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A B S T R A C T

Germany is experiencing extensive land consumption. This necessitates local models to understand actual and
future land consumption patterns. This research examined land consumption rates on a municipality level in
Germany for the period 2000–10 and predicted rates for 2010–20. For this purpose, RegioClust, an algorithm
that combines hierarchical clustering and regression analysis to identify regions with similar relationships be-
tween land consumption and its drivers, was developed. The performance of RegioClust was compared against
geographically weighted regression (GWR). Distinct spatially varying relationships across regions emerged,
whereas population density is suggested as the central driver. Although both RegioClust and GWR predicted an
increase in land consumption rates for east Germany for 2010–20, only RegioClust forecasts a decline for west
Germany. In conclusion, both models predict for 2010–20 a rate of land consumption that suggests that the
policy objective of reducing land consumption to 30 ha per day in 2020 will not be achieved. Policymakers are
advised to take action and revise existing planning strategies to counteract this development.

1. Introduction

Urbanization is occurring at an unprecedented rate (United Nations,
2015), whereby natural, agricultural, and forestry landscapes are con-
verted into built-up areas. This irreversible anthropogenic process,
commonly termed land consumption (Nuissl and Schroeter-Schlaack,
2013), has severe and long-lasting consequences for natural habitats,
causing a loss of biodiversity, atmospheric pollution, etc. (D’Amour
et al., 2016; Foley et al., 2005; Seto et al., 2011).

Land consumption is of particular relevance in Germany, which has
one of the highest rates within the European Union (Kroll and Haase,
2010; Siedentop and Kausch, 2004). Even in areas with a declining
population, the expansion of built-up areas continues across Germany
(Haase et al., 2013). To prevent a further increase, the federal gov-
ernment implemented policies to limit the land consumption rate (LCR)
to 30 ha per day up to the year 2020 (Die Bundesregierung, 2016).
Although these policies are implemented at the national level, local
authorities at the municipal level are still granted spatial planning au-
tonomy by the government. As a consequence, restricting land con-
sumption is a continuous process of reconciling interests across dif-
ferent administrative hierarchies (Jakubowski and Zarth, 2003;
Malburg-Graf et al., 2007). Both economic incentives for stakeholders
to promote the reuse of formerly built-up land (Borchard, 2011; Schultz
and Dosch, 2005) and evidence-based local policymaking are pre-
requisites to counteract uncoordinated and excessive land consumption

(Shafizadeh-Moghadam and Helbich, 2015). Long-term policies need to
be founded on precise and data-driven land consumption models (Mas
et al., 2014; van Vliet et al., 2016; Veldkamp and Lambin, 2001;
Verburg et al., 2004).

While numerous studies deal with urban growth of specific me-
tropolitan areas (Basse et al., 2016; Zeng et al., 2015), to the best of our
knowledge, this is the first study addressing LCRs on a nationwide level
using local regression-based modeling. A wide spectrum of approaches
to modeling land use change has been proposed (Brown et al., 2004;
Shafizadeh-Moghadam et al., 2017b; Triantakonstantis and Mountrakis,
2012; Verburg et al., 2004). Markov-cellular automata is a frequently
applied model (Aburas et al., 2017; Arsanjani et al., 2013; Guan and
Rowe, 2016; Li et al., 2017; de Noronha Vaz et al., 2012). However, the
calibration and validation of cellular automata together with the de-
velopment of transition rules (e.g., neighborhood definitions) is chal-
lenging and relies mostly on ad hoc definitions and heuristics (Li et al.,
2017; Shafizadeh-Moghadam et al., 2017a). Further, Markov-cellular
automata does not consider the underlying drivers. To circumvent these
limitations, artificial neural networks (Shafizadeh-Moghadam et al.,
2017b), random forests (Haas and Ban, 2014), and support vector
machines (Samardzic-Petrovic et al., 2016), or a combination of these
approaches (Arsanjani et al., 2013; Omrani et al., 2017), have been
suggested to determine the effects of environmental and socioeconomic
drivers on land consumption.

