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Abstract

The N -continued fraction expansion is a generalization of the regular continued fraction expansion,
where the digits 1 in the numerators are replaced by the natural number N . Each real number has
uncountably many expansions of this form. In this article we focus on the case N = 2, and we consider
a random algorithm that generates all such expansions. This is done by viewing the random system as
a dynamical system, and then using tools from ergodic theory to analyse these expansions. In particular,
we use a recent Theorem of Inoue (2012) to prove the existence of an invariant measure of product type
whose marginal in the second coordinate is absolutely continuous with respect to Lebesgue measure. Also
some dynamical properties of the system are shown and the asymptotic behaviour of such expansions is
investigated. Furthermore, we show that the theory can be extended to the random 3-continued fraction
expansion.
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1. Introduction

In 2008 Burger et al. introduced in [4] the N -continued fraction expansion. Given an x ∈ R
and an N ≥ 1 they showed that x can be represented in the following way:

x = d0 +
N

d1 +
N

d2 +
N
. . .

, (1)

where the digits di ∈ N. Anselm and Weintraub showed in [2] that every x ∈ R has in
fact infinitely many such expansions. Dajani et al. obtained in [7] the N -continued fraction
expansions from transformations of the form

SN ,i (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N
x

−

⌊
N
x

⌋
+ i if x ∈

(
0,

N
i + 1

]
N
x

−

⌊
N
x

⌋
if x ∈

(
N

i + 1
, N
]

0 if x = 0

, (2)

where N ∈ N and i ∈ {0, 1, . . . , N − 1}. Approaching the N -continued fraction expansions as
a dynamical system Dajani et al. showed that the result obtained in [2] is immediate. They also
gave invariant measures for several transformations generating N -expansions.

In this paper we will consider N -continued fraction expansions generated by a random
dynamical system. A random dynamical system consists of a family of transformations on a
state space and a probability distribution on the family of transformations. For each iterate a
transformation of the family is chosen according to the probability distribution. In this paper we
use the family of transformations {SN ,i , i ∈ {0, 1, . . . , N − 1}} where SN ,i are given by (2). The
main question is whether we can find an invariant measure for this random system. The existence
of invariant measures for random systems has been studied frequently over the past decades. We
will use a recent theorem of Inoue, [9] to ensure the existence of an invariant measure.

Defining the random dynamical system as a skew product allows one to use results from
ergodic theory in order to gain information about the asymptotic behaviour of the expansions.
This is done in [10] for expansions like (1), where N ∈ {−1, 1}. In [8] more invariant measures
for random β-expansions are obtained by constructing an isomorphism between the skew product
for the random β-expansion and the digit sequences it induces. In this paper we will prove the
existence of an invariant measure for the random transformation generating 2-continued fraction
expansions, so expansions of the form (1) where N = 2. We will use the approach of [10] to
show that an accelerated version of our system has an invariant measure of the form m × µ,
where m is a Bernoulli measure and µ is equivalent with the Lebesgue measure. Using standard
techniques, we lift the obtained invariant measure for the accelerated system to an invariant
measure ρ for the original random system. We will write the random dynamical system as a skew
product to obtain asymptotic properties of expansions like (1) using ergodic theoretic methods.
Constructing an isomorphism between the skew product and the digit sequences obtained from
the random dynamical system, allows us to show the existence of invariant measures which are
singular with respect to the measure ρ mentioned above.

The paper is organized as follows. In Section 2 we define the random N -continued fraction
transformation. In Section 3, we state the existence theorem of invariant measures for random
transformations given by Inoue in [9], and show how we can apply this theorem to an induced
transformation of the random 2-continued fraction transformation. In Section 4 we will define
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Fig. 1. The random 5-continued fraction transformation, violet, blue, green, yellow and orange illustrate the maps
S0, S1, S2, S3, S4 respectively. At each iterate one map is chosen according to some probability distribution.

the random 2-continued fraction transformation as a skew product. Subsequently, we introduce a
skew product for the induced system and show that there exists an invariant product measure
for this skew product which can be lifted to an invariant measure for random 2-continued
fraction transformation. Section 5 shows the ergodicity of the random 2-continued fraction
transformation, and in Section 6 some asymptotic properties are derived as well as the proof
that the random system has finite entropy. In Section 7 we construct an isomorphism with a left
shift to obtain more invariant measures. Finally in Section 8 we show how the theory developed
in this paper can be generalized to the random 3-continued fraction transformation.

2. Random N-continued fraction transformation

Definition 2.1. Let N ∈ N, we define for 0 ≤ i ≤ N − 1 transformations Si : [0, N ] → [0, N ]
by:

Si (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N
x

−

⌊
N
x

⌋
+ i if x ∈

(
0,

N
i + 1

]
,

N
x

−

⌊
N
x

⌋
if x ∈

(
N

i + 1
, N
]
,

0 if x = 0.

⋄

We depicted the case N = 5 in Fig. 1. Note that in the case N = 1 we obtain the regular
continued fraction transformation. The transformation S0(x) is called the greedy transformation
and the transformation SN−1 the lazy transformation. To each transformation Si we associate
digits dn,i (x) which are defined by

d1,i (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k − i if x ∈

(
N

k + 1
,

N
k

]
, k ≥ i + 1

k if x ∈

(
N

k + 1
,

N
k

]
, k ≤ i

∞ if x = 0,
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dn,i (x) = d1,i (Sn−1
i x).

Using these digits we can write

Si (x) =

{N
x

− d1,i (x) if x ∈ (0, N ]

0 if x = 0.

As in the case of regular continued fractions, we can use the transformations Si to obtain an
expansion for x ∈ [0, N ]. For ease of notation, when i is fixed we simply write dn = dn,i . Then

x =
N

d1 +
N

d2 +
N

. . . +
N

dn + Sn
i (x)

.

In [2] it was noted that the N -continued fraction expansions can be related to the regular
continued fraction expansions in the following way:

x =
1

d1 +
1

d2 +
1

d3 +
1

d4 +
. . . +

1
dn

=
N

Nd1 +
N

d2 +
N

Nd3 +
N

d4 +
. . .

N
kdn

,

where k = 1 if n is even and k = N if n is odd. Using this equality, it was shown in [2] that
every x has infinitely many expansions of the form

x =
N

d1 +
N

d2 +
N

. . . +
N

dn +
. . .

. (3)

More precisely if we truncate the expansion at level n the truncations will converge to x as
n → ∞. Dajani et al. showed in [7], that if we endow [0, N ] with the Borel-σ -algebra each
transformation Si has an invariant measure.

We extend these N -continued fraction transformations to a random transformation. Let
{0, 1, 2, . . . , N − 1} be the parameter space, and let (p0, p1, . . . , pN−1) be a probability vector
on the parameter space, so with probability pi we choose the transformation Si .

Definition 2.2. Let (W,B, ν) be a σ -finite parameter space and (X,A, µ) a state space. Let
X be the interval [0, 1] ⊂ R, A the Borel-σ -algebra and µ the Lebesgue measure. For each
t ∈ W let St : [0, 1] → [0, 1] be a B measurable and non-singular map, i.e. µ(S−1(A)) = 0
if µ(A) = 0. Let p(t, x) : W × [0, 1] → [0,∞) be a probability density function for each
x ∈ [0, 1] so

∫
W p(t, x)dν = 1. Then we define the random transformation S = {St , p(t, x)} as

the Markov process with transition probabilities P(x, A) =
∫

W 1A(St (x))ν(dt), where 1A is the
indicator function. ⋄

A piecewise monotone random transformation is defined as follows.
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Definition 2.3. Let S = {St , p(t, x)} be a random transformation on (W,B, ν) × ([0, 1],A, µ).
Let Λ be a countable set of indices and for each t ∈ W , Λt ⊂ Λ. For each t ∈ W , {Ii,t }i∈Λt

is a collection of subintervals in [0, 1] such that µ([0, 1]\
⋃

i∈Λt
) = 0 and I j ∩ Ii = ∅ for all

j ̸= i, i, j ∈ Λt . For notational reasons we define Ii,t = ∅ if i ∈ Λ\Λt and define ∅ to be
closed and let int(Ii,t ) denote the interior of Ii,t . We assume two conditions for the random map
{St , p(t, x), {It,x }, t ∈ W }:

(1) The restriction of St to int(Ii,t ) is C1 and monotone for each i ∈ Λ and t ∈ W .
(2) Let St,i be the restriction of St to int(It,i ) for each t ∈ W and i ∈ Λ. Put

φt,i (x) =

{
S−1

t,i (x) if x ∈ St,i (int(It,i ))
0 if x ∈ [0, 1]\St,i (int(It,i ))

for each t ∈ W and i ∈ Λ. Note that φt,i (x) = 0 if i ∈ Λ\Λt . We assume that for each
x ∈ [0, 1] and i ∈ Λ, wx,i (t) := φt,i (x) is a measurable function of t .

