
An intelligent tutor to learn the evaluation of
microcontroller I/O programming expressions

Hugo Arends
HAN University of Applied Sciences and

Open University of the Netherlands
hugo.arends@han.nl

Bastiaan Heeren
Open University of the Netherlands

bastiaan.heeren@ou.nl

Hieke Keuning
Windesheim University of Applied Sciences and

Open University of the Netherlands
hw.keuning@windesheim.nl

Johan Jeuring
Utrecht University and

Open University of the Netherlands
j.t.jeuring@uu.nl

ABSTRACT
Embedded systems engineers need to learn how I/O programming
expressions for microcontrollers evaluate. We designed, imple-
mented, and tested an intelligent tutoring system prototype for
learning such evaluations. The Microcontroller Knowledge (MicK)
tutor guides a student step-by-step towards a solution. A domain
reasoner, built using the Ideas framework, generates feedback and
hint messages. MicK supports various microcontrollers and pro-
gramming languages by dynamically creating exercises and using
lookup environments. Instructors can easily customise MicK, for in-
stance by adding new exercises and changing the reported feedback
messages. MicK is validated in a pilot study with questionnaires
filled in by students and lecturers. The results show that the step-
by-step feedback and hint messages contribute to understanding
how microcontroller I/O programming expressions evaluate.

CCS CONCEPTS
• Social and professional topics → Computer engineering
education; • Applied computing→ Interactive learning environ-
ments;

KEYWORDS
intelligent tutoring system, domain reasoner, automated feedback,
programming tutor, expression evaluation, microcontroller

ACM Reference Format:
Hugo Arends, Bastiaan Heeren, Hieke Keuning, and Johan Jeuring. 2017. An
intelligent tutor to learn the evaluation of microcontroller I/O programming
expressions. In Proceedings of Koli Calling 2017. ACM, New York, NY, USA,
8 pages. https://doi.org/https://doi.org/10.1145/3141880.3141884

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling 2017, November 16–19, 2017, Koli, Finland
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN ACM ISBN 978-1-4503-5301-4/17/11. . . $15.00
https://doi.org/https://doi.org/10.1145/3141880.3141884

1 INTRODUCTION
Today’s connected society uses the internet of things, robotics,
virtual home assistants, smart systems, and more. These systems
are implemented using microcontrollers to get information from
sensors, to manipulate this information, and to control actuators
based on this information. To build microcontroller-based systems,
students need both hardware and software skills. Such skills are
taught in embedded systems courses both at the bachelor andmaster
level, and in online communities.

Learning is most effective when an expert teacher provides one-
to-one instruction [2]. With an increasing popularity of embedded
systems courses, both on campus and online, providing such indi-
vidual instruction is hard, if not impossible to realise. Intelligent
tutoring systems (ITSs) might offer a solution to this problem. An
ITS is a software application designed to simulate a human tutor’s
behaviour, and it can support a student’s learning process in many
ways [16].

One of the many challenges in software development for micro-
controllers is related to I/O programming, such as manipulating
bits in hardware registers and using loops to wait for the logical
change of a single bit. The evaluation of these expressions into
a normal form can be hard to comprehend for novice embedded
systems engineers. An example of such an evaluation is presented
for the following expression:

PORTB = 2 & (0b00000001 << x);

In this expression, PORTB is a hardware register for a specific micro-
controller, which is assigned a value that depends on the value of
variable x. Assume that variable x is equal to 3. This expression can
be written into normal form with the evaluation steps presented
below in italics. The intermediate result after an evaluation step is
presented for clarity.

Substitute variable x with 3

PORTB = 2 & (0b00000001 << 3);

Evaluate the bitwise left shift operator (<<)

PORTB = 2 & 0b00001000;

Evaluate the bitwise AND operator (&)

PORTB = 0;

This example shows that if x is equal to 3, PORTB will be assigned
the value 0. It is important to understand such top-down evaluations

2

https://doi.org/https://doi.org/10.1145/3141880.3141884
https://doi.org/https://doi.org/10.1145/3141880.3141884

of complex expressions for learning programming [10], especially
for learning I/O programming in embedded systems.

