
Koepke Machines and Satisfiability for Infinitary
Propositional Languages

Merlin Carl1,2, Benedikt Löwe3,4,5(B), and Benjamin G. Rin6

1 Fachbereich Mathematik und Statistik,
Universität Konstanz, 78457 Konstanz, Germany

merlin.carl@uni-konstanz.de
2 Fakultät für Informatik und Mathematik,

Universität Passau, Innstraße 33, 94032 Passau, Germany
3 Institute for Logic, Language and Computation, Universiteit van Amsterdam,

Postbus 94242, 1090GE Amsterdam, The Netherlands
b.loewe@uva.nl

4 Fachbereich Mathematik, Universität Hamburg,
Bundesstrasse 55, 20146 Hamburg, Germany

5 Christ’s College, Churchill College, and Faculty of Mathematics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England

6 Departement Filosofie En Religiewetenschap, Universiteit Utrecht,
Janskerkhof 13, 3512BL Utrecht, The Netherlands

b.g.rin@uu.nl

Abstract. We consider complexity theory for Koepke machines, also
known as Ordinal Turing Machines (OTMs), and define infinitary com-
plexity classes ∞-P and ∞-NP and the OTM analogue of the satisfia-
bility problem, denoted by ∞-SAT. We show that ∞-SAT is in ∞-NP
and ∞-NP-hard (i.e., the problem is ∞-NP-complete), but not OTM
decidable.

1 Infinitary Computation and Its Running Times

1.1 Introduction

Various versions of Turing machines for infinitary computation have been pro-
posed. They all have in common that they have ordinal-indexed tapes on which
they can read and write symbols from a finite alphabet Σ, they run in ordinal-
indexed steps of time, and follow the usual instructions for Turing machines for
the successor ordinal steps. The first such type of machines were the Hamkins-
Kidder machines or Infinite Time Turing Machines (ITTMs) defined in [5].
These machines have a regular tape of order type ω, but do not have to halt
in finite time: instead, they can run through transfinite ordinal time steps. This
results in an asymmetric situation between time and space as an ITTM can
run through the class of all ordinals, but only has ω many cells to write on.
In [10,11], Koepke symmetrised ITTMs and defined what are now known as
Koepke machines or Ordinal Turing Machines (OTMs): OTMs have a class-
sized tape indexed by ordinals and run through ordinal time. Other machine
c© Springer International Publishing AG 2017
J. Kari et al. (Eds.): CiE 2017, LNCS 10307, pp. 187–197, 2017.
DOI: 10.1007/978-3-319-58741-7 19

188 M. Carl et al.

concepts include machines that restrict the space to a given ordinal α but run
through arbitrary ordinal time and machines where both time and space are
symmetrically restricted to an ordinal α (cf. [3,12,14]).

The symmetry between space and time for Koepke machines reflects that
of finitary Turing machines. The first author has argued in [1] that Koepke
machines are the natural infinitary analogue for finitary computability theory.
In this paper, we shall study deterministic and nondeterministic polynomial time
computation for Koepke machines. In Sect. 1.2, we give the basic definitions of
our model of computation and its running time analysis. Complexity theory for
infinitary computation was introduced by Schindler in [15] in the context of
Hamkins-Kidder machines; for Koepke machines, the definitions were discussed
by the second author and Winter [13,16,17]. We give precise definitions in this
tradition (introducing the complexity class ∞-NP) and discuss fundamental
differences between finitary and infinitary computation in Sect. 2. In Sect. 3, we
introduce the OTM analogue of the satisfiability problem ∞-SAT, show that it
is in ∞-NP and that every problem in ∞-NP polynomially reduces to it (i.e.,
∞-SAT is ∞-NP-hard). However, due to the phenomena discussed in Sect. 2.2,
being ∞-NP-complete does not necessarily imply that ∞-SAT is OTM decid-
able: in Sect. 4, we show that it is not (and discuss a notable difference between
the general decision problem ∞-SAT and its countable fragment).

1.2 Basic Definitions

In the following, we shall be working with Koepke machines, or OTMs, sometimes
allowing ordinal parameters in our computations. For detailed definitions, we
refer the reader to [10].