If {St , p(t, x), {It,x }, t ∈ W } satisfies the conditions (1) and (2) then we call the system
W = {St , p(t, x), {It,x }, t ∈ W } a piecewise monotonic random transformation. ⋄

3. Invariant measure in the case N = 2

We will use the recent theorem of Inoue [9] to show that there exists an invariant measure for
the case N = 2. An invariant measure for a random transformation is defined as follows.

Definition 3.1. Let S = {St , p(t, x), t ∈ W } be a random system of transformations on
(X,A, µ) × (W,B, ν) and define

P∗µ(A) :=

∫
X

∫
W

p(t, x)1A(St (x))dν(t)dµ(x)

If P∗µ = µ then we call µ an invariant measure for the random system S. ⋄

Let PS : L1
→ L1 be the density of P∗(µ) with respect to µ. Then PS is the random Perron

Frobenius operator and an invariant density for the transformation S corresponds to a fixed point
of PS . For random piecewise monotonic transformations we can define the Perron Frobenius
operator explicitly by:

PS f (x) =

∫
W

∑
i∈Λ

p(t, φt,i (x)) f (φt,i(x))|φ′

t,i (x)|1St (intIi,t )(x)dν. (4)

In [9] the existence of invariant measure is shown for piecewise monotonic random trans-
formations satisfying certain conditions (see Theorem 3.2), by showing the existence of a fixed
point of the random Perron Frobenius operator.

Let
⋁

[a,b] f denote the variation of f : [a, b] → R on [a, b], i.e.

⋁
[a,b]

= sup
a=x0,x1,...,xn=b

n∑
k=1

| f (xk) − f (xk−1)| .

The theorem for the existence of invariant measure as stated by Inoue in [9] is the following.
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Theorem 3.2. Let S = {St , p(t, x), {Ii,t }i∈Λ : t ∈ W } be a random transformation as defined in
Definition 2.3. For t ∈ W and x ∈ [0, 1] , put

g(t, x) =

⎧⎪⎪⎨⎪⎪⎩
p(t, x)
|S′

t (x)|
, if x ∈

⋃
i

int(It,i )

0, if x ∈ [0, 1]\
⋃

i

int(It,i ).
(5)

Assume the following conditions hold:

(1) supx∈[0,1]

∫
W g(t, x)dν(t) < α < 1, i.e. on average the functions Si are expanding.

(2) There exists a constant M such that
⋁

[0,1]g(t, ·) < M for almost all t ∈ W , that is, there
exists a ν-measurable set W0 ⊂ W such that

∫
W0

p(t, x)ν(dt) = 1 and
⋁

[0,1]g(t, ·) < M
for all t ∈ W0.

Then S has an invariant probability measure µp which is absolutely continuous with respect
to the Lebesgue measure. Moreover µp admits a probability density function h p which is of
bounded variation and satisfies for all A ∈ A:

µp(A) =

∫
X

∫
W

p(t, x)1A(St (x))h p(x)dνdλ. (6)

Let us see whether Theorem 3.2 provides the existence of an invariant measure for the
random continued fraction transformation as defined in Section 2. We immediately encounter
two problems. In the first place the random N -continued fraction transformation goes from
[0, N ] → [0, N ] instead of [0, 1] → [0, 1]. In the second place the N -continued fraction
transformation does not satisfy condition 1 of Theorem 3.2. For example for points x ∈ (

√
N , N ]

we have∫
g(t, x)ν(dt) =

∫
p(t, x)

x2

N
ν(dt) > 1.

Therefore we need to adjust the random N -continued fraction transformation.

3.1. An invariant measure for the accelerated 2-random continued fraction transformation

We go back to the case N = 2. The random 2-continued fraction transformation is given by
the pair of maps S0, S1 : [0, 2] → [0, 2] defined by

S0 =

⎧⎨⎩
2
x

−

⌊
2
x

⌋
if x ∈ (0, 2]

0 if x = 0

S1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
x

−

(⌊
2
x

⌋
− 1

)
if x ∈ (0, 1]

2
x

−

⌊
2
x

⌋
if x ∈ (1, 2]

0 if x = 0.

(7)

We shall refer to S0 as the lower transformation and to S1 as the upper transformation. Let
p ∈ (0, 1) and let transformation S0 occur with probability p and S1 with probability 1 − p,
we then have the random transformation S = {Si , pi , i ∈ {0, 1}} where p0 = p = 1 − p1.
We start with reducing this transformation to a transformation from [0, 1] → [0, 1]. Note that
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(a) (b)

Fig. 2. (a) x after one iteration by S, (b) x after two times applying S.

for x ∈ [0, 1] we have S0(x) ∈ [0, 1], hence S0 restricted to [0, 1] is already a transformation
from [0, 1] to [0, 1]. On the other hand if x ∈ [0, 1], then S1(x) ∈ (1, 2]. However, on (1, 2]
the transformation S0 and S1 coincide, and for x ∈ (1, 2], S0(x) = S1(x) ∈ [0, 1]. Therefore,
if we start with the transformation S1, then we can apply the transformation S1 once more and
we will always end up in [0, 1]. So modifying the random 2-continued fraction transformation
to a transformation from [0, 1] to [0, 1] comes down to accelerating the transformation when
we choose the upper transformation, see Fig. 2. Therefore we define the accelerated random
2-continued fraction transformation by the pair T0, T1 : [0, 1] → [0, 1] given by

T0(x) =S0(x) =

⎧⎪⎨⎪⎩
2
x

−

⌊
2
x

⌋
if x ∈ (0, 1]

0 if x = 0

T1(x) = S1 ◦ S1(x) = S0 ◦ S1(x) =

⎧⎪⎨⎪⎩
2

2
x − (

⌊ 2
x

⌋
− 1)

− 1 if x ∈ (0, 1]

0 if x = 0
.

(8)

Let p ∈ (0, 1), then we use transformation T0 with probability p, so p0 = p and we use T1

with probability 1 − p, so p1 = 1 − p. Endow [0, 1] with the Borel-σ -algebra. The existence of
an invariant measure for the random transformation T = {Ti , pi , i ∈ {0, 1}} which is absolutely
continuous with the Lebesgue measure follows now by Theorem 3.2.

Proposition 3.3. The random transformation T = {T0, T1; p, 1 − p} satisfies the conditions
of Theorem 3.2 and therefore has an invariant measure µp which is absolutely continuous with
respect to the Lebesgue measure.

Proof. We set {I0,k} = {I1,k} =
{( 2

k+1 ,
2
k

]
, k ∈ N

}
. The derivatives of T0, T1 are given by

T ′

0(x) =
−2
x2 for x ∈ (0, 1], and T ′

1(x) =
4

(2−(k−1)x)2 for x ∈
( 2

k+1 ,
2
k

]
. Therefore, the restriction of

T0 to ( 2
k+1 ,

2
k ] is a continuous monotone decreasing function and the restriction of T1 to ( 2

k+1 ,
2
k ]

is a continuous monotone increasing function, so condition (1) is satisfied. For condition (2)
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note:

g(0, x) =
p
2

x2,

g(1, x) =
1 − p

4
(2 − x(k − 1))2 for x ∈

(
2

k + 1
,

2
k

]
.

Suppose that x = 0, then g(0, 0)+g(1, 0) = 0 < 1. If x ∈ (0, 1] we have g(0, x) < p
2 . Therefore

it is enough to show that g(1, x) ≤ (1 −
p
2 ) for x ∈ (0, 1]. For x ∈

( 2
k+1 ,

2
k

]
we find:

1 − p
4

(
2 −

2
k

(k − 1)
)2

< g(1, x) <
1 − p

4

(
2 −

2
k + 1

(k − 1)
)2

.