Although these machine learning approaches have methodical
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advantages over statistical methods like regression (e.g., being free of
assumptions concerning the input data) (Haykin, 2009), there is no
consensus on how to integrate spatial autocorrelation and spatial het-
erogeneity in these models. Spatial autocorrelation means that areas
that are close to each other are subject to similar land consumption
processes (Anselin, 2010), while spatial heterogeneity (Fotheringham
et al., 2003) means that the associations between land consumption and
its drivers vary spatially (Shafizadeh-Moghadam and Helbich, 2015). As
stressed by several studies (Anselin, 2010; Brunsdon et al., 1996), ig-
noring either issue can seriously bias results and might lead to false
conclusions and inappropriate policies. Nevertheless, non-spatial re-
gression models are still often applied to assess drivers of land use
change (Achmad et al., 2015; Arsanjani et al., 2013; Hu and Lo, 2007;
Van Dessel et al., 2011). Whereas spatial autocorrelation has received
some attention in the literature (Ay et al., 2017; Dendoncker et al.,
2007; Ku, 2016), far less has been devoted to spatial heterogeneity
(exceptions are Maimaitijiang et al., 2015; Bagan and Yamagata 2015;
Shafizadeh-Moghadam and Helbich 2015; Luo and Wei 2009). Ex-
plicitly modeling spatial heterogeneity is particularly important when
conducting nationwide studies, where relationships can be a priori ex-
pected to vary across space due to different levels of regional economic
wealth, environmental differences, and local planning policies.

Only a few models exist to explore spatially heterogeneity. A
widespread approach is geographically weighted regression (GWR)
(Brunsdon et al., 1996; Fotheringham et al., 2003). GWR uses the
spatial distance of neighboring observations in order to estimate local
coefficients. Both Luo and Wei (2009) as well as Shafizadeh-Moghadam
and Helbich (2015) estimated GWR-based urban growth models and
confirmed that GWR not only produces more accurate results compared
to a global (i.e., study area-wide) regression model, but also reduces
residual spatial autocorrelation. No less important, there is statistical
evidence that the underlying drivers vary significantly across space
(Hennig et al., 2015), which is paramount for place-based planning – a
fact that global models had not uncovered (Achmad et al., 2015). De-
spite these appealing advantages, GWR is subject to methodological
debate. In addition to the high volatility of the resulting coefficient
surfaces, multicollinearity amongst the estimated GWR coefficients is
reported (Griffith, 2008; Wheeler and Tiefelsdorf, 2005). While mild
correlations obfuscate coefficient interpretation, strong correlations
make it hardly possible to make a reliable separation of individual
variable effects (Helbich and Griffith, 2016; Wheeler and Tiefelsdorf,
2005). Others note that GWR itself artificially introduces correlations
among coefficients, though the input variables are uncorrelated, po-
tentially artificially causing sign reversals (Páez et al., 2011).
Fotheringham and Oshan (2016) refuted this critique through simula-
tions demonstrating that GWR is rather robust against coefficient
multicollinearity. However, GWR is not recommended as an inferential
tool (Páez et al., 2011) because model calibration (e.g., bandwidths
selection) as well as interpretation of the model output (e.g., continuous
parameter surfaces) remain challenging.

To circumvent some of these limitations, an alternative approach,
termed RegioClust, was developed. RegioClust identifies regions with
similar associations between the dependent and the independent vari-
ables and calculates local parameter estimates for each region. Such a
region-based approach is useful because it facilitates the definition of
place-based policies, ensures that local policies have a homogeneous
impact, and supports scenario development (de Noronha Vaz et al.,
2012; Fischer, 1980). In addition, this study addressed the local drivers
of LCRs in Germany at the level of municipalities for the period
2000–10, something that had not been done before, and the predicted
rates for 2010–20. The research questions were as follows:

• To what extent did the relationships between LCRs and the drivers
vary across Germany in 2000–10?

• Does RegioClust predict actual and future LCRs more accurately
than GWR?

• Will the predicted LCRs in 2010–20 be below the targeted 30 ha per
day?

The rest of the article is structured as follows. Section 2 outlines the
materials and methods; Section 3 summarizes the results; Section 4
discusses the results in the context of the existing literature, and Section
5 presents the conclusions.

2. Materials and methods

2.1. Study area

Germany is the most populous country in Europe: In 2010, the
country’s 357,375 km2 of land was home to about 81 million people.
The present study was longitudinal and based on the administrative
units of municipalities. Municipalities are an appropriate analyses level,
as they are small in size and represent the lowest planning level in
Germany. Non-contiguous regions, such as islands or exclaves (e.g.,
Sylt), and unincorporated regions without populations (e.g.,
Sachsenwald) were removed. This resulted in a total of 11,357 muni-
cipalities.