An OTM input is a function X : α → Σ where lh(X) := α is an ordinal called
the length of X. We assume that the tape alphabet Σ contains a blank symbol
that allows us to express shorter OTM inputs as longer ones: if lh(X) = α < β,
we consider X∗ : β → Σ with X∗(γ) := X(γ) for γ < α and X∗(γ) =
for γ ≥ α and identify X and X∗. A class of OTM inputs is called an OTM
decision problem. A Koepke machine M decides an OTM decision problem C in
parameter η if it halts with parameter η for every OTM input X and outputs
1 if and only if X ∈ C; an OTM decision problem is called OTM decidable in
parameter η if there is a Koepke machine deciding it in parameter η. Parameter-
free computation is the special case where η is a recursive ordinal (e.g., 0). An
OTM decision problem is called bounded with bound λ if for every OTM input
X ∈ C, we have that lh(X) < λ.

We emphasize that (as in the finitary case) most natural decision problems
do not occur as classes of OTM inputs, but have to be formally encoded as OTM
decision problems. Typically, they come in the form of some class D of objects of
some particular kind (e.g., formulas, trees, graphs, etc.) together with a coding
(class) function code such that for every (relevant) set Z, code(Z) is an OTM
input, and C := {code(Z) ; Z ∈ D} is an OTM decision problem. We shall see
below that the choice of coding is crucial in the infinitary case.

Koepke Machines and Satisfiability for Infinitary Propositional Languages 189

Let f : Ord → Ord be an increasing class function (in the following, we
shall refer to these as complexity functions). A class function f is a polynomial
function if there are ordinals αn ≥ ... ≥ α0 such that for all γ, we have

f(γ) = γαn + γαn−1 + ... + γα0 .

We say that a Koepke machine M is a time f machine if the machine halts for
every OTM input X in less than f(lh(X)) steps.

If C is an OTM decision problem, we write C ∈ Time(f) if there is a time
f machine deciding C and C ∈ ∞-P if there is a polynomial function f such
that C ∈ Time(f). In the latter case, we say that it is OTM polynomial time
decidable.

Similarly, if C and D are OTM decision problems, we say that C is reducible
to D in time f if there is a time f machine that takes an OTM input X and
produces an output Y such that X ∈ C if and only if Y ∈ D. We say that C is
reducible to D in polynomial time if there is a polynomial function f such that
C is reducible to D in time f .

Proposition 1. If C is a bounded OTM decision problem with bound λ ≥ ω,
then exactly one of the following holds:

(i) The problem C is not OTM decidable in parameter λ; or
(ii) the problem C is decided by a time c machine in parameter λ, where c is the

constant function α �→ |λ|+.
Proof. Suppose that C is decidable by a Koepke machine M in parameter λ. In
particular, for every input X, the machine M halts. If lh(X) < λ, a standard
Löwenheim-Skolem argument using the absoluteness of computations shows that
there is some α < |λ|+ such that the model Lα[X] is a model of “the computation
of M with input X and parameter λ halts”. But then the computation must halt
before α < |λ|+. Checking whether lh(X) < λ can be done in time λ using the
parameter λ. ��

The proof of Proposition 1 has two immediate consequences for running times
of infinitary computations:

First, while Koepke machines can in principle use the entire length of the
class of ordinals for their computation time, halting Koepke machines (and these
are the only ones that matter for decision problems) do not: they can never
substantially outrun the size of the input (in the sense that, if the input has
cardinality κ, then the computation will take less than (κ+)L many steps). This
is a marked difference to the finitary case.

This immediately implies that the relevant operations for running time analy-
sis of Koepke machines must necessarily be ordinal operations rather than cardi-
nal operations since any non-trivial cardinal operations on infinite ordinals will
move beyond the bounds of Proposition 1.

This in turn yields a second important consequence: as in the finitary case,
infinitary complexity theory is sensitive to the encoding of the input; the more

190 M. Carl et al.

efficient the input encoding is, the harder it is to prove complexity bounds for
a decision problem. But every ordinal κ ≤ α ≤ κ+ can be encoded by a set of
order type κ, so there is a maximally efficient encoding in terms of input length.

