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Introduction
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Chapter 1

Novel biomarkers in cardiovascular research

Despite advanced treatment options, cardiovascular disease (CVD) remains the 
leading cause of morbidity and mortality worldwide with over 17.7 million deaths per 
year.1 CVD is a collective term that subsumes a wide range of conditions involving 
the heart and/or the vascular system. By far the most common underlying cause is 
atherosclerosis, which can lead to severe clinical manifestations, such as myocardial 
infarction and ischemic stroke.2 In the European Union alone, the most common 
forms of atherosclerotic CVD, coronary artery disease and stroke, cause healthcare 
costs and production losses of nearly 80 billion EUR each year.3 Since the second half 
of the 20th century, the immense economic burden of atherosclerosis has sparked 
large-scale efforts to improve cardiovascular prevention, leading to the identification 
of so-called traditional cardiovascular risk factors, such as smoking, diabetes, obesity, 
hypertension and hyperlipidemia.4-6 These findings not only provided insights into 
the pathophysiology of atherosclerosis, but also led to the development of numerous 
drugs and intervention programs in the following decades.7-9

Given their well-established role in atherogenesis, clinical guidelines continue 
to recommend the use of traditional risk factors as the mainstay of cardiovascular 
risk assessment and prevention.10 However, traditional risk factors are absent in up 
to 20% of all patients with coronary artery disease.11 Moreover, their relationship 
with subsequent events in patients with established atherosclerotic CVD is less clear 
compared to primary prevention settings,12-14 which may be attributable to more 
aggressive treatment of risk factors in secondary prevention or differential disease 
mechanisms for early and advanced stages of atherosclerosis.15 Yet, current treatment 
strategies apply a standardized set of therapies to all patients, regardless of individual 
differences beyond traditional risk profiles. Therefore, personalized medicine has 
emerged as a therapeutic concept that aims to tailor disease prevention and treatment 
to a patient’s individual characteristics. 

This endeavor critically depends on the identification of novel biomarkers for 
diagnosis, prognosis, treatment selection and drug development. While most common 
biomarker definitions not only include biological samples, but rather any characteristic 
related to a biological process,16 especially serum biomarkers have shown promise for 
clinical use in cardiovascular prevention, including C-reactive protein, troponins and 
different hematological parameters.17,18 Nevertheless, only few risk assessment tools 
have incorporated such biomarkers (e.g. [19]), and current clinical guidelines do 
not (yet) recommend their general use in clinical practice.10 In recent years, a wide 
range of high-throughput technologies has become available to inexpensively measure 
biomarkers in large quantities. Consequently, ‘omics’ approaches, such as genomics, 
transcriptomics, proteomics and metabolomics, are increasingly being applied to 
biomarker discovery. 

Besides enhancing risk assessment and clinical management, omics profiling offers 
great potential for drug research. Large-scale biomarker screening may advance 
our understanding of disease mechanisms, providing knowledge vital for the 
identification of novel drug targets, but may also contribute to personalized treatment. 
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In cardiovascular medicine, pharmacogenomics, combined with transcriptional 
analysis, has yielded insights into the molecular pathways associated with adverse drug 
effects and interindividual differences in drug efficacy.20,21 At the same time, in-depth 
metabolic profiling has become a promising tool for treatment selection, compliance 
monitoring and for the systemic analysis of drug effects.22,23

Thesis outline

This thesis seeks to identify novel biomarkers of atherosclerotic CVD and to advance 
understanding of the pathophysiological mechanisms underlying CVD progression. 
Moreover, we demonstrate the utility of high-throughput metabolic profiling for 
assessing systemic drug effects. Chapter 2 relates altered monocyte gene expression 
in childhood obesity to atherosclerotic disease complexity in adult patients. Chapter 
3 investigates the association of loss of chromosome Y with atherosclerotic plaque 
characteristics and clinical outcome after endarterectomy. Chapter 4 explores the 
ability of routinely measured hematological parameters to improve prediction of 
recurrent vascular events in vascular patients. The remaining chapters report results 
from metabolic profiling studies. Chapter 5 presents findings from a prospective 
study of two angiographic cohorts, in which we identified biomarkers that improve 
prediction of subsequent cardiovascular events. In Chapter 6, we use clinical trial 
data to explore the effect of metformin on metabolic profiles and to study biomarkers 
of infarct size and left ventricular ejection fraction after myocardial infarction. In 
Chapter 7, we investigate the longitudinal effect of pravastatin treatment on metabolic 
profiles, using data from a randomized clinical trial. 
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Chapter 2

Abstract

Childhood obesity coincides with increased numbers of circulating classical 
CD14++CD16- and intermediate CD14++CD16+ monocytes. Monocytes are key 
players in the development and exacerbation of atherosclerosis, which prompts 
the question as to whether the monocytosis in childhood obesity contributes to 
atherogenesis over the years. Here, we dissected the monocyte gene expression profile 
in childhood obesity using an Illumina microarray platform on sorted monocytes of 35 
obese children and 16 lean controls. Obese children displayed a distinctive monocyte 
gene expression profile compared to lean controls. Upon validation with quantitative 
PCR, we studied the association of the top 5 differentially regulated monocyte genes 
with circulating adipokines and clinical variables in childhood obesity. Finally, a 
cohort of 351 adults at risk for ischemic cardiovascular disease was used to study 
the associations of the top 5 differentially regulated monocyte genes with adulthood 
obesity and complexity of coronary atherosclerosis (SYNTAX score). Downregulation 
of monocyte IMPDH2 and TMEM134 was observed in childhood obesity, and also 
associated with obesity in the adult cohort. Moreover, downregulation of TMEM134 
was associated with a higher SYNTAX atherosclerosis score. In conclusion, childhood 
obesity entails monocyte gene expression alterations associated with obesity and 
enhanced complexity of coronary atherosclerosis in adults. 
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Introduction 

The childhood obesity epidemic has alarming cardiovascular consequences, and 
thereby limits the worldwide increase in life expectancy.1,2 Obesity early in life 
may contribute to the development of cardiovascular disease in several ways. First, 
childhood obesity tends to result in adulthood obesity, which is an important risk 
factor for cardiovascular disease, especially when it concerns visceral adiposity.3,4 

Second, childhood and adulthood obesity share independent risk factors for 
cardiovascular disease, such as a high blood pressure.5 Furthermore, obesity-induced 
insulin resistance and hyperglycemia lead to defective insulin signaling in vascular wall 
lesional cells, which promotes atherosclerosis at the level of the arterial wall.6 Finally, 
obesity is associated with low-grade systemic inflammation, which partly results from 
the adipose tissue production of inflammatory adipokines including chemerin and 
leptin, and promotes atherogenesis.7,8

At a cellular level, monocytes appear to be a pivotal link between obesity and 
cardiovascular disease. Obesity is accompanied by leukocytosis, particularly of the 
myeloid lineage.7,9 Recent studies indicate that adipose tissue derived inflammatory 
factors such as IL-1β stimulate bone marrow myeloid progenitors, leading to 
monocytosis in obesity.10 Next to increased numbers, monocytes show an activated and 
inflammatory phenotype in obesity. In humans, monocytes fall into three phenotypical 
categories: classical CD14++CD16-, intermediate CD14++CD16+ and non-classical 
CD14+CD16++ monocytes.11 Previously, we have shown that childhood obesity 
is accompanied by increased numbers and an activated phenotype of the classical 
CD14++CD16- monocyte subset.7 These monocytes are equivalent to GR1+Ly6c high 
monocytes in mice, that differentiate into inflammatory macrophages and foam cells 
in various atherosclerosis models.12,13 The increased inflammatory monocyte numbers 
in childhood obesity may thus contribute to atherogenesis over the years.  

The aim of this study was to obtain in-depth understanding of the monocyte gene 
expression profile in childhood obesity as compared to normal weight controls using 
micro-array analyses of sorted monocytes. Furthermore, we studied the relation 
between monocyte gene expression and cardiometabolic risk factors in childhood 
obesity. Importantly, we focused on cardiometabolic risk markers in childhood obesity 
that were identified in previous studies,7,14 including systolic blood pressure, insulin 
sensitivity (QUICKI), adipokine levels (adiponectin, leptin, chemerin, TNF-R2), 
and monocyte numbers and CD11b expression. Finally, monocyte gene expression 
profiles were compared with an established cohort of 351 adults at risk for ischemic 
cardiovascular disease, to study whether monocyte gene expression profiles in 
childhood obesity overlap with an atherogenic monocyte phenotype in adults. The 
adult cohort encompassed several clinical parameters, but we focused on the relation 
between monocyte gene expression and the SYNergy between percutaneous coronary 
Intervention with TAXus and cardiac surgery (SYNTAX) atherosclerosis score 
because it is an established angiographic grading system for evaluating the complexity 
of coronary atherosclerotic lesions, widely used as a readout for atherosclerotic 
burden.15-19
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Chapter 2

Results

Monocytes in childhood obesity show a distinctive gene expression profile
Obese children exhibited typical clinical and biochemical characteristics with a 
significantly higher body mass index standard deviation for age and sex (BMI-SD) 
compared to lean controls (3.4 versus 0.4, p<0.001), a higher systolic blood pressure 
(BP) (123 mmHg versus 110 mmHg, p=0.005), lower Quantitative insulin sensitivity 
index (QUICKI) (0.3 versus 0.4, p<0.001), lower high-density lipoprotein (HDL) 
cholesterol level (1.2mmol/l versus 1.5mmol/l, p=0.004), higher leptin level (329ng/
ml versus 113ng/ml, p<0.001) and higher TNF receptor 2 (TNF-R2) level (3.0ng/
ml versus 2.5ng/ml, p=0.005) (Table 1). Furthermore, the obese subgroup showed a 
higher total monocyte number (0.6x109/ml versus 0.4x109/ml, p<0.001), reflecting 
a higher classical CD14++CD16- monocyte number (52.0x107/ml vs. 36.2x107/ml, 
p=0.001) and a higher intermediate CD14++CD16+ monocyte number (4.6x107/ml 
versus 3.3x107/ml, p<0.001). As shown in earlier studies,7 classical and intermediate 
monocytes in obese children expressed higher levels of the activation marker and 

Lean children
(n=16)

Obese children
(n=35)

Age (years) 10.5 (8.4, 12.9)* 13.9 (10.8, 14.9)*

Boys (number, %) 7 (44) 11 (31)

BMI-SD 0.4 (-0.7, 0.9)** 3.4 (3.1, 3.7)**

QUICKI 0.4 (0.3, 0.4)** 0.3 (0.3, 0.3)**

Systolic blood pressure (SBP, mmHg) 110 (98, 120)** 123 (113, 129)**

HDL-cholesterol (mmol/l) 1.5 (1.3, 1.7)** 1.2 (1.0, 1.4)**

LDL-cholesterol (mmol/l) 2.2 (2.2, 2.4) 2.3 (2.0, 3.0)

Triglycerides (mmol/l) 0.7 (0.5, 0.9) 0.9 (0.7, 1.3)

Adiponectin (µg/ml) 33 (25, 41) 31 (24, 35)

Chemerin (µg/ml) 2.8 (2.5, 3.0) 3.0 (2.6, 3.3)

Leptin (ng/ml) 113 (109, 156)** 329 (274, 462)**

TNF-R2 (ng/ml) 2.5 (2.2, 2.7)** 3.0 (2.7, 3.3)**

Total monocyte number (x 109) 0.4 (0.4, 0.5)** 0.6 (0.5, 0.7)**

CD14++CD16- monocyte number (x 107) 36.2 (34.3, 43.2)** 52.0 (43.3, 64.7)**

CD14++CD16+ monocyte number (x 107) 1.8 (1.2, 2.3)** 4.6 (3.0, 7.0)**

CD14++CD16- CD11b expression (MFI) 5115 (3737, 6180)** 9383 (6252, 13920)**

CD14++CD16+ CD11b expression (MFI) 5645 (4524, 8924)** 10790 (7409, 14270)**

Table 1: Characteristics of the pediatric study population

Clinical characteristics and laboratory parameters for lean controls versus obese children. Data is shown as 
median (interquartile range). *p<0.05, **p<0.01. BMI-SD: standard deviation of body mass index corrected 
for age and sex, HDL: high-density lipoprotein, LDL: low-density lipoprotein, MFI: median fluorescence 
intensity, QUICKI: quantitative insulin sensitivity index.
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Figure 1 - Cluster analysis
Figure 1: Heat map and cluster analysis

Results of monocyte gene expression analysis in the pediatric study population. The heat map depicts the 
gene cluster structure as a hierarchical tree with distinct branches and uses row z-score to depict data that 
deviates above or below the population mean.

integrin CD11b than lean control monocytes (CD11b Median Fluorescence Intensity 
classical monocytes 9383 in obese versus 5115 in lean children, p=0.002; intermediate 
monocytes 10790 versus 5645, p=0.003). Notably, the obese population showed 
a higher age compared to the lean controls (13.9 versus 10.5 years), and a lower 
percentage of boys (31% versus 44%). In order to avoid confounding, all subsequent 
analyses were corrected for age and sex. 

Following microarray multiple testing correction, 67 genes were significantly and 
differently expressed between the obese and lean participants (Supplemental Table 1 
and 2). An unbiased clustering approach revealed a clear separation in monocyte gene 
expression profiles between lean and obese individuals (Figure 1). The microarray data 
thus highlighted a distinctive monocyte gene expression profile in obese children. 
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Quantitative PCR validation 
Quantitative PCR (qPCR) was used to confirm the gene expression results, focusing 
on the top 20 microarray hits (Supplemental Table 4). qPCR analyses confirmed the 
observed downregulation of the monocyte genes Hydroxymethylbilane synthase 
(HMBS) (p=0.01), Leucine Rich Pentatricopeptide Repeat Containing (LRPPRC) 
(p=0.005), Transmembrane Protein 134 (TMEM134) (p=0.028) and Zwilch 
Kinetochore Protein (ZWILCH) (p=0.005) in childhood obesity compared to lean 
controls (Figure 2, Supplemental Table 5). Furthermore, Inosine Monophosphate 
Dehydrogenase 2 (IMPDH2) showed a trend towards downregulation in obese 
monocytes (p=0.06). Because of its significant downregulation in monocytes from 
obese adults (see below), IMPDH2 was included in subsequent analyses as well. 
Together, these 5 downregulated genes formed the starting point for studying the 
relation between monocyte gene expression and the clinical phenotype in childhood 
obesity and adults at risk for ischemic cardiovascular disease.  
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Figure 2: qPCR validation

qPCR confirms downregulation of 5 monocyte genes in childhood obesity. Graphs show fold induction 
of the gene of interest, normalized for housekeeping gene expression. Error bars represent SEM. SEM: 
standard error of mean; qPCR: quantitative polymerase chain reaction.
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Monocyte gene expression and clinical variables in childhood 
The relation of the 5 validated genes with obesity-associated clinical variables was 
studied using linear modeling. First, the whole cohort of obese children and lean 
controls was studied, adjusting linear regression coefficients for age, sex and BMI-
SD (Table 2). Downregulation of the monocyte genes HMBS and TMEM134 was 
associated with an increase of the inflammatory adipokine chemerin (β=-0.84 µg/
ml, p=0.03 and β=-1.24 µg/ml, p=0.04, respectively). Furthermore, downregulation 
of ZWILCH was associated with a decrease in adiponectin levels (β=36.01 µg/ml, 
p=0.04) and a decrease in IMPDH2 expression was associated with a decrease in 
TNF-R2 (β=1.01 ng/ml, p=0.04). Finally, downregulation of LRPPRC and ZWILCH 
was associated with an increased expression of the activation marker CD11b on 