2.2. Data

The central variable was LCR per territorial unit. The built-up areas
comprised settlement and transportation infrastructure for the years
2000 and 2010. Data were extracted from the IÖR Monitor (Meinel and
Schumacher, 2010), which is based on the official German digital
landscape model ATKIS®–Basis–DLM (Bundesamt für Kartographie und
Geodäsie, 2016). The LCR, subsequently serving as continuous response
variable, was computed by dividing the difference between the con-
sumed land (e.g., built-up areas, transportation infrastructure) in 2010
and 2000 by the total area of the municipality.

Selecting the explanatory variables was guided by data availability
and a literature review (Dubovyk et al., 2011; Kretschmer et al., 2015).
Six area-level covariates were collected for 2000 and 2010. As strong
evidence exists that accessibility is one of the major drivers of urban
growth (Duranton and Turner, 2012; Iacono et al., 2008), the spatial
distance (in km) from the center of each municipality to the nearest
major highway was calculated. To approximate a Gaussian distribution,
the square root (srDistHwy) was taken. The highway data were re-
trieved from the ATKIS®–Basis–DLM. Employment rate (EmplRate)
served as proxy variable for wealth, which is highly correlated with
urbanization (Bloom et al., 2008). In order to differentiate between
municipalities with different housing characteristics, the proportion of
family houses (FamHouse) was included. To model urbanization pres-
sure through population in-flow, the net migration rate (NetMig) was
incorporated. To control for the degree of urbanity, population density
in 1,000 people per km2 was included. To approximate a Gaussian-like
distribution, the variable was log transformed (logPopDens). Data on
the average tax revenue in €1,000 per capita (TaxRev) was collected to
represent social deprivation. All these data were obtained from the
Federal Institute for Research on Building, Urban Affairs and Spatial
Development. Fig. 1 depicts the spatial distribution of each covariate
for the year 2000.

2.3. Methods

2.3.1. RegioClust
RegioClust consist of two steps (Fig. 2): While the first step of Re-

gioClust determines spatial clusters, the second step determines regions
with similar relationships between the dependent variable and in-
dependent variables whereas a separate local regression model is esti-
mated for each region. Thus, RegioClust combines spatial clustering
with local modeling.

In detail, in the first step, each observation is considered as a single

J. Hagenauer, M. Helbich Int J Appl  Earth Obs Geoinformation 65 (2018) 46–56

47



cluster. Then, the clusters are repeatedly merged. Which clusters are
merged is determined by Ward’s cluster criterion (Ward, 1963). This
criterion determines the clusters that minimize the increase in the total
within-cluster variance after merging. The variance is measured by
evaluating the spatial distances between the observations (i.e., Eu-
clidean distances between the municipality-based centroids). As a

consequence, observations within the same cluster tend to be spatially
nearby and thus tend to have similar relationships between the de-
pendent variable and its drivers. As spatially contiguous clusters are
essential for many applications (Helbich et al., 2013; Spielman and
Folch, 2015), the merging criterion is modified to only consider spa-
tially adjacent clusters (Guo, 2009; Murtagh, 1985; Ruß and Kruse,

Fig. 1. Drivers of land consumption for the year
2000 on the municipality level.
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2011) whose size is smaller than i observations. The clustering ends
when no more clusters can be merged, which is typically when all
clusters consist of at least i observations.

In the second step, to obtain spatial clusters with a similar re-
sponse–covariate relationship, the resulting clusters from the first step
are merged employing hierarchical clustering with a contiguity (but not
size) constraint. The merging criterion is different from the one in the
first step. For each cluster a linear model is estimated, and the clusters
with the lowest increase in the residual sum of squares (RSS) are
merged. The clustering stops when a given number of clusters j is ob-
tained or no more clusters can be merged. Since each resulting cluster
refers to a contiguous geographic region for which a uniquely asso-
ciated linear model exists, RegioClust refers to a pooled piece-wise
linear model.

An open-source software implementation of RegioClust can be
downloaded from https://github.com/jhagenauer/regioclust.

