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1. Introduction. Let β ∈ (1, 2) and Iβ := [0, 1/(β − 1)]. Given x ∈ Iβ,
we call a sequence (bn)∞n=1 ∈ {0, 1}N a β-expansion for x if

x =

∞∑
n=1

bn
βn
.

Noninteger representations of real numbers were pioneered in the papers
of Rényi [13] and Parry [12]. Since then they have been studied by many
authors and have connections with ergodic theory, fractal geometry, and
number theory (see the survey articles [10] and [15]). Perhaps one of the
most interesting objects to study within expansions in noninteger bases is
the set of expansions, i.e.,

Σβ(x) :=

{
(bn)∞n=1 ∈ {0, 1}N :

∞∑
n=1

bn
βn

= x

}
.

A result of Sidorov [14] states that if β ∈ (1, 2) then Lebesgue almost every
x ∈ Iβ satisfies cardΣβ(x) = 2ℵ0 . Moreover, for any k ∈ N ∪ {ℵ0} there
exist β ∈ (1, 2) and x ∈ Iβ such that cardΣβ(x) = k (see [6, 8, 9]). The
situation described above is completely different from the case of integer
base expansions where every number has a unique expansion except for a
countable set of exceptions which have precisely two.

A useful observation when studying expansions in noninteger bases is
that a β-expansion has a natural dynamical interpretation. Namely, let
T0(x) = βx, T1(x) = βx− 1, and

Γβ(x) :=
{

(an)∞n=1 ∈ {T0, T1}N : (an ◦ · · · ◦ a1)(x) ∈ Iβ for all n ∈ N
}
.

It was shown in [1] that cardΣβ(x) = cardΓβ(x) and the map sending
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(bn) to (Tbn) is a bijection between these two sets. Hence, performing T0
corresponds to taking the digit 0, and T1 corresponds to taking the digit 1.

An all encompassing method by which we can use the maps T0 and T1 to
generate β-expansions is the random β-transformation. This map is defined
as follows. Set Ω = {0, 1}N and denote by σ the left shift on Ω. Consider
the transformation Kβ : Ω × [0, 1/(β − 1)]→ Ω × [0, 1/(β − 1)] defined by

Kβ(ω, x) =


(ω, T0x) if 0 ≤ x < 1/β,

(σω, Tω1x) if 1/β ≤ x ≤ 1/(β(β − 1)),

(ω, T1x) if 1/(β(β − 1)) < x ≤ 1/(β − 1).

The random β-transformation Kβ was introduced and studied in [5–4].
Given x ∈ Iβ, the map Kβ generates all possible β-expansions of x. Further-
more, it is a random mix of the classical greedy map and lazy map defined
by

Gβ(x) =

{
T0(x) if 0 ≤ x < 1/β,

T1(x) if 1/β ≤ x ≤ 1/(β − 1)

and

Lβ(x) =

{
T0(x) if 0 ≤ x < 1/(β(β − 1)),

T1(x), if 1/(β(β − 1)) ≤ x ≤ 1/(β − 1),

respectively. Let S := [1/β, 1/(β(β − 1))]; we refer to S as the switch region.
This is the region where the greedy map Gβ and the lazy map Lβ differ,
and where the coordinates of ω are used to decide which map to use. Under-
standing the dynamics of T0 and T1 on the switch region provides valuable
insight into the possible Γβ(x), and thus the possible Σβ(x).

This paper is concerned with the dynamics of the first return map defined
on the switch region. We consider the induced transformation Uβ of Kβ on
the set Ω × S. More precisely, Uβ : Ω × S → Ω × S is defined as follows:

Uβ(ω, x) := K
r1(ω,x)
β (ω, x), where r1(ω, x)=inf{m ≥ 1 : Km

β (ω, x)∈Ω×S}.
Similarly we set

Uβ,0(x) := Uβ((0)∞, x) and Uβ,1(x) := Uβ((1)∞, x).

Note that when we have fixed the sequence ω to equal (0)∞ or (1)∞, the
maps Uβ,0 and Uβ,1 are well defined maps from S to S.