We illustrate this phenomenon by showing that any OTM decision problem
that is decidable in time f by a machine M has a re-coded version such that
the re-coded version of M is not a time f machine. Let κ be a cardinal and C
be an OTM decision problem that was obtained from some class D by means
of a coding function code such that C = {code(Z) ; Z ∈ D}. Let f : Ord →
Ord be a complexity function and M a time f machine that decides C and
for the sake of non-triviality, assume that f(κ) < κ+. Now, if there is some
OTM input X = code(Z) with lh(X) < κ+ such that M takes more than f(κ)
many steps before halting. Then let λ := max{f(κ), lh(X)}, let π be a bijection
between κ and λ, and let code∗ be the coding function corresponding to the
combination of code and π. In particular, code∗(Z) has length κ. If we write
C∗ := {code∗(Z) ; Z ∈ D}, then the appropriately re-coded version of M does
not decide C∗ in time f since it will run for more than f(lh(code∗(Z))) = f(κ)
many steps.

Consequently, in infinitary computation, a sufficiently efficient coding for the
input can potentially destroy the complexity properties of any machine. Hence,
we need to assume that the encoding of the decision problem respects the natural
length of the objects being coded.

2 Complexity Theory for Koepke Machines

2.1 Definitions

Nondeterministic complexity classes for infinitary computation were first intro-
duced by Schindler in [15] for Hamkins-Kidder machines; Schindler’s definition
did not use nondeterministic Hamkins-Kidder machines, but defined the class
NP in terms of checking a witness. This was linked in [13, Proposition 11] to
nondeterministic Hamkins-Kidder machines. Schindler exploited the asymmetry
between time and space for Hamkins-Kidder machines and showed that for his
definitions of P and NP for Hamkins-Kidder machines, we get P � NP. His
results were later improved to P � NP ∩ co-NP in [4]; cf. also [6,13,16,17].

In the following, we give the corresponding definitions for Koepke machines
that were essentially first developed by Winter in [16]. We call a class D of pairs
of OTM inputs a witnessed OTM decision problem. If C is an OTM decision
problem and D is a witnessed OTM decision problem, we say that C is the
projection of D if

X ∈ C ⇐⇒ ∃W ((W,X) ∈ D);

i.e., if (W,X) ∈ D, we interpret W as a witness for the membership of X in C.
As usual, if X is an OTM input of limit ordinal length λ, we can consider X

as a pair (X0,X1) of OTM inputs of length λ via X0(μ + n) := X(μ + 2n) and
X1(μ + n) := X(μ + 2n + 1) (for limit ordinals μ < λ). If f : Ord → Ord is a

Koepke Machines and Satisfiability for Infinitary Propositional Languages 191

complexity function, we say that a Koepke machine M is a ∗-time f machine if
the machine halts for every OTM input X in less than f(lh(X1)) steps.

If D is a witnessed OTM decision problem and M is a Koepke machine, we
say that M decides D if it halts on all OTM inputs and it outputs 1 on input
X if and only if (X0,X1) ∈ D. If C is an OTM decision problem, we write
C ∈ NTime(f) if there is a witnessed OTM decision problem D such that C
is the projection of D and there is a ∗-time f machine deciding D. We write
C ∈ ∞-NP if there is a polynomial function f such that C ∈ NTime(f).

2.2 The Fundamental Difference Between Finitary and Infinitary
Computation

In the case of ordinary Turing machines and complexity functions f : N → N,
we can recapture nondeterministic computation by deterministic computation:
suppose that you have some complexity function f : N → N and some decision
problem C that is decided by a ∗-time f machine M . This means that there is
a witnessed decision problem D such that C is the projection of D. On input
(W,X) with lh(X) = n, the machine halts in less than f(n) steps. In particular,
it reads at most the first f(n) many digits of W , so we can ignore the rest of
the information in W . This allows us to run an exhaustive brute force algorithm
that checks all possible witnesses: there are Σf(n) many input sequences of length
f(n), so we can just run M on all of these in combination with X; if ̂f(n) :=
f(n) · Σf(n) · k for a sufficiently large k ∈ N, then the brute force algorithm
checks in time ̂f whether X ∈ C. This argument breaks down for infinitary
computation, as will be shown in Proposition 2.

Since the state of a Koepke machine is absolute between transitive models
of set theory, the content of the tape has to be constructible. Thus, for the
discussion of brute force algorithms, it is sensible to work under the assumption
of V=L.

