoints. All information is directly quoted from the paper.

Paper Viewpoint Description Additional information Elements & Models

Bass Module Implementation unit that provides a
coherent set of responsibilities. Explain
the system’s functionality.

A module might take the form of a class, a collection
of classes, a layer, an aspect, or any decomposition
of the implementation unit. Every module has a
collection of properties assigned to it. Unlikely that
the documentation of any software architecture can
be complete without at least one module view.

Modules (implementation
units of software that provide
a coherent set of
responsibilities), relations (is
part of, depends on, is a).

Bass Component-
and-connector

Commonly used to show to developers
and other stakeholders how the
system works - one can animate/trace
through a C&C view, showing an end-
to-end thread of activity.

Shows element that have some runtime presence
(components) and pathways of interaction
(connectors). Ports (interface of component) defines
a point of potential interaction of a component with
its environment. Roles (interfaces of connectors)
defining the ways in which the connector may be
used by components to carry out interaction.
Attachment indicate which connectors are attached
to which components, thereby defying a system as a
graph of components and connectors.

Components, connectors,
attachments, interface
delegation

Bass Allocation Describes the mapping of software
units to elements of an environment in
which the software is developed or in
which it executes.

Can be static or dynamic. Software element,
environmental element,
Allocated to

Bass Quality Can be tailored for specific
stakeholders or to address specific
concerns. These are formed by
extracting the relevant pieces of
structural views and packaging them
together.

Security view can show all architectural measures
taken to provide security. Communications view,
exception or error-handling view, reliability view,
performance view.

 -

16

Paper Viewpoint Description Additional information Elements & Models

Rozanski Context Describes the relationships,
dependencies, and interactions
between the system and its
environment (the people, systems, and
external entities with which it
interacts).

 - Context model, interaction
scenario's

Rozanski Functional Describes the system's runtime
functional elements, their
responsibilities, interfaces, and primary
interactions.

Cornerstone of most Architecture Description, often
first part stakeholders read.

Functional structure model

Rozanski Information Describes the way that the system
stores, manipulates, manages, and
distributes information.

As an architect, you can do data modeling only at an
architecturally significant level of detail. You use the
Information view to answer, at an architectural level,
questions about how your system will store,
manipulate, manage, and distribute information.

Static information structure,
information flow, information
lifecycle, information
ownership, information
quality analysis, metadata
models, volumetric model

Rozanski Concurrency Describes the concurrency structure of
the system and maps functional
elements to concurrently and how this
is coordinated and controlled.

Extremely relevant to systems with many operations
being executed at once.

System-level concurrency
models, state models

Rozanski Development Describes the architecture that
supports the software development
process.

 - Module structure models,
common design models,
codeline models

Rozanski Deployment Describes the environment into which
the system will be deployed and the
dependencies that the system has on
elements of it.

Focuses on aspects of the system that are important
after the system has been built and needs to be
validation tested and transitioned to live operation.

Runtime platform models,
network models, technology
dependency models, inter-
model relationships

Rozanski Operational Describes how the system will be
operated, administered, and
supported, when it is running in its
production environment.

Often the one that is least well defined and needs
the most refinement and elaboration during the
system’s construction, because many details are not
fully defined until design and construction are well
under way.

Installation, migration,
configuration management,
administration, support
models

17

Paper Viewpoint Description Additional information Elements & Models

Taylor Logical Capture the logical (often software)
entities in a system an how they are
connected.

- -

Taylor Physical Captures the physical (often hardware)
entities in a system and how they are
interconnected.

 - -

Taylor Deployment Captures how logical entities are
mapped onto physical entities.

 - -

Taylor Concurrency Captures how concurrency and
threading will be managed in a system.

 - -

Taylor Behavioral Captures the expected behavior of
(parts of) a system.

 - -

Kruchten Logical view Object model of the design (when an
object-oriented design method is
used).

Supports functional requirements. Decomposed in
key abstractions (objects, objects classes). They
exploit the principles of abstraction, encapsulation,
and inheritance.

 -

Kruchten Process view Captures the concurrency and
synchronization aspects of the design.

Takes into account some non-functional
requirements. It addresses issues of concurrency and
distribution, of system’s integrity, of fault-tolerance,
and how the main abstractions from the logical view
fit within the process architecture.