Remark 1.1. The map Uβ is defined on Ω × S, and both Uβ,0 and Uβ,1
are defined on S. However, there exist ω and x for which Kβ(ω, x) is never
mapped back into Ω × S, thus for this choice of ω and x the map Uβ is
not well defined. Similarly, there exists x for which Uβ,ωi is not well defined.
However, it is a consequence of the work of Sidorov [14] that the set of x for
which Unβ (w, x) is well defined for all n ∈ N and ω ∈ Ω is of full Lebesgue
measure within S. Similarly, the set of x for which Unβ,ωi(x) is well defined
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for every n ∈ N is of full Lebesgue measure within S. Throughout this article
we will abuse notation and let S denote both the switch region and the full
measure subset of S for which Uβ and Uβ,ωi are well defined. It should be
clear which interpretation of S we mean from the context.

For i ≥ 1 let ri(ω, x) := r1(U
i−1
β (ω, x)) be the ith return time to the

switch region Ω×S. Note that for any β and ω, the set {r1(ω, x)}x∈S equals
Rβ := {m,m + 1, . . .} where m is some natural number that only depends
upon β. We emphasise that Rβ has no dependence on ω. One of the goals
of this paper is to understand the sequences (ri(ω, x))∞i=1 and to answer the
following question: given ω ∈ Ω and a sequence of integers (ji)

∞
i=1 ∈ RN

β ,
when is it possible to find x ∈ S such that ri(ω, x) = ji for i = 1, 2, . . .?
The following theorem provides an answer to this question. To state it, we
have to introduce two classes of algebraic integers. Let αk denote the unique
solution in (1, 2) of the equation

xk+1 − 2xk + x− 1 = 0,

and let γk denote the kth multinacci number, the unique root of

xk+1 − xk − xk−1 − · · · − x− 1 = 0

contained in (1, 2).

Theorem 1.1. Let β ∈ (αk, γk] for some k ≥ 2. Then for any ω ∈ Ω
and (ji) ∈ RN

β there exists x ∈ S such that ri(ω, x) = ji for i = 1, 2, . . . .

Moreover, if β /∈ (αk, γk] for all k ≥ 2, then there exist ω ∈ Ω and (ji) ∈ RN
β

such that no x ∈ S satisfies ri(ω, x) = ji for i = 1, 2, . . . .

As we will see, the algebraic properties of αk and γk correspond naturally
to conditions on the orbit of 1 and its reflection 1/(β − 1)− 1. These points
completely determine the dynamics of the greedy map Gβ and the lazy
map Lβ respectively, and hence it is not surprising that these points play
a crucial role in our situation as well. For values of β lying outside of the
intervals (αk, γk] it is natural to ask whether the following weaker condition
is satisfied: given (ji) ∈ RN

β , do there exist ω ∈ Ω and x ∈ S such that
ri(ω, x) = ji for i = 1, 2, . . .? Let ηk denote the unique root of the equation

2xk+1 − 4xk + 1 = 0

contained in (1, 2).

Theorem 1.2. Let β ∈ (αk, ηk] for some k ≥ 1. Then for any sequence
(ji) ∈ RN

β there exist ω ∈ Ω and x ∈ S such that ri(ω, x) = ji for i =
1, 2, . . . .

If β satisfies the hypothesis of Theorem 1.2 then the orbits of 1 and
1/(β − 1) − 1 satisfy a cross over property. This property is sufficient to
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prove Theorem 1.2. Note that αk ≤ γk ≤ ηk for each k ≥ 1. Table 1 lists
some initial values of αk, γk and ηk.

Table 1. Values of αk, γk and ηk

k αk γk ηk

1 1+
√
5

2
1+
√
5

2
1 + 2−1/2

2 1.7549 . . . 1.8393 . . . 1.8546 . . .

3 1.8668 . . . 1.9276 . . . 1.9305 . . .

4 1.9332 . . . 1.9660 . . . 1.9666 . . .

5 1.9672 . . . 1.9836 . . . 1.9837 . . .

The second half of this paper is concerned with the maps Uβ,0 and Uβ,1.
To state our results, it is necessary to make a definition. Given a closed
interval [a, b], we call a map T : [a, b] → [a, b] a generalized Lüroth series
transformation (abbreviated to GLST) if there exists a countable set {In}∞n=1

of bounded subintervals (In = (ln, rn), [ln, rn], (ln, rn], or [ln, rn)) for which
the following criteria are satisfied:

(1) In ∩ Im = ∅ for n 6= m.

(2)

∞∑
n=1

(rn − ln) = b− a.

(3) T (x) = a+
(x− ln)(b− a)

rn − ln
for x ∈ In.

Property (3) is equivalent to the map T restricted to In being the unique
surjective linear orientation preserving map from In into S.

