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Experimental realization and characterization of
an electronic Lieb lattice
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Geometry, whether on the atomic or nanoscale, is a key factor
for the electronic band structure of materials. Some specific
geometries give rise to novel and potentially useful electronic
bands. For example, a honeycomb lattice leads to Dirac-type
bandswhere the charge carriers behave asmassless particles1.
Theoretical predictions are triggering the exploration of novel
two-dimensional (2D) geometries2–10, such as graphynes and
the kagomé and Lieb lattices. The Lieb lattice is the 2D
analogue of the 3D lattice exhibited by perovskites2; it is
a square-depleted lattice, which is characterized by a band
structure featuring Dirac cones intersected by a flat band.
Whereas photonic and cold-atom Lieb lattices have been
demonstrated11–17, an electronic equivalent in 2D is di�cult to
realize in an existing material. Here, we report an electronic
Lieb lattice formed by the surface state electrons of Cu(111)
confined by an array of carbon monoxide molecules positioned
with a scanning tunnelling microscope. Using scanning tun-
nelling microscopy, spectroscopy and wavefunction mapping,
we confirm the predicted characteristic electronic structure of
the Lieb lattice. The experimental findings are corroborated by
mu�n-tin and tight-binding calculations. At higher energies,
second-order electronic patterns are observed, which are
equivalent to a super-Lieb lattice.

The Lieb lattice is a square-depleted lattice, described by three
sites in a square unit cell, as illustrated in Fig. 1a. Two of the
sites (indicated in red) are neighboured by two other sites. The
third site in the unit cell (blue) has four neighbours. In the
remainder of this article, these sites will be referred to as edge
(red) and corner (blue) sites, respectively. This geometry results in
an electronic band structure exhibiting two characteristic features:
two dispersive bands, which form a Dirac cone at the M point in
the first Brillouin zone, and a flat band crossing the Dirac point
(Fig. 1b). It is well established that Dirac cones give rise to unusual
behaviour, such as effectively massless fermions. Similarly, flat
bandsmay potentially facilitate the realization ofmagnetic order18,19,
give rise to the fractional quantum (spin) Hall and the quantum
anomalous Hall effect20,21, and enhance the critical temperature of
superconductors22,23.

The electronic band structure of the Lieb lattice can be calculated
from the following tight-binding Hamiltonian:
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where εi and t (t ′) indicate the on-site energy of site i and the
(next-)nearest-neighbour hopping constants, respectively. Taking

only nearest-neighbour hopping into account and using the same
on-site energy for the three sites results in the band structure shown
in Fig. 1b. The flat band exclusively contains electronic states which
are localized on edge sites. In contrast, all sites contribute to the
dispersing bands converging to the Dirac cone. Hence, the local
density of states (LDOS) exhibits a characteristic spatial variation,
see Fig. 1c.

Thus far, a 2D electronic Lieb lattice has not been realized. In
principle, lithography could be used to impose a Lieb pattern on
a 2D electron gas7,24. Alternatively, a strategy similar to the one
employed for generating artificial graphene could be used—that is,
assembling amolecular lattice on a substrate featuring a surface state
to force the electrons into the desired geometry25. In the following,
we will choose the latter approach and describe how atomic scale
manipulation of carbon monoxide molecules on Cu(111) with a
scanning tunnellingmicroscope is used to generate and characterize
an electronic Lieb lattice.

The design of the molecular Lieb lattice is not trivial for several
reasons. First, the Lieb lattice has four-fold rotational symmetry,
whereas substrates that exhibit a surface state close to the Fermi
energy such as Cu(111) have hexagonal symmetry. Furthermore,
the carbon monoxide (CO) molecules on Cu(111) act as repulsive
scatterers, confining the electrons to the space between the CO
molecules25–28. This implies that the CO molecules should compose
the anti-lattice of the electronic Lieb lattice. Our design consists
of a CO square lattice, which defines the trivial anti-lattice of
a square lattice, with one CO placed in the centre of four CO
molecules to form the anti-lattice of a depleted square lattice
(see Fig. 1d). This design was recently proposed independently
by Qiu and colleagues29. The size of the unit cell is chosen to be
6
√
3a0×10a0 (≈ 2.66 nm× 2.56 nm), where a0= 0.256 nm is the

Cu(111) nearest-neighbour distance. Two factors play a critical role
in the design. First, this arrangement of CO molecules provides the
best approximation to the perfect four-fold symmetry of the Lieb
lattice on the hexagonal Cu(111) substrate. Furthermore, the size of
the unit cell determines the position of the bands of the lattice with
respect to the Fermi level of the Cu(111)25.With the lattice constants
described above, the flat band is close to the Fermi level (see below).