2.3.2. Geographically weighted regression
GWR is a locally weighted regression (Brunsdon et al., 1996) that

was used as a benchmark for RegioClust to model spatial heterogeneity.
Briefly, GWR estimates coefficients for a sub-set of locations by taking
the distance of observations into account. The local coefficients are
estimated by solving a location-specific weighted least squares model
(Fotheringham et al., 2003). The weights are given by a weight matrix
that is specified using a local kernel function that models a distance
decay between locations. Nearby observations receive higher weights
than distant ones. The choice of the kernel function generally has little
impact on the results, given that it is smooth. Either a Gaussian or a bi-
square kernel function is commonly used. More crucial than the kernel
type is the choice of the bandwidth, which is frequently determined
using cross validation (Brunsdon et al., 1996; Fotheringham et al.,

2003). Moreover, the bandwidth can vary across space depending on
the distribution of the data. If the regression points are sparsely dis-
tributed across space, a larger bandwidth is selected, and vice versa.
Using an adaptive rather than a predefined bandwidth has the ad-
vantage that it reduces the number of extreme coefficients
(Fotheringham et al., 2003). The GWR models were estimated by means
of the ‘GWmodel’ package (Lu et al., 2014) using the R programming
environment (R Core Team, 2017).

3. Results

3.1. Descriptive statistics

The descriptive statistics show that in the year 2000, 9.800% of
Germany’s total area was covered by built-up areas and transportation
infrastructure. In 2010, the proportion had increased to 10.603%
(+0.803%). This corresponds to an LCR of 77.455 ha per day. The
amount of built-up area differs between east and west Germany. In west
Germany, the proportion of covered area increased from 10.555% in
2000–11.651% in 2010 (+1.097%), whereas in east Germany the
proportion increased from 8.094% in 2000–8.233% in 2010
(+0.014%). This corresponds to an LCR of 73.330 ha per day in west
Germany and 4.126 ha per day in east Germany.

Fig. 3 depicts the LCRs for each municipality. A value of zero in-
dicates that the amount of consumed land did not change between 2000
and 2010, while a value of 50%, for example, indicates that the amount
of consumed land increased by 50% of the municipality’s total area.
Using first-order queen contiguity, the Moran’s I statistic confirms that
the LCRs are not randomly distributed across Germany and that sig-
nificant regional differences exist (I= 0.240, p < 0.05).

3.2. Model fit

Fig. 4 shows the Akaike information criterion (corrected for finite
sample sizes) (AICc) (Burnham and Anderson, 2004) of RegioClust for
i = 8 to 12 (i.e., the minimum number of observations per cluster) and
for j = 1 to 250 (i.e., the total number of clusters). A low AICc value
refers to a good compromise between model fit and model complexity
(i.e., number of parameters). The Figure illustrates that for fixed values
of j, the AICc mostly increases with i. Also, for each value of i and
beginning with j = 1, the AICc score decreases with increasing j until its
minimum is reached. Beyond this, the AICc increases with j. The value
of j for which the minimum is obtained is generally lower the smaller
the value of i. Fig. 5 shows the number of outlying coefficients of Re-
gioClust for i = 8 to 12 and for j= 1 to 250. A coefficient is considered
an outlier if its value is three times the interquartile range below the
first quartile or above the third quartile of the ranked values. The
presence of outlying coefficients is an indicator of local overfitting
which is not directly taken into account by the AICc. Generally, the
number of outlying coefficients increases with i and j. Also, RegioClust
tends to estimate extreme coefficients for population density, in

Fig. 2. The hierarchical clustering steps of RegioClust.

Fig. 3. LCRs in 2000–10 (in % of the municipalities’ areas).
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Fig. 4. AICc statistics for RegioClust.

Fig. 5. Number of outlying coefficients for
RegioClust.
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particular for large values of j. Overall, RegioClust represents for a wide
range of i and j a reasonable trade-off between model fit, model com-
plexity, and local overfitting. In the following, the RegioClust model
with i = 10 and j = 130 will be considered. The Moran’s I test statistic
shows marginal significant spatial dependence of the residuals
(I = 0.030, p < 0.05).

For comparison purposes, a GWR model with Gaussian kernel and
adaptive bandwidth using the 20 nearest neighbors was estimated. The
number of neighbors was selected by optimizing the AICc. Monte Carlo
tests confirmed the significant spatial variability of all coefficients
(p < 0.05). The AICc is−63,857.010. The Moran’s I test statistic refers
to marginal spatial dependence of the residuals (I = 0.033, p < 0.05).

On a Lenovo Thinkpad X230, Intel(R) Core(TM) i5–3320M CPU@
2.60 GHz with 16 GB RAM, it took 32.510 min to estimate the GWR
model and 72.026 min to compute the RegioClust model.