 -

Kruchten Development
view

Describes the static organization of the
software in its development
environment.

Focuses on the actual software module organization
on the software development environment. It serves
as the basis for requirement allocation, allocation of
work to teams (or team organization), for cost
evaluation and planning, monitoring the progress of
the project, for reasoning about software reuse,
portability and security. It is the basis for establishing
a line-of-product.

 -

18

Paper Viewpoint Description Additional information Elements & Models

Kruchten Physical view Describes the mapping(s) of the
software onto the hardware and
reflects its distributed aspect.

Takes into account primarily the non-functional
requirements of the system such as availability,
reliability (fault-tolerance), performance
(throughput), and scalability.

 -

Kruchten Scenarios Instances of more general use cases. The scenarios are in some sense an abstraction of
the most important requirements.

 -

Maier Purpose /
objective

What the client wants. To match the desirability of the purposes with the
practical feasibility of a system to fulfill those
purposes

 -

Maier Form What the system is. Represent physically identifiable elements of, and
interfaces to, what will be constructed and
integrated to meet client objectives.

Scale models, block diagrams,
object diagrams

Maier Behavioral or
functional

What the system does. Describe specific patterns of behavior by the system.
These are models of what the system does (how it
behaves) as opposed to what the system is (which
are models of form).

Threads and scenarios (Use
Case), Data and event flow
networks, Data/control flow,
class diagrams, data flow,
state charts

Maier Performance
objectives or
requirements

How effectively the system does it. Describes or predicts how effectively an architecture
satisfies some function. Performance models
describe properties like overall sensitivity, accuracy,
latency, adaptation time, weight, cost, reliability,
and many others. Non-functional requirements.

Formal methods, data models

Maier Data The information retained in the system
and its interrelationships.

What data does the system retain and what
relationships among the data does it develop and
maintain?

Entity-Relationship diagram

Maier Managerial The process by which the system is
constructed and managed.

Describes the process of building the physical
system. It also tracks construction events as they
occur. Most of the models of this view are the
familiar tools of project management.

 -

19

Appendix B: Overview of Models
Paper Model/Structure Purpose Elements Notation

Bass Decomposition Used as basis for development project's organizations. The
units are modules that are related to each other by the is-
a-submodule-of relation, showing how modules are
decomposed into smaller modules recursively until the
modules are small enough to be easily understood.

Module -

Bass Uses Used to engineer systems that can be extended to add
functionality, or from which useful functional subsets can
extracted. Units are related by the uses relation. A unit of
software uses another if the correctness of the first
requires the presence of a correctly functioning version (as
opposed to a stub) of the second.

Units, modules, classes -

Bass Layer Used to imbue a system with portability, the ability to
change the underlying computing platform. Layer is an
abstract virtual machine that provides a cohesive set of
services through a managed interface.

Layer -

Bass Class /
Generalization

Allows one to reason about reuse and the incremental
addition of functionality. Supports reasoning about
collections of similar behavior or capability and
parameterized differences.

Class, object -

Bass Data model Describes the static info structure in terms of data entities
and their relationship.

Data entities, relationship -

Bass Service Units are services that interoperate with each other by
service coordination mechanisms.

Service, ESB, registry, others -

Bass Concurrency Allows architect to determine opportunities for parallelism
and the locations where resource contention may occur.

Components, connectors.
Processes, threads

-

Bass Deployment Shows how software is assigned to hardware processing
and communication elements.

Hardware entities,
communication pathways,
relations

-

20

Paper Model/Structure Purpose Elements Notation

Bass Implementation Shows how software elements are mapped to the file
structure in the system's development, integration, or
configuration control environments.

Modules, file structure -

Bass Work assignment Assigns responsibility for implementing and integrating the
modules to the teams who will carry it out.

Modules, organizational
units

-

Rozanski Context model The purpose of the context model is to explain what the
system does and does not do, to present an overall picture
of the system’s interactions with the outside world, and to
summarize the roles and responsibilities of the participants
in these interactions. This understanding is essential in
order to make sure that all who are involved in the
development of the system (and in making any necessary
changes outside of it) know what they are responsible for
and exactly where the boundaries are. This avoids
potential duplication of development effort or, even
worse, gaps or inconsistencies in the solution.

