
© The Author 2017. Published by Oxford University Press. All rights reserved.  
For permissions, please e-mail: journals.permissions@oup.com

663

Chemical Senses, 2017, Vol 42, 663–673
doi:10.1093/chemse/bjx049

Original Article
Advance Access Publication August 10, 2017

Original Article

Human Fear Chemosignaling: Evidence from a 
Meta-Analysis
Jasper H. B. de Groot and Monique A. M. Smeets

Department of Social, Health, & Organizational Psychology, Utrecht University, PO Box 80140, 3508 TC Utrecht, The 
Netherlands

Correspondence to be sent to: Jasper H. B. de Groot, Department of Social, Health, & Organizational Psychology, Utrecht 
University, PO Box 80140, 3508 TC Utrecht, The Netherlands. e-mail: j.h.b.degroot@uu.nl

Editorial Decision 3 August 2017.

Abstract

Alarm pheromones are widely used in the animal kingdom. Notably, there are 26 published 
studies (N  = 1652) highlighting a human capacity to communicate fear, stress, and anxiety via 
body odor from one person (66% males) to another (69% females). The question is whether the 
findings of this literature reflect a true effect, and what the average effect size is. These questions 
were answered by combining traditional meta-analysis with novel meta-analytical tools, p-curve 
analysis and p-uniform—techniques that could indicate whether findings are likely to reflect a true 
effect based on the distribution of P-values. A  traditional random-effects meta-analysis yielded 
a small-to-moderate effect size (Hedges’ g: 0.36, 95% CI: 0.31–0.41), p-curve analysis showed 
evidence diagnostic of a true effect (ps < 0.0001), and there was no evidence for publication bias. 
This meta-analysis did not assess the internal validity of the current studies; yet, the combined 
results illustrate the statistical robustness of a field in human olfaction dealing with the human 
capacity to communicate certain emotions (fear, stress, anxiety) via body odor.
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Introduction

Social communication has been marked as one of the main functions 
of human olfaction (Stevenson 2010); yet, stating that “pheromones” 
are the medium for human olfactory communication has remained 
controversial (Doty 2010). Even though pheromones have been 
identified, synthesized, and shown to repeatedly trigger genetically 
predetermined prototypical behavior in many other species (Wyatt 
2014, 2015), the quest for human pheromones has yielded “facts, 
fallacies, fears, and frustrations” (Wysocki and Preti 2004). In this 
contribution, novel and traditional meta-analytical tools are com-
bined to statistically separate fallacy (selective reporting) from fact 
(evidential value) when it comes to research examining the human 
capacity to communicate fear, stress, and anxiety via body odor.

Following the original insect-based definition (Karlson and 
Lüscher 1959), pheromones are typically believed to be single mol-
ecules inducing learning- and context-independent responses after 

detection by a specialized (vomeronasal) organ (VNO), which is 
vestigial in humans (Boehm and Gasser 1993; Boehm et al. 1994; 
Trotier et al. 2000). However, certain mammals use pheromones that 
consist of multiple molecules (Wyatt 2014), mice can detect pher-
omones with their main olfactory epithelium (Wang et  al. 2006), 
and even insects display olfactory plasticity by using experience and 
context to adjust their innate pheromone-based mating strategies 
(Keleman et al. 2012). When traditional pheromone definitions are 
updated in the light of these recent insights (de Groot et al. 2017), 
human pheromones are far more likely to exist.

Irrespective of whether pheromones (or chemosignals) mediate 
human olfactory communication, research has shown that humans 
can pick up a multifarious range of social information from another 
person’s body odor. Body odor can convey, inter alia, a person’s iden-
tity (Penn et al. 2007), gender (Doty et al. 1978), age (Haze et al. 
2001; Yamazaki et al. 2010; Mitro et al. 2012; Sorokowska et al. 
2012), next to transient states, namely sickness (Olsson et al. 2014; 
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Regenbogen et al. 2017), and emotions (Prehn et al. 2006; Mujica-
Parodi et al. 2009; Zhou and Chen 2009; de Groot et al. 2012).

Within the chemically communicable class of transient states 
broadly defined as emotions, researchers have examined the olfac-
tory transfer of happiness (Chen and Haviland-Jones 2000; Zhou 
and Chen 2009; de Groot et al. 2015a), disgust (de Groot et al. 2012), 
competition (Adolph et  al. 2010), aggression (Mutic et  al. 2016), 
and anger (Hatcher 2016). However, the current meta-analysis will 
focus on feeling states that garnered sufficient attention from emo-
tion chemosignaling researchers to warrant a meta-analysis, namely 
fear, stress, and anxiety. Notably, fear, stress, and anxiety may share 
a common mechanism, namely activation of the fast (fight/flight) 
stress response system (de Groot et al. 2015b, also see Ackerl et al. 
2002). The fight/flight system releases adrenalin, which activates the 
apocrine sweat glands in the armpit region (Harker 2013) allegedly 
responsible for chemosignal production. A product of the slow stress 
system, cortisol, was not found to be related to apocrine sweat pro-
duction (Ackerl et al. 2002; Harker 2013).