Genes
HMBS IMPDH2 LRPPRC TMEM134 ZWILCH

Cardiovascular risk factors
Systolic BP -2.52 

(-18.87, 13.84)
11.46

(-6.47, 29.38)
-0.66 

(-21.39, 20.07)
-3.13

(-29.94, 23.67)
-26.43 

(-63.45, 10.59)

QUICKI -0.01
(-0.06, 0.05)

0.03
(-0.02, 0.09)

-0.06
(-0.13, 0.001)

0.06
(-0.02, 0.14)

-0.02
(-0.14, 0.10)

Monocytes
Total monocyte
count

-0.06 
(-0.33, 0.20)

-0.25
(-0.54, 0.04)

-0.15 
(-0.49, 0.18)

-0.18 
(-0.61, 0.24)

-0.51
(-1.11, 0.09)

CD14++CD16-
count

-5.08 
(-32.18, 22.01)

-25.98
(-55.11, 3.15)

-12.28 
(-46.14, 21.58)

-25.81 
(-68.19, 16.56)

-54.99 
(-114.69, 4.71)

CD14++CD16+
count

-0.26 
(-6.86, 6.34)

-2.16 
(-9.47, 5.15)

-5.55 
(-13.66, 2.56)

2.48 
(-7.98, 12.93)

-7.97 
(-22.85, 6.91)

CD14++CD16- 
CD11b MFI

-2442
(-10380, 5495)

-3071
(-12069, 5927)

-10184*
(-18305, -2062)

-5021.0 
(-18839, 8797)

-19312*
(-36097, -2527)

CD14++CD16+
CD11b MFI

362
(-7767, 8491)

-1705
(-1094, 7507)

-6765 
(-15456, 1925)

2012
(-12154, 6178)

-8736 
(-26844, 9373)

Adipokines
Adiponectin 13.56 

(-1.79, 28.90)
10.41 

(-7.67, 28.49)
10.33 

(-9.17, 29.83)
20.66 

(-3.96, 45.29)
36.01*

(1.43, 70.60)

Chemerin -0.84*
(-1.60, -0.09)

-0.25 
(-1.13, 0.63)

-0.27 
(-1.26, 0.76)

-1.24*
(-2.45, -0.03)

-0.14 
(-1.96, 1.68)

Leptin -7.05 
(-204.94, 190.85)

106.93
(-110.29, 324.16)

27.60 
(-220.06, 275.26)

116.45 
(-195.93, 428.84)

311.12 
(-130.88, 753.11)

TNF-R2 0.11 
(-0.77, 0.99)

1.01*
(0.08, 1.94)

0.48 
(-0.62, 1.57)

1.02 
(-0.34, 2.39)

1.86 
(-0.07, 3.79)

Table 2: Gene expression and cardiometabolic risk profile in the total pedriatric 
population

The association of the 5 validated genes with cardiometabolic parameters was studied using a linear regression 
model. Linear regression coefficients (95% CI) for the monocyte genes are shown, adjusted for age, sex and 
BMI-SD. *p<0.05. BP: systolic blood pressure; CI: confidence interval; MFI: median fluorescence intensity; 
QUICKI: quantitative insulin sensitivity index. 
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classical CD14++CD16- monocytes (β=-10184 MFI, p=0.02 and β=-19312 MFI, 
p=0.03, respectively). 

Second, the relation of monocyte gene expression with clinical variables was studied 
in the obese subgroup, adjusting linear regression coefficients for age and sex (Table 
3). In the obese subgroup, downregulation of IMPDH2 was associated with a decrease 
in systolic blood pressure (β=20.72mmHg, p=0.04), and downregulation of LRPRC 
and ZWILCH were associated with an increase in QUICKI (β=-0.08, p=0.04 and 
β=-0.14, p=0.04). Furthermore, downregulation of LRPPRC was associated with 
an increase in CD11b expression on classical CD14++CD16- and intermediate 

Genes
HMBS IMPDH2 LRPPRC TMEM134 ZWILCH

Cardiovascular risk factors
Systolic BP -1.41 

(-19.59, 16.78)
20.72*

(1.25, 40.19)
11.22 

(-15.87, 38.30)
-5.82 

(-38.63, 26.99)
-25.87  

(-74.00, 22.26)

QUICKI -0.03 
(-0.09, 0.02)

-0.03 
(-0.09, 0.04)

-0.08*
(-0.16, -0.001)

-0.01 
(-0.12, 0.09)

-0.14*
(-0.28, -0.001)

Monocytes
Total monocyte
count

0.02 
(-0.37, 0.41)

-0.17 
(-0.61, 0.28)

-0.05 
(-0.64, 0.54)

0.02 
(-0.69, 0.72)

-0.35 
(-1.39, 0.70)

CD14++CD16-
count

4.15 
(-5.81, 14.11)

1.09 
(-10.44, 12.62)

-3.80 
(-18.78, 11.18)

12.66 
(-4.75, 30.07)

-6.53 
(-33.05, 19.98)

CD14++CD16+
count

6.98
(-33.07, 47.02) 

-15.09 
(-60.64, 30.46)

1.94 
(-57.94, 61.82)

-4.53 
(-76.39, 67.34)

-36.60 
(-141.66, 68.47)

CD14++CD16- 
CD11b MFI

3389 
(-9927, 16705)

-8455
(-12017, 14902)

-15385*
(-29859, -912)

10387
(-18329, 39102)

-24070
(-62508, 14369)

CD14++CD16+
CD11b MFI

2323 
(-11681, 16326)

-839 
(-14954, 13275)

-19214**
(-33658, -4771)

17823 
(-11611, 47257)

-23782
(-64228, 16665)

Adipokines
Adiponectin 16.47 

(-0.54, 33.48)
7.72 

(-13.85, 29.29)
-0.55

(-27.07, 26.01)
16.56 

(-16.04, 49.17)
23.05 

(-24.31, 70.40)

Chemerin -1.09*
(-2.14, -0.03)

-0.17 
(-1.46, 1.12)

-0.28 
(-1.95, 1.40)

-2.68**
(-4.45, -0.92)

-1.17 
(-4.13, 1.78)

Leptin 580
(-265, 380)

238
(-120, 596)

144 
(-333, 621)

377 
(-186, 939)

759
(-46, 1563)

TNF-R2 0.16 
(-0.99, 1.30)

1.28*
(0.07, 2.49)

0.58 
(-1.10, 2.26)

1.17 
(-0.83, 3.17)

1.19 
(-1.80, 4.17)

The association of the 5 validated genes with cardiometabolic parameters was studied using a linear 
regression model. Linear regression coefficients (95% CI) for the monocyte genes are shown, adjusted for 
age, sex and BMI-SD. *p<0.05, **p<0.01. BP: systolic blood pressure; CI: confidence interval; MFI: median 
fluorescence intensity; QUICKI: quantitative insulin sensitivity index. 

Table 3: Monocyte gene expression and cardiometabolic risk profile in the obese 
subgroup
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CD14++CD16+ monocytes (β=-15385, p=0.03, and β=-19214, p=0.01, respectively). 
Finally, downregulation of HMBS and TMEM134 were associated with increased 
chemerin levels (β=-1.09 µg/ml, p=0.04 and β=-2.68 µg/ml, p=0.004, respectively), 
and downregulation of IMPDH2 was associated with decreased TNF-R2 levels (β= 
1.28 ng/ml, p=0.04). 

In summary, the analyses in the whole group and the obese subgroup show a consistent 
relation between downregulation of LRPPRC and enhanced monocyte CD11b 
expression, downregulation of HMBS and TMEM134 and enhanced chemerin levels, 
and downregulation of IMPDH2 and decreased TNF-R2 levels. 

Pathway analysis
Focusing on the functional relevance of the observed gene expression profile, the 
functional enrichment of the differentially expressed genes in biological processes 
was assessed using ToppFun, a GO Term enrichment tool. Sixty-four out of 67 genes 
could be identified by ToppFun and were mapped to pathways involved in biological 
processes, using a minimum pathway size of 10 genes. These genes were particularly 
involved in oxidative phosphorylation and distinct metabolic processes (Supplemental 
Table 3). Previous research has shown that oxidative phosphorylation, in particular 
oxidative stress, is associated with adulthood obesity and cardiovascular disease in 
obese individuals.20 Therefore, we next investigated the association of the validated 
genes with adult obesity and cardiovascular disease. 

Monocyte gene expression and adult obesity and cardiovascular risk 
To investigate whether adults at risk show a monocyte gene expression profile similar 
to obese children, the 5 validated monocyte genes were studied in a cohort of 351 
adults at risk for ischemic cardiovascular disease. Clinical characteristics of the adult 
cohort are provided in Supplemental Table 6. 

Downregulation of monocyte IMPDH2 (β=-0.496, p=0.004) and TMEM134 (β=-
0.314, p=0.043) was associated with obesity in adults (BMI>30kg/m2), paralleling our 
findings in children. These relationships remained significant after adjustment for age 
and sex (Table 4). Next, we tested whether monocyte gene expression was associated 
with the established SYNTAX coronary atherosclerosis score. The SYNTAX score uses 
coronary angiography findings to quantify the complexity of coronary atherosclerosis, 
based on the number of atherosclerotic lesions, their location and their functional 
impact15. The Syntax score was originally developed to help clinicians select the 
most appropriate revascularization strategy, but is increasingly being used as a risk 
stratification tool for adverse ischemic events in patients undergoing percutaneous 
coronary intervention.15,21 The SYNTAX score was available for 196 of the 351 adults. 
Monocyte TMEM134 downregulation was associated with higher SYNTAX scores (β=-
0.247, p=0.041) (Table 5). While adjustment of age and sex did not alter this association 
(β=-0.251, p=0.033), addition of BMI to the model attenuated the associated between 
TMEM134 expression and SYNTAX scores. In summary, monocyte TMEM134 
downregulation is observed in childhood obesity, associated with obesity in adults 
at risk, and correlates with a higher SYNTAX score in adults at risk in an obesity-
dependent fashion.  
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Model 1 Model 2
Gene ID Transcript Array ID β (95% CI) β (95% CI)

HMBS ILMN_16358 6060278 -0.213 
(-0.505, 0.078)

-0.233 
(-0.541, 0.076)

HMBS ILMN_16358 7320021 -0.194 
(-0.496, 0.108)

-0.227 
(-0.549, 0.095)

IMPDH2 ILMN_3439 4590026 -0.424*
(-0.753, -0.095)

-0.496**
(-0.837, -0.156)

LRPPRC ILMN_23753 6380064 -0.007 
(-0.287, 0.272)

-0.013 
(-0.304, 0.277)

TMEM134 ILMN_176754 5690711 -0.061 
(-0.318, 0.195)

-0.068 
(-0.340, 0.203)

TMEM134 ILMN_183533 670671 -0.311*
(-0.610, -0.011)

-0.314*
(-0.620, -0.009)

ZWILCH ILMN_166966 7000743 -0.167 
(-0.467, 0.133)

-0.168 
(-0.485, 0.148)

ZWILCH ILMN_3475 4850221 -0.247
(-0.556, 0.062)

-0.260 
(-0.581, 0.062)

Table 4: Monocyte gene expression and obesity in the adult cohort

The association of the 5 genes with obesity in the adults was studied using a logistic regression model. 
Adult obesity was defined as a BMI >30kg/m2 and compared to a normal weight BMI<25kg/m2. Logistic 
regression coefficients β (95% CI) are shown, both unadjusted (Model 1) and adjusted for age and sex 
(Model 2). *p<0.05, **p<0.01. BMI: body mass index; CI: confidence interval.

Model 1 Model 2 Model 3
Gene ID Transcript Array ID β (95% CI) β (95% CI) β (95% CI)

HMBS ILMN_16358 6060278 -0.005 
(-0.243, 0.232)

0.002 
(-0.232, 0.237)

-0.013 
(-0.252, 0.227)

HMBS ILMN_16358 7320021 -0.043 
(-0.281, 0.195)

-0.013 
(-0.247, 0.221)

-0.030 
(-0.268, 0.208)

IMPDH2 ILMN_3439 4590026 -0.133 
(-0.370, 0.104)

-0.116 
(-0.347, 0.115)

-0.090 
(-0.331, 0.150)

LRPPRC ILMN_23753 6380064 -0.187 
(-0.424, 0.049)

-0.188 
(-0.419, 0.043)

-0.201 
(-0.437, 0.036)

TMEM134 ILMN_176754 5690711 -0.222 
(-0.458, 0.014)

-0.211 
(-0.443, 0.021)

-0.193 
(-0.43, 0.044)

TMEM134 ILMN_183533 670671 -0.247* 
(-0.483, -0.012)

-0.251*
(-0.481, -0.022)

-0.227 
(-0.464, 0.011)

ZWILCH ILMN_166966 7000743 -0.102 
(-0.339, 0.136)

-0.171 
(-0.404, 0.062)

-0.168 
(-0.408, 0.071)

ZWILCH ILMN_3475 4850221 0.030 
(-0.207, 0.268)

0.010 
(-0.223, 0.242)

0.048 
(-0.197, 0.293)

The association of the 5 validated genes with SYNTAX score (square-root transformed) was studied using 
linear regression. Linear regression coefficients β (95% CI) are shown. Model 1: unadjusted, Model 2: 
adjusted for age and sex, Model 3: adjusted for age, sex and BMI. *p<0.05. CI: confidence interval; SYNTAX: 
SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery.

Table 5: Monocyte gene expression and SYNTAX score in the adult cohort
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Discussion

Monocytes are key players in the development and exacerbation of atherosclerosis, 
both via their role as macrophage foam cell precursors and their role in systemic 
inflammation.22 In human studies, increased numbers of classical CD14++CD16- and 
intermediate CD14++CD16+ monocytes predict cardiovascular events independent 
of age, sex and classical cardiovascular risk factors.23,24 Interestingly, childhood obesity 
also coincides with increased circulating numbers of classical and intermediate 
monocytes,7 which prompts the question as to whether the monocytosis in childhood 
obesity contributes to atherogenesis over the years. The atherogenic role of monocytes 
in childhood obesity is difficult to study in human models, since longitudinal data are 
lacking. To the best of our knowledge, this is the first monocyte gene expression study 
in childhood obesity, and the first endeavor to crosscheck gene expression profiles 
in an adult cohort at risk. Our study showed a distinctive monocyte gene expression 
profile in childhood obesity, which correlated with inflammatory adipokine levels and 
monocyte CD11b expression, the latter of which represents monocyte activation.7 More 
importantly, downregulation of monocyte IMPDH2 and TMEM134 was associated 
with obesity in the adult cohort at risk, and downregulated TMEM134 coincided with 
a higher SYNTAX score, reflecting an enhanced atherosclerotic burden.15,21 

Our results stress the relevance of the monocytosis in childhood obesity and raise 
several interesting questions. First, pathway analysis of differentially regulated 
monocyte genes in childhood obesity revealed an overrepresentation of oxidative 
phosphorylation, oxidative stress, and intracellular metabolism pathways, which 
apparently reflects reprogramming to aerobic glycolysis. While resting immune cells 
primarily need ATP to meet cellular demands, and use glucose-pyruvate conversion 
(glycolysis) and oxidative phosphorylation to fulfill these needs, many immune cells 
in inflammatory microenvironments undergo metabolic reprogramming to aerobic 
glycolysis in order to engage in cellular growth and proliferation.25 Aerobic glycolysis 
involves increased glucose transport, conversion of glucose to lactate, and the use of 
glycolytic intermediates to provide sufficient biomolecules (amino acids, nucleotides, 
lipids) for cell growth and proliferation.25 Interestingly, an upregulation of aerobic 
glycolysis also coincides with the development of ‘trained immunity’.26 Upon repetitive 
stimulation with microbial moieties and/or metabolites, monocytes undergo epigenetic 
reprogramming towards aerobic glycolysis, which enhances the response of the trained 
monocytes in case of restimulation.25,27 Recent literature suggests that the development 
of trained immunity contributes to the development of systemic inflammation and 
atherosclerosis, and represents an intriguing target for therapeutic intervention.27

Second, the role of TMEM134 in monocytes gains traction. In human monocyte 
studies, the expression of TMEM134 was decreased in classical CD14++CD16- and 
intermediate CD14++CD16+ monocytes, in contrast to non-classical CD14+CD16++ 
monocytes.28 Hence TMEM134 downregulation in childhood obesity and adults with 
cardiovascular risk may reflect obesity-induced CD14++CD16- and CD14++CD16+ 
monocytosis. Whether the highly conserved 21.5kDa transmembrane protein 
TMEM134 plays an active role in monocyte differentiation remains to be elucidated. 
Notably, the existing studies indicate that TMEM134 affects the prototypical 
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inflammatory nuclear factor-κB (NF-κB) signaling pathway. TMEM 134 was identified 
as a binding protein of latent membrane protein 1 (LMP1) and Hepatitis E Virus Open 
Reading Frame 2 (ORF2), and affected downstream NF-κB signalling via these binding 
partners.29,30 Importantly, modulation of downstream NF-κB signalling is considered 
one of the hallmarks of innate immune programming in chronic inflammation.31 
Therefore, it is tempting to speculate that the observed downregulation of TMEM134 
in childhood obesity monocytes is connected to the development of trained immunity, 
as discussed previously.