In general, if M is any Koepke machine and f is any complexity function,
we say that a machine ̂M is an exhaustive brute force machine associated to M
relative to f if at input Y with lh(Y) = α, the machine ̂M successively writes
all OTM inputs Z of length f(α) on the scratch tape and then runs the machine
M on input X with X0 = Z and X1 = Y . It gives the output 0 if all of the runs
of M produced output 0 and 1 if one of the runs of M produced 1. The above
argument shows for finitary computation that ̂M is a time ̂f -machine if M was
a ∗-time f machine.

Proposition 2. Assume V=L. Suppose that f is a complexity function such
that there is some α ≥ ω with f(α) ≥ |α| and that M is a ∗-time f machine and
̂M is an exhaustive brute force machine associated to M relative to f . Then ̂M
does not halt for any OTM input of length α.

Proof. Let X be an OTM input of length α. The machine ̂M runs for at least
2|α| ≥ |α|+ many steps since the exhaustive brute force machine has to produce
all OTM inputs of length f(α) ≥ |α|. But Proposition 1 tells us that no machine
can run for |α|+ many steps on input X and after that still halt. ��

192 M. Carl et al.

The fact that for infinitary computation, decision problems that are nonde-
terministically decidable can be deterministically undecidable has been observed
and used by Winter [16, p. 74]. We shall provide a concrete example for this in
Sect. 4.

3 An Infinitary Analogue of SAT

In finitary computation, the decision problem SAT is the set of satisfiable propo-
sitional formulas.

We define the natural analogue of SAT in the context of Koepke machines in
the style of infinitary languages (cf. [9]). Let Var ⊆ L be a class of propositional
variables. We form formulas of the infinitary propositional language L∞,0 with
the unary operator ¬ corresponding to negation and the operator

∧

that takes
a set of formulas and produces its conjunction.

1. Every element of Var is in L∞,0.
2. If ϕ ∈ L∞,0, then so is ¬ϕ.
3. If Φ is a set of members of L∞,0, then

∧

Φ is an element of L∞,0.

As usual, we abbreviate ¬∧{¬ϕ ; ϕ ∈ Φ} by
∨

Φ. Formulas of the language
L∞,0 naturally correspond to labelled well-founded trees (T,) where each node
in T has a set of successors and is a function from the set of leaves of T
to Var. We write Varϕ := ran() for the set of variables occurring in ϕ. By a
simple Mostowski collapse argument, we may assume that Varϕ ⊆ Lβ for some
β < |T |+. The width of the tree T , denoted by width(T) is the supremum
of the cardinalities of the sets of successors of branching nodes; the height of
the tree T , denoted by height(T) is defined by the usual recursion on the well-
founded tree structure. By interpreting the leaves t of T as propositional variables
(t), its branching nodes as infinite conjunctions, and its non-branching nodes
as negations, we can identify a formula with a labelled well-founded tree. A
function v : dom(v) → {0, 1} with dom(v) ⊆ Var is called a valuation. As usual,
if ϕ = (T,) is a labelled well-founded tree, any valuation v with dom(v) ⊇ Varϕ

uniquely extends to a map v̂ : T → {0, 1} via the following recursive definition:

1. if t ∈ T is a leaf, then v̂(t) := v((t));
2. if t ∈ T is a non-branching node and t′ is its unique successor in T , then

v̂(t) := 1 − v̂(t′);
3. if t ∈ T is a branching node and X is the set of its successors in T , then

v̂(t) := min{v̂(x) ; x ∈ X}.

We define v̂(T,) to be the value of v̂ at the root of the tree T .

Definition 3. The problem ∞-SAT is to decide on input (T,) ∈ L∞,0 whether
there is a valuation v such that v̂(T,) = 1.

Definition 3 does not define an OTM decision problem: in order to do so, we
still need to specify in which way the formula (T,) is encoded as an OTM input.

Koepke Machines and Satisfiability for Infinitary Propositional Languages 193

As emphasized before, it is crucial in the realm of infinitary computation that
this encoding respects the natural length of the input. We shall not specify a
concrete encoding here (since it does not matter for anything that follows), but
insist that the encoding function has the property that

lh(code(T,)) = max(width(T),height(T)).