This paper describes the design of an ITS for learning the eval-
uation of microcontroller I/O programming expressions. The ITS
guides students step-by-step towards a solution by providing feed-
back and hint messages. A characteristic of the domain is the di-
versity in microcontrollers and programming languages. The main
contribution of the research project is the creation of a single ITS
that handles this diversity, rather than a separate ITS for each
variant. The second contribution is a small-scale pilot study with
participants with different domain knowledge. The goal of the pilot
study is to determine if the step-by-step guidance offered by the ITS
contributes to understanding how microcontroller I/O program-
ming expressions evaluate.

Section 2 describes related work. Section 3 provides a system
overview and demonstrates how students and instructors interact
with the system. Section 4 describes design decisions for the imple-
mentation. Section 5 discusses how we validated the ITS. Section 6
concludes.

2 RELATEDWORK
This section discusses work related to teaching the evaluation of
programming expressions within the context of microcontroller
I/O and in a broader programming context.

2.1 Teaching expression evaluation
Bitwise and logic operators, such as bitwise AND (&) and nega-
tion (!), are key concepts in microcontroller I/O programming that
are explicitly taught in embedded systems courses. For example,
the book about microcontroller basics by Davies [4] discusses the
important aspects of C for embedded systems, such as declarations,
shifts, low-level logic operations, masks to test and modify indi-
vidual bits, bitfields, and unions. They are explained by means of
simple examples. Dolman [5] visualises the step-by-step evaluation
of complex composite expressions. Pardue [12] uses a similar vi-
sualization technique to explain the evaluation of single bitwise
and logic operators. In a discussion on the evaluation of composite
expressions he notes that if his explanation is not clear, the reader
should use a pencil and paper and work through it until it is, empha-
sising the importance of understanding the step-by-step evaluation
of such statements.

2.2 Tools for learning expression evaluation
The stepper functionality of a debugger allows inspecting the eval-
uation of a program. At every step, a student sees the effect of
executing a statement on the internal state of a microcontroller. In
case of a composite expression, only the resulting value is shown,
and not the step-by-step evaluation. Debuggers are not designed for
student learning and do not give feedback or hints on the evaluation
of programs and expressions.

However, several visualisation tools exist to support students
in understanding the run-time behaviour of computer programs.
Sorva et al. [14] provide an extensive review of generic visuali-
sation systems that teach how the execution of programs works.
The authors consider visualisation of expression evaluation as a
specialisation and exclude those tools from their review, although

some generic systems can also show expression-level visualisations.
Most of these systems offer controlled viewing, meaning that the
student is in control of how he or she views the visualisation, but
does not have any other active task. Sirkiä [13] describes the need
for expression-level visualisations in addition to line-level visuali-
sation, because it provides students with more insight into how a
program works.

An example of a visualisation tool that offers more interactivity is
UUhistle [15], a tool for visualising Python programs. Students can
play the role of the computer by dragging and dropping elements to
create variables, assign and retrieve values, and by clicking buttons
to invoke operators and methods. The tool can detect errors and
allows the student to ask for a hint. A difference between our tutor
and UUhistle is the different domains that they support, making
our tutor a more specialised system. Our system focusses more
on how operators work by letting students fill in the results of
invoking an operator instead of doing it for them, and giving hints
and feedback on their actions. This is especially important because
domain-specific tasks such as applying bitwise operators and doing
number conversion are difficult for students.

WADEIn II [3] is an adaptive and explanatory visualisation tool
for C programming expressions, supporting several language con-
structs and operators. The tool lets students explore the evaluation
of expressions by watching animations and reading textual descrip-
tions. Students are also given the option to actively solve problems
by indicating the evaluation order and providing values of subex-
pressions. The tool behaves adaptively by decreasing animation
speed and hiding parts of the description as the student progresses.
The tool does not offer any hints to students.