Since k ≥ 2 it follows that:

sup
x∈[0,1]

(g(0, x) + g(1, x)) < 1

and condition (1) is satisfied.
Finally, we show that the functions g(i, x) : [0, 1] → R, i ∈ {0, 1} are of bounded variation.

Note
⋁

[0,1]g(0, x) =
p
2 . Since g(1, x) is a monotone continuous function on ( 2

k+1 ,
2
k ] for each

k ≥ 2, k ∈ N we find,⋁
[0,1]

g(1, x) =
1 − p

4

∑
k≥2

16
(k + 1)2 −

4
k2 < ∞.

Therefore, all conditions of Theorem 3.2 are satisfied. We conclude that there exists a probability
measure µp on [0, 1] which is absolutely continuous with respect to the Lebesgue measure λ,
and has a density function h p that is of bounded variation. Moreover, µp has the property that

µp(A) = pµp(T −1
0 A) + (1 − p)µp(T −1

1 A)

for each Borel measurable set A ⊂ [0, 1]. □

In the next Section 4 we will show how we can use the invariant measure of the induced map
to obtain an invariant measure for the original transformation.

4. Dynamical properties of the random 2-continued fraction transformation

We define the 2-continued fraction transformation as a skew product, in this way we de-
randomize the transformation, and therefore obtain the opportunity to apply theorems and
techniques from ergodic theory.

Let S0, S1 : [0, 2] → [0, 2] be as in Eq. (7), σ : {0, 1}
N

→ {0, 1}
N be the left shift and set

Ω = {0, 1}
N. We define the transformation R : Ω × [0, 2] → Ω × [0, 2] by

R(ω, x) =

⎧⎨⎩(ω, S1(x)) x ∈ (1, 2]
(σ (ω), Sω1 (x)) x ∈ (0, 1]
(σ (ω), 0) x = 0.

Note that for x ∈ (1, 2], S1(x) = S0(x). Define the digits of R by

b1(ω, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x ∈ (1, 2]

k x ∈

(
2

k + 1
,

2
k

]
, ω1 = 0

k − 1 x ∈

(
2

k + 1
,

2
k

]
, ω1 = 1

∞ x = 0.

(9)
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Set bn(ω, x) = b1(Rn−1(ω, x)). Let π2 denote the projection on the second coordinate, then we
can write π2(R(ω, x)) =

2
x − b1(ω, x). Denoting bi = bi (ω, x), we can write

x =
2

b1 + π2(R(ω, x))
= · · · =

2

b1 +
2

b2 +
2

. . . +
2

bn + π2(Rn(ω, x))

.

Let pn
qn

=
pn
qn

(ω, x) denote the partial fractions obtained by applying the transformation R
n-times, so

pn

qn
=

2

b1 +
2

b2 +
2

. . . +
2
bn

. (10)

Using the Moebius transformation in a similar way as for the regular continued fraction
expansions (see [6], chapter 1), we obtain the following recurrence relations:

p−1 = 1
q−1 = 0

p0 = 0
q0 = 1

pn = 2pn−2 + bn pn−1,

qn = 2qn−2 + bnqn−1.
(11)

Like for the regular continued fraction we can express x with the help of these recurrence
relations,

x =
pn + pn−1(π2(Rn(ω, x)))
qn + qn−1(π2(Rn(ω, x)))

.

We obtain⏐⏐⏐⏐x −
pn

qn

⏐⏐⏐⏐ ≤
2n+1

q2
n
. (12)

From the recurrence relations the following proposition holds by induction:

Proposition 4.1. Define qn and pn as above, then qn ≥ 2n−1 and pn ≥ 2n−1
∀n ∈ N.

Hence using Eq. (12) the following proposition holds.

Proposition 4.2. If x ∈ [0, 1] then limn→∞

⏐⏐⏐x −
pn
qn

⏐⏐⏐ = 0. Therefore we can expand x like

x =
2

b1 +
2

b2 +
2

. . . +
2

bn +
. . .

.

To obtain an invariant measure for R we link this transformation to the accelerated
transformation.
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4.1. The accelerated random 2-continued fraction transformation

Recall the accelerated random 2-continued fraction transformation is the random transforma-
tion {T0, T1, p0, p1} where p0 = p = 1 − p1, T0, T1 : [0, 1] → [0, 1] are as given in (8). We
define the skew product K : Ω × [0, 1] → Ω × [0, 1] for the accelerated random 2-continued
fraction transformation by

K (ω, x) =

{(
σ (ω), Tω1 x

)
if x ∈ (0, 1]

(σ (ω), 0) if x = 0.

Notice that

K (ω, x) =

{
R(ω, x) if ω1 = 0, x ∈ [0, 1]
R2(ω, x) if ω1 = 1, x ∈ [0, 1].

Let τ : Ω × [0, 1] → N denote the first return time defined by

τ (ω, x) = inf
{
n ≥ 1 : Rn(ω, x) ∈ Ω × [0, 1]

}
=

{
1 if ω1 = 0
2 if ω1 = 1.

Then

K (ω, x) = Rτ (ω,x)(ω, x),

and we see that K is indeed the induced transformation of R. Notice that for x ∈
( 2

k+1 ,
2
k

]
,

k ∈ N, k ≥ 2 we can write T0(x) =
2
x − k, and T1(x) =

2
2
x −(k−1)

− 1. Therefore, given (ω, x) we
have

x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

k + T0(x)
if ω1 = 0 and x ∈

(
2

k + 1
,

2
k

]
2

(k − 1)+
2

1+T1(x)

if ω1 = 1 and x ∈

(
2

k + 1
,

2
k

]
.

(13)

We define digits ai by

a1(ω, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k if x ∈

(
2

k + 1
,

2
k

]
and ω1 = 0

(k − 1, 1) if x ∈

(
2

k + 1
,

2
k

]
and ω1 = 1

∞ x = 0

ai = a1
(
K i−1(ω, x)

)
.

From Eq. (13) we see that K induces the same expansions as R does. When ω1 = 0, R and
K generate the same expression, while when ω1 = 1 the expression generated by K is the same
expression as the one obtained when using R twice. To relate the expansions obtained by K and
R we introduce the variable ñ,

ñ : N × Ω × [0, 1] → N

ñ(n, ω, x) =

n∑
i=1

1{ωi =0}(ω, x) + 2 · 1{ωi =1}(ω, x) =

n−1∑
i=0

τ (K i (ω, x)).
(14)

Applying K n times gives the same initial block in the expansion as applying R ñ times.
Therefore the partial fractions obtained by applying K n times equals pñ

qñ
, and hence form a

subsequence of the partial fractions pn
qn

for R.
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A nice property of the transformation K is that with a given block of digits a1, . . . , an , where
ai ∈ {k, (k − 1, 1) : k ≥ 2} associated with a point x , corresponds a unique block ω1 · · ·ωn

∈ {0, 1}
n such that for any ω ∈ Ω starting with this block, one has d1(ω, x) = a1, . . . , dn(ω, x)

= an . To be more precise, set

ωi =

{
0 if ai = k for some k ≥ 2
1 if ai = (k − 1, 1) for some k ≥ 2,

and denote the cylinder set corresponding to the sequence ω1 · · ·ωn , by [ω]n . Define

∆(a1, . . . , an) = {x ∈ [0, 1] : ∀ω ∈ [ω]n, d1(ω, x) = a1, . . . , dn(ω, x) = an} .

Proposition 4.3. The set ∆(a1, . . . , an) is an interval of length 2ñ

qñ (qñ+qñ−1) , where

ñ =
∑n

i=11{ωi =0} + 2 · 1{ωi =1} =
∑n−1

i=0 τ (K i (ω, x)) for any ω ∈ [ω]n .

Proof. The proof is similar to the proof for regular continued fractions, see [6]. □

4.2. Invariant measures for R and K

Endow Ω × [0, 1] with the σ -algebra σ (C × B[0, 1]), where C is the σ -algebra generated
by the cylinders on {0, 1}

N and B[0, 1] the Borel σ -algebra restricted to [0, 1]. Let m p be the
product measure on C and µp the invariant measure obtained in Section 3.1 for the accelerated
random 2-continued fraction transformation. We have the following proposition.