Finally, limitations of the current study have to be taken into account. Since our 
pediatric study population was relatively small, the associations reported in our 
study are of subtle strength. Due to the small sample size, adjustment of the statistical 
models for pubertal stage was impossible. The latter has probably not affected our 
results, as we did adjust our statistical models for age and sex, both highly correlated 
with pubertal stage. Nonetheless, the possibility of residual confounding cannot be 
precluded. Second, environmental factors such as freeze-thawing of the monocytes 
may have influenced gene expression profiles. Though pediatric and adult samples 
were treated similarly, minor processing differences could impact gene expression 
profiles. Third, we chose to focus on the 5 qPCR-validated monocyte genes. Thereby, 
we may have disregarded important monocyte genes that were not included in the 
qPCR validation. Finally, CD14-positive magnetic bead sorting skewed the analyzed 
monocyte compartments towards classical CD14++CD16- and intermediate 
CD14++CD16+ monocytes (Supplemental Figure 1), and partly disregarded the non-
classical CD14+CD16++ monocyte subset, which is considered less important for 
atherosclerosis development.23,24  

In conclusion, childhood obesity entails monocyte gene expression alterations 
associated with obesity and enhanced complexity of coronary atherosclerosis in adults. 
Especially the role of TMEM134 in monocytes gains traction, as downregulation 
of monocyte TMEM134 was associated with obesity in children and adults, and 
coincided with a higher SYNTAX atherosclerosis score in adults at risk for ischemic 
cardiovascular disease.
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Methods 

Pediatric cohort
Peripheral blood mononuclear cells (PBMC) were studied of 51 children aged 6-16 
years (35 obese, 16 lean controls). The cells were derived from a previously published 
cross-sectional study at the Pediatric Outpatient Department of the Meander Medical 
Center in Amersfoort, the Netherlands, consisting of 60 obese children and 30 age- 
and sex-matched lean controls.7 Because PBMC were available for 35 obese children 
and 16 lean controls, these children were included in the current study. Importantly, 
the availability of stored PBMC depended on the amount of blood a patient donated 
upon inclusion, which varied randomly. Therefore, we believe patients in the current 
study are a random selection of the previous study. 

BMI-SD was calculated using the outcomes of the Fifth Dutch Growth Study (2008-
2010). Childhood obesity was defined as BMI-SD>2.5, which can be extrapolated 
toward the international definition of obesity as BMI>30 kg/m2 for adults.32,33 Blood 
pressure was measured using an automated oscillometric method (Dinamap; GE 
Healthcare, Amersham, UK). Lipid profiles where obtained using standardized 
laboratory procedures. Written informed consent was obtained from all children and 
their parents. The study was approved by the Institutional Medical Ethical Review 
Board of the University Medical Center Utrecht, The Netherlands. All experiments 
with human biological materials were performed in accordance with the relevant 
guidelines and regulations. 

Adult cohort
CTMM Circulating Cells is a multi-center cohort of four Dutch medical centers 
that enrolled patients with stable or unstable angina pectoris undergoing coronary 
angiography, with the aim of identifying cellular biomarkers for the prediction of 
adverse cardiovascular events. Patients were recruited between March 2009 and 
September 2011. Details of the study design have been described elsewhere.34 All 
participants provided written informed consent. The study was approved by the 
Institutional Medical Ethical Review Board of the University Medical Center Utrecht, 
The Netherlands. Data from 351 patients were included in the final analysis after 
removal of samples with outlying median intensity (Supplemental Table 6). Gene 
expression profiles were quantile-normalized followed by log2 transformation. The 
complexity of coronary atherosclerosis was assessed with coronary angiography 
using the SYNTAX score system. Two independent observers quantified SYNTAX 
scores, using SYNTAX score calculator version 2.11. The SYNTAX score is a tool for 
evaluating the complexity of coronary artery disease, taking into account the number 
of atherosclerotic lesions, their location and their functional impact.15 SYNTAX scores 
were available from 196 of the 351 patients.
 
Monocytes
In both cohorts, peripheral blood mononuclear cells (PBMC) were isolated using 
Ficoll-Paque density gradient centrifugation. In the pediatric cohort, flow cytometric 
phenotyping was performed in earlier studies.7 Subsequent to isolation, samples were 
stored in freeze medium (FCS with 10% DMSO, Sigma-Aldrich) until further use. 
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In order to isolate monocytes, stored samples where thawed and washed in medium 
comprising of RPMI1640 supplemented with L-glutamate and 25 mM HEPES 
(Gibco), containing 2% FCS and penicillin/streptomycin (100 U/mL) (Invitrogen). 
Cells where spun down for 10 min, 1600 rpm at room temperature. PBMCs where 
then resuspended in MACS buffer, 2%FBS (Biowest), 2%EDTA (VWR chemicals) 
in PBS (Gibco), and counted using the trypan blue exclusion method (Gibco). Anti-
human CD14 magnetic particles where subsequently used to isolate monocytes using 
the company protocol (BD IMag). The CD14 positive cells were then re-suspended in 
500ul of TRIZOL (Life Technologies) and stored at -80°C. 

Microarray and data processing
RNA was isolated from the trizol-lysed samples by AROS Applied Biotechnology. 
Samples of the 35 obese children and 16 healthy control children and the 351 adults 
underwent the same isolation procedures, and were similarly processed. In short, 
samples were labeled using the Illumina TotalPrep RNA Amplification Kit and 100ng 
of total RNA. The IVT product was QC-checked on gel and quantitated using the 
NanoDrop (Thermo Scientific). 750ng of cDNA was used for the standard Illumina 
protocol before samples were hybridized on the arrays (Illumina humanHT-12 v3). 
Arrays were scanned using a Bead Array Reader (Illumina). After inspection of the 
sample median intensities, samples with a median intensity of <50 were removed. 
Subsequently, the expression data was quantile-normalised and log2 transformed 
using the lumi R package.35 

qPCR Validation
To validate the 67 differentially expressed genes, qPCR primers were designed for the 
top 20 hits. Of these primer pairs 17 functioned optimally and were deemed applicable 
for the validation process (Supplementary Table 4). High quality RNA of 27 obese 
children and 11 healthy controls was available for the qPCR validation studies. qPCR 
analysis was performed using SYBR Select Master Mix reagents (Thermo Fischer 
Scientific) and run using the QuantStudio Flex system (Thermo Fischer Scientific). 
Data was normalized for housekeeping gene expression of GUSB, 36B4 and B2M, in 
accordance with international standards.36

Statistics
First, demographic characteristics of the study population were presented as numbers 
and percentages for categorical variables and as means with standard deviation 
(SD) or medians with interquartile ranges for normal and non-normally distributed 
continuous variables, respectively. Subsequently, monocyte gene expression profiles 
of lean and obese children were compared and significant differences between both 
groups were assessed using Mann Whitney U tests for continuous variables and χ2 test 
for binary variables.

Second, monocyte gene expression profiles were compared using the Limma package 
in R. In short, the Limma package uses empirical Baysian methods for the analysis 
of gene expression microarray data and is specifically designed for analyzing smaller 
datasets.35 For this analysis, the genes functioned as outcome variables (dependent 
variables) and obesity status as determinant (independent variable). Age and sex 
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were included in the model as covariates. In addition, to adjust for multiple testing, 
Benjamini Hochberg (BH) correction was applied. To illustrate the results of the 
microarray analysis, a heat map was generated using the heatmap.2 function in R. 
Hierarchical clustering was performed using complete linkage.

Third, linear regression was used to study the relation between obesity status and the 
gene expression (dependent variable). For this analysis, two models were constructed; 
a crude model (Model 1) and a model in which age and sex were included as covariates 
(Model 2) (Supplemental Table 2). 

Fourth, the relation between the 5 qPCR validated genes and clinical variables was 
studied in the whole pediatric cohort (n=51) as well as the obese subgroup (n=35) and 
the adult cohort (n=351) using linear regression analysis. For the analysis performed 
in the whole pediatric cohort age, sex and BMI-SD were included as covariates 
whereas for the analysis in the obese subgroup age and sex were included as covariates. 
A p-value of <0.05 was considered statistically significant. 
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Log fold change Crude 
p-value

FDR-adjusted 
p-value β

ACBD6 -0.16 <0.0001 0.03 3.35
ANXA2P1 0.25 <0.0001 0.04 1.75
APOF 0.23 <0.0001 0.03 2.07
ATP5D -0.16 <0.0001 0.03 2.31
C16orf13 -0.17 <0.0001 0.05 1.33
C20orf201 -0.15 <0.0001 0.04 1.98
CCT7 -0.29 <0.0001 0.03 2.47
CD99 0.29 <0.0001 0.04 1.85
CDKN1C -0.41 <0.0001 0.05 1.32
CHCHD10 -0.17 <0.0001 0.04 1.86
CKS1B -0.30 <0.0001 0.03 2.46
COX15 -0.32 <0.0001 0.04 1.57
DCTD -0.14 <0.0001 0.03 2.88
DIS3L -0.32 <0.0001 0.04 1.92
ECSIT -0.21 <0.0001 0.03 3.69
EEF1D -0.17 <0.0001 0.03 3.04
EMP2 0.14 <0.0001 0.03 2.36
F13A1 0.62 <0.0001 0.03 3.70
FAM195A -0.35 <0.0001 0.03 2.42
FERMT3 0.11 <0.0001 0.03 3.29
FOXK1 -0.19 <0.0001 0.04 1.89
GABRR3 -0.09 <0.0001 0.03 2.57
GALM -0.17 <0.0001 0.04 1.47
GMDS -0.20 <0.0001 0.04 1.57
GTDC1 -0.10 <0.0001 0.04 1.73
HMBS -0.27 <0.0001 0.03 2.76
IFNA1 -0.09 <0.0001 0.03 2.07
IMPDH2 -0.28 <0.0001 0.02 4.98
LGALS3 0.31 <0.0001 0.03 2.80
LNPEP -0.12 0.0001 0.05 1.22
LOC100130604 0.36 <0.0001 0.03 2.18
LOC100131387 0.16 <0.0001 0.03 2.19
LOC100132598 -0.08 0.0001 0.05 1.19
LOC651452 0.07 <0.0001 0.03 2.38
LOC652683 -0.10 <0.0001 0.03 2.10
LOC653778 0.40 <0.0001 0.04 1.84
LOC654121 0.20 <0.0001 0.03 2.65
LOC730278 0.31 <0.0001 0.03 2.51
LOC730740 0.16 <0.0001 0.03 3.24
LRPPRC -0.21 <0.0001 0.03 3.15
LSM4 -0.23 0.0001 0.05 1.20
MAP6D1 -0.33 <0.0001 0.03 2.78
ME1 0.27 <0.0001 0.02 4.37
METTL2B 0.14 <0.0001 0.03 2.86
MRPS15 -0.16 <0.0001 0.05 1.30
NDUFB2 -0.22 <0.0001 0.04 1.63

Supplemental Table 1: Significantly different genes between obese and lean children 
in total study population (n=51)
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Log fold change Crude 
p-value

FDR-adjusted 
p-value

β

NDUFS7 -0.23 <0.0001 0.05 1.28
NME1-NME2 -0.23 <0.0001 0.03 3.42
PID1 -0.44 <0.0001 0.03 2.07

PKN1 -0.15 <0.0001 0.03 2.07
POLR2I -0.20 0.0001 0.05 1.22
PPP1R12A 0.25 <0.0001 0.04 1.48
QPRT -0.32 <0.0001 0.00 8.56
SAR1A 0.32 <0.0001 0.04 1.75
SH3BGRL3 0.26 <0.0001 0.03 3.24
SLC30A4 0.19 <0.0001 0.03 2.48
SNHG7 -0.39 <0.0001 0.02 4.61
SNORD113-1 -0.08 <0.0001 0.04 1.73
SRM -0.17 <0.0001 0.04 1.42
TMEM134 -0.19 <0.0001 0.02 4.54
TMEM160 -0.28 <0.0001 0.04 1.77
UBA6 0.36 <0.0001 0.04 1.53
USP49 0.55 <0.0001 0.04 1.56
UTP14A -0.16 <0.0001 0.05 1.37
ZFP36L1 0.40 <0.0001 0.04 1.96
ZNF581 -0.17 <0.0001 0.04 1.51
ZWILCH -0.12 <0.0001 0.03 2.62

Supplemental Table 1 (continued)
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Model 1
β (95% CI) p value Model 2