Fig. 6 depicts the spatial regions outlined by the RegioClust model
and the local model fits for both RegioClust and GWR. It shows that in
the southwest of Germany (i.e., Rhineland–Palatinate and Saarland),
the regions are smaller than in the rest. Many of the larger regions
consist of rural municipalities as well as medium-sized cities (e.g.,
Nürnberg). A few small regions consist of only a single large city and its
close surroundings (e.g., Hamburg and Dresden). The largest region,
with an area of about 45,133 km2, is located in the west and comprises
the cities of Kassel and Münster, and some outskirts of the Rhine–Ruhr
metropolitan region.

Both models show a pronounced volatility of the model fit in the
southwest (i.e., Rhineland–Palatinate and Saarland) while fitting the
data particularly well in eastern Bavaria (i.e., east of Augsburg and
Nürnberg). However, some differences are notable. For example,
whereas RegioClust provides a better fit for Berlin, Dresden, and
Hamburg, GWR shows an improved fit for the south of Kassel and the
northwestern surroundings of Berlin. Although the R2 is spatially ran-
domly distributed, smaller RegioClust regions tend to have higher R2

than large regions. This was confirmed by analysis of the Pearson’s
correlation coefficient (ρ =−0.272, p< 0.05).

3.3. Coefficients of RegioClust and GWR

The significant coefficients (excluding the intercept, p < 0.05) are
shown for RegioClust in Fig. 7 and for GWR in Fig. 8. Spatial hetero-
geneity in the associations is evident. For both RegioClust and GWR,
population density is a key driver of LCR at the national level. It reaches
significance more often than any other coefficient. In contrast, em-
ployment rate and distance to nearest major highway are relevant
drivers for only a few municipalities. They less often reach significance

compared to other coefficients. Overall, with the exception of popula-
tion density, the number of municipalities showing a significant re-
lationship is higher for the coefficients of RegioClust than for those of
GWR.

A detailed inspection of Figs. 7 and 8 reveals some notable simila-
rities across the coefficient surfaces. For instance, whereas for most
municipalities population density is positively related to LCR, Re-
gioClust and GWR estimate a significant negative relationship for the
federal state of Saarland (g) and for the north of the district of Dennim
(a). Analogously, for the federal state of Bremen including its sur-
roundings (b), both models estimate a strong and significant negative
association between proportion of family houses and LCR. Other coef-
ficients are not significant for this region. In the south of Augsburg (h),
RegioClust and GWR estimate a significant positive effect of employ-
ment rate, net migration rate, and population density on LCR, whereas
the tax revenue rate has a negative effect. Distance to nearest major
highway, however, is only weakly positive and statistically significant
for GWR, while proportion of family houses shows a strong positive and
significant association only for RegioClust.

The two algorithms often estimate different coefficients for some
regions. For example, GWR estimates substantially strong and sig-
nificant coefficients for most variables in the north of the district of
Emsland (c), the district of Recklinghausen (e), and the north of the
districts of Düren and Rhein–Erft Kreis (f). RegioClust, by contrast, does
not estimate any significant coefficient for regions (c) and (e), and for
region (f) only the variable tax revenue rate is significant. In the east of
Germany, RegioClust identifies region (d), which comprises the muni-
cipalities between Frankfurt/Oder and Kolkwitz, close to Cottbus. For
this region, RegioClust estimates a significant positive effect for em-
ployment rate, proportion of family houses, population density, and net
migration rate, while it estimates a significant negative effect for tax
revenue rate. For most municipalities in this region, GWR estimates
positive coefficients (i.e., proportion of family houses and population
density), whereas most drivers are not significant. Moreover, the dis-
tinct outline of the region identified by RegioClust is not identified by
GWR.

3.4. Predictions of RegioClust and GWR

For the period 2010–20, RegioClust predicts that in Germany
71.011 ha of land will be consumed per day. This corresponds to a
decrease of 6.444 ha per day compared to 2000–10. The predicted LCRs
differ substantially between east and west Germany. For west Germany,
RegioClust forecasts an LCR of 63.385 ha per day, whereas for east
Germany the prediction is 7.626 ha per day. Thus, RegioClust predicts a