System itself, external
entities (name, nature,
owner, responsibilities),
interfaces (between system
and external entities,
interactions, semantics,
exception processing, quality
properties)

UML (use case diagram)

Rozanski Interaction
Scenarios

It is often useful to model some of the expected
interactions between your system and the external entities
in more detail than is provided in a context diagram. This
sort of model helps to uncover implicit requirements and
constraints (such as ordering, volume, or timing
constraints) and helps to provide a further, more detailed
level of validation.

Participants, interactions UML sequence diagrams

Rozanski Functional
structure model

Cornerstone of most ADs. Documents the system’s
functional structure—including the key functional
elements, their responsibilities, the interfaces they expose,
and the interactions between them.

Functional elements,
interfaces, connectors,
external entities.

UML component diagrams,
Yourdon, Jackson System
Development, Object
Modeling Technique of James
Rumbaugh, ADL, Boxed-and-
lines diagrams, sketches

Rozanski Static information
structure model

Analyze the static structure of the information: the
important data elements and relationships among them.

- Entity/relationship modeling,
(UML) class modeling

21

Paper Model/Structure Purpose Elements Notation

Rozanski Information flow
models

Analyze the dynamic movement of information between
elements of the system and the outside world. These
models identify the main architectural elements and the
information flows between them. Most useful for data-
intensive systems

Main architectural elements,
flow (information interface).
Flow: scope, direction,
volumetric info, whereby
info is exchanged.

Gane and Sarson, SSADM data
flow diagrams

Rozanski Information
lifecycle models

Analyze the way information changes over time. Entity life
histories: model the transitions that data items undergo in
response to external events, from creation through one or
more updates to final deletion. State transition models (or
state charts in UML terminology): model the overall
changes in a system element’s state in response to
external stimuli.

- Tree structure (Entity life
histories), UML state diagram
(State transition model)

Rozanski Information
Ownership models

Define the owner for each data item in the architecture. Data item (entity (table)),
attribute (field), classes of
info ownership

Grid (system and data stores
vs data items on axis).

Rozanski System-level
concurrency
model

The process model shows the planned process, thread, and
inter-process communication structure.

Processes, Process groups,
threads, inter-process
communication, procedural
call mechanism, data-sharing
mechanisms, execution
coordination mechanisms,
messaging mechanisms

UML concurrency modeling,
LOTOS, Communicating
Sequential Processes (CSP),
and the Calculus of
Communicating Systems
(CCS),

Rozanski State Model Describes the set of states that runtime elements can be in
and the valid transitions between those states. The set of
states and transitions for one runtime element is known as
a state machine

State, transition, event,
action

UML State chart, Petri Nets,
SDL, and David Harel’s original
State charts

22

Paper Model/Structure Purpose Elements Notation

Rozanski Module structure
model

Defines the organization of the system’s source code, in
terms of the modules into which the individual source files
are collected and the dependencies among these modules.
It is also common to impose some degree of higher-level
organization on the modules themselves to avoid having to
enumerate many individual dependencies.

Modules, dependencies UML Component diagram

Rozanski Common design
models

To maximize commonality across element
implementations, it is desirable to define a set of design
constraints that apply when designing the system’s
software elements.

 1. A definition of the
common processing required
across elements; 2.
definition of standard design
approaches that should be
used when designing the
system’s elements; 3.
definition of what common
software should be used and
how it should be used.

Design document with combo
of text and UML

Rozanski Codeline models The key things to define are the overall structure of the
codeline; how the code is controlled; where different types
of source code live in that structure; how it should be
maintained and extended over time; and the automated
tools that will be used to build, test, release, and deploy
the software. Defining these aspects of the development
environment is an important part of achieving reliable,
repeatable build and release processes.

- UML, but text and tables is
better.

Rozanski Runtime platform
models

Defines the set of hardware nodes that are required, which
nodes need to be connected to which other nodes via
network (or other) interfaces, and which software
elements are hosted on which hardware nodes.

Processing nodes, client
nodes, runtime containers,
online storage hardware,
offline storage hardware,
network links, other
hardware components,
runtime element-to-node
mapping

UML Deployment diagram,
box-and-lines diagram, text
and tables

23

Paper Model/Structure Purpose Elements Notation

Rozanski Network models This model is normally a logical or service-based view of
what you require of the network, rather than a physical
view that specifies its individual elements.