Kumar [10] describes a tutoring system for learning how to eval-
uate C++/Java programming expressions step-by-step. The tutor
helps students to learn the evaluation of expressions by generating
a problem, letting the student solve the problem, and assessing the
solution. New expressions can be generated randomly, or added by
an instructor. The tutor ensures that a student never sees the same
problem twice. The tutor generates feedback using colours that
indicate whether or not a student selects the correct subexpression
and correctly calculates the subexpression’s evaluation step. If a
student does not know how to proceed, the student can stop the
task and the tutor presents the worked-out solution with detailed
feedback for each evaluation step. The main differences between
Kumar’s tutor and our tutor are that our tutor provides detailed
hints and solutions during each evaluation step, our tutor allows
students to take multiple evaluation steps at once, and in our tutor
students can submit their own expressions.

Olmer et al. [11] developed a prototype of a tutor for evaluat-
ing Haskell expressions. The prototype supports a student in the
understanding of programming concepts and evaluation strategies
by showing the step-by-step evaluation of expressions. It provides
feedback after each evaluation step. If a student does not know how
to proceed, hints are provided by the tutor, such as the number of
steps left, or all rules that can be applied according to the evalu-
ation strategy. The tutor is intended for the functional program-
ming paradigm, whereas our tutor is intended for the imperative
programming paradigm and specifically for microcontroller I/O
programming.

3

3 AN EXAMPLE SESSION
This section demonstrates our ITS prototype MicK. Section 3.1
introduces the web application front-end and describes typical
student interactions. Section 3.2 presents the customisation options
for instructors.

3.1 Student interaction
Students interact with MicK through a web application1, as shown
in Figure 1. An evaluation task is started by selecting a microcon-
troller and programming language from a dropdown box. Upon
selection, relevant example expressions are automatically added to
another dropdown box. A student then either selects an initial ex-
pression from the examples and optionally changes it, or manually
enters an initial expression. Assume that a hypothetical student
wants to evaluate the following expression for the ATmega328P
microcontroller and the ANSI-C programming language. The pur-
pose of this expression is to poll bit UDRE0 in register UCSR0A until
it is logic one:

while(! (UCSR0A & (1 << UDRE0))) { ; }

The end of a typical evaluation task for this expression is shown in
Figure 1. The remainder of this section discusses how the student
arrives at this result using the step-by-step guidance provided by
MicK.

As soon as the student starts the task, MicK first analyses the
initial expression and presents a value for register UCSR0A and for
definition UDRE0:

Values of definitions, registers and volatile variables for this
microcontroller and programming language:

UCSR0A = 0b00001111
UDRE0 = 5

All information required to solve the evaluation task is now avail-
able for the student. A second input field is added for the student
to enter the next evaluation step. The student might choose to
substitute both the register and definition at once:

while(! (0b00001111 & (1 << 5))) { ; }

Clicking the Validate button validates this evaluation step. MicK
responds:

That is correct.
Another input field is added to the list of evaluation steps, which
allows the student to enter the next evaluation step. The student
enters the next step by evaluating the shift left operator, but makes
a common mistake by reversing the order of operands of the shift
left operator:

while(! (0b00001111 & 10)) { ; }

The student clicks the Validate button and MicK responds with the
message:

That is incorrect. The operands of the shift left operator are
reversed.

This message tells the student exactly what the mistake is. By click-
ing the hyperlink ’shift left’, a new browser window is opened with
an external website that explains the shift left operator. Suppose
the student still does not know how to proceed and clicks the Hint
1http://ideas.cs.uu.nl/mick

button. MicK clears the incorrect input field and responds with the
message:

1
⇒ rewrite this decimal number to its binary representation

This message tells the student that, prior to evaluating the shift left
operator, it is more convenient to first rewrite the decimal value
1 to its binary representation . Again, the hyperlink points to an
external website for more information about the operation. Let us
assume that the student still does not know how to proceed and
clicks the Show button. MicK responds with the message:

1
⇒ rewrite this decimal number to its binary representation
0b00000001

MicK also fills in the solution to this step in the input field:
while(! (0b00001111 & (0b00000001 << 5))) { ; }

The student clicks Validate and MicK responds with the message:
That is correct.