Proposition 4.4. The product measure m p × µp is an invariant measure for the map K .

Proof. Let A ∈ σ (C × B([0, 1])), such that A = B × [a, b], where

B = {ω ∈ Ω : ω1 = i1, . . . , ωn = in, i1, . . . , in ∈ {0, 1}}

is a cylinder set. Hence A is in the set of generators of C × B[0, 1]. By Proposition 3.3,

m p × µp(K −1 A) = pm p(B)µp
(
T −1

0 ([a, b])
)
+ (1 − p)m p(B)µp

(
T −1

1 ([a, b])
)

= m p × µp(A).

We conclude m p × µp is indeed an invariant measure for the map K . □

Since K is an induced transformation of R we can use standard techniques, see e.g. [12] to
obtain a finite invariant measure ρ for R defined by,

ρ(E) =
1∫

Ω×[0,1] τ dm p × µp

∞∑
n=0

m p × µp({(ω, x) ∈ Ω × [0, 1]; τ (ω, x) > n} ∩ R−n(E))

=
1

2 − p
[m p × µp(Ω × [0, 1] ∩ E) + m p × µp([1] × [0, 1] ∩ R−1(E))].

In the following, we use a similar technique from [10] to show that µp is in fact equivalent with
the Lebesgue measure.
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Proposition 4.5. Let I ⊂ [0, 1] be a non-trivial interval. Then ∀ω ∈ Ω , there is an n ≥ 1, n ∈ N
such that (0, 1) ⊂

(
Tωn ◦ · · · ◦ Tω1

)
I ⊂ [0, 1].

Proof. Let J ⊂ [0, 1] be a non-trivial open interval, so J = (c, d), c, d ∈ (0, 1), c < d. First
assume ∃k ∈ N such that 2

k ∈ J . Notice that T0( 2
k ) = 0, so T0(J ) = (b, 1) ∪ [0, c) for some

b, c ∈ (0, 1). Therefore ∃k ∈ N such that ( 2
k+1 ,

2
k ] ⊂ [0, c) and hence (0, 1) ⊂ Tω2

(
Tω1 (J )

)
⊂

[0, 1]. If ω1 = 1, then T1(J ) = (b, 1] ∪ (0, c) for some b, c ∈ (0, 1), since T1( 2
k ) = 1. By the

same reasoning as before (0, 1) ⊂ Tω2 (Tω1 (J )) ⊂ [0, 1].
Suppose for all k ∈ N we have 2

k ̸∈ J . Set J1 = Tω1 (c, d) = (c1, d1) and Ji = Tωi (ci−1, di−1)
then it follows by induction that λ(Ji ) ≥ ( 1

1−(d−c) )
i (d − c) as long as 2

k ̸∈ J j for all 1 ≤ j ≤ i
and k ∈ N. Hence the size of the interval grows exponentially and therefore for all J there exists
an n ∈ N such that 2

k ∈ Jn and (0, 1) ⊂ Tω(n+2) ◦ Tω(n+1) Jn . □

Recall that if f is a function of bounded variation on I , then it can be redefined on a countable
set to become a lower semi-continuous function. Moreover if f is lower semicontinuous on
I = [a, b] ⊂ R, then it is bounded from below and assumes its minimum value, see [3]. Using
this two statements we can prove the following proposition.

Proposition 4.6. Let h p be the probability density function from Theorem 3.2. Then h p > 0 for
all y ∈ (0, 1).

Proof. Since h p is a density function of bounded variation we can find an interval I such that
h p > α on I . Using the fact that h p = PT h p, see Section 3, linearity of the Perron Frobenius
operator and Pn

T = PT n , see [9] we can write:

h p(y) = PT n h p(y)

> αPT n 1I (y)

= α
∑

(ω1,...,ωn )∈Ω

∑
x∈(Tω1 ◦···◦Tωn )

−1
{y}

1I (x)

⏐⏐⏐⏐⏐ pω1 · · · pωn(
Tω1 ◦ · · · ◦ Tωn

)′(x)

⏐⏐⏐⏐⏐ .
By Proposition 4.5 we know there exists a n such that Tωn ◦ · · · ◦ Tωn (I ) = (0, 1) and therefore
there exists an x ∈ I such that Tω1 ◦ · · · ◦ Tωn (x) = y. We conclude h p(y) > 0 for all y ∈

(0, 1). □

Using that h p is of bounded variation the following standard proof shows that h p is equivalent
with the Lebesgue measure.

Proposition 4.7. The density function h p is bounded from above and away from 0.

Proof. Since [0, 1] is a closed and bounded subset in R and h p is of bounded variation, h p

is bounded from above. We can redefine h p on a countable set to get a lower semi-continuous
function. A lower semi-continuous functions attains its minimum on [0,1]. By Proposition 4.6
we see that h p > 0 on (0, 1). Therefore we are left to show that h p(1) > 0 and h p(0) > 0. Let
ϵ > 0 and consider T −1

0 (1 − ϵ, 1). Note that for k ≥ 2, k ∈ N

(
2

1 + k
,

2
1 − ϵ + k

) ⊂ T −1
0 (1 − ϵ, 1)



K. Dajani, M. Oomen / Journal of Approximation Theory 227 (2018) 1–26 13

and

λ

(
(

2
1 + k

,
2

1 − ϵ + k
)
)

=
2ϵ

(1 + k)(1 − ϵ + k)
.

Hence
k2

2
λ

(
(

2
1 + k

,
2

1 − ϵ + k
)
)
< λ((1 − ϵ, 1)) <

(k + 1)2

2
λ

(
(

2
1 + k

,
2

1 − ϵ + k
)
)
.

Therefore,

lim
x↑1

h p(x) = lim
ϵ→0

1
λ((1 − ϵ, 1))

∫ 1

1−ϵ

h p(x)dx

= lim
ϵ→0

pµp(T −1
0 (1 − ϵ, 1)) + (1 − p)µp(T −1

1 (1 − ϵ, 1))
λ((1 − ϵ, 1))

≥ lim
ϵ→0

pµp(( 2
1+k ,

2
1−ϵ+k ))

(k+1)2

2 λ
(
( 2

1+k ,
2

1−ϵ+k )
)

=
2ph p( 2

k+1 )

(k + 1)2 > 0.

The case h p(0) > 0 follows in the same way, choosing (0, ϵ) as starting interval and taking
limx↓0. □

5. Ergodicity of R and K

To prove that the map K is ergodic we will use the following proposition of Aimino, see [1].

Proposition 5.1 (See [1] Proposition 3.1). There exist constants C ≥ 0 and γ < 1 such that for
all functions f of bounded variation and all g ∈ L∞(λ),

lim
n→∞

⏐⏐⏐⏐∫
[0,1]

PT n f · gdµp −

∫
[0,1]

f dµp

∫
[0,1]

gdµp

⏐⏐⏐⏐ ≤ Cγ n
∥ f ∥BV ∥g∥∞.

Here ∥ f ∥BV = ∥ f ∥L1 +
⋁

[0,1] f and ∥g∥∞ = supx∈[0,1]|g(x)|.

Proposition 5.2. The map K is mixing with respect to the measure m p × µp.

Proof. We define the cylinders as follows:

[ω̄]n × ∆na = [ω̄1, . . . , ω̄n] × ∆(a1, . . . , an)ω̄1,...,ω̄n

= {(ω, x) : ω1 = ω̄1, . . . , ωn = ω̄n, d1(ω, x) = a1, . . . , dn(ω, x) = an}

= {(ω, x) : ω1 = ω̄1, . . . , ωn = ω̄n, x ∈

n⋂
i=1

(Tωi−1 ◦ · · · ◦ Tω1 )−1

× (
2

ki + 1
,

2
ki

]}. (15)

Here the ki ’s in the last line are the ki associated with ai , i.e. if ai = ki or ai = (ki − 1, 1) we
use in both cases the interval

(
2

ki +1 ,
2
ki

]
. These cylinders form a generating set for the σ -algebra

σ (C × B[0, 1]). Therefore, to prove that K is mixing it is enough to show that for all cylinders
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lim
l→∞

(m p × µp)(K −l([ω]n × ∆n(a)) ∩ [v]m × ∆m(b))

= m p × µp([ω]n × ∆n(a))m p × µp([v]m × ∆m(b)).