The fear/stress/anxiety chemosignaling literature gradually 
expanded since 2000 and currently includes 26 published stud-
ies (N  =  1652). Each study was characterized by a “sender” and 
“receiver” phase. First, sweat was sampled from the armpit region of 
mostly male senders (66%) that were induced to be fearful, stressed, 
or anxious (collectively referred to as fear from now on, for ease of 
communication), with exercise and/or neutral sweat serving as con-
trol conditions. Next, a group of mostly (69%) female receivers were 
manually (opening a vial) or mechanically (olfactometer) exposed to 
the different olfactory stimuli (double-blind). Olfactory communica-
tion of fear was inferred from receivers’ successful odor discrimi-
nation and identification (Chen and Haviland-Jones 2000), startle 
reflexes (Prehn et  al. 2006), fear-specific brain activity (Mujica-
Parodi et al. 2009), and emotional facial expressions (de Groot et al. 
2012). The similarities between these studies pave the ground for a 
timely meta-analytical assessment, which is a necessary step to guide 
the investment of further resources into this field of human olfactory 
communication.

One problem with traditional meta-analysis, however, is that 
effect size estimates can be inflated due to publication bias—the 
“preference” to publish studies with P-values <0.05 (Borenstein et al. 
2009; Simonsohn et al. 2014a). Publication bias may lead to selec-
tive reporting of analyses that work and leaving out those that failed 
(“p hacking”), a questionable research practice that greatly increases 
the false positive rate (Simmons et al. 2011, 2012; Simonsohn et al. 
2014a). Hence, despite scientists’ belief to the contrary (Ioannidis 
2008), the number of studies with P <0.05 cannot be safely counted 
as evidence for a true effect (Borenstein et al. 2009); research findings 
with P <0.05 may have populated the published literature despite the 
null hypothesis being true.

A novel way to test for (the consequences of) publication bias 
is p-curve analysis (Simonsohn et  al. 2014a, 2014b). This tech-
nique capitalizes on the distribution (hence, not the number) of 
statistically significant P-values, which indicates whether research 
findings reflect (i) no effect (flat p-curve), (ii) a true effect (right-
skewed p-curve), or (iii) selective reporting (left-skewed p-curve) 
(Simonsohn et al. 2014a) (Figure 1). A flat p-curve means that each 
P-value <0.05 is equally likely to be observed (false positive)—this is 
likely when a studied effect does not exist. However, a significantly 
right-skewed p-curve (more Ps < 0.025 than >0.025) is indicative of 
a true effect (Cumming 2008)—this is true regardless of the sam-
ple size and effect size (Simonsohn et al. 2014a) A research field is 
likely to contain evidential value when selective reporting can be 

ruled out as explanation of the findings (Simonsohn et al. 2014a). 
Selective reporting would be indicated by a left-skewed p-curve, 
because researchers actively “pursuing significance” would typically 
stop right below 0.05 (Simonsohn et al. 2014a) as it takes 9 times 
as many analyses to “hack” P below 0.01 (Simonsohn et al. 2015). 
In sum, the shape of the p-curve of a set of research findings can be 
diagnostic of a null effect, a true effect, or selective reporting.

Because selective reporting can bias effect size estimates, meta-
analytical experts have argued that checking for selective reporting 
should be the first step in conducting a meta-analysis (Van Aert et al. 
2016). Following recent guidelines (Van Aert et al. 2016), p-curve 
analysis will be used to test for evidence of p-hacking (Step 1). If this 
hurdle (no evidence of p-hacking) is passed, Step 2 involves conduct-
ing a traditional meta-analysis and p-curve analysis or p-uniform—a 
simultaneously developed tool also using the significant P-value dis-
tribution to assess the evidential value of a research field (Van Assen 
et al. 2015; Van Aert et al. 2016). The added value of p-uniform is 
that it encompasses a relatively powerful test of publication bias, 
which dichotomous outcome (Step 3) determines whether the effect 
size estimate of p-uniform (publication bias: yes) or that of tradi-
tional meta-analysis (publication bias: no) has to be interpreted (Van 
Aert et al. 2016).

To summarize, the present research combines traditional meta-
analysis with 2 novel meta-analytical techniques, p-curve analysis 
and p-uniform, to answer (i) whether the fear chemosignaling litera-
ture is characterized by a pattern of p-values diagnostic of selective 
reporting, a null effect, or evidential value; and (ii) whether the effect 
size is larger than 0.

Materials and methods

Meta-analytical method
Search strategy
In March 2017, a literature search was conducted using the Web-
of-Science database with [CHEMOSIGNALS and FEAR] or 
[SMELL and FEAR] or [CHEMOSENSORY and ANXIETY] or 
[CHEMOSIGNALS and STRESS] or [HUMAN and OLFACTORY 

Figure  1. Possible outcomes of p-curve analysis. When the observed 
distribution of P-values matches the right-skewed black line, this is diagnostic 
of a true effect. When the flat dark gray line is matched, this is diagnostic of 
a nonexistent effect (false positive). When the left-skewed light gray line is 
matched, this is diagnostic of questionable research practices (p-hacking).