Now the student makes a mistake by entering and validating the
next expression:

while(! (0b00001111 & 0)) { ; }

MicK responds with the message:
Although the expressions are equivalent, you took a wrong
step.

This message tells the student that the submitted expression eval-
uates to the same normal form, but that the evaluation step is
incorrect. No new input field will be added to the evaluation list.
The student might edit the expression, or request a hint, or re-
quest the solution to this step. Let us assume the student edits the
expression:

while(! (0b00001111 & 0b00100000)) { ; }

The student clicks the Validate button and MicK responds with the
message:

That is correct.
The student now tries to take multiple steps, but forgets a closing
parenthesis:

while(! (false) { ; }

The student clicks the Validate button and MicK responds with the
message:

Syntax error 1:1:
unexpected ’w’
expecting ’(’, ’)’, ’{’, end of input, or operator

The student corrects the mistake:
while(! (false)) { ; }

The student clicks the Validate button and MicK responds with the
message:

That is correct.
The student enters the final step:

while(true) { ; }

The student clicks the Validate button and MicK responds with the
message:

That is correct.
You have finished the task successfully!

4

Figure 1: The student has finished the task after five successful evaluation steps.

This message tells the student that the task is finished and that
the expression is in a normal form. The input field with the final
solution is marked green and no new input field is added to the
evaluation list.

3.2 Instructor interaction
Figure 2 presents a system overview of MicK. The web application
communicates with a domain reasoner through the internet. A
domain reasoner [6] is a software application that is capable of
reasoning about a problem domain, and runs on a web server. The
details of this domain reasoner are described in Section 4.

Figure 2 shows that instructors can customise MicK by adding or
modifying several files. An instructor places these files in a folder
on the web server’s filesystem and the files are automatically read
by the domain reasoner. Each exercise configuration file is used to
configure a new exercise. MicK automatically adds these exercises
to the list of exercises the student can choose from in the web
application. For changes to take effect, a client only needs to reload
the web application.

An exercise configuration file describes the following options:

– Exercise id: unique exercise identification.
– Examples: zero or more example expressions that appear in
the examples dropdown box in the web application.

– Initial values: initial values for registers and volatile variables,
such as UCSR0A in the example in Section 3.1. An instructor
provides these values to steer the students’ learning process.

– Word length: the number of bits of the architecture for the
selected microcontroller used for zero padding numbers in
binary and hexadecimal number representation.

Furthermore, a configuration file stores the paths to three more
files, which are shown as dashed lines in Figure 2:

– Feedback script: the textual feedback and hint messages pro-
vided byMicK are specified in a script file. Thus an instructor
can easily change feedback and hint messages, for instance
to match classroom lectures, to use hyperlinks for specific
websites, or to provide feedback in a specific language.

– Programming language definitions: an instructor can change
the programming language by specifying language-specific
keywords and tokens.

– Microcontroller definitions: microcontroller-specific defini-
tions, such as UDRE0 in the example in Section 3.1, which
are often provided by a microcontroller vendor, optionally
in different file formats.

4 AN ITS FOR MICROCONTROLLER I/O
PROGRAMMING

MicK consists of two components: a web application and a domain
reasoner. The web application is the user interface for students and

5

Figure 2: System overview of MicK, showing the building blocks, the information flow, and configuration options.

is implemented using Bootstrap, JQuery and JavaScript. The web
application uses feedback services offered by the domain reasoner.
The remainder of this section discusses the design decisions for the
domain reasoner, which is based on the Ideas framework [7].

4.1 Exercises
Feedback services [7] are generic services that can be used for
any problem domain. An example of such a service is the ‘onefirst’
service, which calculates a possible next step. The feedback services
use domain-specific components for calculating feedback messages.
The most important components are the domain data type, the
rules, and the strategies.