The traditional Lüroth expansion of a number x ∈ (0, 1] is a sequence
(an)∞n=1 of natural numbers where an ≥ 2 for each n and

x =
1

a1
+

1

a1(a1 − 1)a2
+ · · ·+ 1

a1(a1 − 1)a2(a2 − 1) · · · an
+ · · · .

This expansion can be seen to be generated by the map T : [0, 1] → [0, 1]
where

T (x) =

{
n(n+ 1)x− n if x ∈ (1/(n+ 1), 1/n],

0 if x = 0.

GLSTs were introduced in [2]. Our definition is slightly different from the
one appearing in that paper but all of the main results translate over into our
context. Namely if T : [a, b]→ [a, b] is a GLST then the normalised Lebesgue
measure on [a, b] is a T -invariant ergodic measure. Our main result for the
maps Uβ,0 and Uβ,1 is the following theorem.

Theorem 1.3. There exists a set M ⊆ (1, 2) of Hausdorff dimension 1
and Lebesgue measure zero such that:
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(1) If β ∈M then both Uβ,0 and Uβ,1 are GLSTs.
(2) If β /∈M then neither Uβ,0 nor Uβ,1 is a GLST.

What is more, we can describe the set M explicitly.
Before we move on to the proofs of Theorems 1.1–1.3, we provide a

worked example. Namely, we consider the case where β = (1 +
√

5)/2, which
exhibits some of the important features of our later proofs.

Example 1.1. If β = (1 +
√

5)/2 then S = [1/β, 1]. Let Cj = {ω ∈ Ω :
ω1 = j}, j = 0, 1. Then for any ω ∈ C0, we have r1(ω, 1) = ∞ and
r1(ω, 1/β) = 1, while for any ω ∈ C1, r1(ω, 1) = 1 and r1(ω, 1/β) = ∞.
If x ∈ (1/β, 1), then r1(ω, x) ≥ 2 for all ω ∈ Ω.

For i ≥ 2, let

B0
i := {x ∈ S : Uβ,0(x) = (T i−11 ◦ T0)(x)},(1.1)

B1
i := {x ∈ S : Uβ,1(x) = (T i−10 ◦ T1)(x)}.(1.2)

A simple calculation shows that for i ≥ 2,

B0
i =

( i+1∑
n=2

1

βn
,
i+2∑
n=2

1

βn

]
= (T i−11 ◦ T0)−1(1/β, 1],(1.3)

B1
i =

[
1

β
+

1

βi+1
,

1

β
+

1

βi

)
= (T i−10 ◦ T1)−1[1/β, 1).(1.4)

The collection {B0
i : i ≥ 2} is a partition of (1/β, 1), and {B1

i : i ≥ 2} is a
partition of (1/β, 1). Equation (1.3) demonstrates that Uβ,0 restricted to B0

i

is a full branch, thus Uβ,0 is a GLST. Similarly equation (1.4) implies Uβ,1
is a GLST. We include a diagram of the graph of Uβ,0 in Figure 1.

1
β

1
β(β−1)

B0
1 B0

2 B0
3 B0

4

Fig. 1. The graph of Uβ,0 when β = (1 +
√

5)/2

By the aforementioned results of [2], a GLST is ergodic with respect
to the normalised Lebesgue measure µ. Hence we can compute the average
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return time. For β = (1 +
√

5)/2, Lebesgue almost every x ∈ S satisfies

lim
n→∞

1

n

n−1∑
j=0

rj((0)∞, x) = lim
n→∞

1

n

n−1∑
j=0

∞∑
i=2

iχB0
i
((Uβ,0)

j(x))

=
� ∞∑
i=2

iχB0
i
dµ = 2β2 − β = 3.6178 . . . ,

where χB0
i

denotes the characteristic function of B0
i . Note that the above

also holds with rj((0)∞, x) replaced with rj((1)∞, x).

By Theorem 1.1, there exist ω ∈ Ω and (ji)
∞
i=1 ∈ RN

(1+
√
5)/2

for which no x

satisfies ri(ω, x) = ji for i = 1, 2, . . . . This is essentially a consequence of the
fact mentioned above that if ω ∈ C0 then r1(ω, 1) =∞ and r1(ω, 1/β) = 1,
while for any ω ∈ C1, we have r1(ω, 1) = 1 and r1(ω, 1/β) = ∞. This
statement implies that we cannot have a return time 1 followed by any
other natural number.