β (95% CI) p-value

ACBD6 -0.16 (-0.22, -0.10) <0.0001 -0.16 (-0.22, -0.09) <0.0001
ANXA2P1 0.26 (0.16, 0.37) <0.0001 0.25 (0.13, 0.36) <0.0001
APOF 0.22 (0.12, 0.32) <0.0001 0.23 (0.12, 0.33) <0.0001
ATP5D -0.17 (-0.23, -0.10) <0.0001 -0.16 (-0.23, -0.09 ) <0.0001
C16orf13 -0.15 (-0.23, -0.07) 0.0004 -0.17 (-0.26, -0.09) <0.0001
C20orf201 -0.16 (-0.22, -0.09) <0.0001 -0.15 (-0.22, -0.08) 0.0001
CCT7 -0.28 (-0.40, -0.16) <0.0001 -0.29 (-0.42, -0.16) <0.0001
CD99 0.26 (0.13, 0.39) 0.0002 0.29 (0.16, 0.43) <0.0001
CDKN1C -0.40 (-0.59, -0.22) <0.0001 -0.41 (-0.61, -0.21) 0.0001
CHCHD10 -0.19 (-0.26, -0.11) <0.0001 -0.17 (-0.25, -0.09) <0.0001
CKS1B -0.28 (-0.41, -0.16) <0.0001 -0.30 (-0.43, -0.16) <0.0001
COX15 -0.29 (-0.43, -0.15) <0.0001 -0.32 (-0.47, -0.17) 0.0001
DCTD -0.16 (-0.22, -0.11) <0.0001 -0.14 (-0.20, -0.08) <0.0001
DIS3L -0.31 (-0.45, -0.18) <0.0001 -0.32 (-0.46, -0.17) <0.0001
ECSIT -0.21 (-0.29, -0.13) <0.0001 -0.21 (-0.30, -0.13) <0.0001
EEF1D -0.15 (-0.22, -0.08) <0.0001 -0.17 (-0.24, -0.10) <0.0001
EMP2 0.12 (0.06, 0.18) 0.0002 0.14 (0.08, 0.20) <0.0001
F13A1 0.64 (0.41, 0.88) <0.0001 0.62 (-0.37, 0.88) <0.0001
FAM195A -0.34 (-0.48, -0.19) <0.0001 -0.35 (-0.51, -0.20) <0.0001
FERMT3 0.11 (0.07, 0.15) <0.0001 0.11 (0.07, 0.15) <0.0001
FOXK1 -0.19 (-0.27, -0.11) <0.0001 -0.19 (-0.28, -0.10) <0.0001
GABRR3 -0.08 (-0.12, -0.05) <0.0001 -0.09 (-0.13, -0.05) <0.0001
GALM -0.18 (-0.26, -0.11) <0.0001 -0.17 (-0.26, -0.09) 0.0001
GMDS -0.18 (-0.27, -0.09) 0.0001 -0.20 (-0.29, -0.10) <0.0001
GTDC1 -0.10 (-0.14, -0.06) <0.0001 -0.10 (-0.15, -0.06) <0.0001
HMBS -0.25 (-0.36, -0.15) <0.0001 -0.27 (-0.38, -0.15) <0.0001
IFNA1 -0.08 (-0.11, -0.04) 0.0003 -0.09 (-0.13, -0.05) <0.0001
IMPDH2 -0.29 (-0.39, -0.19) <0.0001 -0.28 (-0.39, -0.18) <0.0001
LGALS3 0.35 (0.22, 0.48) <0.0001 0.31 (0.18, 0.44) <0.0001
LNPEP -0.13 (-0.18, -0.07) <0.0001 -0.12 (-0.18, -0.06) 0.0001
LOC100130604 0.38 (0.23, 0.53) <0.0001 0.36 (0.20, 0.53) <0.0001
LOC100131387 0.17 (0.11, 0.24) <0.0001 0.16 (0.09, 0.23) <0.0001
LOC100132598 -0.08 (-0.11, -0.04) <0.0001 -0.08 (-0.12, -0.04) <0.0001
LOC651452 0.06 (0.04, 0.09) <0.0001 0.07 (0.04, 0.10) <0.0001
LOC652683 -0.09 (-0.13, -0.05) <0.0001 -0.10 (-0.14, -0.05) <0.0001
LOC653778 0.39 (0.21, 0.56) <0.0001 0.40 (0.21, 0.59) <0.0001
LOC654121 0.20 (0.13, 0.28) <0.0001 0.20 (-0.11, 0.28) <0.0001
LOC730278 0.32 (0.19, 0.45) <0.0001 0.31 (0.18, 0.45) <0.0001
LOC730740 0.17 (0.11, 0.23) <0.0001 0.16 (0.09, 0.23) <0.0001
LRPPRC -0.21 (-0.30, -0.13) <0.0001 -0.21 (-0.30, -0.12) <0.0001
LSM4 -0.22 (-0.33, -0.12) <0.0001 -0.23 (-0.34, -0.12) 0.0001
MAP6D1 -0.36 (-0.49, -0.23) <0.0001 -0.33 (-0.48, -0.19) <0.0001
ME1 0.27 (0.17, 0.38) <0.0001 0.27 (0.17, 0.38) <0.0001
METTL2B 0.13 (0.08, 0.19) <0.0001 0.14 (0.08, 0.21) <0.0001
MRPS15 -0.17 (-0.24, -0.10) <0.0001 -0.16 (-0.24, -0.08) 0.0001
NDUFB2 -0.22 (-0.32, -0.13) <0.0001 -0.22 (-0.33, -0.12) <0.0001

Supplemental Table 2: Association between genes and obesity status in total study 	
population (n=51)
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Model 1
β (95% CI)

p value Model 2
β (95% CI)

p-value

NDUFS7 -0.24 (-0.34, -0.14) <0.0001 -0.23 (-0.34, -0.12) 0.0001
NME1-NME2 -0.23 (-0.31, -0.14) <0.0001 -0.23 (-0.32, -0.13) <0.0001
PID1 -0.43 (-0.62, -0.25) <0.0001 -0.44 (-0.65, -0.24) <0.0001
PKN1 -0.14 (-0.20, -0.08) <0.0001 -0.15 (-0.22, -0.08) <0.0001
POLR2I -0.21 (-0.30, -0.12) <0.0001 -0.20 (-0.30, -0.11) 0.0001
PPP1R12A 0.27 (0.16, 0.38) <0.0001 0.25 (0.13, 0.37) 0.0001
QPRT -0.31 (-0.40, -0.22) <0.0001 -0.32 (-0.42, -0.22) <0.0001
SAR1A 0.33 (0.19, 0.46) <0.0001 0.32 (0.17, 0.47) <0.0001
SH3BGRL3 0.25 (0.14, 0.36) <0.0001 0.26 (0.15, 0.38) <0.0001
SLC30A4 0.16 (0.09, 0.24) <0.0001 0.19 (0.11, 0.27) <0.0001
SNHG7 -0.37 (-0.51, -0.24) <0.0001 -0.39 (-0.54, -0.24) <0.0001
SNORD113-1 -0.07 (-0.10, -0.03) 0.0003 -0.08 (-0.12, -0.05) <0.0001
SRM -0.18 (-0.25, -0.10) <0.0001 -0.17 (-0.25, -0.09) <0.0001
TMEM134 -0.19 (-0.26, -0.13) <0.0001 -0.19 (-0.26, -0.12) <0.0001
TMEM160 -0.28 (-0.40, -0.16) <0.0001 -0.28 (-0.42, -0.15) <0.0001
UBA6 0.33 (0.17, 0.49) 0.0002 0.36 (0.19, 0.54) 0.0001
USP49 0.55 (0.31, 0.79) <0.0001 0.55 (0.29, 0.81) 0.0001
UTP14A -0.14 (-0.21, -0.07) 0.0002 -0.16 (-0.23, -0.08) 0.0001
ZFP36L1 0.44 (0.27, 0.62) <0.0001 0.40 (0.22, 0.59) <0.0001
ZNF581 -0.18 (-0.25, -0.10) <0.0001 -0.17 (-0.25, -0.09) <0.0001
ZWILCH -0.11 (-0.16, -0.06) <0.0001 -0.12 (-0.17, -0.07) <0.0001

Supplemental Table 2 (continued)

Model 1: crude; model 2: adjusted for age and sex (reference category: lean). Values are linear regression 
coefficients (β) with 95% confidence intervals (CI).
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Name ID Num.   
of hits

Num. of  
genes in 
pathway

Raw 
p-value

p-value  
(FDR-

adjusted)
oxidative phosphorylation GO:0006119 5 108 1.58E-05 4.24E-03
purine ribonucleoside monophosphate metabolic process GO:0009167 7 279 1.63E-05 4.24E-03
purine nucleoside monophosphate metabolic process GO:0009126 7 280 1.67E-05 4.24E-03
ribonucleoside monophosphate metabolic process GO:0009161 7 291 2.14E-05 4.24E-03
nucleoside metabolic process GO:0009116 8 414 2.56E-05 4.24E-03
nucleoside monophosphate metabolic process GO:0009123 7 304 2.83E-05 4.24E-03
nucleotide metabolic process GO:0009117 10 694 2.88E-05 4.24E-03
nucleoside phosphate metabolic process GO:0006753 10 704 3.26E-05 4.24E-03
glycosyl compound metabolic process GO:1901657 8 436 3.70E-05 4.24E-03
nucleoside biosynthetic process GO:0009163 5 131 4.02E-05 4.24E-03
nucleotide biosynthetic process GO:0009165 7 322 4.08E-05 4.24E-03
glycosyl compound biosynthetic process GO:1901659 5 133 4.32E-05 4.24E-03
nucleoside phosphate biosynthetic process GO:1901293 7 325 4.33E-05 4.24E-03
organonitrogen compound biosynthetic process GO:1901566 14 1445 5.17E-05 4.69E-03
purine nucleoside monophosphate biosynthetic process GO:0009127 4 74 6.50E-05 4.96E-03
purine ribonucleoside monophosphate biosynthetic process GO:0009168 4 74 6.50E-05 4.96E-03
nucleobase-containing small molecule metabolic process GO:0055086 10 766 6.63E-05 4.96E-03
ATP metabolic process GO:0046034 6 242 7.35E-05 5.19E-03
purine ribonucleoside metabolic process GO:0046128 7 362 8.53E-05 5.71E-03
purine nucleoside metabolic process GO:0042278 7 365 8.98E-05 5.71E-03
purine ribonucleoside triphosphate metabolic process GO:0009205 6 263 1.16E-04 6.76E-03
ribonucleoside monophosphate biosynthetic process GO:0009156 4 86 1.17E-04 6.76E-03
ribonucleoside triphosphate metabolic process GO:0009199 6 270 1.34E-04 7.12E-03
purine nucleoside triphosphate metabolic process GO:0009144 6 271 1.37E-04 7.12E-03
ribonucleoside metabolic process GO:0009119 7 392 1.40E-04 7.12E-03
nucleoside monophosphate biosynthetic process GO:0009124 4 94 1.65E-04 8.07E-03
nucleoside triphosphate metabolic process GO:0009141 6 295 2.17E-04 9.91E-03
purine nucleoside biosynthetic process GO:0042451 4 102 2.26E-04 9.91E-03
purine ribonucleoside biosynthetic process GO:0046129 4 102 2.26E-04 9.91E-03
ATP biosynthetic process GO:0006754 3 48 3.74E-04 1.59E-02
ribonucleoside biosynthetic process GO:0042455 4 121 4.33E-04 1.78E-02
mitochondrial respiratory chain complex I assembly GO:0032981 3 56 5.90E-04 2.21E-02
NADH dehydrogenase complex assembly GO:0010257 3 56 5.90E-04 2.21E-02

mitochondrial respiratory chain complex I biogenesis GO:0097031 3 56 5.90E-04 2.21E-02

purine ribonucleoside triphosphate biosynthetic process GO:0009206 3 59 6.88E-04 2.50E-02

purine nucleoside triphosphate biosynthetic process GO:0009145 3 60 7.22E-04 2.55E-02

ribonucleoside triphosphate biosynthetic process GO:0009201 3 65 9.12E-04 3.11E-02

purine ribonucleotide metabolic process GO:0009150 7 537 9.28E-04 3.11E-02

generation of precursor metabolites and energy GO:0006091 6 395 1.01E-03 3.30E-02

ribonucleotide metabolic process GO:0009259 7 552 1.09E-03 3.46E-02

purine nucleotide metabolic process GO:0006163 7 556 1.14E-03 3.52E-02

ribose phosphate metabolic process GO:0019693 7 567 1.27E-03 3.85E-02

mitochondrial respiratory chain complex assembly GO:0033108 3 77 1.49E-03 4.28E-02

nucleoside triphosphate biosynthetic process GO:0009142 3 77 1.49E-03 4.28E-02

nicotinamide nucleotide biosynthetic process GO:0019359 2 20 1.55E-03 4.28E-02

Supplemental Table 3: Pathway analysis
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Name ID Num.   
of hits

Num. of  
genes in 
pathway

Raw 
p-value

P-value  
(FDR-

adjusted)
pyridine nucleotide biosynthetic process GO:0019363 2 20 1.55E-03 4.28E-02

mitochondrion organization GO:0007005 8 770 1.70E-03 4.60E-02

mitochondrial ATP synthesis coupled electron transport GO:0042775 3 82 1.79E-03 4.73E-02

purine-containing compound metabolic process GO:0072521 7 605 1.84E-03 4.73E-02

organophosphate metabolic process GO:0019637 10 1167 1.86E-03 4.73E-02

cofactor biosynthetic process GO:0051188 4 181 1.94E-03 4.81E-02

ATP synthesis coupled electron transport GO:0042773 3 85 1.98E-03 4.81E-02

organophosphate biosynthetic process GO:0090407 7 614 2.00E-03 4.81E-02

heme biosynthetic process GO:0006783 2 23 2.05E-03 4.82E-02

organelle inner membrane GO:0019866 8 564 1.69E-04 3.30E-02

Supplemental Table 3 (continued)

Results of GO Term enrichment analysis. The table lists GO term pathways (>10 genes) involved in biological 
processes, the number of overlapping genes in the query gene list and each pathway, the size of each pathway, the 
nominal p value derived from a hypergeometric test and the corresponding FDR adjusted p-value.
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Gene Forward Reverse

36B4 CGGGAAGGCTGTGGTGCTG GTGAACACAAAGCCCACATTCC
GUSB CACCAGGGACCATCCAATACC GCAGTCCAGCGTAGTTGAAAAA
B2M CCAGCAGAGAATGGAAAGTC GATGCTGCTTACATGTCTCG
ACBD6 TTGGTGGGCCAGTTATTAGTTC CCAGTGAAGTAGAGCCCTACC
CHCHD10 CTACCATGGTCTGAGCTCCC CATTTGTGTCTTGGGTTATCTGTG
CKS1B CGACGACGAGGAGTTTGAGTATC TTAGGGACCAGCTTGGCTATGT
COX15 TGGAGTAACTAGGTTGACAGAG TGGAAATTGCTGGTATCTTTGG
ECSIT ACAGGAACCTCCATCTCTCAG GGACTGTTCAGAGCTATGGGC
FERMT3 AGCAGATCAATCGCAAGCAG ATCCCGTACTTGTCCAGTGT
F13A1 GTGAAGATGATGCTGTGTATCTG ATGCCATCTTCAAACTGACC
HMBS GGCAATGCGGCTGCAA GGGTACCCACGCGAATCAC
IFNA1 GCCTCGCCCTTTGCTTTACT CTGTGGGTCTCAGGGAGATCA
IMPDH2 GGGCATCATCTCCTCCAGGG TGCTGCGCTGCAGAATTTCA
LRPPRC GAGAGATGCCGGAATTGAGC CTCGGACTTCTCCACCTTCT
NME-1 AAGGAGATCGGCTTGTGGTTT CTGAGCACAGCTCGTGTAATC
NME-2 CATTGACCTGAAAGACCGAC ATGATGTTCCTGCCAACCTG
QPRT GGGCAGCCTTTCTTCGATG GGAGCCCATACTTCTCCACCA
TMEM134 CAGTTCAGCATTGATGATGCC TTCTCCAGGTTCTGGTAGCG
USP49 CTCATCCCCTTCTCCCAGAG TTCCAGGGATAGGTCCCAAA
ZWILCH TTGGCTGATGGTTTGAGGAC TGGTATGAAATCACACTACTGCTC

Supplemental Table 4: qPCR primer sequences
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Gene Fold Induction obese group
(95% CI difference in fold induction) P-value

ACBD6 0.59 (-0.18, 1.0) 0.17
CHCHD10 1.13 (-0.63, 0.37) 0.60
CKS1B 0.85 (-0.19, 0.48) 0.38
COX15 1.13 (-0.97, 0.72) 0.76
ECSIT 1.35 (-0.87, 0.16) 0.17
FERMT3 1.04 (-0.44, 0.36) 0.85
F13A1 1.28 (-0.88, 0.32) 0.35
HMBS 0.62 (0.087, 0.68) 0.01
IFNA1 1.23 (-1.04, 0.59) 0.58
IMPDH2 0.64 (-0.014, 0.74) 0.06
LRPPRC 0.60 (0.14, 0.68) 0.005
NME-1 0.71 (-0.071, 0.65) 0.11
NME-2 0.85 (-0.58, 0.89) 0.68
QPRT 0.73 (-0.39, 0.94) 0.41
TMEM134 0.32 (0.079, 1.28) 0.028
USP49 0.84 (-0.28, 0.60) 0.47
ZWILCH 0.45 (0.18, 0.92) 0.005

Supplemental Table 5: qPCR validation data
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Variables

Age, years 62.4±10.1

Male sex 262 (74.6)

BMI, kg/m2 27.4±4.3

Obese (BMI>30) 80 (23.3)

Hypertension 229 (65.2)

Hypercholesterolemia 230 (65.5)

Diabetes mellitus 75 (21.4)

Current smoker 71 (20.2)

Positive family history 151 (43.0)

prior MI 111 (31.6)

prior PCI 130 (37.0)

prior CABG 32 (9.1)

SYNTAX score 13 (6, 22)

Supplemental Table 6: Clinical characteristics of the adult 
cohort 

Baseline characteristics of the adults with cardiovascular risk (n=351). Discrete 
variables are given as absolute count (%), continuous variables as mean (SD) 
or as median (IQR). BMI: body mass index; CABG: coronary artery bypass 
graft; MI: myocardial infarctions; PCI: percutaneous coronary intervention; 
SYNTAX: SYNergy between percutaneous coronary intervention with TAXus 
and cardiac surgery.
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Supplemental figure 2 - Magnetic bead sorting
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The monocyte subsets of 3 random patients before and after magnetic bead sorting 
are shown. Purity of the monocyte fraction after magnetic bead sorting was >95%. 