Data type. A data type is used for an abstract representation
of domain-specific expressions. The data type for this domain is
based on the grammar of typical microcontroller I/O programming
expressions. The following grammar is implemented in MicK:

expr ::= stmt
| stmt `;'
| stmt `;' expr
| `{' expr `}'

stmt ::= `skip'
| identifier `assign' op1
| `while' `(' op1 `)' `{' expr `}'
| op1

op1 ::= op1 `|' op2 | op2
op2 ::= op2 `&' op3 | op3
op3 ::= op3 `<<' op4 | op4
op4 ::= op4 `+' op5 | op5
op5 ::= `!' op6 | op6
op6 ::= `(' op1 `)' | num | bool | identifier
num ::= dec | bin | hex
bool ::= `true' | `false'

A parser is implemented for parsing sentences belonging to this
grammar to the value of the abstract data. A pretty printer is im-
plemented for turning the abstract data into a human readable
string.

Rules. A rule defines how a value of the data type can be trans-
formed, and rules can therefore be used to evaluate simple expres-
sions. For example, a rule for the infix operator ‘&’ calculates the
bitwise AND of both operands. We define five groups of rules for
the domain of microcontroller I/O programming:

– Infix operators: defines an operation that takes two operands.
– Prefix operators: defines an operation that takes a single
operand.

– Number representation: defines how numbers are converted
to their decimal, binary, hexadecimal, and Boolean represen-
tations.

– Substitution: defines how to substitute a register or volatile
variable by an exercise-specific value.

– Buggy rule: defines a common mistake for any of the above
transformations.

Strategies. A strategy combines rules to solve multi-step exer-
cises. A strategy is expressed in an embedded domain-specific
language (EDSL) that is interpreted by the Ideas framework as
a context-free grammar. A domain reasoner uses strategies to cal-
culate feedback messages [8].

A strategy can be composed out of rules, but also out of other
strategies. Strategy combinators combine strategies. For example,
the sequence combinator (. ∗ .) puts two strategies in sequence. As
an example, the strategy for the bitwise AND operator is defined
as follows:

bitwiseAndS :: ExprStrategy
bitwiseAndS =

check isBitwiseAnd
.*. convOperands toBinS toBinS
.*. bitwiseAndRule

The strategy first checks if the bitwise AND operation is applicable.
The strategy then makes sure that the left and right operand are
represented in the binary representation, by using the toBinS sub-
strategy. Finally, if these preconditions are met, the strategy applies
the bitwise AND rule.

6

The domain reasoner for MicK implements two top-level strate-
gies: one for rewriting expressions containing an assignment, and
one for rewriting expressions containing a while-statement. Both
strategies follow a bottom-up procedure in which they first try to
either substitute a variable, or calculate the result of an operator. Af-
ter one of these has been applied, the strategy stops and starts over
again, bottom-up. This continues until none of the two strategies
can be applied anymore, resulting in a normal form for expressions
with an assignment. The strategy for rewriting expressions with
a while-statement into normal form, continues by rewriting the
condition of the while-statement to a Boolean representation and,
if applicable, evaluates any logical operation.

4.2 Customisable exercises
MicK supports multiple microcontrollers and programming lan-
guages by dynamically generating exercises from configuration
files at start-up of the domain reasoner, as illustrated in Figure 2. By
dynamically generating exercises, there is no need for programming
or recompiling the domain reasoner.

Each exercise is specific for a particular microcontroller. The
microcontroller-specific definitions are provided in files, such as
C-header files. MicK represents these definitions and their values as
a list, which is used by the domain reasoner as a lookup environment
whenever a definition must be substituted.

MicK realises support for multiple programming languages by
allowing instructors to customise keywords and tokens from the
grammar in a language definition file. Typical expressions for mi-
crocontroller I/O programming do not require different abstract
syntax structures. Similar to the microcontroller definitions, the
tokens and their values are stored in a lookup environment. MicK
uses this lookup environment for parsing and for pretty printing.

4.3 Feedback generation
Whenever a student asks for a hint or validates an expression, MicK
calculates a textual feedback message. An instructor can customise
this message in a script file. We use the eleven categories for feed-
back generation for learning programming described by Keuning
et al. [9] to determine what feedback and hint messages must be
supported by MicK. From these eleven subcategories the following
five subcategories, which contribute best in helping students to
understanding the evaluation of microcontroller I/O programming
expressions, are supported:

– Task-processing rules (TPR). To help a student getting started,
it must be clear how to approach a task. This is realised by
providing a feedback message when a new task is selected
in the web application.