This follows from Proposition 5.1 using the properties of the random and non-random Perron
Frobenius operator which can be found in [3], chapter 4 and [9]. □

Proposition 5.3. The measure ρ is ergodic with respect to the transformation R.

Proof. Note R−1(Ω×[0, 1])∪Ω×[0, 1] = Ω×[0, 2] so we have ρ
(⋃

k≥0 R−k(Ω × [0, 1])
)

= 1
and by standard result of ergodic theory see [3] chapter 3, we conclude that R is ergodic. □

6. Asymptotic properties

The fact that the measure ρ is ergodic gives us the possibility to prove some asymptotic
properties of the transformation R. Let qn denote the denominator of the partial fractions as
defined by (10). Then the following proposition holds:

Proposition 6.1. limn→∞
1
n log qn(ω, x) exists ρ a.e.

Proof. First we show by induction that if pn
qn

=
pn (ω,x)
qn (ω,x) denote the partial fractions, then

pn(ω, x) = 2qn−1(R(ω, x))

for all n ∈ N. By the recursion relations, see Eq. (11), p1(ω, x) = 2 and q0(R(ω, x)) = 1.
Suppose the result holds true for all n ≤ N then

pN+1(ω, x) = 2pN−1(ω, x) + bN+1(ω, x)pN (ω, x)
= 4qN−2(R(ω, x)) + bN (R(ω, x)) · 2 · qN−1(R(ω, x))
= 2qN (R(ω, x)).

Using this we can write

1
qn(ω, x)

=
pn(ω, x)
qn(ω, x)

pn−1(R(ω, x))
qn−1(R(ω, x))

· · ·
p1(Rn−1(ω, x))
q1(Rn−1(ω, x))

·

(
1
2

)n−1

.

Taking the logarithm and using the ergodicity of R with respect to the measure ρ, we continue
the proof in the same way as the proof of Paul Levy’s theorem for regular continued fractions.
For example see [6] Chapter 3. □

Let C be the collection of cylinders defined in (15) and let IC be the information function with
respect to these cylinders, IC : X → R, IC =

∑
A∈C1A(ω, x) log(m p × µp(A)), with respect to

the cylinder C. We write

IC = log(m p × µp([ω]n × ∆n(an)(ω, x))),

where [ω]n ×∆n(an)(ω, x) denotes the cylinder set to which (ω, x) belongs. Then the following
proposition holds.

Proposition 6.2. limn→∞
1
n log(m p ×µp([ω]n ×∆n(an)(ω, x))) exists and is finite m p ×µp a.e.
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Proof.

lim
n→∞

1
n

log(m p × µp([ω]n × ∆n(an)(ω, x))) = lim
n→∞

1
n

log(m p([ω]n(ω)))

+ lim
n→∞

1
n

log(µp(∆an)(x)).

Since the left shift is ergodic with respect to m p we can use the Birkhoff ergodic theorem to
calculate the first limit.

lim
n→∞

1
n

log(m p([ω]n(ω))) = lim
n→∞

1
n

n−1∑
i=0

log(p1{ω1=0}(σ i (ω))) + log((1 − p)1{ω1=1}(σ i (ω)))

=

∫
Ω

1{ω1=0}(ω) log(p) + 1{ω1=1}(ω) log((1 − p))dm p

=p log p + (1 − p) log(1 − p).

For the second limit we use cλ(∆an) < µp(∆an) < Cλ(∆an), and therefore by Proposi-
tion 4.3

lim
n→∞

1
n

log(µp(∆an)(x)) = lim
n→∞

1
n

log(λ(∆an)) = lim
n→∞

1
n

log(
2ñ

qñ(qñ + qñ−1)
).

Hence,

lim
n→∞

1
n

log

(
2ñ

2q2
ñ

)
< lim

n→∞

1
n

log
(

2ñ

qñ(qñ + qñ−1)

)
< lim

n→∞

1
n

log

(
2ñ

q2
ñ

)
Note that by the Birkhoff ergodic theorem we get

lim
n→∞

1
n

log(2ñ) = lim
n→∞

ñ
n

log(2) = lim
n→∞

∑n−1
i=0 τ (K i (ω, x))

n
log(2) = (2 − p) log 2.

We conclude that

lim
n→∞

1
n

log(µp(∆an)(x)) = (2 − p) log 2 − lim
n→∞

1
n + 1

2 log(qñ) < ∞,

where in the last step we use Proposition 6.1, and the fact that limn→∞
ñ
n = 2 − p. Therefore,

limn→∞
1
n log(m p × µp([ωn] × ∆nan)) exists and is finite. □

In order to show that the map R has finite entropy, we will first show with the Shannon–
McMillan–Breiman Theorem, see e.g. [12], that the map K has finite entropy.

Theorem 6.3. For any 0 ≤ p ≤ 1 the transformation K has finite metric entropy under the
measure m p × µp.

Proof. Let α = {[ωi ]1 × ∆1(ai ), ωi ∈ {0, 1}, ai ∈ {ki , (ki − 1, 1) : ki ∈ N}} be the collection of
cylinders of length 1. First we show that cylinders of the form [ω]1 × ∆1(a) form a generating
partition. Denoting by kn the first coordinate of ai we can write

[ωi0 ]1 × ∆1(ai0 ) ∩ K −1([ωi1 ]1 × ∆1(ai1 )) ∩ · · · ∩ K −(n−1)([ωin ]1 × ∆1(ain ))

= {(ω, x) ∈ Ω × [0, 1] :

ω1 = ωi0 , x ∈ (
2

ki0
,

2
ki0 + 1

], ω2 = ωi1 , Tω0 (x) ∈ (
2

ki1 + 1
,

2
ki1

],
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· · ·ωn = ωin−1 , Tωin−2
◦ · · · ◦ Tωi0

(x) ∈ (
2

kin + 1
,

2
kin

]}

= [ω]n × ∆n(an).

Since the cylinders of the form [ω]n ×∆n(an) generate σ (C × [0, 1]), α is a generating partition.
To apply the Shannon–McMillan–Breiman theorem we have to check that H (α) < ∞:

H (α) = −

∑
[ω]1×∆1(a),ω∈{0,1},a∈N

m p × µp([ω]1 × ∆1(a)) log(m p × µ([ω]1 × ∆1(a)))

= −

∑
[ω]1×∆1(a),ω∈{0,1},a∈N

m p([ω]1)µp(∆1(a)) log(m p([ω]1)µp(∆1(a)))

= −p log p − (1 − p) log(1 − p) −

∑
a∈N

µp(∆a) log(µp(∆a))

< ∞.

Were we used in the inequality that by equivalence of the Lebesgue measure we have

cλ(∆a) log(cλ(∆a)) < µp(∆a) logµp(∆a) < Cλ(∆a) log(Cλ(∆a))

and
n∑

k=1

Cλ(∆a) log(Cλ(∆a)) = 2C
n∑

k=1

1
k(k + 1)

(log(2C) − log(k) − log(k + 1)) < ∞.

We conclude that α has finite entropy and therefore by the Shannon–McMillan–Breiman
theorem and Proposition 6.2. We conclude that h(K (ω, x)) = β < ∞, for some β ∈ R. □

From the above result it follows directly by Abramov’s formula, see e.g. [12], for the entropy
of an induced function that the entropy of R also exists and is finite. Finally we obtain some
result for the digits of R as defined in Eq. (9).

Proposition 6.4. Let bi be the digits induced by R as defined in (9), then for ρ − a.e.(ω, x) ∈

Ω × [0, 1], we have

1 < lim
n→∞

(b1(x, ω), . . ., bn(x, ω))
1
n < ∞

and

lim
n→∞

∑n
i=1 bi (x, ω)

n
= ∞.

The proof of the above proposition is the same as for the regular continued fractions and a full
detailed proof is given in [11].