With this requirement, the following results are straightforward adaptations
of the classical arguments showing that SAT is NP-complete:

Theorem 4. The OTM decision problem ∞-SAT is in ∞-NP.

Theorem 5. Every problem in ∞-NP reduces in polynomial time to ∞-SAT.

Proof. The proof largely follows the same general structure as standard textbook
proofs of the finitary Cook-Levin theorem, but with an additional component to
accommodate the limit stages of machine computation. ��

4 The Undecidability of ∞-SAT

In Sect. 3, we proved that ∞-SAT is ∞-NP-complete. However, as pointed out
in Sect. 2.2, in infinitary computation, being nondeterministically decidable does
not imply deterministic decidability. In this section, we shall show that ∞-SAT
is not OTM decidable. In fact, the decidability behaviour of ∞-SAT restricted
to constructibly countable formulas is different from the general behaviour; this
follows from a theorem by Jensen and Karp:

Theorem 6 (Jensen & Karp). If x is a real and α is a limit of x-admissible
ordinals, then Σ1(x)-sentences are absolute between Vα and Lα[x].

Proof. This is the relativised version of a theorem proved in [7, p. 162]. The
relativisation is discussed in [2, Appendix]. ��
Theorem 7. Let ϕ = (T,) ∈ L be a constructibly countable formula, i.e., L |=
“T is a countable tree”. Then there is an α < ωL

1 such that exactly one of the
following holds:

1. ϕ is not satisfiable, or
2. there is a v ∈ Lα such that v̂(ϕ) = 1.

Proof. Since ϕ is countable in L, find a real c and some β < ωL
1 such that c ∈ Lβ

and c encodes ϕ. Let α be a limit of c-admissibles above β. The sentence “there
is a valuation v such that v̂(ϕ) = 1” is Σ1(c) and hence by Theorem 6 absolute
between Vα and Lα[c] = Lα. So, if ϕ is satisfiable, then a witness of this lies
in Lα. ��

In contrast, the conclusion of Theorem 7 is consistently false if we allow for
formulas that are not countable in L:

194 M. Carl et al.

Theorem 8. There is a constructible formula ϕ ∈ L∞,0 such that

1. for all constructible valuations v ∈ L, we have that v̂(ϕ) = 0, and
2. if ωL

1 < ω1, then there is a valuation v such that v̂(ϕ) = 1.

Proof. For every i ∈ N and α < ωL
1 , let Pi,α be a propositional letter. We define

Φ :=
∧

i∈N

∧

α<ωL
1

∧

β<ωL
1

β �=α

¬(Pi,α ∧ Pi,β) ∧
∧

α∈ωL
1

∨

i∈N

Pi,α ∧
∧

i∈N

∨

α∈ωL
1

Pi,α.

If Φ is satisfiable, then there is a surjection from N onto ωL
1 , so clearly, Φ is

satisfiable if and only if ωL
1 < ω1. ��

The formula ϕ of Theorem 8 has size ℵL
1 ; by Theorem 7, it is impossible to

have a smaller example. Theorem 8 allows us to refine the argument of Proposi-
tion 2: in Proposition 2, it was the exhaustivity of the machine ̂M that did not
allow it to stop (since it would run for too long); we can now see that sometimes,
even writing the witness itself can be too much to ask. If C is an OTM deci-
sion problem which is the projection of a witnessed OTM decision problem D,
then we say that a Koepke machine M decides C by producing a witness in D
if it halts on every input X and outputs either 0 or some sequence Z such that
(Z,X) ∈ D. The following statement is a very weak version of our later main
result, Theorem 10:

Corollary 9. If ωL
1 < ω1, then ∞-SAT cannot be decided by producing a

witness.

Proof. By Theorem 8 and the assumption, we have a constructible satisfiable
formula ϕ with no constructible witness. So, any machine that decides ∞-SAT
by producing a witness will write a non-constructible valuation on the tape. But
no Koepke machine can produce a non-constructible output on constructible
input. Contradiction! ��
Theorem 10. The OTM decision problem ∞-SAT is OTM undecidable.

Proof. We shall describe a Koepke machine M that produces with parameter
ωL
1 on input i ∈ ω a formula Ψi ∈ L∞,0 that is satisfiable if and only if the ith

Koepke machine halts with parameter ωL
1 .