The monocyte subsets of 3 random patients before and after magnetic bead sorting are shown. Purity of the 
monocyte fraction after magnetic bead sorting was >95%. 

Supplemental Figure 1: Magnetic bead sorting
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Abstract

Background: Recent studies found an immune-regulatory role for Y, and a relation 
between loss of Y (LOY) in blood cells and a higher risk of cancer and mortality. 
Given involvement of immune cells in atherosclerosis, we hypothesized that LOY is 
associated with the severity of atherosclerotic plaque characteristics and outcome in 
men undergoing carotid endarterectomy (CEA).

Results: LOY was quantified in blood and plaque from raw intensity genotyping data 
in men within the Athero-Express biobank study. Plaques were dissected, and the 
culprit lesions used for histology and the measurement of inflammatory proteins. We 
tested LOY for association with (inflammatory) atherosclerotic plaque phenotypes 
and cytokines and assessed the association of LOY with secondary events during 
3-year follow-up. Out of 366 CEA patients, 61 exhibited some degree of LOY in blood. 
LOY was also present in atherosclerotic plaque lesions (n=8/242, 3%). LOY in blood 
was negatively associated with age (β=-0.03/10 yrs; r2=0.07; p=1.6x10-7), but not with 
cardiovascular disease severity at baseline. LOY in blood was associated with a larger 
atheroma size (OR=2.15 [95% CI: 1.06, 4.76]; p=0.04). However, this association was 
not significant after correction for multiple-testing. LOY was independently associated 
with secondary major cardiovascular events (HR=2.28 [95% CI: 1.11, 4.67]; p=0.02) in 
blood when corrected for confounders.

Conclusions: In this hypothesis-generating study, LOY in blood is independently 
associated with secondary major cardiovascular events in a severely atherosclerotic 
population. Our data could indicate that LOY affects secondary outcome via other 
mechanisms than inflammation in the atherosclerotic plaque.
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Introduction

Loss of the Y chromosome (loss of Y, LOY) in blood cells was already described in the 
60s and affects approximately 15% of the male population of older age.1 Only recently 
LOY was associated with a higher risk of (non-haematological) cancer and overall 
mortality.2,3 This relationship was speculated to be due to smoking and a disrupted 
tumor immunosurveillance.4 Furthermore, LOY was associated with Alzheimer’s 
disease5 and the occurrence of auto-immune diseases such as primary biliary cirrhosis6 

and auto-immune thyreoiditis7.

Indeed, the Y chromosome exhibited an immune-regulatory function by acting as a 
global trans-expression quantitative trait locus in mice.8 The Y chromosome directly 
mediated changes in the transcriptome of CD4+ T-cells and macrophages, contributing 
to altered gene expression and alternative splicing. A role in global immune response 
was also found in the monocyte and macrophage transcriptome results of males with 
haplotype I that exhibited a 50% greater risk of myocardial infarction.9 Comparison 
of gene expression data between haplotype I and other haplotypes revealed pathways 
that are related to inflammation and immunity, revealing down-regulation of adaptive 
immunity and up-regulation of inflammatory response in haplotype I carriers.

Genetic variation on the Y chromosome has been associated with high blood 
pressure10 and myocardial infarction11, independent from traditional cardiovascular 
risk factors, sex steroids or aggression. Given the global immune-regulatory role of 
the Y chromosome and the involvement of immune cells in atherosclerosis together 
with its male predominance, we hypothesized that LOY is associated with more severe 
atherosclerosis leading to worse outcome in men undergoing carotid endarterectomy 
(CEA).   

Methods

Patient characteristics
The Athero-Express biobank study is an ongoing cohort study that includes 
atherosclerotic plaques and blood of patients undergoing either carotid endarterectomy 
(CEA) or femoral endarterectomy in two large tertiary referral hospitals (University 
Medical Center Utrecht and St Antonius hospital Nieuwegein) in the Netherlands. 
Clinical data were obtained from medical files and standardized questionnaires. 
Age was determined as age at surgery. Current smoking was determined as patient-
reported smoking in the past year. Hypertension and hypercholesterolaemia were 
self-reported. Diabetes was considered present in any of the following cases: use 
of insulin or oral glucose inhibitors, self-reported diabetes mellitus in the patient 
questionnaire or diabetes mellitus extracted from the medical file. A history of 
coronary artery was considered present if the patient had suffered a myocardial 
infarction, or underwent a percutaneous coronary intervention or coronary artery 
bypass grafting surgery. Peripheral arterial occlusive disease was considered present 
if the patient either presented with an ankle-brachial index below 0.7, claudication 
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complaints or underwent percutaneous or surgical intervention for peripheral arterial 
occlusive disease. Follow-up was obtained by questionnaires sent to the patients by 
mail 1, 2 and 3 years postoperatively. Major cardiovascular events, including (sudden) 
cardiovascular death, hemorrhagic or ischemic stroke, myocardial infarction, fatal 
heart failure or fatal aneurysm rupture, were validated using medical records. The 
medical ethics boards of both hospitals approved of the study, which is conducted in 
accordance with the declaration of Helsinki and the subjects gave informed consent. 

Sample collection
A detailed description of the sample phenotyping within the Athero-Express study can 
be found elsewhere.12 In short, blood was obtained prior to surgery and subsequently 
stored at -80 degrees. Plaque specimens were immediately processed after removal 
during surgery. After identification of the area with the largest plaque burden (culprit 
lesion) the plaque was cut transversely into segments of 5 mm. The culprit lesion was 
fixed in 4% formaldehyde and subsequently decalcified and embedded in paraffin. 
Cross-sections were stained for histological examination. Remaining segments were 
stored at -80 degrees and used for the measurement of inflammatory cytokines and 
isolation of DNA. 

Histological assessment of specimens
Plaque specimens were stained using CD68 (macrophages), α-actin (smooth muscle 
cells), picro-sirius red (collagen) and CD34 (microvessels). Furthermore the presence 
of plaque thrombosis was determined, using a combination of luminal thrombi, 
intraplaque haemorrhage, hematoxylin-eosin staining and Mallory’s phosphotungstic 
acid-hematoxylin staining (fibrin). Either luminal thrombus, intraplaque haemorrhage 
or both were considered presence of plaque thrombosis. Computerized analyses 
quantitatively assessed macrophages and smooth muscle cells as percentage of plaque 
area. Microvessels were identified morphologically and counted in three hotspots 
and subsequently averaged per slide. Collagen and calcifications were scored semi-
quantitatively into no (1), minor (2), moderate (3) or heavy (4) staining at 40x 
magnification. These categories were grouped into bins (no/minor and moderate/
heavy) for the present analyses. The size of the lipid core was assessed using polarized 
light and cut off at an area of 10% and 40% of the plaque. All histological slides were 
assessed by the same dedicated technician.

Cytokine measurements of specimens
To determine the effect of LOY on inflammatory phenotypes within the Athero-
Express biobank, we analyzed the association between LOY and seven different 
inflammatory cytokines: IL-6 and TNF-α as pro-inflammatory cytokines, IL-10 as an 
anti-inflammatory cytokine, RANTES as a marker of T-cell involvement and MCP-1, 
MCSF and GDF-15 as markers of macrophage involvement. Cytokines were measured 
by Luminex in plaque lysate (IL-6, TNF- α, IL-10, RANTES, MCP-1, MCSF) or citrate 
plasma (GDF-15) and normalized to protein content. 

Genotyping data and quality control
The methods of the Athero-Express Genomics Study have been described before.13 

Genome-wide SNP genotyping data was collected in 1,858 consecutive CEA patients 
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using DNA from blood or plaque (when no blood was available) and either the 
Affymetrix Genome-Wide Human SNP Array 5.0 (AEGS1) or the Affymetrix Axiom 
GW CEU 1 Array (AEGS2). The quality control pipeline consisted of first excluding 
samples with low average genotype calling and sex discrepancies based on GCOS4 
metrics, and thereafter filtering samples with a call rate >97%, variant call rate >97%, 
minor allele frequencies >3%, average heterozygosity rate ± 3.0 standard deviations, 
relatedness (pi-hat >0.20), Hardy-Weinberg Equilibrium (p <1.0x10-6) and based on 
population stratification (excluding samples >6 standard deviations from the average 
in 5 iterations during principle component analysis and by visual inspection). After 
quality control, we kept 1,640 samples for downstream analyses that were imputed 
using HapMap 2 CEU. For the current study, only the male samples of the AEGS2 (n= 
610 total) could be used, as the AEGS1 array does not contain Y chromosomal SNPs.

Determination of loss of Y
To assess LOY, median log2 ratios (observed intensity/reference intensity) were 
computed based on the raw intensity data from the male-specific Y chromosomal 
probes (mLRRY), excluding PAR1 and PAR2. Two blood samples were excluded 
due to outlying positive mLRRY values (defined as 1.5 interquartile ranges above the 
third quartile), leaving 366 blood samples and 242 plaque samples for analysis. We 
first calculated the peak of each mLRRY histogram using the density function in R 
for kernel density estimation, as previously described.2 Next, a noise distribution was 
derived to compute the cut-off value for LOY. To this end, the positive tail of the kernel 
density was mirrored over the distribution peak of the kernel density estimates (local 
median), generating a negative tail. The lower bound of the resulting distribution 
served as the cut-off value for LOY (Supplemental Figure 1).

As a validation, LOY was assessed by qPCR of six Y chromosomal genes along 
the Y chromosome in 9 patients that exhibited dichotomous LOY and 8 patients 
that did not exhibit dichotomous LOY. Presence of one of the genes (TSPY1) was 
assessed by a commercially available kit (Y-chromosome Detection real-time PCR 
assay, Primerdesign Ltd). Primer design of the other five primers can be found in 
Supplemental Table 1. Detected DNA content between patients with and without LOY 
was compared using t-tests and significant for all genes (Figure 1). Primers were first 
tested on a female control and all yielded no DNA measurement in that sample.

Replication cohort
Replication of the Cox proportional hazards analysis on secondary cardiovascular 
events was performed in the AAA-Express.14 The AAA-Express started as a spin-off 
of Athero-Express. AAA-Express is a biobank with patients that underwent open 
aneurysm repair in the UMC Utrecht and St. Antonius Hospital Nieuwegein between 
2003 and 2013. Clinical characteristics, genotyping data (using Illumina Human 
Core Exome chip) and 3-year follow-up data on secondary cardiovascular events was 
present for 202 blood samples. Patients in Aneurysm Express were genotyped using 
the Illumina HumanCore Exome chip. Collection of data, including quality control of 
the SNP data and determination of LOY in this cohort was performed in the same way 
as in the Athero-Express cohort. 
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Figure 1: qPCR of Y chromosomal genes

AU: arbitrary units.
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Statistical analyses
Binary LOY in blood was associated with baseline characteristics using χ2 tests and 
Wilcoxon rank sum tests to determine possible confounders. The data were imputed 
using single imputation. All variables with a p value <0.1 (age, body mass index (BMI), 
glomerular filtration rate (GFR), smoking and hypertension) were put into a backstep 
multivariable model to determine their association with LOY. Remaining significant 
variables (age and smoking) were put into a multivariable model to assess whether 
LOY associates with severity of disease characteristics and box-cox transformed 
plaque phenotypes and inflammatory markers. A Cox proportional hazards model 
with all covariates that univariably associated with outcome (only age) was used to 
determine the association between LOY and major cardiovascular events during 3-year 
follow-up. Cox proportional hazards analysis in AAA included age as a covariate. 
Meta-analysis of the Athero-Express and AAA-Express cohorts was performed using 
inverse variance weighting on the models corrected for age. The proportional hazards 
assumption was assessed using scaled Schoenfeld residuals. Values p<0.05 were 
considered significant. The multiple-testing threshold for plaque characteristics and 
inflammatory cytokines was set at 0.05/15=0.003. All statistical analyses were carried 
out using the R computing platform, version 3.0.2.

Results

Loss of Y in blood
We determined median log2 ratios of Y chromosomal intensity (mLRRY) in 608 
patients; in 366 patients we used blood derived DNA. Median Y chromosomal 
log2 ratios in these patients were negatively associated with age (β=-0.03/10 yrs, 
r2=0.07, p=1.6x10-7, Supplemental Figure 1). Of the 366 patients 61 (17%) exhibited 
dichotomous loss of the Y chromosome (LOY) in blood defined as mLRRY<-0.075 
(Table 1, Figure 1, Supplemental Figure 2). A trend was seen for more smoking, a 
lower BMI and less hypertension in the LOY group. No other baseline characteristics 
were found to differ between patients with and without LOY in blood (Table 1).  

Loss of Y in plaque
Within 242 patients we determined mLRRY in atherosclerotic plaque tissue. Median 
log2 ratios of Y chromosomal probe intensity in plaque were also negatively associated 
with age (β=-0.02/10 yrs, p=5.02x10-8, Supplemental Figure 1). Of the 242 patients 
8 (3%) exhibited dichotomous LOY in plaque defined as median log2 value of Y 
chromosomal intensity <-0.129 (Supplemental Figure 2). Because only eight patients 
suffered from LOY in plaque, we performed our analyses only on patients of whom we 
had blood-derived DNA.