2. Sequences of return times

2.1. Proof of Theorem 1.1. The proofs of Theorems 1.1 and 1.2 both
make use of a nested interval construction. We begin by examining the
condition β ∈ (αk, γk]. It is easy to show that

β ∈ (αk, 2) ⇔ (T k−11 ◦ T0)
(

1

β

)
>

1

β(β − 1)
(2.1)

⇔ (T k−10 ◦ T1)
(

1

β(β − 1)

)
<

1

β

and

β ∈ (1, γk] ⇔ (T k1 ◦ T0)
(

1

β

)
≤ 1

β
(2.2)

⇔ (T k0 ◦ T1)
(

1

β(β − 1)

)
≥ 1

β(β − 1)
.

Thus β ∈ (αk, γk] is equivalent to the orbit of 1/β either jumping over the
switch region, or satisfying Uβ,0(1/β) = (T k1 ◦ T0)(1/β) = 1/β. Similarly,
β ∈ (αk, γk] is equivalent to the orbit of 1/(β(β − 1)) either jumping over
the switch region, or satisfying

Uβ,1

(
1

β(β − 1)

)
= (T k0 ◦ T1)

(
1

β(β − 1)

)
=

1

β(β − 1)
.

The following properties are important consequences of the above. First of
all, it is straightforward to see that for β ∈ (αk, γk] we have Rβ = {k + 1,
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k + 2, . . .}. Secondly, for i ≥ k + 1 we have

B0
i = (T i−11 ◦ T0)−1(S),(2.3)

B1
i = (T i−10 ◦ T1)−1(S),(2.4)

where B0
i and B1

i are as in Example 1.1, but in this case they do not form
a partition of S.

We now prove Theorem 1.1; we separate the proof into the following
propositions.

Proposition 2.1. Let β ∈ (αk, γk] for some k ≥ 2. Then for any ω ∈ Ω
and (ji) ∈ RN

β there exists x ∈ S such that ri(ω, x) = ji for i = 1, 2, . . . .

Proof. Let β ∈ (αk, γk] and fix (ωi) ∈ Ω and (ji) ∈ {k+ 1, k+ 2, . . . , }N.
We set I1 = Bω1

j1
and

Ii := Bω1
j1
∩ (T j1−1ω1

◦ Tω1)−1(Bω2
j2

)(2.5)

∩ · · · ∩
(
(T

ji−1−1
ωi−1

◦ Tωi−1) ◦ · · · ◦ (T j1−1ω1
◦ Tω1)

)−1
(Bωi

ji
)

for i ≥ 2. In the above and throughout we let ωi = 1 − ωi. Any element
of Ii satisfies rl(ω, x) = jl for 1 ≤ l ≤ i. By (2.3) and (2.4) we have

(T j1−1ω1
◦ Tω1)(I1) = S, and by an induction argument it can be shown that

(2.6)
(
(T ji−1ωi

◦ Tωi) ◦ · · · ◦ (T j1−1ω1
◦ Tω1)

)
(Ii) = S

for all i ∈ N. This guarantees that Ii is nonempty and well defined for each
i ∈ N. Moreover, Ii+1 ⊆ Ii by (2.5). Thus (Ii) is a decreasing sequence of
compact intervals and

E =

∞⋂
i=1

Ii

is nonempty. Finally, any x ∈ E satisfies ri(ω, x) = ji for all i ∈ N.

Proposition 2.2. Let β ∈ (1, (1 +
√

5)/2]. Then there exist ω ∈ Ω and
(ji) ∈ RN

β such that no x ∈ S satisfies ri(ω, x) = ji for i = 1, 2, . . . .

Proof. Any β ∈ (1, (1 +
√

5)/2] satisfies Rβ = {1, 2, . . .}. We now fix
the sequence ω = (0)∞ and (ji) = (1)∞. There exists no x ∈ S satisfying
ri((0)∞, x) = 1 for all i ≥ 1, as this would imply there exists x ∈ S satisfying
T i0(x) ∈ S for all i ≥ 1. This is not possible as repeated iteration of T0
eventually maps any element of S outside of S.