– Explanations on subject matter (EXP). If a student makes a
mistake, or does not know how to proceed towards a solution,
information is provided on the subject matter. The feedback
messages in Section 3.1 showed this by providing a hyperlink
to an external website with information about the subject.

– Compiler errors (CE). An expression is checked for syntactic
errors and non-existing definitions. Section 3.1 showed an
example of a detailed error message which is provided by
the parser to help students solve syntactic mistakes.

– Solution errors (SE). If the evaluation step submitted by a
student is not correct, the feedback service calculates a feed-
back message indicating that the student made a mistake.
An example of such a feedback message in Section 3.1 is:
Although the expressions are equivalent, you took a wrong
step.

– Task-processing steps (TPS). To proceed towards a solution,
MicK provides detailed feedback about a next possible eval-
uation step.

We use the domain reasoner’s diagnose service for generating
feedback messages when the student validates an expression. The
default diagnose service calculates, amongst others, semantic equiv-
alence of two expressions to determine correctness of the evaluation
step. This is a problem for the domain of microcontroller I/O pro-
gramming, because incorrect evaluation steps might still lead to
semantically equivalent expressions. The following two expres-
sions, for example, are semantically equivalent, because they both
evaluate to PORTB = 0;. The evaluation step, however, is incorrect:

PORTB = 2 & (0b00000001 << 3);

Incorrect evaluation of operator <<

PORTB = 2 & (0b00000000);

We have created a custom diagnose service to solve this problem.
An additional relation called ‘semantically equivalent delta pairs’
is calculated when two expressions are submitted for diagnosis. A
delta pair is a maximum subexpression that is different when two
expressions are syntactically compared. The delta pair for the two
expressions in the example is (0b00000001 << 3, 0b00000000).
A detailed description of this relation and the custom diagnose
service is given in the first author’s master’s thesis [1].

5 VALIDATION
To validate our prototype tutor, we have organised experiments
with 46 participants in total. We asked two groups of students
with different prior knowledge to participate in an experiment. The
first group of 25 fourth year Electrical and Electronic Engineering
bachelor students from HAN University of Applied Sciences in
the Netherlands participated on December 20th, 2016. The second
group of 18 first year bachelor students participated on January
9th and 12th, 2017. Besides these students, three lecturers from the
same university participated in the experiment on January 16th,
2017. Prior to each experiment, the participants received a 15 to 20
minute classroom instruction on expression evaluation, tutoring
systems in general, and how to use MicK. After the introduction,
the participants were pointed to online questions. They answered
these questions independently in half an hour. The experiment
consisted of the following parts:

– Answering introductory questions, e.g. what year a student
is in.

– Using MicK to rewrite microcontroller I/O programming
expressions into normal form. Participants could select three
exercises, and for each exercise three different example ex-
pressions. Participants were encouraged to modify the ex-
amples or to use their own expression.

– Answering concluding questions, e.g. how useful is the pos-
sibility to ask for a hint?

7

Table 1: Average results from closed questions on a five-point Likert scale.

Question Average

When MicK is first started it is clear how to start with a task. 4.0
How useful is a feedback message to you after each step? 3.7
How useful is it to make the tutor show the solution to a step? 4.3
How useful is it to be able to ask for a hint? 4.2
In case you have asked for one or more hints,

to what extent did they help you to solve the task? 3.8

5.1 Results
We conducted the experiments to get an initial idea of how users
appreciate the generated feedback messages, and if the feedback
messages contribute to understanding how microcontroller I/O pro-
gramming expressions evaluate. We obtained data by asking closed
questions on a five-point Likert scale, by asking open questions,
and by analysing log files.

Closed questions. Table 1 presents the average results of the an-
swers to the closed questions.