No loss of chromosome 21
LOY could be a sign of general intensity loss throughout the genome. We therefore 
determined whether we could find any evidence for loss of chromosome 21. We found 
a median log2 ratio of intensity of chromosome 21 probes that was around 0, without 
any evidence for an association with age (Supplemental Figure 3).
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Association with smoking
Previous studies point towards a role of smoking in loss of the Y chromosome. 
Past smokers and current smokers exhibited a lower mLRRY than never smokers 
(Supplemental Figure 4). We observed an association between mLRRY and smoking 
when corrected for age (β=-0.02 for current smokers compared to non-smokers, p= 
0.03). In a backward step model, age and smoking were found to be most predictive 
of LOY (AIC for model with only age and smoking: 307. 25 vs AIC for model with 
age, smoking, BMI, GFR and hypertension: 310.79). Corrected for age, smoking was 
associated with dichotomous LOY (OR=2.83 [95% CI: 1.50, 5.35]; p=0.001).

Loss of Y 
(n=61)

No Loss of Y 
(n=305) p-value

Age in years (IQR) 75 (69, 79) 69 (62, 75) <0.001

BMI (IQR) 24.9 (23.5, 27.0) 25.9 (24.1, 28.4) 0.08

Current smoker, yes (%) 25/60 (42) 88/303 (29) 0.08

Diabetes, yes (%) 10/61 (16) 73/305 (24) 0.26

Hypertension, yes (%) 33/59 (56) 203/296 (69) 0.08

Hypercholesterolemia, yes (%) 31/53 (58) 187/281 (67) 0.33

History of coronary artery disease (%) 19/61 (31) 94/305 (31) 1.00

History of PAOD (%) 12/61 (20) 62/305 (20) 1.00

Use of antiplatelet therapy (%) 56/60 (93) 271/304 (89) 0.45

Use of lipid lowering drugs (%) 44/61 (72) 244/305 (80) 0.23

Bilateral carotid stenosis (%) 17/48 (35) 129/266 (48) 0.13

GFR (MDRD) ml/min/1.73 m2 (IQR) 68.7 (58.6, 82.7) 74.5 (60.4, 87.2) 0.11

LDL in mg/dl (IQR) 105 (86, 127) 94 (70, 124) 0.29

HDL in mg/dl (IQR) 41 (33, 43) 39 (32, 47) 0.52

Total cholesterol in mg/dl (IQR) 174 (148, 186) 162 (135, 200) 0.66

Triglyceride levels in mg/dl (IQR) 98 (80, 148) 123 (89, 177) 0.12

Presenting symptoms (%)
     Asymptomatic
     TIA
     Stroke

4/60 (7) 
39/60 (65)
17/60 (28)

42/302 (14)
172/302 (57)
88/302 (29)

0.27

Table 1: Baseline characteristics of patients with and without LOY in blood

Continues variables are expressed as median (IQR). IQR: inter-quartile range; BMI: body mass index; 
PAOD: peripheral arterial occlusive disease; GFR: glomerular filtration rate; MDRD: modification of diet in 
renal disease; LDL: low-density lipoprotein; HDL: high-density lipoprotein; TIA: transient ischaemic attack.
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Association with plaque phenotypes 
Because dichotomous LOY showed the largest effect on baseline characteristics, this 
measure was used to investigate the association between LOY and plaque characteristics 
and secondary cardiovascular outcome. To investigate whether LOY in blood was 
associated with a more vulnerable plaque phenotype, we assessed the association 
between dichotomous LOY in blood and seven classical plaque characteristics: 
amount of calcification, amount of collagen, atheroma size, presence of intraplaque 
haemorrhage, macrophage and smooth muscle cell content and vessel density 
within the plaque. Furthermore, we assessed the association between dichotomous 
LOY in blood and specific inflammatory or anti-inflammatory cytokines within the 
atherosclerotic plaque. Corrected for age and smoking, dichotomous LOY in blood 
was nominally associated with a larger than 10% atheroma size (OR=2.15 [1.06, 4.76], 
p=0.04, Table 2, Supplemental Figure 5). 

Association with secondary cardiovascular endpoints
To determine whether dichotomous LOY in blood has an influence on secondary 
cardiovascular endpoints during follow-up, we used a Cox proportional hazards model 
correcting for age as this was the only LOY-associated baseline characteristic (p <0.1) 
that was also associated with major cardiovascular endpoints. During 3 years of follow-
up, men with dichotomous LOY in blood had significant more major cardiovascular 
endpoints (HR=2.28 [95% CI: 1.11,4.67]; p=0.02; Figure 2). We replicated the direction 
of this effect in the AAA-Express. Of the 202 patients, 29 exhibited LOY. During 3 years 
of follow-up, men with dichotomous LOY in blood had more major cardiovascular 
endpoints (HR=1.78 [0.54, 5.85]; p=0.34; Supplemental Figure 6). Meta-analysis of 
both cohorts confirmed the found effect (HR=2.13 [1.15, 3.94]; p=0.02). Furthermore, 
we observed the same direction of effect when studying the association of mLRRY 
in Athero-Express and cardiovascular events during follow-up, corrected for age, 
although this did not reach statistical significance (HR=0.13 [0.01, 1.33]; p=0.09). 
The effect was present in both smokers and non-smokers (Supplemental Figure 7). 
Atheroma size was not associated with major cardiovascular events during follow-up.

Discussion

In this hypothesis-generating study in a population of male carotid endarterectomy 
patients, loss of the Y chromosome in blood was detectable in both peripheral blood 
as well as in atherosclerotic lesions. Dichotomous LOY in blood was independently 
associated with a higher occurrence of major cardiovascular events during a 3-year 
follow-up period and this effect was replicated in a second cohort of cardiovascular 
disease patients. However, after correction for multiple testing, no associations were 
found between dichotomous loss of the Y chromosome and systemic and local 
(plaque) inflammatory status, suggesting that alternate mechanisms may explain the 
association between LOY and outcome.
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We hypothesized that loss of the Y chromosome as an immunomodulating agent 
in the male genome would lead to a more severe type of cardiovascular disease by 
increased inflammation in the vascular wall, leading to a more unstable atherosclerotic 
plaque phenotype, reflected by a macrophage-rich plaque phenotype with a larger 
lipid pool, more intraplaque haemorrhage and more inflammatory cytokines. While 
we found an increase in major cardiovascular events and some preliminary evidence 
pointing towards a larger lipid pool, we were unable to identify a more inflammatory 
atherosclerotic plaque in these patients bearing in mind correcting for the testing of 15 
different inflammatory phenotypes. One of the reasons could be the different cell-types 
in which we identified the LOY (blood) and in which we failed to observe an effect 
(plaque). However, both blood and plaque take part in the systemic inflammatory 
response in atherosclerotic disease and macrophages in the plaque derive from 
circulating monocytes. Furthermore, we also identified LOY in the atherosclerotic 
plaque itself. Interestingly, the amount of patients with LOY in plaque was lower. 
Although we cannot be sure as to what cell type is responsible for the detectable 
LOY in plaque, this lower amount of LOY may possibly be due to the fact that the 
atherosclerotic plaque does not contain as many rapidly dividing cells as compared 
to peripheral blood. The difference between LOY in plaque and LOY in blood is also 
reflected by less variation of LOY between the plaque samples. It could also be due 
to the fact that the plaque is formed by invasion and division of cells over several 

Figure 2: Cox proportional hazards model for event-free survival

Model adjusted for age and current smoking; p=0.02.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

FU time (years)

Su
rv

iva
l p

ro
ba

bi
liy

 (C
ox

 p
ro

po
rti

on
al

 h
az

ar
d)

No Yloss
Yloss



53

decades, during which the Y chromosome is possibly not yet lost. In agreement, from 
experimental atherosclerosis studies it has been established that plaque macrophages 
mostly derive from local proliferation rather than continuous infiltration.15

There are a few other possible explanations for the fact that we did not find any 
other association with plaque phenotype or inflammation. Firstly, LOY could be so 
detrimental to the male body that all patients suffering from it die before they develop 
an operable form of atherosclerosis and thereby simply do not end up in our study. 
Secondly, LOY could influence atherosclerosis in an earlier phase of the disease, for 
example affecting disease progression. Patients in the Athero-Express biobank suffer 
from severe end-stage disease and are, because of the operative guidelines, equally 
affected. Furthermore, a limitation of the current study is that it is limited in power to 

Plaque phenotype Beta of LOY  
(95% CI)

Odds Ratio of LOY 
(95% CI) p-value

Atheroma size (>10%) NA 2.15 (1.06, 4.76) 0.04

Atheroma size (>40%) NA 1.84 (0.98, 3.41) 0.05

Calcification (major) NA 0.86 (0.47, 1.58) 0.62

Collagen (major) NA 0.82 (0.39, 1.64) 0.59

Intraplaque haemorrhage 
(present)

NA 0.87 (0.48, 1.58) 0.65

Macrophage 
(increase of plaque area) 

0.19 (-0.19, 0.57) NA 0.33

Smooth muscle cells 
(increase of plaque area)

0.05 (-0.33 , 0.42) NA 0.81

Vessel density 
(increase per field)

-0.005 (-0.05, 0.04) NA 0.84

IL-6 in plaque 
(per pg/mL plaque lysate)

-0.37 (-1.81, 1.08) NA 0.61

IL-10 in plaque 
(per pg/mL plaque lysate)

-0.45 (-1.56, 0.67) NA 0.41

TNF-α in plaque 
(per pg/mL plaque lysate)

-0.32 (-1.33, 0.69) NA 0.52

MCSF in plaque
(per pg/ug plaque lysate)

0.17 (-0.34, 0.68) NA 0.51

RANTES in plaque 
(per pg/ug plaque lysate)

-0.23 (-0.88, 0.43) NA 0.50

MCP-1 in plaque 
(per pg/ug plaque lysate)

0.14 (-0.18, 0.46) NA 0.39

GDF-15 in plasma 
(per SD pg/mL plasma)

0.11 (-0.11, 0.34) NA 0.33

Table 2: Associations of LOY with measures of (inflammatory) plaque phenotypes

Models were corrected for age and current smoking. Continuous variables are box-cox transformed. CI: 
confidence interval; IL: interleukin, MCP-1: monocyte chemotactic protein; MCSF: macrophage colony-
stimulating factor; RANTES: regulated on activation, normal T cell expressed and secreted; TNF: tumor 
necrosis factor.
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detect small but biologically relevant differences because of a relatively small sample 
size. With an event probability of 12%, to obtain 80% power for observing a hazard 
ratio of 2.0, one needs 1006 samples and we had only 366 (power of 29%). 

A recent study found a relation between LOY in blood and both (non-hematological) 
cancer and overall mortality in healthy men from the longitudinal ULSAM cohort 
aged 71-84 years.2 However, not all increased mortality risk during over 40 years of 
follow-up could be attributed to malignant diseases. This leaves the question of what 
is causing the other deaths unanswered. In a follow-up study, LOY was also associated 
with smoking, a risk factor for both cancer and death. Smoking, however, is also a 
major risk factor for cardiovascular disease. This increased risk is due to several factors, 
including inflammation but for example also coagulation, endothelial dysfunction 
and adverse lipid profiles.16 In our data, smoking was also significantly associated 
with mLRRY and with dichotomous LOY when corrected for age. Uncorrected, the 
absence of a significant association between smoking and dichotomous LOY may be 
explained by a lack of power (to obtain 80% power for observing a difference between 
42% and 29%, one needs 580 samples (of which 20% LOY cases) and we had only 366). 
In a sensitivity analysis, we observed an effect in both smokers and non-smokers. In 
summary, we found preliminary evidence to support the hypothesis that the association 
between LOY and mortality is through a higher risk of major cardiovascular events 
and that this association cannot be solely explained by smoking as a risk factor.

The mechanism by which the Y chromosome is lost remains elusive. A recent genome-
wide approach identified TCL1A that is associated to haematological malignancies 
as a genetic susceptibility locus for LOY at chromosome 14.17 It might be that loss of 
the Y chromosome reflects general genomic instability of which the small and last to 
be replicated Y chromosome is the first victim. Rapidly dividing cells might not take 
their time to replicate its telomeres and this may lead eventually to loss of the entire 
chromosome. However, previous experiments blasting the Y chromosome apart have 
shown that it might be replicated and passed on to daughter cells, even when shattered 
into pieces even smaller than its original size.18 Atherosclerosis might also accelerate 
genomic instability due to the formation of reactive oxygen species. However, we did 
not find a large proportion of LOY in the atherosclerotic plaque itself. 

In our hypothesis-generating study, we found first preliminary evidence that LOY 
is independently associated with the occurrence of secondary major cardiovascular 
events in male patients after CEA. We replicated this effect in a cohort of male patients 
undergoing surgical aneurysm repair. More research is needed in a large sample of 
patients developing cardiovascular disease, preferably a cohort study that recorded 
cardiovascular disease incidence, to definitively answer the question how LOY is 
associated with adverse cardiovascular events and specify which events are most likely 
to be the cause of this association, whether or not smoking is the causative factor and 
whether or not LOY is also associated with incidence or progression of cardiovascular 
disease.
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Supplemental materials are avialble online.
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Abstract

Background: The predictive value of traditional risk factors for vascular outcomes 
in patients with manifest vascular disease is limited, underscoring the need for novel 
biomarkers to improve risk stratification. Since hematological parameters are routinely 
assessed in clinical practice, they are readily available candidates. We therefore assessed 
the incremental value of hematological parameters for prediction of recurrent vascular 
events.

Results: We used data from 3,922 vascular patients, enrolled in the Second Manifestation 
of ARTerial Disease (SMART) study from January 2005 onwards. Measurements of 
hematological parameters were extracted from the Utrecht Patient Oriented Database 
(UPOD). We first investigated the association of 22 hematological parameters with 
recurrent vascular risk, using Cox proportional hazards models. After adjustment for 
all variables included in the SMART risk score (SRS), lymphocyte %, neutrophil count, 
neutrophil % and red cell distribution width (RDW) were significantly associated 
with vascular outcome. We next tested whether these four parameters improved risk 
prediction compared with the SRS. When individually added to the SRS, lymphocyte 
% improved prediction of recurrent vascular events (continuous net reclassification 
improvement (NRI): 17.4% [95% CI: 2.1, 32.1%]; improvement in c-statistic: 0.011 
[0.000, 0.022]). The combination of lymphocyte % and neutrophil count improved 
continuous reclassification by 22.2% [3.2, 33.4%] and discrimination (c-statistic) 
by 0.011 [95% CI: 0.000. 0.022]. However, lymphocyte % alone and combined with 
neutrophil count only modestly increased risk estimates for patients with an event 
during follow-up. Lymphocyte % and RWD yielded a continuous NRI of 18.7% [3.3, 
31.9%], but mainly increased risk estimates for events in the higher risk range. The 
discrimination improvement for this model was 0.016 [0.004, 0.028].

Conclusion: Several hematological parameters were independently associated with 
recurrent vascular events. Lymphocyte % alone and in combination with other 
parameters enhanced discrimination and continuous reclassification compared to the 
SRS. However, the incremental value of these risk prediction models was limited for 
patients who experienced a recurrent event.
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Introduction

The most common underlying cause of cardiovascular disease is atherosclerosis, 
leading to over 13 million deaths per year worldwide.1 The implementation of 
preventive therapies critically depends on the reliable identification of individuals at 
risk. In clinical practice, vascular risk assessment is primarily based on risk factors, 
such as smoking, hypertension, diabetes, obesity and hyperlipidemia.2 While a large 
body of evidence has underpinned the significance of such traditional risk factors 
in primary prevention,3-5 their predictive value for recurrent risk in patients with 
established vascular disease is less clear.6-8 Thus, novel risk factors are needed to improve 
risk stratification in secondary prevention and to establish the pathophysiological 
processes underlying recurrent vascular risk. 