To establish whether the design described above confines the
electrons into an electronic Lieb lattice, we performed calculations
based on the nearly-free electronmodel, in which the COmolecules
are modelled by a muffin-tin potential. The band structure
calculated using this approach is given by the black curve in Fig. 1e.
These results can be reproduced well using a tight-binding model
including orbital overlap and next-nearest-neighbour interactions
(t ′/t=0.6), see the grey curve in Fig. 1e. Hence, the arrangement of
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Figure 1 | Designing an electronic Lieb lattice. a, Geometric structure of the Lieb lattice. The unit cell (black dashed line) contains two edge sites and one
corner site, indicated in red and blue, respectively. b, Band structure of the Lieb lattice around the M point of the Brillouin zone, taking into account only
nearest-neighbour hopping. c, Calculated local density of states at edge (red) and corner (blue) sites. d, Geometric arrangement of CO molecules (black)
on a Cu(111) surface to generate an electronic Lieb lattice. Red and blue circles correspond to the edge and corner sites in a. e, Band structure from
mu�n-tin (black) calculations along the high-symmetry lines of the Brillouin zone, overlaid with the tight-binding result using parameters that provide the
best agreement with the mu�n-tin simulations (grey).
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Figure 2 | Electronic structure of a Lieb lattice. a, Image of a 5×5 Lieb (top) and square (bottom) lattice. Two edge sites and one corner site of the Lieb
lattice are indicated in red and blue, respectively. The green circle indicates a site of the square lattice. Imaging parameters: V=50 mV, I= 1 nA. Scale bar,
5 nm. b, Normalized di�erential conductance spectra acquired above edge (red squares) and corner (blue circles) sites and local density of states at these
sites calculated using the tight-binding method (solid lines). c, Contour plot of 100 normalized spectra taken along the dashed line indicated in a. The
features observed in the spectra shown in b can be clearly recognized (see arrows). d,e, Same as b,c, but for a square lattice. Note that the spectrum on the
square lattice is qualitatively di�erent from the spectra acquired on the Lieb lattice.
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Figure 3 | Wavefunction mapping. a–c, Di�erential conductance maps acquired above a Lieb (top) and square (bottom) lattice at−0.20 V,−0.05 V,
and+0.15 V, respectively. Scale bars, 5 nm. d–f, Di�erential conductance maps for the Lieb lattice at these energies simulated using tight-binding. Black
circles representing the CO molecules have been added manually to the tight-binding maps. g–i, Same as d–f, but calculated using the mu�n-tin model.

CO molecules on Cu(111) shown in Fig. 1d generates an electronic
Lieb lattice. The large t ′/t ratio shows that next-nearest-neighbour
hopping in this system is important. This can be rationalized by the
fact that the distance between individual COmolecules is fairly large
on the atomic scale. A detailed description of the correspondence
between the nearly-free electron and tight-binding calculations is
given in the Supplementary Information.

A lattice of 5× 5 unit cells was assembled in the way shown in
Fig. 2a. To provide further evidence that any observed features are
due to the Lieb lattice, a square lattice was created immediately next
to the Lieb lattice. Differential conductance spectra were acquired
above various positions of the lattice (indicated by the blue and
red circles in Fig. 2a). The spectra were normalized by the average
spectrum acquired on the clean Cu(111) surface, analogously to
ref. 25. The resulting spectra above corner (blue) and edge sites (red)
are shown in Fig. 2b. We first focus on the spectrum acquired above
a corner site (blue). Two peaks are observed, one at V=−0.20V
and one at+0.18V. These peaks can be assigned to the lowest- and

highest-energy bands in the nearest-neighbour tight-bindingmodel
of the Lieb lattice. In between these two peaks, the LDOS reaches a
minimum, which should correspond to the Dirac point. In contrast,
the edge-site spectrum (red) exhibits a maximum, which is located
at V =−0.07 V. This peak can be assigned to the flat band. The
neighbouring peaks are again due to the lowest- and highest-
energy bands.