Fig. 6. Model fit (R2) of RegioClust and GWR.
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decrease of 9.945 ha per day for west Germany and an increase of
2.318 ha per day for east Germany. The predictions differ when GWR is
applied. GWR forecasts that 78.529 ha of land will be consumed per day
for the entire country for 2010–20. This corresponds to an increase of
1.074 ha per day in comparison to 2000–10. Again, the LCRs differ
substantially between west (73.516 ha per day) and east Germany
(5.013 ha per day). This corresponds to an increase of 0.186 ha per day

in west Germany and 0.887 ha per day in east Germany.
Fig. 9 compares the predicted LCRs of RegioClust and GWR. It be-

comes apparent that both models predict a smaller increase in LCR in
east than in west Germany. Saxony, consisting of the major cities of
Dresden (i) and Leipzig, has the highest predicted increase in east
Germany. In west Germany, the increase in land consumption is par-
ticularly low for the federal state of Saarland (g). In addition, the

Fig. 7. Estimated local coefficients of RegioClust
(areas colored in white refer to insignificant asso-
ciations at the 0.05 level).
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predicted increase tends to be higher for urban districts, such as
Dresden (i), Braunschweig (k), and Bremen (b), than for rural ones.
Some differences are also noticeable between RegioClust and GWR.
RegioClust tends to predict more pronounced LCRs compared to GWR.
This is observable for the Dresden region (i), the district of Düren (f),
and the district of Dennim (a). Because unlike GWR RegioClust does not
embody a distance-based smoothing, the predictions are often

substantially different for adjacent regions. This is in particular no-
ticeable for the south of Lübbenau (d), the district of Dennim (a), and
the east of Rhein–Erft–Kreis, next to the district of Düren (f). For the
municipalities between Recklinghausen and Dortmund (e) and south of
Augsburg (h), RegioClust predicts negative LCRs whereas GWR predicts
positive rates. A reverse effect appears, for example, for municipalities
south of Lübbenau (d). In contrast to RegioClust, GWR is prone to

Fig. 8. Estimated local coefficients of GWR (areas
colored in white refer to insignificant associations at
the 0.05 level).
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making extreme predictions. For example, GWR predicts for Norder-
friedrichskoog (j) an excessive increase in the LCR (+490.6%), while
RegioClust predicts a moderate decrease (−12.7%).

4. Discussion

Numerous studies emphasize the socioeconomic and demographic
differences between east and west Germany that translate into diverse
patterns of land consumption (Kroll and Haase, 2010; Nuissl et al.,
2009; Schmidt, 2011). The present findings are congruent with these
studies and provide statistical evidence that the LCRs between east and
west Germany differed for the period 2000–10. The predictions of Re-
gioClust and GWR indicate that different LCRs can also be expected for
the period 2010–20. In particular, both models refer to a further in-
crease in the LCRs for east Germany. For west Germany, however,
RegioClust predicts a substantial decrease, whereas GWR predicts a
marginal increase in the LCRs. Both models agree that the predicted
LCRs for the period 2010–20 exceeds the goal of the German federal
government to reduce the LCR to 30 ha per day until 2020 (Die
Bundesregierung, 2016), thus bringing into question the effectiveness
of currently implemented planning policies to reduce the LCR
(Kretschmer et al., 2015).

Due to the diverse pattern of LCRs across Germany, decision-makers
are advised to formulate spatially tailored spatial planning strategies to
counteract the predicted future increase in LCRs at both the municipal
and the federal state level. Complementing a quantitative restriction of
land consumption, Siedentop and Kausch (2004) propose qualitative
regulations concerning the determination of locations for urban ex-
pansion. Such a strategy seems to support the prevention of the further
expansion of built-up areas, which increases the transportation infra-
structure demand in rural areas. Besides, brown field recycling and
urban renewal seem to be feasible approaches to mitigating land con-
sumption (Borchard, 2011; Schultz and Dosch, 2005).

The comparison of the performance of RegioClust and GWR showed
that the former provides a better model fit with respect to the AICc.
Even more important, the residuals of RegioClust exhibit less spatial
dependence, which is essential for model estimation and inference (Ay
et al., 2017; Brady and Irwin, 2011), compared to GWR. Heuristic op-
timization of the RegioClust’s clusters has the potential to further im-
prove model performance (Guo, 2009). However, it must be noted that
the performance of both models depends on the selected parameters.
RegioClust is affected by the parameters i and j. Generally speaking, low
values of i and high values of j result in small but spatially homo-
geneous clusters with respect to the within-cluster sum of spatial

distances between locations. This permits the modeling of small-scale
spatial variation. Smaller clusters, however, also increase the risk of
estimating linear models that only represent small-scale noise or are
based on a low number of unrepresentative data points (local over-
fitting). High values of i and low values of j typically result in larger but
spatially inhomogeneous clusters. Linear model estimated for larger
clusters, however, may fail to represent regularities that exist only on a
small scale (underfitting). To circumvent a subjective parameter se-
lection, the parameters i and j of RegioClust are chosen by considering
the AICc score, which is a well-established measure for this purpose
(Symonds and Moussalli, 2011) and the number of outlying coefficients.