664 Chemical Senses, 2017, Vol. 42, No. 8

Downloaded from https://academic.oup.com/chemse/article-abstract/42/8/663/4080195
by University Library Utrecht user
on 05 January 2018



and COMMUNICATION] as basic topic search terms, revealing 29 
candidate articles. One extra article (Hatcher 2016) was encountered 
after a descendancy search, which entailed tracking down all articles 
in Web-of-Science that had cited a pioneering fear chemosignaling 
article (Chen and Haviland-Jones 2000). A further ancestry search 
entailed browsing the reference lists of 2 recent reviews on fear che-
mosignaling (Lübke and Pause 2015; de Groot et al. 2017), but nei-
ther this approach, nor a careful screening of the reference lists of the 
initially retrieved 30 articles revealed more studies.

Inclusion criteria
Studies were included if they would meet the following criteria. 
First, studies needed to have a fear/stress/anxiety body odor sam-
pling condition. Researchers sampled “fear odor” while participants 
watched horror videos or went skydiving, “anxiety odor” while 
participants anticipated an academic examination, or “stress odor” 
while participants performed the Trier social stress task (TSST). 
Second, control body odors had to originate from the same par-
ticipants and were obtained during a neutral state and/or exercise. 
Body odor had to be sampled from the armpit region on absorbent 
material. Before presentation to receivers, all material was frozen; 
this did not affect the hedonic quality of the olfactory stimulus 
(Lenochova et al. 2009).

The typical receiver study had to be double-blind. Receivers had 
to be normosmic, nonsmoking, healthy, and could not be diagnosed 
with a psychological disorder. Typically, receivers were exposed to 
both the fear odor and to one (or multiple) control odor(s). Online 
measurements of behavior, such as functional magnetic resonance 
imaging (fMRI) and facial electromyography (EMG) had to be 
recorded, or affective/cognitive/perceptual/behavioral tasks needed 
to assess whether a receiver emulated the state of the sender. The 
response was a typical single assessment of an already present capa-
bility to emulate the sender’s emotion.

Based on our criteria, we did not include a study that focused 
on individuals with panic disorder and that considered a typi-
cal control body odor condition (sport sweat) stress-related 
(Wintermann et  al. 2013). Another not included study exam-
ined fear- and disgust-related body odor detection capabilities 
of congenitally blind individuals (Iversen et al. 2015); this study 
had a sample of healthy controls, but the odor discrimination 
and odor detection tasks contained either too few body odor 
control conditions (none) or too many (3) to provide a compa-
rable effect size. A third study was not included as it focused on 
individual differences in chemosignal detection capabilities that 
emerged over repeated trials during an experiment (Haviland-
Jones et al. 2016), whereas our focus was on a pre-existing capa-
bility. A  fourth study was not part of this meta-analysis as it 
focused on the general detection of emotional cues (fear, happy, 
and sexual arousal) from partners versus opposite sex strangers 
(Zhou and Chen 2011).

Study sample
The final pool included 26 studies (Nunique = 1652) published from 
2000 to 2017 (Table 1). Nunique is reported, as sweat samples were 
reused in a few studies, or the same “receivers” provided data 
reported in different papers. Participants were typically highly edu-
cated, nonsmoking, healthy, normosmic, heterosexual, Caucasian, 
and between 18 and 35 years of age. Whereas senders were mostly 
males (394 vs. 204 females), receivers were mostly females (728 vs. 
326 males); this mixed gender dyad is arguably the most “effective” 
one, since males have larger apocrine sweat glands (Doty 1981) 

allegedly responsible for chemosignal production, and females are 
generally better smellers (Brand and Millot 2001) and more sensitive 
to emotional signals (Brody and Hall 2000).

Meta-analysis
Step 1: Checking for evidence of selective reporting
Because effect size estimates may be biased in any direction due to 
selective reporting (p-hacking), the first step was to check for evi-
dence of selective reporting in the fear chemosignaling literature 
with p-curve analysis (Van Aert et al. 2016), a technique developed 
by Simonsohn and colleagues (2014a, 2014b, 2015). Because signifi-
cant (P < 0.05) results are more likely to be published than nonsig-
nificant (P ≥ 0.05) ones (Simonsohn et al. 2014a, 2014b), selective 
reporting primarily operates through statistical significance (Fanelli 
2012). Notably, a left-skewed distribution of statistically significant 
P-values is telling of selective reporting: High percentages of P-values 
between 0.025 and 0.05 (vs. <0.025) signify that analyses failing to 
produce P <0.05 remained in the file-drawer, whereas analyses that 
worked appeared in the published literature. Hence, a left-skewed 
p-curve will be diagnostic of selective reporting (Figure 1).

Searching for unpublished manuscripts is good practice in tradi-
tional meta-analysis (Borenstein et al. 2009; Rothstein and Hopewell 
2009); yet, it is not required for p-curve analysis (Simonsohn et al. 
2014a). For p-curve analysis, the sample size (or degrees of free-
dom) and the F-, t-, or z-values of the published studies are needed 
to make a diagnostic statement about selective reporting. With only 
5 P-values, p-curve analysis will have higher statistical power than 
the individual studies (Simonsohn et al. 2014a). The current p-curve 
analysis included 30 P-values (26 studies, 30 experiments). There 
were insufficient data from one study (Radulescu and Mujica-Parodi 
2013); yet, because this study used the same sample as Mujica-
Parodi et  al. (2009), the total number of unique participants was 
not affected.