The proof of the theorem will then proceed by contradiction: Assume that
there is a Koepke machine M ′ that decides ∞-SAT, then we can combine M
and M ′ to get a Koepke machine with parameter ωL

1 that decides the halting
problem for Koepke machines with parameter ωL

1 . But such a machine cannot
exist.

The main task in the proof is the construction of the formula Ψi; this requires
coding of L-structures. We recall that there is a sentence σ ∈ L∈ such that for
any transitive N , we have (N,∈) |= σ if and only if N = Lγ for some limit
ordinal γ (cf., e.g., [8, Theorem 3.3]).

Koepke Machines and Satisfiability for Infinitary Propositional Languages 195

For every β, γ < ωL
1 , we fix a propositional variable Pβ,γ . If v is a valuation,

we can define a binary relation Ev on ωL
1 by

Ev := {(β, γ) ; v(Pβ,γ) = 1}

and prove the following translation from first-order logic into infinitary logic:

Lemma 11. If ϕ ∈ L∈, then there is Φϕ ∈ L∞,0 such that for every valuation
v, we have v̂(Φϕ) = 1 if and only if (ωL

1 , Ev) |= ϕ.

Proof. This is an easy induction on the formula complexity of ϕ. The induction
steps are trivial for propositional connectives. Concerning the quantifiers, we use
infinite conjunctions to express universal quantifiers and infinite disjunctions for
existential quantifiers in the obvious way. ��

We now add additional propositional variables Bβ,γ for every β, γ < ωL
1 to

encode an embedding from (ωL
1 + 1,∈) into (ωL

1 , Ev). If v is any valuation, we
define a second binary relation

πv := {(β, γ) ; v(Bβ,γ) = 1}

similar to Ev, but based on the values of Bβ,γ instead of the values of Pβ,γ .

Lemma 12. There is a formula Ξ such that for all valuations v, we have have
v̂(Ξ) = 1 if and only if πv is a structure-preserving embedding from (ωL

1 + 1,∈)
into (ωL

1 , Ev).

Proof. Similar to the formula in the proof of Theorem 8. ��
We write ψi for the formula expressing “the ith Koepke machine with para-

meter ωL
1 halts” and notice that this is first-order expressible in all structures

Lη for η > ωL
1 (by condensation, in any such Lη, the ordinal ωL

1 is definable as
the smallest ordinal that does not have a real coding it).

Let S := {s ∈ L ; s : ω → ωL
1 }. An easy condensation argument shows that

S ⊆ LωL
1
. We now write

Ψi := Ξ ∧ Φσ∧ψi
∧

∧

s∈S

∨

i∈ω

¬Ps(i+1),s(i).

Lemma 13. The formula Ψi is satisfiable if and only if the ith Koepke machine
with parameter ωL

1 halts.

Proof. “⇐”. If the ith Koepke machine with parameter ωL
1 halts, then by the

proof of Proposition 1, it has halted at some time ωL
1 < η < ωL

2 . Find a bijection
j : ωL

1 → Lη. Since η > ωL
1 , we find γβ ∈ ωL

1 such that j(γβ) = β for every
β < ωL

1 +1. We define a valuation as follows: v(Pβ,γ) = 1 if and only if j(β) ∈ j(γ)
and v(Bβ,γ) = 1 if and only if γ = γβ . It is easy to check that v̂(Ψi) = 1.

196 M. Carl et al.

“⇒”. If v̂(Ψi) = 1, then define Ev and πv as above. The structure (ωL
1 , Ev)

satisfies σ ∧ ψi by Lemma 11 and is well-founded by
∧

s∈S

∨

i∈ω ¬Ps(i+1),s(i)

(there are no descending Ev-sequences). So by Mostowski’s Collapsing Lemma,
it is isomorphic to a transitive structure (N,∈) |= σ ∧ ψi. This means that
N = Lη for some limit ordinal η. But Lemma 12 shows that ωL

1 +1 embeds into
Lη, and hence, η > ωL

1 . Therefore, Lη sees that the ith Koepke machine with
parameter ωL

1 halts. Now the claim follows from absoluteness. ��
Clearly, there is a Koepke machine that produces, with parameter ωL

1 , upon
input i ∈ ω, the formula Ψi. As mentioned before, this finishes the proof of
Theorem 10 by contradiction. ��
We note that the proof of Theorem 10 can be generalised to show that there is
no ordinal α such that ∞-SAT is OTM decidable in the ordinal parameter α.