7. More invariant measures

The results obtained for the regular 2-continued fractions are only existence results and
moreover they hold only ρ almost everywhere. So we do not know anything about the behaviour
of the random 2-continued fraction transformation on the ρ null-sets. Therefore it is interesting
to look for other invariant measures for the dynamical system (Ω × [0, 1], σ (C × B[0, 1]), R).
We do this by constructing a commuting bijection between our space Ω × [0, 2] and NN, the
space where the digits sequences induced by R live. By definition ∞ is a possible digit, however
this only occurs when the orbit of a point (ω, x) is mapped under R to a point whose second
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coordinate is a zero. Although in this case the expansion is finite, but formally the associated
digit sequence ends with a tail of ∞’s. These points will not be in the support of the measures
that we will construct. To this end, let

M ⊂ Ω × [0, 2], M = {(ω, x) : π2(Rn(ω, x)) ̸= 0 ∀n ∈ N}.

Define ψ : M → NN by ψ(ω, x) = (b1(ω, x), b2(ω, x), . . .). We will show that ψ is indeed an
isomorphism, and that we have the following commuting diagram

M
R

−−−−→ M⏐⏐↓ψ ⏐⏐↓ψ
NN σ

−−−−→ NN

where σ denotes the left shift. The strategy used in this section uses the same techniques as used
in [8].

Proposition 7.1. Let x ∈ M and let x =
2

b1 +
2

b2 +
. . .

with bi ∈ N. Then there exists an ω ∈ Ω

such that bi = di (ω, x).

To prove the above proposition we will first prove a helpful lemma.

Lemma 7.2. For all k ∈ N let Ik denote the interval ( 2
k+1 ,

2
k ]. Then,

(1) If x ∈ I1 we have b1 = 1.
(2) If x ∈ Ik for k ≥ 2 we have b1 ∈ {k − 1, k}.

Proof. Since b1 ∈ N we have that if x =
2

b1 +
2

b2 +
. . .

then, 0 < x < 2
b1

≤ 2, so x ∈ (0, 2).

For case (1), suppose x ∈ I1 = (1, 2] and b1 > 1, then

x ≤
2

2 +
2

b2 +
. . .

<
2
2

= 1,

which is a contradiction. We conclude that b1 = 1. For case (2), we assume that x ∈ Ik and
b1 < k − 1. Then,

x ≥
2

k − 2 +
2

b2 +
. . .

>
2

k − 2 + 2
=

2
k
.

So, x ̸∈ Ik and hence b1 ≥ k − 1. Now suppose b1 > k, then x ≤
2

k+1+
2

b2+

...

< 2
k+1 , so x ̸∈ Ik .

We conclude b1 ≤ k and therefore b1 ∈ {k − 1, k}. □

We now prove Proposition 7.1.



18 K. Dajani, M. Oomen / Journal of Approximation Theory 227 (2018) 1–26

Proof. Denote by xn =
2

bn +
2

bn+1 +
. . .

. Let ln(x) be a variable which counts the number of

times xi ∈ [0, 1] for 1 ≤ i ≤ n. We will show by induction that for each x =
2

b1 +
2

b2 +
. . .

we

can find ω ∈ Ω such that di (ω, x) = bi for all i ∈ N. For the base step, note the following

(1) If x ∈ I1 = (1, 2] then by Lemma 7.2 we have b1 = d1(ω, x) = 1 for all ω ∈ Ω . Since
x ∈ (1, 2], l1(x) = 0 and [ω]l1 = Ω .

(2) If x ∈ Ik , for k ≥ 2 then we have by Lemma 7.2 that b1 ∈ {k − 1, k}.

• If b1 = k, then we have d1(ω, x) = k for all ω ∈ [0], so we set ω1 = 0, l1(x) = 1,
since x ∈ [0, 1] and [ω]l1 = [0].

• If b1 = k − 1, then for all ω ∈ [1] we have d1(ω, x) = k − 1 and hence we set ω1 = 1.
Again l1(x) = 1, since x ∈ [0, 1], and [ω]l1 = [1].

Therefore, we have found a cylinder [ω]l1 such that ∀ω ∈ [ω]l1 , d1(ω, x) = b1, where the
cylinder [ω]0 = Ω . Suppose we have found a cylinder [ω]ln such that ∀ω ∈ [ω]ln we have

(d1(ω, x), d2(ω, x), . . . , dn(ω, x)) = (b1, b2, . . . , bn).

Consider xn+1 and note that bn+1 is b1 for xn+1. If xn+1 ∈ [0, 1] we find by the above procedure
a cylinder [ω]ln+1 , such that [ω]ln+1 ⊂ [ω]ln and

(d1(ω, x), d2(ω, x), . . . , dn(ω, x), dn+1(ω, x)) = (b1, b2, . . . , bn, bn+1).

If xn+1 ∈ (1, 2], then ln+1 = ln so [ω]ln = [ω]ln+1 and we do not refine the cylinder. Notice each
time xn ∈ (1, 2] we know that xn+1 ∈ [0, 1], so ln ≥

n
2 . Therefore if n → ∞, then ln → ∞ and

[ω]ln+1 ⊂ [ω]ln . Therefore
⋂

n[ω]ln = {ω}, for some ω ∈ Ω . This concludes the lemma. □

Remark 7.3. The proof of Proposition 7.1 shows that for any continued fraction expansion
(b1, b2, . . .) of x there exists a unique ω ∈ Ω , such that

(d1(ω, x), d2(ω, x), . . .) = (b1, b2, . . .). ⋄

Now we are able to show that ψ : (M, σ (Ω × [0, 2])∩ M, µ, R) → (NN, C, ν, σ ) is indeed an
isomorphism. Recall that σ (C × B[0, 1]) is the product σ -algebra generated by cylinder sets of
the form [ω]n ×∆an , which were defined in terms of the digits induced by the transformation K .
The same kind of cylinder sets we define for the transformation R. We start with the partition:

P = {Ω × I1, [0] × Ik, [1] × Ik, k ∈ N},

which we call the time-0-partition. Let

Pn = P ∨ R−1P ∨ · · · ∨ R−(n−1)P

be the time-n-partition, an element of C ∈ Pn is then of the form

C = A1 ∨ R−1 A2 ∨ · · · ∨ R−n−1 An

for Ai ∈ P . For each (ω, x) ∈ C , the value ln(ω, x) =
∑n−1

i=0 1(Ω×[0,1])(Ri (ω, x)) is the same,
as well as (ω1, ω2, . . . , ωln ) and the first n digits in the expansion. The elements of P are the
cylinders of length 1 and the elements of Pn are the cylinders of length n.
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In contrast to the cylinders for the transformation K , we do not work here with the digits bi .
This is because for each digit induced by the function K we know precisely which ω is used. For
the function R we do not know this. For example a digit b1 = k, k ≥ 2 could be induced by R
if (ω, x) ∈ [0] × ( 2

k+1 ,
2
k ] or if (ω, x) ∈ [1] × ( 2

k+2 ,
2

k+1 ]. Clearly the cylinder sets for R generate
σ (C × B[0, 2]).

Now, let ν be any shift invariant measure on the product σ -algebra of NN, and define
µ = ν ◦ ψ . We have the following result.

Proposition 7.4. Let M be the subset defined in the begin of this section. The function ψ : (M, σ
(Ω × [0, 2]) ∩ M, µ, R) → (NN, C, ν, σ ) defined by ψ(ω, x) = (d1(ω, x), d2(ω, x), . . .) is an
isomorphism.

Proof. First we show that ψ is one-to-one and onto. By Proposition 7.1 we have that ψ is onto.
We show ψ is injective by constructing its inverse. Given a sequence (b1, b2, . . .) we can write

rn =
2

b1 +
2

b2 +
. . . +

2
bn

. Using the Moebius transformation we see that rn = A1 · A2 · · · An(0),

where Ai =

[
0 2
1 bi

]
and therefore rn =

pn
qn

. Hence

rn =

n∑
i=1

pn

qn
−

pn−1

qn−1
=

n∑
i=1

−(−2)n

qnqn−1

and limn→∞rn =
∑

∞

i=1
−(−2)n

qnqn−1
exists by the alternating series test and Proposition 4.1. We

conclude that for each series (b1, b2, . . .) there exists a unique x such that x = limn→∞rn . On
the other hand, we have already proved in Proposition 7.1 that there exists a unique ω, such

that x =
2

b1 +
2

b2 +
. . .

. We set ψ ′(b1, b2, . . .) = (ω, x). To show that we have constructed an

inverse of ψ we have to show that ψ ◦ψ ′
= ψ ′

◦ψ = id where id denotes the identity function.
Now,

ψ ◦ ψ ′(b1, b2, . . .) = ψ(ω,
2

b1 +
2

b2 +
. . .