We followed open science reporting guidelines (Simonsohn 
et  al. 2015) by including all p-curved results in a p-curve disclo-
sure table (Supplementary Material S1). The disclosure table lists 
the specific hypothesis for each experiment, the study design, the 
effect of interest (main effect, interaction), and the actual statistic 
that was subjected to p-curve analysis. The disclosure table also con-
tains the rationale for (consistently) including or excluding a study 
result. To name one, P-values had to be statistically independent. 
Since evidence for fear chemosignaling was typically inferred from 
co-dependent measures, secondary and tertiary p-curves (robustness 
checks) were conducted. The prespecified selection rules were as fol-
lows. Whenever there were 2 equally relevant P-values, the P-value 
reported first (vs. second) was subjected to primary (vs. secondary) 
p-curve analysis (Lakens 2014; Simonsohn et al. 2014b). In case of 
3 or more P-values, the first (vs. highest) P-value was conservatively 
selected for primary (vs. secondary) analysis. A tertiary robustness 
check was performed on what researchers labeled “secondary analy-
ses,” as these secondary analyses are often alternative yet relatively 
more imprecise tests of the same hypothesis. All 3 p-curves were cal-
culated with an online tool (http://www.p-curve.com/app4).

The pattern of P-values mirrored a true effect if either the half 
p-curve (P < 0.025) was significantly right skewed, or if both the half 
and full p-curve (P < 0.05) were significantly right skewed [drop-
ping Ps between 0.025 and 0.05 would reduce the statistical power 
of the p-curve analysis to detect evidential value (Simonsohn et al. 
2014a, 2015)]. In either scenario, the findings were unlikely to be 
the result of selective reporting. Ruling out selective reporting as a 
likely explanation for a set of findings is the only objective of testing 
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Table 1. List of fear/stress/anxiety chemosignaling studies

Authors 
publication

Year Induction S-M S-F R-M R-F Odor control 
condition

Presentation Main 
outcome

1 Chen and 
Haviland-Jonespc

2000 Video 11 14 37 40 Unused pads Glass bottles Identification

2 Ackerl et al.pc, rme 2002 Video 42 41 Neutral BO Plastic 
bottles

Odor rating

3 Pause et al.pc, rme 2004 Academic 
exam

12 8 8 Sport BO Olfactometer Priming

4 Prehn et al.pc, rme 2006 Academic 
exam

12* 4 3 Sport BO, 
unused pads

Olfactometer Startle reflex

5 Chen et al.pc 2006 Video 4 3 50 Unused pads, 
neut. BO

Taped under 
nose

Cognitive 
task

6 Zhou and 
Chenpc, rme

2009 Video 8 48 Unused pads Taped under 
nose

Perception 
task

pc Video 16 “ Perception 
task

7 Pause et al.pc, rme 2009 Academic 
exam

28 21 16 16 Sport BO, 
unused pads

Olfactometer Startle reflex

8 Prehn-Kristensen 
et al.pc

2009 Academic 
exam

28* 21* 14 14 Sport BO Olfactometer fMRI

9 Mujica-Parodi 
et al.pc

2009 Tandem 
skydive

40 8 8 Sport BO Olfactometer fMRI

pc 20 20 8 8 “ fMRI
pc 32 32 9 5 “ Perception 

task
10 Pause et al.pc,rme 2010 Academic 

exam
28* 21* 16 12 Sport BO Olfactometer EEG

pc 8 8 “ EEG
11 Haegler 

et al.pc,rme

2010 High rope 
course

21 14 16 Sport BO, 
unused pads

Taped under 
nose

Risk game

12 Albrecht 
et al.pc,rme

2011 High rope 
course

13 20 Sport BO Taped under 
nose

Self-report

13 Zernecke 
et al.pc,rme

2011 High rope 
course

21* 15 Sport BO, 
unused pads

Taped under 
nose

Face rating

14 Rubin et al.pc 2012 Skydive 64 6 8 Sport BO Olfactometer EEG
15 de Groot 

et al.pc,rme

2012 Video 10 36 Unused pads Polypropene 
jars

EMG

16 Adolph et al.pc,rme 2013 Academic 
exam

20 40 Sport BO, 
unused pads

Olfactometer Startle reflex

pc 36 “ EEG
17 Radulescu and 

Mujica-Parodipc

2013 Skydive 20* 20* 8* 8* Sport BO Olfactometer fMRI

18 Dalton et al.pc,rme 2013 Trier soc. 
stress

44 48 72 Sport BO, 
“treated” BO

Glass bottles Ratings 
person

19 de Groot 
et al.pc,rme

2014a Video 13 13 26 26 Neutral BO Polypropene 
jars

EMG

20 de Groot 
et al.pc,rme

2014b Video 8 30 Neutral BO Polypropene 
jars

EMG

21 de Groot 
et al.pc,rme

2015a Video 9 35 Neutral BO Polypropene 
jars

EMG

22 de Groot 
et al.pc,rme

2015b Trier soc. 
stress

8 31 Neutral BO Polypropene 
jars

EMG

23 Wudarczyk 
et al.pc

2015 Academic 
exam

10 14 10 Sport BO Olfactometer fMRI

24 Wudarczyk 
et al.pc,rme

2016 Academic 
exam

10* 14* 10* Sport BO Olfactometer fMRI

25 Hatcher 
(dissertation)pc,rme

2016 Video 35 15 75 81 Eccrine sweat 
(back)

Glass bottles Self-report

26 Lübke et al.pc,rme 2017 Academic 
exam

28 10 Sport BO, 
unused pads

Olfactometer Startle reflex

Total unique, 
N = 1652

394 204 326 728

pc, Data subjected to p-curve analysis; rme, data subjected to random-effects meta-analysis; S, sender; R, receiver; M, male; F, female; BO, body odor. The asterisk 
denotes participants were tested in an earlier study.
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for evidential value (Simonsohn et al. 2014a). Similarly, evidential 
value was interpreted as inadequate if p-curves were flatter than one 
would expect when power is 33% (Simonsohn et al. 2015).