Proposition 2.3. Let β ∈ ((1 +
√

5)/2, 2) \
⋃∞
k=2(αk, γk]. Then there

exist ω ∈ Ω and (ji) ∈ RN
β such that no x ∈ S satisfies ri(ω, x) = ji for

i = 1, 2, . . . .
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Proof. For β ∈ ((1 +
√

5)/2, 2) we have r1(ω, 1/β) ≥ 2 for any ω ∈ C0.
Moreover, by our assumption that β /∈ (αk, γk] for any k ≥ 2, we must have

(T k1 ◦ T0)
(

1

β

)
∈
(

1

β
,

1

β(β − 1)

]
for some k ≥ 1. For such a β we have Rβ := {k+1, k+2, . . .}. Let ω = (0)∞

and (ji) = (k + 1)∞. We now show that there exists no x ∈ S satisfying
ri((0)∞, x) = k+1 for all i. Since k+1 is the earliest return time, there exists
a single interval I for which I := {x ∈ S : r1((0)∞, x) = k + 1}; moreover
for any x ∈ I we have Uβ,0(x) = (T k1 ◦ T0)(x). Thus, any x satisfying
ri((0)∞, x) = k + 1 for all i ∈ N must satisfy

(2.7) (T k1 ◦ T0)i(x) ∈ S for all i ∈ N.

We now explain why this is not possible.

The map T k1 ◦ T0 scales distances by a factor of βk+1 and satisfies
(T k1 ◦ T0)(x) > x for x to the right of the fixed point of T k1 ◦ T0. We pre-
viously observed that (T k1 ◦ T0)(1/β) ∈ (1/β, 1/(β(β − 1))], thus the fixed
point of T k1 ◦ T0 is to the left of S. Therefore under repeated iteration of
T k1 ◦ T0 every x ∈ S is eventually mapped outside of S. This implies that
(2.7) cannot hold, and we have proved our result.

Combining Propositions 2.1–2.3 yields Theorem 1.1.

2.2. Proof of Theorem 1.2. The proof is similar to that of Theo-
rem 1.1 in that we make use of a nested interval construction. However, in
the proof we do not explicitly construct the desired ω, but only show its
existence; as such, the proof takes on an added degree of abstraction.

Let us start by examining the consequences of β ∈ (αk, ηk] for some
k ≥ 1. For k ≥ 2 we ignore the intervals (αk, γk] as they are covered by
Theorem 1.1. For β in the remaining parameter space we have

(2.8)

(T k1 ◦ T0)
(

1

β

)
∈
(

1

β
,

1

2(β − 1)

]
,

(T k0 ◦ T1)
(

1

β(β − 1)

)
∈
[

1

2(β − 1)
,

1

β(β − 1)

)
.

We emphasise that for any β ∈ (1, 2) the point 1/(2(β − 1)) is the midpoint
of the interval S and is thus always in the interior of S. Equation (2.8) is
equivalent toUβ,0(1/β) being in the left hand side ofS, andUβ,1(1/(β(β − 1)))
being in the right hand side. As such, the two orbits cross over when they
return to S.

The cross over property described by (2.8) implies

(2.9) (T k1 ◦ T0)(B0
k+1) ∪ (T k0 ◦ T1)(B1

k+1) = S.
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Moreover, for any i ≥ k + 1 we have

(2.10) (T i1 ◦ T0)(B0
i+1) = S.

With the identities (2.9) and (2.10) we may now prove Theorem 1.2.

Proof of Theorem 1.2. Let β ∈ (γk, ηk] and fix a sequence of return times
(ji) ∈ RN

β = {k+ 1, k+ 2, . . .}N. We will construct a set J such that for any
x ∈ J there exists a sequence ω satisfying ri(ω, x) = ji for all i ∈ N. We
construct J by building a sequence of levels J1, J2, . . . . Each Ji will be a
finite collection {Iil }2

i

l=1 of compact intervals. Moreover,

(2.11)
2i+1⋃
l=1

Ii+1
l ⊆

2i⋃
l=1

Iil

for each i = 1, 2, . . . . Thus

J =

∞⋂
i=1

2i⋃
l=1

Iil

is nonempty, and as we will see, for each x ∈ J there exists an ω ∈ Ω such
that ri(ω, x) = ji for i = 1, 2, . . . . We emphasise that in our construction
not every Iij will necessarily be nonempty.

For each level Ji it is useful to define a collection of maps, Mi = {f il }2
i

l=1.
Each f il will be a map from Iil into S. These maps will also satisfy

(2.12)

2i⋃
l=1

f il (Iil ) = S.

We start by letting

J1 = {B0
j1 , B

1
j1} and M1 = {T j1−11 ◦ T0, T j1−10 ◦ T1}.

By (2.9) and (2.10) we have

(T j1−11 ◦ T0)(B0
j1) ∪ (T j1−10 ◦ T1)(B1

j1) = S.