) = (b1, b2, . . .),

where the last equation follows just by construction of ω and the fact that bi = di (ω, x). On the
other hand,

ψ ′
◦ ψ(ω, x) = ψ ′(d1(ω, x), d2(ω, x), . . .) = (ω,

2

d1 +
2

d2 +
. . .

).

Since ω is the unique element in Ω generating the digit sequence (d1(ω, x), d2(ω, x) · · · ), we
have ψ ′

◦ ψ(ω, x) = (ω, x).
We prove that ψ is a measurable bijection. First we proof that ψ : M → NN is measurable.

We distinguish 2 cases.
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• If b1 ̸= 1 then

ψ−1([b1]) = {(ω, x) ∈ M : d1(ω, x) = b1}

= ((
2

b1 + 1
,

2
b1

] × [0] ∪ (
2

b1 + 2
,

2
b1 + 1

] × [1]) ∩ M,

so ψ−1([b1]) ∈ σ (C × B).
• If b1 = 1 then

ψ−1([1]) = {(ω, x) ∈ M : d1(ω, x) = 1}

=

((
2
3
, 1
]

× [1] ∪ (1, 2] × Ω

)
∩ M,

so ψ−1([1]) ∈ σ (C × B).

By induction we show that the function is measurable. So suppose that the result holds for
cylinders of length n. Then we obtain:

ψ−1[b1, b2, . . . , bn, bn+1]
= {(ω, x) ∈ M : d1(ω, x) = b1, d2(ω, x) = b2, . . . , dn(ω, x) = bn, dn+1(ω, x) = bn+1}

= {(x, ω) ∈ M : d1(ω, x) = b1, d2(ω, x) = b2, . . . , dn(ω, x) = bn}

∩ {(x, ω) ∈ M : d1(Rn(ω, x)) = b1}

= ψ−1[b1, b2, . . . , bn] ∩ R−n(ψ−1[b1]) ∩ M.

The last line is measurable since R is a measurable function.
Now we show that ψ−1

= ψ ′ is a measurable function. To show the measurability of ψ ′ it
is enough to check that Im(ψ([ω]ln × ( 3

k+1
3
k ])) is in the σ -algebra generated by the cylinder

sets on N. Define Ay,i =
⋃

n≥2[y, 1, . . . , 1  
2i+1 times

, n] and By,i =
⋃

n≥2[y, 1, . . . , 1  
2i times

, n] and

Cy,1 = (y, 1, 1, 1, . . .  
infinitely many 1’s

). Then

ψ ′−1([ω]l1 × ∆k1) =ψ([ω]l1 × (
2

k1 + 1
,

2
k1

])

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
i∈N0

Bk1,i ∪ Ck1,1 if k1 ≥ 2, [ω]l1 = [0]⋃
i∈N

Ak1−1,i ∪ Ck1,1 if k1 ≥ 2, [ω]l1 = [1]⋃
i∈N

B1,i ∪ Ck1,1 if k1 = 1.

Hence ψ ′−1([ω]l1 ×∆k1) ∈ C. Now suppose the result holds for sets of length n so ψ ′−1([ω]ln ×

∆kn) ∈ C, we show that ψ ′−1([ω]ln+1 × ∆kn+1) ∈ C. First define:

An,y,i =

⋃
(b1,...,bn )∈Nn

⋃
m≥2

[b1, . . . , bn, y, 1, . . . , 1  
2i+1 times

,m]

Bn,y,i =

⋃
(b1,...,bn )∈Nn

⋃
m≥2

[b1, . . . , bn, y, 1, . . . , 1  
2i times

,m]

Cn,y,1 =

⋃
(b1,...,bn )

(b1, . . . , bn, y, 1, 1, 1, . . .  
infinitely many 1’s

).
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So we can write,

ψ ′−1([ω]ln+1 × ∆kn+1)

= ψ ′−1([ω]ln × ∆kn) ∩ ψ ′−1({(ω, x) : Rn(x, ω) ∈ [ωln+1 ] × (
2
kn
,

2
kn+1

]})

= Imψ([ω]ln × ∆kn) ∩ Imψ({(ω, x) : Rn(x, ω) ∈ [ωln+1 ] × (
2
kn
,

2
kn+1

]})

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F ∩ (
⋃
i∈N0

Bn,kn ,i ∪ Cn,y,1) if kn ≥ 2, [ωln ] = [0]

F ∩ (
⋃
i∈N

An,kn−1,i ∪ Cn,y,1) if kn ≥ 2, [ωln ] = [1]

F ∩ (
⋃
i∈N

Bn,1,i ∪ Cn,y,1) if kn = 1,

where F ∈ C is the element ψ ′−1([ω]ln × ∆kn). We conclude that ψ ′ is indeed a measurable
function. The fact that ψ preserves measure is immediately since we defined µ = ν ◦ψ . Finally,
we have to show that σ ◦ ψ is the same operation as ψ ◦ R. Since σ is the left shift we have

σ ◦ ψ(ω, x) = σ (d1(ω, x), d2(ω, x), d3(ω, x), . . .) = (d2(ω, x), d3(ω, x), . . .)

On the other hand

ψ ◦ R(ω, x) = (d1(R(ω, x)), d2(R(ω, x)), . . .) = (d2(ω, x), d3(ω, x), . . .)

so indeed σ ◦ ψ = ψ ◦ R. We conclude that ψ is indeed an isomorphism. □

Now we can define measures on Ω×[0, 2] with support M as lifts of shift invariant probability
measures on NN. Examples of natural shift invariant measures on NN are obtained as follows. Let
(p1, p2, . . .) be a probability vector on N, and ν the product measure on NN with these weights,
i.e. if b1, b2, . . . , bn ∈ N, then

νp({(y1, y2, . . .) ∈ NN
: y1 = b1, . . . , yn = bn}) = pb1 pb2 · · · pbn .

Examples of probability-measures we can choose on N to construct the product measure ν are:

(i) pi =
1

i(i+1) ,

(ii) pi =
e−λλi

i ! , Poisson distribution,
(iii) pi = r i−1(1 − r ), Geometric Distribution.

Since each product measure on the cylinder sets in NN is ergodic with respect to the left shift,
the above probability distributions induce an ergodic measure ν. Therefore the measureµ = ν◦ψ

on Ω × [0, 2] is also ergodic. However since all the measures ν are different it follows that they
are singular with respect to each other. Also the measure ρ, defined in Section 3 is singular with
respect to these measures, since the mean of the digits with respect to ρ is infinite and the mean
of the digits with respect to the measures ν constructed by the above probability distributions
are all finite. In general we see that a finite arithmetic mean, seems to be a generic behaviour
on ρ-null sets. Considering the entropy, it is shown in [5] that for measures ν which give finite
mean digit sequences, the geometric measure with this mean is the measure of maximal entropy.
Whether the product measure m p × µp has maximum entropy is not known.
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8. Random 3-continued fraction transformation

The techniques and results for N = 2 can be extended to arbitrary integer N . The calculations
however are very tedious. We illustrate this with the case N = 3. The 3 random continued
fraction are defined as follows, see Section 2:

S0, S1, S2 :(0, 3] → (0, 3]

S0 : x →
3
x

−

⌊
3
x

⌋

S1 : x →

⎧⎪⎪⎨⎪⎪⎩
3
x

−

⌊
3
x

⌋
+ 1 if x ∈

(
0, 1

1
2

]
3
x

−

⌊
3
x

⌋
if x ∈

(
1

1
2
, 3
]

S2 : x →

⎧⎪⎪⎨⎪⎪⎩
3
x

−

⌊
3
x

⌋
+ 2 if x ∈ (0, 1]

3
x

−

⌊
3
x

⌋
if x ∈ (1, 3].

We will refer to S0 as the lower map, to S1 as the middle map and S2 as the upper map. Let Ω =

{0, 1, 2}
N and define the function R as follows:

R : Ω × [0, 3] → Ω × [0, 3],

R(ω, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(σω, Sω1 (x)) if x ∈

(
0, 1

1
2

]
(ω, Sω1 (x)) if x ∈

(
1

1
2
, 3
]

(σω, 0) if x = 0.