We also mention that it is possible to define OTM analogues of other classical
NP-complete problems such as 3SAT and Subset Sum and prove their ∞-NP-
completeness as well as an OTM analogue of Ladner’s theorem (“there are OTM
decision problems that are in ∞-NP, but neither in ∞-P nor ∞-NP-complete”).
We shall describe these results in future work.

References

1. Carl, M.: Towards a Church-Turing-Thesis for infinitary computation (2013)
preprint. arXiv:1307.6599

2. Carl, M.: Infinite time recognizability from random oracles and the recognizable
jump operator. Computability (to appear)

3. Dawson, B.: Ordinal time Turing Computation. Ph.D. thesis, University of Bristol
(2009)

4. Deolalikar, V., Hamkins, J.D., Schindler, R.: P �= NP ∩ co-NP for infinite time
Turing machines. J. Log. Comput. 15(5), 577–592 (2005)

5. Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65(2),
567–604 (2000)

6. Hamkins, J.D., Welch, P.D.: Pf �= NPf for almost all f . Math. Log. Q. 49(5),
536–540 (2003)

7. Jensen, R.B., Karp, C.: Primitive recursive set functions. In: Axiomatic Set Theory.
Proceedings of the Symposium in Pure Mathematics of the American Mathematical
Society held at the University of California, Los Angeles, California, 10 July–5
August, vol. XIII/I of Proceedings of Symposia in Pure Mathematics, pp. 143–
176. American Mathematical Society (1971)

8. Kanamori, A.: The Higher Infinite. Large Cardinals in Set Theory from Their
Beginnings. Springer Monographs in Mathematics, 2nd edn. Springer, Heidelberg
(2003)

9. Karp, C.: Languages with Expressions of Infinite Length. North-Holland,
Amsterdam (1964)

10. Koepke, P.: Turing computations on ordinals. Bull. Symb. Log. 11(3), 377–397
(2005)

11. Koepke, P.: Ordinal computability. In: Ambos-Spies, K., Löwe, B., Merkle, W.
(eds.) CiE 2009. LNCS, vol. 5635, pp. 280–289. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03073-4 29

http://arxiv.org/abs/1307.6599
http://dx.doi.org/10.1007/978-3-642-03073-4_29
http://dx.doi.org/10.1007/978-3-642-03073-4_29

Koepke Machines and Satisfiability for Infinitary Propositional Languages 197

12. Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. Ann.
Pure Appl. Log. 160, 310–318 (2009)

13. Löwe, B.: Space bounds for infinitary computation. In: Beckmann, A., Berger, U.,
Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 319–329. Springer,
Heidelberg (2006). doi:10.1007/11780342 34

14. Rin, B.: The computational strengths of α-tape infinite time turing machines. Ann.
Pure Appl. Log. 165(9), 1501–1511 (2014)

15. Schindler, R.: P �= NP infinite time turing machines. Monatsh. Math. 139, 335–
340 (2003)

16. Winter, J.: Space complexity in infinite time Turing machines. Master’s thesis,
Universiteit van Amsterdam. ILLC Publications MoL-2007-14 (2007)

17. Winter, J.: Is P = PSPACE for Infinite time turing machines? In: Archibald, M.,
Brattka, V., Goranko, V., Löwe, B. (eds.) ILC 2007. LNCS, vol. 5489, pp. 126–137.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03092-5 10

http://dx.doi.org/10.1007/11780342_34
http://dx.doi.org/10.1007/978-3-642-03092-5_10

	Koepke Machines and Satisfiability for Infinitary Propositional Languages
	1 Infinitary Computation and Its Running Times
	1.1 Introduction
	1.2 Basic Definitions

	2 Complexity Theory for Koepke Machines
	2.1 Definitions
	2.2 The Fundamental Difference Between Finitary and Infinitary Computation

	3 An Infinitary Analogue of SAT
	4 The Undecidability of -SAT
	References