Step 2: Conducting the meta-analysis
Before computing an average effect size, the “comparison of inter-
est” had to be identified for each study (Supplementary Material S2). 
This comparison of interest was selected based on (i) the measure 
that was most consistently reported across studies, (ii) the control 
condition that was most comparable across studies, and (iii) the 
most relevant of 2 (or more) hypothesis tests.

Next, we followed general recommendations (Cumming 2012; 
Lakens 2013) by calculating for each comparison of interest the 
effect size Cohen’s drm—a relatively conservative effect size estimate 
for repeated measures designs (Cohen 1988):

 Cohen’s
SD SD SD SD

drm
Mt Mc

t c r t c

r=
−

+ − × × ×
× −(( )

2 2
2

2 1 ))  (1)

In this equation, M  =  mean, SD  =  standard deviation, subscript 
t = target odor (fear), subscript c = control odor (sport/neutral), and 
r reflects the correlation between repeated measures (Cohen 1988). 
The correlation r was also required for calculating the variance of 
the effect size, Vd (equation 4.28 in Borenstein et al. 2009). Since rs 
were never reported, all corresponding authors were approached by 
email with the request to provide these (and other missing) data for 
the comparison of interest. When Ms and SDs could not be retrieved, 
there was insufficient information to calculate an effect size (25% of 
total N). When only rs were missing and these could not be retrieved 
from the authors (21% of total N), 2 effect sizes were calculated 
(sensitivity analysis) based on the lowest (r  = 0.08) and the high-
est known correlation (r = 0.93). In the majority of cases, however, 
the authors were capable of providing all the relevant information 
(N = 899).

Concerning Cohen’s d, a value of 0.2 was considered “small,” 0.5 
“medium,” and 0.8 “large” (Cohen 1988). Because Cohen’s d and its 
variance (Vd) are positively biased, both were multiplied with correc-
tion factor J (equations 4.22 and 4.23 in Borenstein et al. 2009) to 
obtain effect size Hedges’ g and variance Vg. The standard error (SEg) 
of Hedges’ g is simply the square root of the variance Vg (Borenstein 
et al. 2009).

Both p-uniform analysis and traditional (fixed and random-
effects) meta-analysis were then conducted using version 3.3.2 of 
R—a free software environment for statistical computing (down-
loadable from: https://www.r-project.org). Before running the anal-
yses with the R script (Supplementary Material S3), the packages 
puniform, meta, and metafor had to be installed.

After installation of these packages, the p-uniform function 
digested our effect sizes Hedges’ g and variance Vg to produce its 
own effect size estimate, a traditional fixed-effect model effect size 
estimate, a test for publication bias, and a test for heterogeneity (Van 
Assen et al. 2015; Van Aert et al. 2016). The latter is a test of excess 
variance; the test is significant when the weighted sum of squares 
(Q) is substantially larger than the degrees of freedom (Borenstein 
et al. 2009).

The same heterogeneity test was provided by the meta-pack-
age (Schwarzer et  al. 2015)  via the metagen-function, which also 
produced the traditional random-effects model. When significant 
(α = 0.10) heterogeneity was encountered, the source of the heteroge-
neity was identified by (i) visual inspection of nonoverlapping 95% 

SEg of the included studies, and by (ii) inspecting whether studies fell 
outside the 95% CI boundaries of the Galbraith plot, a scatter plot 
of standardized effect size estimates against inverse standard error 
(provided by the package “metafor”) (Galbraith 1988). The identi-
fied studies were then removed, after which the heterogeneity analy-
sis was rerun (and the Galbraith plot reproduced) to verify whether 
heterogeneity no longer posed a problem. The meta-package was 
then used to create 2 forest plots (as stated before, for reasons of 
sensitivity analysis) on the final data. The forest plot displayed the 
Hedges’ g effect size for each study (±2 SEg), and how each study 
related to the average effect size across studies plus CI.

Notably, we reported only the random-effects meta-analysis in 
this manuscript, for the following reason. We have assumed that the 
included studies have sufficient in common that a meta-analysis is 
sensible, but there is no reason to assume that studies are identical 
enough to produce the same effect size in all studies, as assumed 
by the fixed-effects model (Borenstein et al. 2009); in our case, 
the random-effects model would calculate a more suitable average 
effect size, based on a distribution of true effect sizes (Borenstein et 
al. 2009).