So (2.12) holds when i = 1. Assume we have constructed Ji and Mi for 1 ≤
i ≤ N, and (2.11) holds for 1 ≤ i ≤ N−1, and (2.12) holds for 1 ≤ i ≤ N . We
now construct JN+1 and MN+1. To each fNl ∈MN we associate the compact
intervals (fNl )−1(B0

jN+1
) and (fNl )−1(B1

jN+1
); the set of these new intervals

is our JN+1. By (2.12) the collection {(fNl )−1(B0
jN+1

), (fNl )−1(B1
jN+1

)} of

intervals is nonempty. Each fNl is a map from INl into S, thus (fNl )−1(B1
jN+1

)

⊆ INl , and (2.11) holds for i = N .

To each (fNl )−1(B0
jN+1

) we associate the map (T
jN+1−1
1 ◦ T0) ◦ fNl , and

to each (fNl )−1(B1
jN+1

) the map (T
jN+1−1
0 ◦T1)◦fNl . This collection of maps

is our new MN+1.
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Moreover,

( 2N⋃
l=1

(
(T

jN+1−1
1 ◦ T0) ◦ fNl

)
◦ (fNl )−1(B0

jN+1
)
)

∪
( 2N⋃
l=1

(
(T

jN+1−1
0 ◦ T1) ◦ fNl

)
◦ (fNl )−1(B1

jN+1
)
)

= (T
jN+1−1
1 ◦ T0)

( 2N⋃
l=1

fNl (fNl )−1(B0
jN+1

)
)

∪ (T
jN+1−1
0 ◦ T1)

( 2N⋃
l=1

fNl (fNl )−1(B1
jN+1

)
)

= (T
jN+1−1
1 ◦ T0)(B0

jN+1
) ∪ (T

jN+1−1
0 ◦ T1)(B1

jN+1
) (by (2.12) for i = N)

= S (by (2.9) and (2.10)).

Therefore (2.12) holds for i = N + 1. Hence we can repeat the above steps
indefinitely, and Ji and Mi are well defined for all i ∈ N and satisfy (2.11)
and (2.12). This implies that the set J is well defined and nonempty.

It is not immediately obvious why an x ∈ J admits an ω ∈ Ω such
that ri(ω, x) = ji for all i ≥ 1. We now explain why. If x ∈ J, then by our
construction for each n ∈ N there exists (ωni )ni=1 ∈ {0, 1}n such that

(2.13) (T ji
ωni
◦ Tωni ) ◦ · · · ◦ (T j1

ωn1
◦ Tωn1 )(x) ∈ S

for all 1 ≤ i ≤ n. We identify the finite sequence (ωni ) with the infinite
sequence υn = (ωn1 , . . . , ω

n
n, (0)∞). We equip Ω with the usual metric d(·, ·)

where d((εi), (δi)) = 2−n((εi),(δi)) where n(x, y) = inf{i : εi 6= δi}. With
respect to this metric, Ω is a compact metric space, thus there exist υ ∈ Ω
and a subsequence of (υn) such that υnk → υ. Then

(2.14) (T jiυi ◦ Tυi) ◦ · · · ◦ (T j1υ1 ◦ Tυ1)(x) ∈ S

for all i ∈ N, since υ is the limit of a sequence satisfying (2.13). Clearly
(2.14) implies that ri(υ, x) = ji for all i ∈ N.

Remark 2.1. We end this section by pointing out that there are nontriv-
ial examples of β ∈ (1, 2) for which there exists (ji) ∈ RN

β and no x ∈ S and
ω ∈ Ω for which ri(ω, x) = ji for all i ∈ N. For example take β = 1.754. We
chose this value because it is slightly less than α2. Thus T1◦T0(1/β) ∈ S, but
it is only slightly less than the right end point of the switch region. Clearly
Rβ := {2, 3, . . .}. However, any point that can have a return time 2 gets
mapped close to the endpoints of S under the corresponding map. Being
close to the endpoints of the switch suggests either a large return time or a
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small return time. This is the case for β = 1.754, and a simple calculation
shows that it is not possible for r1(ω, x) = 2 and r2(ω, x) = 3.

3. Proof of Theorem 1.3. Let us begin our proof of Theorem 1.3 by
defining the set M that appears in its statement. Let

M :=
{
β ∈ (1, 2) : cardΣβ(1) = 1}
∪ {β ∈ (1, 2) : Uβ,0(1/β) ∈ {1/β, 1/(β(β − 1))}

}
.

The first set in this union is the set of univoque bases; the study of this
set is classical within expansions in noninteger bases—we refer the reader
to [7, 8, 9, 11]. Erdős and Joó [9] showed that the set of univoque bases has
Hausdorff dimension 1 and Lebesgue measure zero.