In principle, a flat band should give rise to an (infinitely) narrow
feature in the LDOS. In contrast, the peak atV=−0.07V observed
above the edge sites is fairly broad. We attribute this broadening to
the influence of next-nearest-neighbour hopping, as well as to the
limited lifetime of the electrons in the surface state.

The experimentally observed differential conductance spectra
are reproduced very well when next-nearest-neighbour hopping is
included in tight-binding calculations of a finite lattice (Fig. 2b).
Next-nearest-neighbour hopping is essential to account for the
observed asymmetry in the LDOS of the low- and high-energy
bands (blue spectrum, peaks at −0.20V and +0.18V), as well as
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Figure 4 | Higher-order e�ects. a,b, Schematic picture to show extra sites, resulting in a quasi-Lieb and quasi-super-Lieb lattice, respectively.
c,d, Experimental di�erential conductance maps acquired at 0.550 V above a square and a Lieb lattice, respectively. At these energies 3 and 11 sites per unit
cell are required to provide an adequate description of the wavefunction localization. e–g, Experimental di�erential conductance maps acquired above a
square lattice at−0.300 V,−0.150 V, and 0.575 V, respectively. In each of these maps, the unit cell is indicated by a red dashed line. Note that each unit
cell still only contains one CO molecule. All scale bars denote 5 nm.

for the peak at 0.09V in the edge-site spectrum. A fit of the tight-
binding result to the experimental data yields t = (89± 15)meV,
which is in excellent agreement with earlier results25. Using this
hopping parameter, we calculate the Fermi velocity of the electrons
in the Dirac cones to be vF= (3.5±0.6)×105ms−1.

To investigate the spatial distribution of the electronic states, we
acquired differential conductance maps (see below), as well as 100
spectra along the line indicated in Fig. 2a. This line starts and ends
at an edge site and passes four corner sites. The resulting contour
plot is shown in Fig. 2c. The peaks described above can be clearly
recognized for each site, demonstrating that the LDOS features are
a property of the lattice.

For comparison, a differential conductance spectrum acquired
over a site in the square lattice is shown in Fig. 2d, while a contour
plot showing 125 spectra along a line is shown in Fig. 2e. The spectra
along the line again demonstrate the similarity of the features for
equivalent sites (Fig. 2e). Importantly, the spectra are qualitatively
different from the spectra obtained over the Lieb lattice and display
a good agreement with the LDOS calculated for the square lattice
using the tight-binding model (using the same parameters as for the
Lieb lattice) (see Fig. 2d). This further demonstrates that the features
observed in the differential conductance spectra shown in Fig. 2b are
due to the Lieb lattice.

Figure 3 shows several experimental and simulated constant-
height differential conductance maps of the two lattices. For the
square lattice, all equivalent sites appear identical at all three
energies. In contrast, for the Lieb lattice at V =−0.20V, both the
edge and corner sites contribute significantly to the density of states.
At the energy of the flat band (V=−0.05V), the contribution of the
edge sites to the density of states dominates. At V =+0.15V, again
both corner and edge sites contribute significantly, with the first

being dominant. The simulatedmaps using the tight-bindingmodel
(Fig. 3d–f) and using the muffin-tin approach (Fig. 3g–i) reproduce
the features observed experimentally.