The SMART risk score (SRS) has been specifically developed to predict recurrent 
vascular events in patients with established atherosclerotic vascular disease.9 This 
score not only includes traditional risk factors, but also vascular disease history, 
renal function and high-sensitive C-reactive protein (hs-CRP), an inflammatory 
marker associated with vascular risk.10 Besides hs-CRP, several other biomarkers have 
been linked to prognosis of vascular disease, including N‐terminal pro‐type brain 
natriuretic peptide, troponins, ST2 and growth-differentiation factor-15.6,11 A recent 
study identified different routinely-measured hematological parameters that predict 
outcomes in patients with coronary artery disease.12 Because these parameters are 
measured by most hematology analyzers, they are readily available for use in clinical 
practice without the need to rely on expensive equipment. Despite their potential 
clinical utility, no study has yet assessed whether hematological parameters improve 
prediction of recurrent events beyond established secondary risk factors used in the 
SRS. Combining data from the Second Manifestation of ARTerial Disease (SMART) 
study and the Utrecht Patient Oriented Database (UPOD), we investigated the 
incremental value of routinely measured hematological parameters for the prediction 
of recurrent vascular events. We first investigated the association of 22 hematological 
parameters with recurrent vascular risk and then assessed parameters independently 
associated with recurrent events improved risk prediction compared to the SRS.

Methods

Study population
We conducted this study in patients with a clinical manifestation of atherosclerotic 
vascular disease (cerebrovascular disease, coronary artery disease, peripheral artery 
disease or abdominal aortic aneurysm) enrolled in the SMART study. Details on 
disease definitions and recruitment procedures have been published previously.9,13 
Briefly, the SMART study enrolled patients aged 18-79 who were referred to the 
University Medical Center Utrecht for clinical manifestations of atherosclerotic 
vascular disease or the treatment of vascular risk factors. Because complete 
hematological parameters were not available before 2005, we restricted our analysis 
to a subset of patients enrolled from January 2005 onwards. At baseline, patients were 
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requested to fill in a questionnaire on medical history, symptoms of vascular disease 
and vascular risk factors. During follow-up, questionnaires were sent to patients or 
their general practitioner twice a year to obtain information on their health status. 
Moreover, hospital discharge letters were collected to verify vascular events. All events 
were adjudicated by three members of the Endpoint Committee. The outcome of 
interest was a composite endpoint of vascular death, ischemic or hemorrhagic stroke 
or myocardial infarction, as previously described in more detail.9 All patients provided 
written informed consent. The SMART study was approved by the Ethics Committee 
of the University Medical Center Utrecht. 

Hematological parameters
We enriched the SMART cohort with 22 routinely measured hematological parameters, 
using UPOD, which comprises clinically relevant data from all patients admitted 
to the University Medical Center Utrecht, including laboratory measurements. 
Hematological parameters were quantified with the Abbott Cell-Dyn system, which 
is based on the multi-angle polarized scatter separation technique. Further details on 
the quantification of hematological parameters in UPOD have recently been published 
elsewhere.12

Statistical analysis
As for the derivation of the SRS, we truncated all continuous variables, including all 
hematological parameters, at the 1st and the 99th percentile to reduce the impact of 
outliers.9 Using single imputation by additive regression, we imputed missing values 
for all variables included in the SRS (total n=126; 0.2%). The variable with the highest 
percentage of missing values was hs-CRP (n=75; 1.9%). To facilitate comparison 
between different hematological parameters, all values were scaled to SD units prior 
to analysis. 

We first evaluated the association of each of the 22 hematological parameters with 
recurrent vascular events, using Cox proportional hazards modeling adjusted 
for all SRS variables [age, sex, diabetes mellitus, current smoking, systolic blood 
pressure, total cholesterol, high-density lipoprotein (HDL) cholesterol, hs-CRP, 
estimated glomerular filtration rate (eGFR), years since first vascular event, history of 
cerebrovascular disease, history of coronary artery disease, history of abdominal aortic 
aneurysm, history of peripheral artery disease]. Analogous to the SRS, hs-CRP was 
loge-transformed and quadratic terms were added for age and eGFR.9 Since none of 
hematological parameters showed a skewness >2, loge-transformation was not applied. 
Hematological parameters were entered as quadratic polynomials if the addition of 
a quadratic term improved model fit (p<0.05), as indicated by the likelihood ratio 
test. Accordingly, we added a quadratic term for hematocrit. The proportional hazards 
assumption was tested for each model using scaled Schoenfeld residuals. Associations 
of hematological parameters with outcome were adjusted for multiple testing. Since 
several of the 22 parameters were highly correlated (Supplemental Figure 1), we 
estimated the effective number of independent tests for multiple testing correction 
using principal component analysis. The first 11 principal components explained 
over 95% of the variance in the hematology data, yielding a significance threshold of 
0.05/11=0.0045. 
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We next evaluated the additive predictive value of hematological parameters  
significantly associated with outcome by comparing biomarker models to a reference 
model in terms of discrimination and reclassification. The reference model was 
constructed by fitting the SRS variables to our dataset. The biomarker models included 
the SRS variables and one of the hematological parameters significantly associated with 
recurrent event risk. We additionally assessed the performance of prediction models 
that included combinations of hematological parameters. To evaluate discrimination, 
we calculated Harrell’s c for each model and compared c-statistics between each 
biomarker model and the reference model as proposed by Kang et al.14, using the 
compareC R package (https://cran.rproject.org/web/packages/compareC/index.html). 
Reclassification was assessed by continuous net reclassification improvement (NRI), 
as implemented in the nricens R package (https://cran.r-project.org/web/packages/
nricens/index.html), which computes NRI for censored survival data. Confidence 
intervals for NRI were computed by bootstrapping. To obtain robust reclassification 
indices, we assessed continuous NRI at 7 years, given a median follow-up of 4.6 years 
(IQR: 2.5-6.9 years). 7 years also corresponds to the follow-up period for which 
the SRS was initially calibrated before risk estimates were extrapolated to 10-year 
risk predictions.9 Due to the absence of established categories for the 7-year risk of 
recurrent vascular events, we did not assess categorical NRI. 

Results

In total, 3,922 patients with manifest vascular disease enrolled in the SMART cohort 
were included in this study. Baseline characteristics of the study population are 
summarized in Table 1. During a median follow-up of 4.6 years (IQR: 2.5-6.9 years), 
310 recurrent vascular events occurred. In contrast to Dorresteijn et al.,9 we only 
included patients recruited from 2005 onwards. Compared to this study, we observed 
lower event rates (1.7% vs. 2.6%), most likely reflecting improved secondary prevention 
therapies. In line with this, the proportion of patients treated with statins was higher in 
our study. Table 2 shows baseline values of all 22 hematological parameters stratified 
by event status.

First, we studied the association of hematological parameters with secondary vascular 
outcomes. Supplemental Table 1 displays adjusted and unadjusted effect estimates for 
all hematological parameters. Since most hematological parameters are directly or 
indirectly related to immunological processes, we assessed whether these associations 
were independent of hs-CRP. The addition of hs-CRP particularly attenuated effect 
estimates for white blood cell count, neutrophil count, monocyte count and neutrophil 
% (Supplemental Figure 2). Four parameters remained significantly associated with 
vascular events after adjustment for the SRS variables (Figure 1). Lymphocyte % 
showed a negative association with the outcome (HR in SD units: 0.80 [95% CI: 0.71, 
0.91]), whereas neutrophil count (HR in SD units: 1.19 [1.06, 1.33]), neutrophil % 
(HR in SD units: 1.22 [1.08, 1.37]), and RDW (HR in SD units: 1.16 [1.05, 1.28]) were 
positively associated with recurrent events. 
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We next added each of the four hematological parameters that was independently 
associated with recurrent event risk to a reference model comprising all SRS variables 
to assess discrimination and continuous reclassification (Table 3). We observed the 
largest continuous reclassification improvement for lymphocyte %. For events, this 
parameter improved continuous reclassification by 13.6%, for non-events by 3.8%, 
yielding a continuous NRI of 17.4% [95% CI: 2.1, 32.1%]. Additionally, lymphocyte 
% improved discrimination (c-statistic) by 0.0110 [95% CI: 0.0004, 0.0216]. We also 
tested whether lymphocyte % combined with other parameters further improved 
the predictive performance of the SRS. Neutrophil % was not included into a multi-
biomarker model because this parameter was highly correlated with lymphocyte 
% (r=-0.92). Lymphocyte % and neutrophil count improved continuous net 
reclassification by 22.2% [3.2, 33.4%]. The discrimination improvement was 0.0112 
[0.0004, 0.220], which was comparable to that achieved by lymphocyte % alone. 

  All 
(N=3922)

No vascular 
 event (N=3612)

Vacular  
event (N=310)

Age, years 61 (54, 68) 61 (54, 67) 64 (56, 71)
Male sex 2850 (73) 2610 (72) 240 (77)
Type of vascular disease
    Cerebrovascular disease 1125 (29) 1032 (29) 93 (30)
    Coronary artery disease 2588 (66) 2373 (66) 215 (69)
    Peripheral artery disease 531 (14) 481 (13) 50 (16)
    Abdominal aortic aneurysm 236 (6) 213 (6) 23 (7)
Years since first vascular event
   less than 1 year 2283 (60) 2140 (61) 143 (48)
   1-2 years 389 (10) 363 (10) 26 (9)
   over 2 years 1110 (29) 980 (28) 130 (44)
Current smoking 1060 (27) 954 (27) 106 (34)
Diabetes mellitus 704 (18) 628 (17) 76 (25)
Systolic blood pressure, mm Hg 136 (124, 149) 135 (124, 149) 140 (129, 155)
Diastolic blood pressure, mm Hg 80 (73, 88) 80 (74, 88) 81 (73, 90)
eGFR, ml/min/1.73 m2 77 (66, 88) 77 (67, 88) 70 (60, 84)
Total cholesterol, mmol/l 4.3 (3.7, 5.1) 4.3 (3.7, 5.1) 4.3 (3.7, 5.1)
LDL cholesterol, mmol/l 2.4 (1.9, 3.0) 2.4 (1.9, 3.0) 2.4 (1.9, 3.1)
HDL cholesterol, mmol/l 1.2 (1.0, 1.4) 1.2 (1.0, 1.4) 1.1 (1.0, 1.4)
Triglycerides, mmol/l 1.2 (0.9, 1.8) 1.2 (0.9, 1.8) 1.3 (0.9, 1.9)
hs-CRP, mg/l 1.7 (0.8, 3.8) 1.6 (0.8, 3.6) 2.7 (1.3, 6.5)
Medication
    Lipid-lowering drugs 3140 (80) 2888 (80) 252 (81)
    Blood pressure-lowering drugs 3086 (79) 2829 (78) 257 (83)
    Glucose-lowering drugs 560 (14) 497 (14) 63 (20)
    Antithrombotic drugs 3493 (89) 3206 (89) 287 (93)

Table 1: Baseline characteristics

Discrete variables are expressed as count (%), continuous variables as median (IQR). Type of vascular 
disease is not mutually exclusive as patients may have experienced several manifestations of vascular 
disease. eGFR: estimated glomerular filtration rate (see [9]); HDL: high-density lipoprotein; hs-CRP: high-
sensitivity C-reactive protein; IQR: inter-quartile range; LDL: low-density lipoprotein.
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  Unit No vascular event Vacular event
White blood cells 109/l 6.6 (5.5, 7.9) 7.2 (5.9, 8.7)
Neutrophils 109/l 3.8 (3.0, 4.7) 4.2 (3.5, 5.4)
Lymphocytes 109/l 1.9 (1.5, 2.4) 1.9 (1.5, 2.3)
Monocytes 109/l 0.54 (0.44, 0.67) 0.58 (0.49, 0.70)
Eosinophils 109/l 0.19 (0.12, 0.28) 0.21 (0.15, 0.28)
Basophiles 109/l 0.04 (0.02, 0.06) 0.04 (0.03, 0.06)
Neutrophil % % 57.9 (52.1, 63.7) 60.3 (55.1, 66.2)
Lymphocyte % % 29.4 (24.4, 34.7) 26.2 (21.8, 32.0)
Monocyte % % 8.2 (6.9, 9.7) 8.2 (6.8, 9.8)
Eosinophil % % 2.9 (1.9, 4.2) 3.0 (2.1, 4.1)
Basophile % % 0.61 (0.39, 0.88) 0.58 (0.36, 0.78)
Red blood cells 1012/l 4.7 (4.4, 5.0) 4.6 (4.2, 4.9)
Hemoglobin mmol/l 8.8 (8.3, 9.3) 8.8 (8.2, 9.3)
MCV fl 89.8 (87.1, 92.5) 89.9 (86.9, 92.8)
RDW % 12.1 (11.7, 12.7) 12.3 (11.8, 13.3)
MCH amol 1898 (1824, 1971) 1896 (1815, 1982)
MCHC mmol/l 21.1 (20.7, 21.5) 21.1 (20.5, 21.5)
Hematocrit l/l 41.7 (39.3, 44.1) 41.7 (38.6, 44.4)
Platelets 109/l 237 (202, 280) 235 (203, 276)
MPV fl 7.7 (7.2, 8.4) 7.9 (7.3, 8.6)
Plateletcrit ml/l 0.19 (0.17, 0.22) 0.20 (0.17, 0.23)
PDW 10(GSD) 16.1 (15.8, 16.6) 16.2 (15.8, 16.6)

Table 2: Overview of hematological parameters

Median (IQR) values stratified by event status. GSD: geometric standard difference; IQR: inter-quartile 
range; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV: 
mean corpuscular volume; MPV: mean platelet volume; PDW: platelet distribution width; RDW: red cell 
distribution width.

For lymphocyte % and RWD combined, the continuous NRI was 18.7% [3.3, 31.9%], 
the discrimination improvement was 0.016 [0.004, 0.028]. With a continuous NRI of 
17.2% [4.1, 32.8%], all three parameters yielded a lower reclassification improvement 
than the combination of lymphocyte % and neutrophil count. The discrimination 
improvement for this model was 0.016 [0.004, 0.028]. Figure 2 illustrates the change 
in predicted risk for different biomarker models, stratified by event status. While 
lymphocyte % alone and the combination of lymphocyte % and neutrophil count 
showed the largest continuous reclassification improvement (Table 3) for events, risk 
estimates increased only modestly in patients who experienced an event. Lymphocyte 
% and RDW combined predominantly increased risk estimates for events in the higher 
risk range.
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Figure 1: Adjusted HRs for recurrent vascular events

Each of the 22 hematological parameters was analyzed separately. HRs are given in given per SD-unit 
adjusted for SRS variables. *A quadratic term was added for hematocrit. Likelihood-ratio test for quadratic 
polynomial after adjustement for all SRS variables: χ2(df=2)=6.2; p=0.045. CI: confidence interval; HR: 
hazard ratio; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; 
MCV: mean corpuscular volume; MPV: mean platelet volume; PDW: platelet distribution width; RDW: red 
cell distribution width; SD: standard deviation; SRS: SMART risk score.