As a result of local overfitting, outlying coefficients indicate un-
stable local estimates, which hamper a meaningful interpretation and
make predictions less reliable. However, outlying coefficients can also
be an issue for GWR. This becomes apparent for the municipality of
Norderfriedrichskoog (j). Because this municipality was a tax haven
until 2004 for foreign and domestic enterprises (von Schwerin and
Buettner, 2016), the tax revenue for the year 2000 was high in absolute
terms compared to the adjacent rural municipalities. The high tax
revenue did not substantially affect the coefficient estimation of Re-
gioClust, because the municipality is part of a large cluster/region in
which each municipality is considered similarly. In contrast, the opti-
mized kernel width of GWR is too small to compensate for the high tax
rate, which results in a biased estimate of the coefficient. As a con-
sequence, when using data of 2010, where the tax revenue rate of the
Norderfriedrichskoog was already increased due to the introduction of
higher taxes in 2004, GWR substantially overestimates the LCRs,
whereas the LCR estimates of RegioClust are still within a reasonable
range.

This study was innovative in developing a new approach to mod-
eling spatially varying coefficients. RegioClust has the strength to
identify regions with a clearly defined boundary and non-volatile
coefficients, which supports visual analysis and model interpretation.
For instance, the outlined regions of RegioClust show that several urban
municipalities are clearly separated from surrounding rural areas while
others are not. This means that for some urban municipalities, the re-
lationship between LCR and its drivers is similar to that of its neigh-
boring rural municipalities. This finding is remarkable, because land
consumption itself is generally considered to be different for urban and
rural areas (Siedentop and Kausch, 2004). As all previous studies fo-
cused on selected regions (Bieling et al., 2013; Rienow and Goetzke,
2015), this was the first regional analysis dealing with land consump-
tion and its drivers at the national level, not only retrospectively but
also prospectively.

Fig. 9. Predicted LCRs in 2010–20 (in % of the mu-
nicipalities’ areas).
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However, this study also had some limitations. Because aggregated
data at the municipal level were used, bias due to the size and shape of
the municipalities might have affected the results (Openshaw and
Taylor, 1979). Although this problem is hardly avoidable, it is im-
portant to be aware of it when interpreting the results. Also, even
though this study went beyond the usage of distance-based drivers only
(Achmad et al., 2015; Arsanjani et al., 2013; Hu and Lo, 2007;
Shafizadeh-Moghadam et al., 2017b) and considered socio-demo-
graphic, economic, and environmental variables as well, the whole
spectrum of possible drivers is still to be explored (Kretschmer et al.,
2015). In particular, the effect of other road types besides major
highways or means of transportation on LCRs calls for further research.
Finally, LCRs were considered only on a single spatial and temporal
scale. Land consumption, however, is closely related to urbanization,
which is known to occur on many spatial and temporal scales (Wu,
2007). A multi-scale analysis has the potential for more accurate
modeling of LCRs and thus a better understanding of land consumption
processes (Grant et al., 2015).

5. Conclusions

Germany is faced with exceptionally high LCRs, which are a chal-
lenge to sustainability. This study addressed this issue by examining the
drivers of LCRs at the municipal level for the period 2000–10 and
predicting rates for 2010–20. For this purpose, a new method for
modeling spatial varying relationships, termed RegioClust, was devel-
oped. Empirical comparison indicated that RegioClust provides better
model fits (i.e., AICc scores) than GWR, but tends toward minor local
overfitting if parameters are not chosen appropriately. Both models
provided clear evidence that LCR drivers vary substantially across
Germany and that population density is of the utmost importance. For
2010–20, RegioClust and GWR predicted substantially different LCRs
for east and west Germany. Most important, the forecasts provide evi-
dence that the policy target of reducing the LCR to 30 ha per day in
2020 will not be achieved. In order to counteract this development, it is
advised to revise local planning policies while intensifying brown field
recycling and urban renewal, particularly in those municipalities that
show an excess of LCRs for 2010–20.
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