A score of 1 corresponds to the Likert level ‘not’, and a score of
5 to ‘very’. The results show that:

– participants find the possibility to make MicK show the so-
lution more useful than the ability to ask for a hint;

– feedback messages with information about the next step,
such as hints, help students towards a solution;

– feedback messages after each step and the possibility to ask
for the solution to a step help students towards a solution,
and therefore help them to understand the evaluation of
microcontroller I/O programming expressions.

Open questions. We asked participants to recommend improve-
ments. Some suggest that if a step is diagnosed as not obvious or
incorrect, MicK should explain why. This suggests to also imple-
ment the feedback subcategory error correction (EC) [9]. Further-
more, feedback messages related to compiler errors seem hard to
understand. The messages are probably not descriptive enough to
help students with solving syntactic mistakes.

We also asked participants what they like about MicK. Many
answers mention the step-by-step explanations and how this helps
in understanding the problem domain.

Log analysis. The domain reasoner logs all interactions in a data-
base. Table 2 presents the results of these interactions broken down
by group.

The participants started 499 new tasks of which 221 expressions
contained a syntax error. A total of 1532 expressions were submitted
for validation, of which 116 expressions contained a syntax error
and 1416 expressions were diagnosed. A detailed description of
each diagnosis is available in the first author’s master’s thesis [1].
The results show a remarkably high percentage of syntax errors,
especially for expressions that are submitted when a new task is
started. The majority of these syntax errors is made by first year
students, which is presumably related to lesser experience. For
probably that same reason, the diagnosis ‘small rewrite step, not
recognised’ shows that first year students submit relatively more

similar expressions for validation. The participants asked more
often for the solution to a step (704 times), than for a hint (403
times).

5.2 Threats to validity
All students participating in the experiment were taking a course
from the first author at the moment the experiments were per-
formed. Participation was on a voluntary basis. Another threat to
generalising the results is that only three instructors participated,
all of them colleagues of the first author. However, by selecting
participants with different domain and prior knowledge the results
are not limited to a single group.

The results show that the step-by-step guidance towards a so-
lution is considered useful by students. We did not expect that
students also want to have feedback messages in the error correc-
tion subcategory, because students already have the possibility to
ask for a hint. A threat to the validity of these conclusions is that
they are based on interpretation of the student answers.

6 CONCLUSION
This paper describes the usage, design, implementation, and vali-
dation of an ITS prototype for the domain of microcontroller I/O
programming. Key concepts in programming for this domain are bit-
wise and logic operators, hardware registers, and microcontroller
specific definitions. The overall conclusion is that we have cre-
ated a single ITS that supports a diversity of microcontrollers and
programming languages and that the step-by-step guidance helps
students understand how microcontroller I/O programming expres-
sions evaluate.

We have used the Ideas framework to implement a domain rea-
soner. We have defined five groups of rules for data type transforma-
tions, and specified strategies for rewriting typical microcontroller
I/O programming expressions into normal form.

The ITS dynamically generates exercises from configuration files.
Microcontroller-specific definition files are parsed and the defini-
tions are stored in a lookup environment, which is used whenever
a substitution is required. The ITS supports multiple programming
languages by allowing instructors to customise tokens from the
grammar. These tokens are stored in a lookup environment, which
is used during parsing and pretty printing.

From the answers of the students to the questions asked in the
experiment we conclude that it helps students to understand the
evaluation of microcontroller I/O programming expressions when
the feedback messages explain the subject matter (EXP), solution
errors (SE), and task-processing steps (TPS). Students want to have

8

Table 2: Results from log database analysis broken down by group.

Log characteristic Total 1st year 4th year Instr.