Fig. 3 illustrates the transformation R. Notice R does not shift ω if x ∈ (1 1
2 , 3]. In the area

(1 1
2 , 3] the three maps S0, S1 and S2 coincide and therefore we do not have to choose which map

we use. As before the digits of R are given by:

b1(ω, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x ∈

(
1

1
2
, 3
]

k x ∈

(
3

k + 1
,

3
k

]
ω1 = 0, k ∈ N , k ≥ 2

k − 1 x ∈

(
3

k + 1
,

3
k

]
ω1 = 1, k ∈ N, k ≥ 2

k − 2 x ∈

(
3

k + 1
,

3
k

]
ω1 = 2, k ∈ N, k ≥ 3

2 x ∈

(
1, 1

1
2

]
ω1 = 2

and we define bn(ω, x) = b1(Rn−1(ω, x)). Using Moebius transformations we obtain the
following recurrence relations:

p−1 = 1 p0 = 0 pn = 3pn−2 + bn pn−1,

q−1 = 0 q0 = 1 qn = 3qn−2 + bnqn−1.
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Fig. 3. Map T0 in green, T1 in red and T2 in blue.

Like we did in the case N = 2, we will define the transformation K : Ω × [0, 1] → Ω × [0, 1]
as the induced function RΩ×[0,1](ω, x). In order to do this we introduce the return time

τ : Ω × [0, 1] → N,

(ω, x) → inf{n ∈ N : Rn(ω, x) ∈ Ω × [0, 1]}.

If the transformation enters the area Ω × [1, 3
2 ] it can stay there for an infinitely long time when

(ω, x) = ((1, 1, 1, . . .), x). Therefore τ will take all values in N. Note there are two ways for
the transformation to leave the area Ω × [1, 3

2 ], namely the occurrence of an ω1 ̸= 1 or the
transformation Si

1 enters the area [ 3
2 , 2] after some time i . In this way we obtain an explicit

expression for the return time τ .

τ (ω, x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ω1 = 0, x ∈ [0, 1]
2 if ω1 = 2, x ∈ [0, 1]
n + 1 if (ω1, ω2, . . . , ωn−1, ωn, ωn+1) ∈ {(1, 1, . . . , 1  

n times

, 0), (1, 1, . . . , 1  
n times

, 2)}

and x ∈ ∩
n
i=1S−i

1

(
1, 1

1
2

)
∩ [0, 1]

n + 1 if (ω1, ω2, . . . , ωn−1, ωn) = (1, 1, . . . , 1)  
n times

and x ∈ ∩
n−1
i=1 S−i

1

(
1, 1

1
2

)
∩ S−n

1

(
1

1
2
, 2
]

∩ [0, 1].
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We write

∩
n
i=1S−i

1 (1, 1
1
2

) = S−1
1 (∩n−1

i=0 S−i
1 (1, 1

1
2

)) = S−1
1 In,

where In = (∩n−1
i=0 S−i

1 (1, 1 1
2 )). Notice that when (ω, x) is in [(1, 1, . . . , 1)  

n times

] × In , we have that

bi = 1 for all i ≤ n. Therefore by the recursion relations we obtain

In =

(
pn−1 + 1 1

2 pn−2

qn−1 + 1 1
2 qn−2

,
pn−1 + pn−2

qn−1 + qn−2

)
if n even and

In =

(
pn−1 + pn−2

qn−1 + qn−2
,

pn−1 + 1 1
2 pn−2

qn−1 + 1 1
2 qn−2

)
if n is odd. Now if

(ω, x) ∈ [1, . . . , 1  
n+1 times

] × S−1
1 (In\In+1),

then Sn+1
1 (ω, x) ∈ (1 1

2 , 2) and hence τ (ω, x) = n + 2. Let Jn denote the interval Jn = In\In+1.
Then S−1

1 Jn = S−1
1 (In\In+1) and

Jn =

(
pn−1 + 1 1

2 pn−2

qn−1 + 1 1
2 qn−2

,
pn−1 + pn−2

qn−1 + qn−2

)\(
pn + pn−1

qn + qn−1
,

pn + 1 1
2 pn−1

qn + 1 1
2 qn−1

)
when n is even and

Jn =

(
pn−1 + pn−2

qn−1 + qn−2
,

pn−1 + 1 1
2 pn−2

qn−1 + 1 1
2 qn−2

)\(
pn + 1 1

2 pn−1

qn + 1 1
2 qn−1

,
pn + pn−1

qn + qn−1

)
when n is odd. Now we are ready to define the induced transformation K . Let

Ti :[0, 1] → [0, 1]

T0(x) = S0(x) =
3
x

−

⌊
3
x

⌋
T1(x) = S0 ◦ S2(x) =

3
3
x −

⌊ 3
x

⌋
+ 2

− 1

T(2,i)(x) =

{
S0 ◦ Si+1

1 (x) if x ∈ S−1
1 Ji for i ∈ N ∪ {0}

2x otherwise

T(3,i)(x) =

{
S0 ◦ Si

1(x) if x ∈ S−1
1 Ii for i ∈ N

2x otherwise

Note that S0 ◦ S2(x) = S1 ◦ S2(x) = S2 ◦ S2(x), and S0 ◦ Si+1
1 (x) = S1 ◦ Si+1

1 (x) = S2 ◦ Si+1
1 (x)

if x ∈ S−1
1 Ji for i ∈ N ∪ {0} and S0 ◦ Si

1(x) = S2 ◦ Si
1(x) if x ∈ S−1

1 Ii for i ∈ N. We let 2x occur
in both T(2,i) and T(3,i) with probability 0. So this transformation 2x will in fact never occur, but
it just helpful to satisfy the conditions of Inoue’s theorem. Note that we can write for the last two
transformations:

T(2,i)(x) =

⎧⎪⎨⎪⎩
3

Si+1
1 (x)

− 1 if x ∈ S−1
1 Ji

2x otherwise
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T(3,i)(x) =

⎧⎪⎨⎪⎩
3

Si
1(x)

− 2 if x ∈ S−1
1 Ii

2x otherwise.

Given a probability vector (p0, p1, p2) on {0, 1, 2} we define a probability vector for the
transformations T0, T1, T(2,i), T(3,i), i ∈ N. We set

P(T0) = p0

P(T1) = p2

P(T(2,i))(x) = pi+1
1 1S−1

1 Ji
(x)

P(T(3,i))(x) = pi
1(1 − p1)1S−1

1 Ii
(x)

One can verify that this is indeed a probability vector. For example if x ∈ Ji , so x ∈ Ik for
1 ≤ k ≤ i , then it follows that

p0 + p2 + pi+1
1 + (1 − p1)

i∑
j=1

p j
1 = p0 + p2 + pi+1

1 + p1 − pi+1
1 = 1.

Hence we see that for each x ∈ [0, 1] we get a well defined probability vector. Now we can give
an explicit expression for the transformation K ,

K (ω, x) =

⎧⎪⎪⎨⎪⎪⎩
(σ (ω), T0(x)) if ω1 = 0
(σ (ω), T1(x)) if ω1 = 2
(σ i+1(ω), T(2,i)(x)) if ω j = 1 ∀1 ≤ j ≤ i + 1 and x ∈ S−1

1 (Ji )
(σ i+1(ω), T(3,i)(x)) if ω j = 1 ∀1 ≤ j ≤ i, ωi+1 ∈ {0, 2} and x ∈ S−1

1 In.

We can define digits for K in a similar way we did in chapter 2, namely:

di (ω, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if ω1 = 0 and x ∈

(
3

k + 1
,

3
k

]
(k − 2, 1) if ω1 = 2 and x ∈

(
3

k + 1
,

3
k

]
(k − 1, 1, . . . , 1  

n times

, 1) if ω ∈ [1, . . . , 1  
n times

] and x ∈

(
3

k + 1
,

3
k

]
∩ S−1

1 Jn

(k − 1, 1, . . . , 1  
n−1 times

, 2) if ω ∈ [1, . . . , 1  
n times

, 0] ∪ [1, . . . , 1  
n times

, 2]

and x ∈

(
3

k + 1
,

3
k

]
∩ S−1

1 In.

With this transformation we can continue like we have done before with the 2-random
continued fraction transformation. However the computations will be rather tedious. For the
details we refer to the thesis [11].
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