Processing nodes, network
nodes, network connections

UML Deployment diagram,
box-and-lines diagram

Rozanski Technology
Dependency
Models

Technology dependencies are usually captured on a node-
by-node basis in simple tabular form. The software
dependencies are typically derived from the Development
view. You can also derive hardware dependencies from
test or development environments.

- Text and tables, graphical
notations on runtime platform
model

Rozanski Installation model Discuss installation and/or upgrade as needed for your
system. The installation model provides your view of the
requirements and constraints the architecture imposes on
installation and upgrade.

- Text and tables, lists

Rozanski Migration model As with the installation model, the migration model should
focus on the requirements and constraints that the current
architecture places on the detailed migration process that
will be developed later.

- Text and tables

Rozanski Configuration
Management
model

create a model of the system configuration management
approach (rather than identifying lots of individual
configuration values).

- Text and tables

Rozanski Administration
model

define the operational requirements and constraints of
your architecture and the facilities it provides for
administrative users.

Monitoring and control
facilities, required routine
procedures, likely error
conditions, performance
monitoring facilities

Text and tables

Taylor Natural language Describing arbitrary concepts with an extensive
vocabulary, but in an informal way.

To document architectural
design decisions. Often
capture non-functional
requirements.

-

Taylor Informal Graphical
modeling

Arbitrary diagrams composed of graphical and textural
elements, with few restrictions on them.

PowerPoint-style. Good for
early prototyping and
exploration, capturing ideas
on abstract/conceptual level

Geometric shapes, splines,
text strings, clip art.

24

Paper Model/Structure Purpose Elements Notation

Taylor UML Capture design decisions for a software system using up to
thirteen different diagram types.

- Classes, associations, states,
activities, composite nodes,
constraints etc.

Taylor Darwin (ADL) Structures of distributed systems that communicate
through well-defined interfaces.

- Components, interfaces, links,
hierarchical composition.

Taylor Rapide (ADL) Interactions between components in terms of partially
ordered sets of events.

- Architectures (structures),
interfaces (components),
actions (messages/events),
and operations describing how
actions are related to one
another.

Taylor Wright (ADL) Structures, behaviors, and styles of systems that are
composed of communicating components and connectors.

- Components, connectors,
ports and roles (= interfaces),
attachments, styles.

Taylor Koala (ADL) Capturing the structure, configuration, and interfaces of
components in the domain of embedded consumer
electronics devices.

- Components, interfaces,
constructs.

Taylor Weaves (ADL) Structure and configuration of components in
architectures that conform to the Weaves architectural
style

- Components, connectors
(queues), directed
interconnections

Taylor AADL Multilevel models of interconnected hardware and
software elements.

- Networks, buses, ports,
processes, threads, etc.

Taylor Acme (ADL) Modeling the structural aspects of a software architecture,
with the addition of properties to define other aspects.

- Components, connectors,
ports and roles (interfaces),
attachments (links),
representations (internal
structure), properties

25

Paper Model/Structure Purpose Elements Notation

Kruchten Rational/Booch
approach

class diagrams shows a set of classes and their logical
relationships: association, usage, composition, inheritance,
etc. Class templates focus on each individual class; they
emphasize the main class operations, and identify key
object characteristics. State transition
diagrams/state charts, define internal behavior. Class
utilities define common mechanisms or services.

Class diagrams, class
templates, state transition
diagrams/state charts, class
utilities.

-

Kruchten Process - Networks, process, tasks,
inter-task communication
mechanism, flow of
messages, process loads

-

Kruchten Develop focuses on the actual software module organization on the
software development environment.

Module, subsystem, layer,
connectors

-

Kruchten Scenarios - - -

Maier Scale models - - -

Maier Block diagrams - - -

Maier Threads and
scenarios

A thread or scenario is a sequence of system operations. It
is an ordered list of events and actions which represents an
important behavior.

Use Case -

Maier Data and event
flow networks

Data flow models define the behavior of a system by a
network of functions or processes that exchange data
objects. The process network is usually defined in a
graphical hierarchy.

- -

Maier Formal methods Seek to develop systems that provably produce formally
defined functional and nonfunctional properties. Formal
methods require explicit determination of allowed and
disallowed input/output sequences.

- -

Maier Data models - - -