Step 3: Checking for publication bias
Three approaches were taken to identify publication bias. First, all 
corresponding authors of the published fear chemosignaling litera-
ture were asked by email whether they failed to publish any studies, 
because P was >0.05. Second, a left skewed p-curve could indi-
cate the presence of publication bias. Third, we performed a direct 
test of publication bias, in line with the third recommendation of 
Van Aert et al. (2016). The popular trim-and-fill procedure is dis-
couraged, as it often produces inaccurate results (Simonsohn et al. 
2014a; Stanley and Doucouliagos 2014; Van Assen et  al. 2015). 
Instead we used p-uniform’s publication bias test, which has higher 
statistical power than traditional publication bias tests (Van Assen 
et  al. 2015) that are usually plagued by low power (Borenstein 
et al. 2009).

If there was evidence for publication bias, p-uniform’s effect size 
estimate was interpreted, whereas in case of no evidence for pub-
lication bias, the traditional random-effects model effect size was 
interpreted (Van Aert et  al. 2016). For ease of reporting, we first 
mentioned (the absence of) evidence for publication bias, and only 
then reported the results from the adequate meta-analytical model.

Results

P-curve analysis: Selective reporting versus 
evidential value
The first question to answer was whether the fear chemosignaling lit-
erature revealed a significant right-skewed pattern of p-values diag-
nostic of the evidential value of that set of findings, automatically 
ruling out selective reporting as likely explanation of the published 
findings. Second, the evidential value was interpreted as inadequate 
if at least the full p-curve was flatter than the expected p-curve if 
studies were powered 33% (Simonsohn et al. 2014a). Our primary 
p-curve analysis included the focal analyses of the fear chemosignal-
ing studies (N = 1652), whereas second and third p-curves (robust-
ness checks) assessed evidential value based on relatively weaker 
tests of the same hypothesis.

All p-curves were significantly right-skewed (Figure 2), namely 
the primary analysis (half p-curve, Z  =  −7.08, P  <  0.0001; full 
p-curve, Z = −7.31, P < 0.0001), the secondary analysis (half p-curve, 
Z = −5.06, P < 0.0001; full p-curve, Z = −4.30, P < 0.0001), and the 
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tertiary analysis (half p-curve, Z = −6.57, P < 0.0001; full p-curve, 
Z  = −7.46, P  < 0.0001). Hence, the distribution of p-values from 
the focal analyses and relatively weaker tests of the fear chem-
osignaling hypothesis reflected a pattern diagnostic of a true effect, 
excluding selective reporting as likely explanation of these findings. 
Furthermore, evidential value for this set of findings was not inad-
equate, as was indicated by the full p-curves not being flatter than 
expected for 33% powered studies (primary: Z  = 3.60, P > 0.99; 
secondary: Z = 0.97, P = 0.83; tertiary: Z = 3.69, P > 0.99).

In sum, p-curve analysis ruled out selective reporting as likely 
driver of the significant effects observed in the published fear che-
mosignaling literature. The pattern of P-values was not diagnostic 
of inadequate evidence, but rather it mirrored the expected right-
skewed distribution of P-values that is observed when an effect 
is true.

Even though p-curves may show a pattern reflective of a true 
effect for a given set of findings, this does not mean the effect size 
is larger than negligible (Cohen 1994; Simonsohn et al. 2014a). The 
next step was to determine the average effect size of the fear chem-
osignaling literature.

Self-report, p-curve, and p-uniform: Publication bias
As adequate effect size estimates depend on the presence or absence 
of evidence for publication bias, the assessment of publication bias 
is reported first. Our 3-pronged approach started by asking the cor-
responding authors of the published fear chemosignaling articles 
whether they had file-drawered research because of P > 0.05; yet, 
none of them declared to have done so. We retrieved and included 
a Master’s research on fear chemosignaling (N  =  41) that was 
conducted in our own lab, which was not published even though 
P < 0.05 (Vink 2015). Second, p-curve analysis had already substan-
tiated that the published fear chemosignaling findings were unlikely 
to have been driven by the selective reporting of analyses that 

“worked” versus those that failed. Third, a recently recommended 
and relatively powerful direct test of publication bias belonging to 
p-uniform (Van Aert et al. 2016) was conducted, and this test was 
not significant—neither before (rlow: P = 0.439; rhigh: P = 0.751), nor 
after the exclusion of heterogeneous studies (rlow: P  =  0.146; rhigh: 
P = 0.291).

In sum, there was no evidence of publication bias, one of the 
greatest threats to the validity of meta-analyses (Rothstein et  al. 
2005; Van Assen et al. 2015). As a consequence (see Van Aert et al. 
2016, for a rationale), we used a random-effects model to estimate 
the average true effect size underlying human fear chemosignaling.

Random-effects meta-analysis: Average true 
effect size
A traditional random-effects meta-analytical model was computed 
to verify whether the average fear chemosignaling effect size was 
larger than negligible. The random-effects model was based on a 
representative (N  =  1240) subset of findings from the fear chem-
osignaling literature, limited by the amount of reported information 
for reliable effect size calculation (see Materials and methods, for 
details). Even though the average sample was not large (N  =  35, 
range = 7–156), multiple small-N studies could yield an unbiased 
and precise effect size estimate (Van Assen et al. 2014; Schönbrodt 
2015). For the purpose of sensitivity analysis, 2 effect sizes were 
calculated, one that was based on the lowest known correlation 
between repeated measures (rrm) (N = 899) in cases where rrm was 
unknown (N = 341), whereas the second was computed for the same 
studies after imputing the highest known rrm.