New task started 499 292 198 9
Syntax error in initial expression 221 172 46 3
Valid initial expressions 278 120 152 6

Expressions validated 1532 566 928 38
Syntax error in submitted expression 116 45 67 4
Diagnosis 1416 (100%) 521 861 34

Not equivalent, unknown mistake 190 (13%) 64 124 2
Common mistake with buggy rule 2 (0%) 0 1 1
Small rewrite step, not recognised 52 (4%) 32 20 0
Rewrite step expected by expert strategy 840 (59%) 347 479 14
Correct step, but detour from strategy 18 (1%) 6 11 1
Equivalent, wrong step, unknown mistake 145 (10%) 33 106 6
Equivalent, correct step, but unknown 169 (12%) 39 120 10

Hint for current step requested 403 158 239 6
Show solution to current step requested 704 313 387 4

more detailed feedback messages related to error correction (EC),
such as syntactic mistakes.

The results of the pilot study look promising, even though MicK
implements a very small set of programming expressions for the
specific domain of microcontroller I/O programming. With support
for more programming expressions, further research should explore
the tutor’s effect on student learning. Furthermore, MicK uses a
web application for students to interact with, not a development
environment or actual microcontroller. It would be interesting to
explore the idea of combining an expression evaluator with the
stepper functionality of a debugger. This allows students to learn
the evaluation of expressions in the context of an executing pro-
gram. Adding a student model for tracking a student’s progress and
selecting tasks is also an important area for future work.

REFERENCES
[1] H. Arends. Intelligent tutor to learn the evaluation of microcontroller I/O pro-

gramming expressions. Master’s thesis, Open University of the Netherlands,
2017.

[2] B.S. Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational researcher, 13(6):4–16, 1984.

[3] P. Brusilovsky and T.D. Loboda. WADEIn II: a case for adaptive explanatory
visualization. ACM SIGCSE Bulletin, 38(3):48–52, 2006.

[4] J.H. Davies. MSP430 microcontroller basics. Elsevier, 2008.
[5] W. Dolman. Microcontrollers en de taal C (in Dutch). Wim Dolman, 2010.
[6] G. Goguadze. ActiveMath – Generation and Reuse of Interactive Exercises using

Domain Reasoners and Automated Tutorial Strategies. PhD thesis, Universität des
Saarlandes, Germany, 2011.

[7] B. Heeren and J. Jeuring. Feedback services for stepwise exercises. Science of
Computer Programming, 88:110–129, 2014.

[8] B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite strategies for interactive
exercises. Mathematics in Computer Science, 3(3):349–370, 2010.

[9] H. Keuning, J. Jeuring, and B. Heeren. Towards a Systematic Review of Automated
Feedback Generation for Programming Exercises. In Proceedings of Innovation
and Technology in Computer Science Education, pages 41–46, 2016.

[10] A.N. Kumar. Results from the evaluation of the effectiveness of an online tutor
on expression evaluation. SIGCSE Bull., 37(1):216–220, 2005.

[11] T. Olmer, B. Heeren, and J. Jeuring. Evaluating Haskell expressions in a tutoring
environment. In Proceedings of 3rd International Workshop on Trends in Functional
Programming in Education, TFPIE 2014, pages 50–66, 2014.

[12] J. Pardue. C programming for microcontrollers. SmileyMicros, 2005.

[13] T. Sirkiä. Exploring Expression-level Program Visualization in CS1. In Proceedings
of the 14th Koli Calling International Conference on Computing Education Research,
pages 153–157, 2014.

[14] J. Sorva, V. Karavirta, and L. Malmi. A review of generic program visualiza-
tion systems for introductory programming education. Trans. Comput. Educ.,
13(4):15:1–15:64, 2013.

[15] J. Sorva and T. Sirkiä. UUhistle: A Software Tool for Visual Program Simulation.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research, Koli Calling ’10, pages 49–54, 2010.

[16] K. VanLehn. The behavior of tutoring systems. International Journal of Artificial
Intelligence in Education, 16(3):227–265, 2006.

9

	Abstract
	1 Introduction
	2 Related work
	2.1 Teaching expression evaluation
	2.2 Tools for learning expression evaluation

	3 An example session
	3.1 Student interaction
	3.2 Instructor interaction

	4 An ITS for microcontroller I/O programming
	4.1 Exercises
	4.2 Customisable exercises
	4.3 Feedback generation

	5 Validation
	5.1 Results
	5.2 Threats to validity

	6 Conclusion
	References