A careful inspection of the contour plots shown in Fig. 2c and e
indicates that for both the square and Lieb lattice there is structure
in the spectra at higher energy (around V =+0.60 V). For both
lattices, these high-energy states are localized in between different
sites. To account for these states in the tight-binding calculations,
additional basis functions need to be included. This can be done
by adding sites in between the original sites. To first order, the
simple square lattice is then described by a three-site quasi-Lieb
model, with corner and edge sites having different on-site energies
(Fig. 4a). Likewise, the Lieb lattice is described by a super-Lieb
(Fig. 4b) geometry involving 11 sites per unit cell. Differential
conductance maps of the high-energy states of the square and
Lieb lattice with indicated unit cells are shown in Fig. 4c and d,
respectively. Note that 3 and 11 sites are required to describe the unit
cells, respectively. Using this model, we again simulated differential
conductance maps. The experimental and simulated maps at higher
energy are in good agreement.

The peak positions with respect to the Fermi energy can be
shifted to lower energies by increasing the lattice constant25. We
make use of this effect to access states with even higher energy
in the square lattice. Figure 4e–g shows differential conductance
maps of a square lattice with a four times larger unit cell. For
this large square lattice, the pseudo-Lieb character emerges at
bias voltages as low as −0.30V and −0.15V for the bottom
and flat bands, respectively. At higher bias voltages, a super-Lieb
character appears, as depicted in Fig. 4g. The higher on-site energies
of the ‘bridging sites’ results in a band gap between the lower-
energy bands (which retain their square/Lieb character) and the
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higher-energy bands where localization is more pronounced on the
bridging sites.

The ability to generate electronic lattices using CO molecules
on Cu(111) opens the path to the experimental realization and
characterization of many 2D geometries for which non-trivial
properties dictated by the lattice have been anticipated theoretically.
Typical examples, which apply to the studied Lieb lattice geometry,
are the quantum spin Hall effect, the super-Klein tunnelling
paradox, and the Hofstadter butterfly5,11,30,31. The Cu(111)/CO
system is an ideal model system, as it allows one to tune parameters
that cannot be easily varied in a real solid-statematerial. In addition,
one can create junctions and study the effects of disorder, which can
be designed in a controlled manner. The inherent versatility and the
direct access to structural and electronic characterization allow a
reality check for advanced theory and a first step in the design of
truly novel electronic materials.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Scanning tunnelling microscope (STM) experiments. The experiments were
performed in a Scienta Omicron LT-STM, operating at a temperature of 4.6 K and a
pressure in the 10−10mbar range. Prior to the experiments, a clean Cu(111) crystal
surface was prepared by several cycles of sputtering and annealing. After cooling
down in the STMmicroscope head, CO was deposited on the surface by leaking in
this gas to P=2×10−8mbar for 3min. For all measurements a Cu-coated
tungsten tip was used. Assisted by an in-house developed program, atomic
manipulations were performed following previously described procedures32,33. STM
images were acquired in constant current mode. dI /dV spectroscopy and mapping
were performed in constant-height mode using a standard lock-in amplifier
modulating the sample bias with an amplitude of 10–20mV r.m.s. at a frequency of
273Hz. Various tips, characterized by differently shaped Cu(111) spectra, were
used to corroborate the features arising from the Lieb lattice.

Tight-binding calculations. Tight-binding calculations were performed for
periodic and finite-sized lattices. For dispersion and LDOS calculations, we utilized
a grid of 50×50 k-points in the first Brillouin zone, whereas n×n k-points were
used for calculating the differential conductance maps of the higher-order lattices.
The used tight-binding parameters were t ′/t=0.6 and an orbital overlap of s=0.15.
The calculations on the experimentally realized geometry are 0-point calculations
with periodic boundary conditions, utilizing the same tight-binding parameters

as the periodic lattice calculations. The local density of states was inferred
directly from sites in the centre of both lattices, using a Lorentzian energy level
broadening of 0=0.8t . Simulated differential conductance maps were obtained
by taking again 0=0.8t and by expanding the wave functions by normalized
Gaussians of width σ=0.4a, where a is the lattice constant of the Lieb lattice.

Muffin-tin calculations. The surface state electrons of Cu(111) can be considered
a 2D electron gas. The COmolecules are modelled as disks (radius 0.3 nm), centred
at a CO molecule, with a repulsive potential of 0.9 eV. See Supplementary
Information for details.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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