According to random-effects meta-analysis, the average unbi-
ased true effect size for fear chemosignaling was small-to-moderate, 
with the low correlation-estimate, g = 0.36, 95% CI = [0.27–0.46], 
Q(20) = 29.03, P = 0.087, showing only a small difference in terms 
of effect size from the high-correlation-estimate, g = 0.34, 95% CI = 

Figure 2. The distribution of P-values from focal analyses in the published fear chemosignaling literature was significantly right-skewed, diagnostic of a true 
effect. Hence, the pattern of P-values from this set of findings was unlikely to have emerged from selective reporting.

668 Chemical Senses, 2017, Vol. 42, No. 8

Downloaded from https://academic.oup.com/chemse/article-abstract/42/8/663/4080195
by University Library Utrecht user
on 05 January 2018



[0.26–0.42], Q(20) = 45.09, P = 0.001. One caveat was substantial 
heterogeneity (I2 > 25%) that was encountered in both cases (rlow: 
I2 = 31.1%; rhigh: I

2 = 55.6%). Visual inspection of the forest plot 
and Galbraith plot (Supplementary Material S3) indicated 2 studies 
(Haegler et al. 2010; de Groot et al. 2015b) as potential sources of 
significant heterogeneity. Both studies had to be removed, as remov-
ing only Haegler et al. (2010) kept substantial heterogeneity, rlow: 
Q(19) = 28.35, P = 0.077, I2 = 31.5%; rhigh: Q(19) = 27.75, P = 0.088, 
I2 = 33%; and removing only de Groot et al. (2015b) did not reduce 

heterogeneity either for rhigh, Q(19) = 38.15, P = 0.006, I2 = 50.2%. 
After removal of these 2 studies, the heterogeneity test was no longer 
significant: rlow, Q(18) = 16.48, P = 0.559, I2 = 0.0%; rhigh, Q(18) = 
18.52, P = 0.422, I2 = 2.8%. The average unbiased effect size esti-
mate for the nonheterogeneous sample was again small-to-moderate, 
rlow: Hedges’ g = 0.40, 95% CI = [0.32–0.48]; rhigh: Hedges’ g = 0.36, 
95% CI = [0.31–0.41] (Figure 3). In sum, the traditional random-
effects model meta-analysis showed unequivocally and with 95% 

Figure 3. Forest plot showing unbiased effect sizes (Hedges’ g) for each fear chemosignaling study and the average of this literature. Study labels are depicted 
left, whereas actual effect sizes, 95% CIs, and study weights are on the right side. Sensitivity analysis, based on imputation of the lowest and highest known 
correlation if the actual correlation could not be retraced: (A) effect size estimate based on rlow; (B) effect size estimate based on rhigh.
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certainty that the average true effect size of the fear chemosignaling 
literature is larger than negligible, namely small-to-moderate.

Discussion

Here, traditional meta-analysis was complemented with novel meta-
analytical techniques, p-curve and p-uniform, to answer to two 
timely and important questions, namely whether (i) fear chemosign-
aling research is characterized by a pattern of P-values diagnostic of 
selective reporting, a null effect, or a true effect; and (ii) accounting 
for publication bias, whether the average effect size is larger than 0. 
P-curve analysis indicated there was no evidence supporting selective 
reporting; rather, the distribution of P-values in the fear chemosign-
aling literature mimicked the expected P-value distribution when 
there is a true effect. Robustness tests corroborated these conclusions 
analyzing the highest P-values of “primary” measures and P-values 
from relatively weaker “secondary” measures. Notably, 3 different 
sources, namely authors’ reports, p-curve analysis, and p-uniform, 
did not reveal evidence for publication bias. As a consequence, a tra-
ditional random-effects meta-analysis was used to estimate whether 
the average effect size was larger than negligible.

First, significant heterogeneity was dealt with by removing 2 
studies based on visual inspection of plots, before interpreting the 
effect size estimate of the random-effects model. The more conserva-
tive of the 2 unbiased Hedges’ g effect sizes yielded 0.36, 95% CI 
[0.31–0.41]. In sum, we followed the recent recommendation (Van 
Assen et al. 2015; Van Aert et al. 2016) of combining regular meta-
analysis with p-curve analysis and p-uniform, novel tools that assess 
evidential value based on the distribution of P-values. These different 
meta-analytical techniques converged and unequivocally showed the 
statistical robustness and small-to-moderate impact of the human 
fear chemosignaling literature.

Even though p-curve analysis assesses whether findings are more 
likely to reflect evidential value than selective reporting, this does not 
imply that the average effect size is more than trivial. One example is 
p-curve analysis being used (Gildersleeve et al. 2014a) to test the evi-
dential value of odor-based mate choices shifting with the menstrual 
cycle (Gangestad et al. 2005). Whereas p-curve analysis showed pat-
terns diagnostic of evidence (Gildersleeve et al. 2014a), traditional 
meta-analyses yielded a negligible effect size (Wood et al. 2014) (see 
Harris et al. 2014; Wood and Carden 2014, for a discussion], or at 
best a very small (g < 0.2) effect (Gildersleeve et al. 2014b). Hence, 
p-curves are best combined with (traditional) effect size estimates to 
decide if a literature reports on a true and meaningful effect, and the 
human chemosignaling of fear was shown to be such a field.