The second set in the above union is a countable set of algebraic num-
bers, thus M has Hausdorff dimension 1 and Lebesgue measure zero. It is
worth noting that if β ∈ (1, 2) and Uβ,0(1/β) ∈ {1/β, 1/(β(β − 1))} then
cardΣβ(1) = ℵ0. The important observation to make from the definition of
M is that

β ∈M ⇔ 1

β
and

1

β(β − 1)
are never mapped into the interior of S.

This property will be sufficient to prove that both Uβ,0 and Uβ,1 are GLSTs.
Our proof of Theorem 1.3 is split into the following propositions.

Proposition 3.1. If β /∈M then neither Uβ,0 nor Uβ,1 is a GLST.

Proof. If β /∈ M then Uβ,0(1/β) ∈ S0. In this case at the left endpoint
of S the graph of Uβ,0 has an incomplete branch. Thus Uβ,0 is not a GLST,
as all of the branches are full for this class of transformations. The proof that
Uβ,1 is not a GLST is similar and appeals to the fact that Uβ,1(1/(β(β − 1)))
∈ S0.

Proposition 3.2. If β ∈M then Uβ,0 and Uβ,1 are GLSTs.

We will only show that if β ∈M then Uβ,0 is a GLST, the proof for Uβ,1
being analogous. Moreover, as we previously demonstrated in Example 1.1
that the maps Uβ,0 and Uβ,1 are GLSTs for β = (1 +

√
5)/2, we restrict our

attention to the interval ((1 +
√

5)/2, 2), where the rest of the set M exists.
Before proceeding with our proof that Uβ,0 is a GLST, we make several

observations. Let β ∈ ((1 +
√

5)/2, 2) and x ∈ S be such that Uβ,0 is well
defined. Then

(3.1) Uβ,0(x) = (Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)(x)

for some ωi ∈ {0, 1} that alternate digits with ω1 = 1. Equation (3.1) holds
because the map T0 maps every element of S outside of S. The quantity
i−1 is the number of times x jumps over S before eventually being mapped
inside. Note that if i is even then ωi = 0, and if i is odd then ωi = 1.
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Let

Cn := T−n0 (S) and Dn := T−n1 (S)

where n ∈ N. Equation (3.1) demonstrates that if Uβ,0(x) is well defined then

x must eventually map into a Cn or a Dn. Note that for β ∈ ((1 +
√

5)/2, 2)
the Cn are all disjoint and contained in (0, 1/β), and similarly the Dn are
all disjoint and contained in (1/(β(β − 1)), 1/(β − 1))

It is instructive here to make a final notational remark before entering
into the proof of Proposition 3.2. As we will see, the proof relies heavily on
understanding the trajectories of certain intervals under certain maps and
where they lie relative to Cn, Dn and S. Often we will be in a situation
where a relation (I ∩J = ∅, I ⊆ J) is true only if we ignore the endpoints of
these intervals. For ease of exposition, instead of repeatedly emphasising the
fact that this relation holds modulo the endpoints, we will simply state that
the equation holds. This is technically not correct, but our proof is then far
more succinct.

Proof of Proposition 3.2. To prove Uβ,0 is a GLST it suffices to show
that for any x ∈ S such that Uβ,0(x) is well defined, we have

(3.2) {y ∈ S : Uβ,0(y) = (Tniωi ◦· · ·◦T
n1
1 ◦T0)(y)} = (Tniωi ◦· · ·◦T

n1
1 ◦T0)

−1(S).

Here we have assumed Uβ,0(x) = (Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)(x). We now explain

why (3.2) implies Uβ,0 is a GLST. The intervals on the left hand side of
(3.2) are all disjoint, thus part (1) of the definition of a GLST holds. By
Sidorov’s result we know that for Lebesgue almost every x ∈ S the map
Uβ,0(x) is well defined, thus the lengths of the intervals on the left hand side
of (3.2) sum up to the length of S, so we get part (2) of the definition of a
GLST. Lastly, the right hand side of (3.2) demonstrates that Uβ,0 restricted
to this interval is surjective onto S; since there is a unique surjective linear
orientation preserving map from this interval onto S, we also deduce part
(3) of the definition of a GLST.

We begin with the simplest case that Uβ,0(x) = (Tn1
1 ◦ T0)(x), i.e.

T0(x) ∈ Dn1 . Importantly, since β ∈ M , we know that 1 /∈ D0
n1

. Thus

T0(S)∩Dn1 = [1, 1/(β − 1)]∩Dn1 = Dn1 . Therefore T−10 (Dn1) ⊆ S and any
y in this interval satisfies Uβ,0(y) = (Tn1

1 ◦ T0)(y). This implies that

(3.3) {y ∈ S : Uβ,0(x) = (Tn1
1 ◦ T0)(y)} = (Tn1

1 ◦ T0)
−1(S).

It remains to show that (3.2) holds in the general case. Obviously

(3.4) {y ∈ S : Uβ,0(y) = (Tniωi ◦· · ·◦T
n1
1 ◦T0)(y)} ⊆ (Tniωi ◦· · ·◦T

n1
1 ◦T0)

−1(S).

To show the opposite inclusion, we examine the formula for Uβ,0 more closely.
We assume Uβ,0(x) = (Tniωi ◦ · · · ◦ T

n1
1 ◦ T0)(x) for some i ≥ 2. Since i ≥ 2,

T0(x) lies in a connected component of [1, 1/(β − 1)) \
⋃∞
n=1Dn, say I1. We
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let

E :=

{
T−n0

(
1

β

)
, T−n0

(
1

β(β − 1)

)
, T−n1

(
1

β

)
, T−n1

(
1

β(β − 1)

)
,

Gnβ(1), Gnβ

(
1

β − 1
− 1

)
: n ≥ 0

}
.

Here Gβ is the greedy map defined earlier. Since β ∈M , no element of E is
in the interior of a Cn, a Dn, or S.

Importantly, I1 = (a1, b1) where a1, b1 ∈ E. In this case, either

(a1,b1)=

(
1,T−n1

1

(
1

β

))
or (a1,b1)=

(
T
−(n1−1)
1

(
1

β(β−1)

)
,T−n1

1

(
1

β

))
.

Therefore

T k1 (I1) ∩ S = ∅ for 1 ≤ k ≤ n1 − 1 and Tn1
1 (I1) ⊆

(
2− β
β − 1

,
1

β

)
.

The endpoints of Tn1
1 (I1) are elements of E, and so not in the interior of

any Cn. The point (Tn1
1 ◦ T0)(x) is either in Cn for some n, or in Tn1

1 (I1) \⋃∞
n=1Cn. In the latter case, let I2 be the connected component it is in. Let
I2 = (a2, b2). Then again a2, b2 ∈ E. Thus

(3.5) T k0 (I2) ∩ S = ∅ for 1 ≤ k ≤ n2 − 1 and Tn2
0 (I2) ⊆

(
1

β(β − 1)
, 1

)
.

The endpoints of Tn2
0 (I2) are again in E, and therefore not in the interior of

any Dn. The point x is either mapped into a Dn, or contained in a connected
component of Tn2

0 (I2) \
⋃∞
n=1Dn. In the latter case, we repeat the previous

steps. Eventually, x is mapped into either Cni or Dni , and our algorithm
terminates. Without loss of generality we assume x is eventually mapped
into Dni . The above algorithm yields a finite sequence (Ij)i−1j=1 of intervals
which satisfy the following properties:

(1) I1 ⊆ T0(S).
(2) For 1 ≤ j ≤ i− 1 we have T kωj (Inj ) ∩ S = ∅ for 1 ≤ k ≤ nj .
(3) For 1 ≤ j ≤ i− 2 we have Ij+1 ⊆ T

nj
ωj (Ij).

(4) Dni ⊆ T
ni−1
ωi−1 (Ii−1).

Above, ωj = 0 if j is even and ωj = 1 if j is odd. These properties have the
following consequences:

(5) (Tniωi )−1(S) ⊆ Ii−1.
(6) For 1 ≤ j ≤ i−1 we have (Tniωi ◦· · ·◦T

k
ωj )
−1(S)∩S = ∅ for 1 ≤ k ≤ nj .

(7) For 1 ≤ j ≤ i− 1 we have (Tniωi ◦ · · · ◦ T
nj
ωj )−1(S) ⊆ Inj .

(8) (Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)−1(S) ⊆ S.
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Properties (5)–(7) imply that every y ∈ (Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)−1(S) satisfies

Uβ,0(y) = (Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)(y). Thus, by (8),

(Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)

−1(S) ⊆ {y ∈ S : Uβ,0(y) = (Tniωi ◦ · · · ◦ T
n1
1 ◦ T0)(y)},

which when combined with (3.4) yields (3.2).
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