The small-to-moderate impact of human fear chemosignaling 
may be hard to reconcile with persistent, yet erroneous, views of an 
inferior human sense of smell (see Le Guérer 2002; McGann 2017, 
for a historical overview). One of the reasons for the lack of confi-
dence in our smell abilities may be the difficulty we have naming 
smells (Olofsson and Gottfried 2015). In a similar vein, the major-
ity of participants in fear chemosignaling studies were not capable 
of naming the stimulus source; yet, olfactory stimuli were recently 
argued to exert stronger effects when subtle and unnamable (Smeets 
and Dijksterhuis 2014). Under these circumstances, conscious top-
down regulation of the initial stimulus-driven effects may be less 
likely to occur (Li et al. 2007). Hence, the implicit effect of human 
olfactory communication by means of emotion-related chemosignals 
is not automatically reflected in tiny effect sizes; rather, their impact 
is small-to-moderate.

The current research is obviously not without limitations. These 
limitations revolve around the nonidentification of potential mod-
erators influencing the average effect size, the accuracy of the meta-
analysis, and the insensitivity of this meta-analysis to address the 
validity of the theory.

First, a low number of studies with unique features made it 
impossible to statistically assess with sufficient power potential 
moderators of the fear chemosignaling effect. Nevertheless, 2 stud-
ies were identified as likely causes of heterogeneity. One low effect 
size study (de Groot et al. 2015b) differed from similar studies (de 
Groot et  al. 2012, 2014a, 2014b, 2015b) in the body odor sam-
pling procedure being 3 times shorter, and the fear manipulation not 
involving horror videos—sweat was sampled only during the antici-
pation phase of an adapted Trier Social Stress Test. The other source 
of heterogeneity (Haegler et al. 2010) may be related to the measure 
of fear (making more risky decisions), since the same donor mate-
rial was used in another study not causing heterogeneity (Zernecke 
et al. 2011). With a greater number of studies, one could also assess 
whether higher effect sizes are obtained in studies using male donors 
and female receivers (Rubin et al. 2012; de Groot et al. 2014a), in 
studies using threat-sensitive participants, such as socially anxious 
individuals (Pause et al. 2009, 2010), and in studies using objective 
online measures of affect (fMRI and facial EMG) and startle reflexes 
versus subjective ratings—these may interrupt the implicit influence 
of the body odor (also see Lundström and Olsson 2010; Parma et al. 
2017, for meta-perspectives on effective chemosignaling).

Second, the accuracy of p-curve analysis obviously depends on 
the study results that were entered. Following the guidelines of 
Simonsohn et al. (2014a), we publicly shared our p-curve disclosure 
table—others may attempt to replicate our finding that a small-to-
moderate true effect is more likely to underlie the present set of find-
ings than a p-hacked nonexistent one. Although the current p-curve 
analysis yielded a pattern diagnostic of a true effect, this does not 
mean that each individual fear chemosignaling study contributed to 
the reflection of evidence. To avoid being confronted with a lack of 
evidence in the face of a true effect, researchers could use the current 
effect size estimates to properly power their prospective experiments. 
To counteract p-hacking, researchers are advised to preregister their 
statistical analyses.

Whereas the present meta-analyses statistically assessed the evi-
dential value and impact of the chemosignaling findings, the validity 
of the theory, research design, and measurement instruments were 
left unquestioned. To illustrate, p-curve analysis could indicate evi-
dential value for a hypothesis framed as “humans can communicate 
fear via their body odor”; however, in the absence of adequate meas-
urement instruments and body odor control conditions, one cannot 
infer with certainty that “fear” was communicated. According to 
some researchers, no emotion measure (from subjective experience 
to actual behavior) can distinguish between fear and other negative 
emotions, such as anger (Mauss and Robinson 2009). However, oth-
ers have shown that experiencing (vs. perceiving) fear was related 
to aversive avoidance motivation, whereas experiencing anger 
was associated with appetitive approach motivation (Carver and 
Harmon-Jones 2009). Theoretical reviews could in this case comple-
ment meta-analyses by integrating recent emotion theories to estab-
lish whether the chemosignaling of fear is a viable construct.

In sum, this meta-analysis is only one of 3 pillars facilitat-
ing knowledge accumulation. Whereas theoretical reviews could 
additionally identify important moderators of the fear chemosign-
aling effect and address the validity of the theory, well-powered 
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preregistered replication studies on fear chemosignaling could cir-
cumvent possible selective reporting.

Conclusion

The first research on the olfactory communication of emotions in 
humans was published at the turn of the century (Chen and Haviland-
Jones 2000); now, almost 2000 participants found their way into a 
fear chemosignaling study. These instances made for an important 
snapshot assessment of the evidential value of research examining 
the chemosignaling of fear, stress, and anxiety. Novel meta-analytical 
techniques (p-curve and p-uniform) and regular meta-analysis con-
verged by showing no evidence for publication bias, false positives, 
or selective reporting. Rather, patterns indicative of evidential value 
were revealed, and the average effect size was small-to-moderate. 
Fear chemosignaling was thus found more likely to be a “fact” than 
a “fallacy,” and researchers should have no “fears” or “frustrations” 
(Wysocki and Preti 2004) when taking the necessary steps to further 
advance this research topic by delving more deeply into the founda-
tions of this human capacity.

Supplementary Material

Supplementary data are available at Chemical Senses online.
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