Reclassification improvement %
  Change in c-statistic   

(95% CI)
with  

event 
without  
event 

Net              
(95% CI)

Neutrophils 0.006 (-0.002, 0.014) -9.1 15.6 6.5 (-6.0, 22.7)
Neutrophil % 0.008 (-0.002, 0.018) 7.2 6.7 13.9 (-0.3, 27.7)
Lymphocyte % 0.011 (0.000, 0.022) 13.6 3.8 17.4 (2.1, 32.1)
RDW 0.007 (-0.001, 0.015) -11.3 25.0 13.6 (-1.9, 26.4)

Lymphocyte % +  
neutrophils 0.011 (0.000, 0.022) 14.8 7.4 22.2 (3.2, 33.4)

Lymphocyte % + 
RDW 0.016 (0.004, 0.028) 9.0 9.7 18.7 (3.3, 31.9)

Lymphocyte % + 
neutrophils + 
RDW

0.016 (0.004, 0.028) 5.1 12.0 17.2 (4.1, 32.8)

First, hematological parameters significantly associated with outcome were individually added to a model 
containing all SRS variables. For each biomarker model (SRS + hematological parameter), we evaluated 
improvement in discrimination (c-statistic) and reclassification (continuous NRI) compared to the 
reference model (SRS). We then assessed the predictive performance of multi-biomarker models comprising 
combinations of lymphocyte % and other hematological parameters. NRI: net reclassification improvement; 
RDW: red cell distribution width; SRS: SMART risk score. 

Table 3: Predictive performance of hematological parameters
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Figure 2: Predicted risk of reference model vs. biomarker models

Predicted 7-year risks for refernce model (SRS) vs. selected biomarker models (SRS + hematological 
parameters) stratified by event status. Patients who did not experience a recurrent vascular event during 
7-years of follow up (gray circles) were correctly reclassified if there predicted risk was lower after the addition 
of hematological parameters to the SRS (below the black line). Patients who experienced an event (black 
squares) were correctly reclassified if there predicted risk was higher after the addition of hematological 
parameters to the SRS (above the black line). RDW: red cell distribution width; SRS: SMART risk score.
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Discussion

In this study, we evaluated the incremental predictive value of routinely measured 
hematological parameters for the prediction of recurrent vascular events in patients 
with established vascular disease. We first investigated the association of 22 parameters 
with recurrent event risk. Out of the four parameters significantly associated with 
outcome, lymphocyte % showed the largest continuous NRI when individually added 
to the SRS. Overall, the combination of lymphocyte % and neutrophil count yielded 
the largest continuous NRI compared to the SRS. 

Lymphocytes have been implicated in the modulation of inflammatory processes 
at distinct stages of atherogenesis.15 Numerous observational studies in patients 
with coronary artery disease have reported associations of low absolute and relative 
lymphocyte levels with poor cardiovascular outcomes.12,16-21 However, some studies 
found no link between absolute lymphocyte count and all-cause mortality in pre-
existing coronary artery disease.22-24 Consistent with a role of low lymphocyte levels 
in vascular disease progression, lymphocyte apoptosis is enhanced in myocardial 
infarction, but not in stable angina, indicating that low lymphocyte levels may 
specifically reflect inflammatory processes in advanced atherosclerosis (e.g. plaque 
rupture).25 In our study, however, lymphocyte % rather than absolute lymphocyte 
count was associated with recurrent vascular events. Accordingly, lymphocyte levels 
were comparable between patients with and without a recurrent event during follow-
up – unlike concentrations of other white blood cell types, such as neutrophils and 
monocytes (Table 2). Low lymphocyte % may thus reflect increased levels of other 
white blood cell types in patients at risk.

Besides lymphocyte %, both absolute and relative neutrophil count were independently 
associated with recurrent vascular risk without improving risk prediction when 
individually added to the SRS. The combination of lymphocyte % and absolute 
neutrophil count showed the largest increase in continuous reclassification of all 
models tested, but only moderately increased risk estimates for events. The neutrophil 
to lymphocyte ratio has been widely studied as a marker of cardiovascular risk, 
suggesting that neutrophil levels are associated with poor prognosis of coronary 
and peripheral artery disease.26 There is mounting evidence that neutrophils play 
an important role in early and advanced atherosclerosis by exacerbating endothelial 
dysfunction, recruiting monocytes to atherosclerotic lesions, promoting foam cell 
formation and by destabilizing atherosclerotic plaques.27 

RDW was also independently associated with clinical outcome. Several studies have 
linked increased RDW to poor outcomes in patients with coronary artery disease12,28,29, 
stroke30 or peripheral artery disease31. RDW is a measure of the variation in erythrocyte 
volume. The mechanisms by which RDW relates to cardiovascular risk are unknown. 
Severe inflammation is associated with inhibition of erythrocyte maturation, which 
results in anisocytosis, suggesting that RDW reflects enhanced inflammation in 
atherosclerosis, potentially relevant to disease progression.32 However, RDW did 
not improve risk prediction and, when combined with lymphocyte %, yielded a 
continuous NRI comparable to that achieved by lymphocyte % alone. Moreover, RDW 
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and lymphocyte % predominantly increased risk estimates for events in the higher 
risk range. Since patients with a high SRS would already be eligible for increased 
surveillance and more extensive treatment, the added value of RDW for clinical risk 
prediction is limited.

In the unadjusted analysis, total white blood cell count and monocyte count were 
strongly associated with recurrent events. However, adjustment for all SRS variables 
attenuated effect estimates for both parameters, especially due to the inflammatory 
marker hs-CRP (Supplementary Figure 2). In vitro findings suggest that CRP interacts 
with monocytes to enhance inflammation in acute coronary syndrome.33 Thus, hs-
CRP and monocytes may share a common pathophysiological pathway, whereas other 
hematological parameters may reflect inflammatory processes that do not, or to a lesser 
extent, involve CRP. Overall, our findings lend further support to the inflammatory 
hypothesis of atherothrombosis and add to recent clinical trial data suggesting that 
anti-inflammatory therapy reduces cardiovascular risk in secondary prevention.34

Hematological parameters are routinely measured in many hospitals and do not 
require expensive equipment for analysis, underscoring their clinical potential. In 
our study, lymphocyte % alone and combined with other hematological parameters 
yielded the largest continuous NRI. However, these models only marginally improved 
discrimination and absolute risk estimates for events. Thus, it remains uncertain 
whether the addition of hematological parameters to established risk assessment 
tools would influence clinical decision making in secondary prevention. Moreover, 
the ability of hematological parameters to predict recurrent vascular risk may vary 
between different manifestations of vascular disease, such as myocardial infarction and 
ischemic stroke. Since hematological parameters were not available from all SMART 
patients, the sample size of our study population was limited because. Therefore, we 
could not perform stratified analyses for different vascular disease groups. Overall, 
further research is required to corroborate our findings in other cohorts and to 
establish the predictive value of hematological parameters for different manifestations 
of vascular disease.

In conclusion, we identified several hematological parameters that were independently 
associated recurrent vascular event in patients with vascular disease. When added to 
a model comprising all SRS variables, lymphocyte % alone and in combination with 
other hematological parameters, especially with neutrophil count, improved risk 
prediction, but only modestly increased risk estimates for patients who experienced 
an event. 
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Unadjusted Adjusted for hsCRP Ajusted for SRS variables

  HR (95% CI) p   HR (95% CI) p   HR (95% CI) p

White blood cells 1.32 (1.20, 1.45) <0.0001 1.18 (1.07, 1.32) 0.0018 1.13 (1.00, 1.27) 0.044
Neutrophils 1.38 (1.25, 1.51) <0.0001 1.25 (1.12, 1.38) <0.0001 1.18 (1.06, 1.32) 0.0031
Lymphocytes 0.95 (0.85, 1.07) 0.39 0.92 (0.82, 1.03) 0.15 0.91 (0.80, 1.03) 0.13
Monocytes 1.29 (1.17, 1.43) <0.0001 1.18 (1.06, 1.31) 0.0026 1.09 (0.97, 1.22) 0.14
Eosinophils 1.13 (1.02, 1.25) 0.024 1.08 (0.97, 1.19) 0.17 1.01 (0.90, 1.12) 0.90
Basophils 1.05 (0.95, 1.17) 0.34 1.02 (0.92, 1.14) 0.70 1.02 (0.91, 1.13) 0.75
Neutrophil % 1.39 (1.24, 1.56) <0.0001 1.28 (1.14, 1.43) <0.0001 1.21 (1.08, 1.37) 0.0014
Lymphocyte % 0.68 (0.61, 0.77) <0.0001 0.75 (0.66, 0.84) <0.0001 0.80 (0.71, 0.91) 0.00048
Monocyte % 1.03 (0.92, 1.15) 0.66 1.04 (0.93, 1.16) 0.50 1.00 (0.89, 1.13) 0.98
Eosinophil % 1.01 (0.90, 1.13) 0.82 1.02 (0.91, 1.14) 0.70 0.98 (0.88, 1.10) 0.77
Basophil % 0.92 (0.83, 1.04) 0.17 0.96 (0.86, 1.08) 0.48 0.98 (0.88, 1.10) 0.79
Red blood cells 0.92 (0.82, 1.03) 0.13 0.98 (0.87, 1.09) 0.68 0.99 (0.88, 1.12) 0.89
Hemoglobin 0.94 (0.84, 1.05) 0.28 1.03 (0.92, 1.15) 0.66 1.01 (0.89, 1.14) 0.88
MCV 1.08 (0.97, 1.21) 0.17 1.09 (0.98, 1.21) 0.13 1.04 (0.93, 1.16) 0.53
RDW 1.30 (1.19, 1.42) <0.0001 1.21 (1.10, 1.33) 0.00011 1.16 (1.05, 1.28) 0.0039
MCH 1.04 (0.93, 1.16) 0.53 1.06 (0.95, 1.19) 0.26 1.01 (0.90, 1.13) 0.84
MCHC 0.94 (0.84, 1.05) 0.26 0.98 (0.88, 1.10) 0.74 0.96 (0.86, 1.08) 0.49
Hematocrit*
    linear term 1.01 (0.91, 1.12) 0.88 1.07 (0.97, 1.19) 0.19 1.05 (0.94, 1.18) 0.38
    quadratic term 1.13 (1.06, 1.22) 0.00032 1.11 (1.00, 1.01) 0.0027 1.09 (1.02, 1.18) 0.014
Platelets 0.99 (0.89, 1.11) 0.89 0.90 (0.80, 1.01) 0.064 0.96 (0.85, 1.09) 0.56
MPV 1.12 (1.01, 1.25) 0.04 1.12 (1.00, 1.24) 0.049 1.10 (0.98, 1.23) 0.10
Plateletcrit 1.03 (0.92, 1.15) 0.57 0.93 (0.83, 1.04) 0.22 1.01 (0.89, 1.13) 0.93
PDW 1.05 (0.94, 1.18) 0.38   1.07 (0.95, 1.19) 0.27   1.02 (0.91, 1.15) 0.71

Supplemental Table 1: Unadjusted and adjusted HRs 

Each of the 22 hematological parameters was analyzed separately. HRs for recurrent vascular events are 
shown unadjusted, adjusted for loge(hs-CRP) and adjusted for all SRS variables. HRs are given per SD-
unit. *A quadratic term was added for hematocrit. Likelihood-ratio test for quadratic polynomial after 
adjustement for all SRS variables: χ2(df=2)=6.2; p=0.045. CI: confidence interval; HR: hazard ratio; hs-
CRP: high-sensitive C-reactive protein; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 
hemoglobin concentration; MCV: mean corpuscular volume; MPV: mean platelet volume; PDW: platelet 
distribution width; RDW: red cell distribution width; SD: standard deviation; SRS: SMART risk score.



75

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

W
hi

te
 b

lo
od

 c
el

ls
N

eu
tro

ph
ils

Ly
m

ph
oc

yt
es

M
on

oc
yt

es
Eo

si
no

ph
ils

Ba
so

ph
ils

N
eu

tro
ph

il 
%

Ly
m

ph
oc

yt
e 

%
M

on
oc

yt
e 

%
Eo

si
no

ph
il 

%
Ba

so
ph

il 
%

R
ed

 b
lo

od
 c

el
ls

H
em

og
lo

bi
n

M
C

V
R

DW
M

C
H

M
C

H
C

H
em

at
oc

rit
Pl

at
el

et
s

M
PV

Pl
at

el
et

cr
it

PD
W

White blood cells
Neutrophils

Lymphocytes
Monocytes
Eosinophils

Basophils
Neutrophil %

Lymphocyte %
Monocyte %
Eosinophil %

Basophil %
Red blood cells

Hemoglobin
MCV
RDW
MCH

MCHC
Hematocrit

Platelets
MPV

Plateletcrit
PDW

Supplemental Figure 1: Correlation heat map of hematological parameters

Correlation heat map of hematological parameters, Correlations were assessed Pearson’s correlation 
coefficient. MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; 
MCV: mean corpuscular volume; MPV: mean platelet volume; PDW: platelet distribution width; RDW: red 
cell distribution width.
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Supplemental Figure 2: Unadjusted and CRP-adjusted HRs

HRs for recurrent vascular events are shown unadjusted and adjusted for loge(hs-CRP). HRs are given 
in given per SD-unit. *A quadratic term was added for hematocrit. CI: confidence interval; HR: hazard 
ratio; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV: 
mean corpuscular volume; MPV: mean platelet volume; PDW: platelet distribution width; RDW: red cell 
distribution width; SD: standard deviation.
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Abstract

Background: Traditional cardiovascular risk factors are limited in their ability to 
predict subsequent cardiovascular events in patients with established coronary artery 
disease (CAD). Therefore, novel biomarkers are required to improve prediction of 
subsequent events and to advance understanding of the pathological mechanisms 
driving CAD progression.

Methods: Using high-throughput metabolomics, we assessed associations of 72 lipid 
and metabolite measures with the 3-year risk of subsequent cardiovascular events in 
1,511 patients with angiographically documented CAD from the Utrecht Coronary 
Biobank (UCORBIO) and the Angiography and Genes Study (ANGES). To evaluate 
the predictive capacity of metabolic measures, we derived risk scores with and without 
biomarkers in UCORBIO and tested their performance in ANGES.

Results: After adjustment for demographic and clinical variables, triglycerides in 
intermediate-density lipoproteins (IDL-TG; HR per SD: 1.45 [95% CI: 1.23, 1.70]) and 
low-density lipoproteins (LDL-TG; HR=1.39 [1.18, 1.63]), phenylalanine (HR=1.32 
[1.15, 1.52]), creatinine (1.28 [1.05, 1.45]) and the concentration of small high-density 
lipoprotein particles (S-HDL; HR=0.77 [0.66, 0.89]) were significantly associated with 
subsequent cardiovascular events. The combination of LDL-TG, phenylalanine and 
S-HDL improved both discrimination and reclassification.

Conclusions: Using metabolic profiling in two angiographic cohorts, we identified 
LDL-TG, phenylalanine and S-HDL as biomarkers for subsequent cardiovascular 
events in patients with established CAD. Our findings provide novel insights into the 
pathophysiology of CAD progression and may help identify novel targets for drug 
development in secondary prevention.
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Introduction

With 1.7 million deaths and a prevalence of over 30 million cases, coronary artery 
disease (CAD) is the leading cause of mortality and morbidity in Europe.1 Medical 
costs of coronary artery disease are projected to rise dramatically within the next 
decades,2 highlighting the need to cost-effectively identify patients at risk who would 
benefit the most from expensive therapies. Risk stratification is particularly important 
in secondary prevention because patients with established CAD are at increased risk 
of suffering subsequent cardiovascular events and require life-long treatment and 
monitoring. 

While international guidelines for secondary prevention3,4 promote the use of risk 
scores5,6 specifically developed to predict in-hospital and short-term outcome, the 
assessment and management of intermediate and long-term risk mainly relies on the 
same risk factors as for primary prevention,7 even though the assumption that these 
risk factors equally well predict subsequent events has been questioned, following 
observations indicating that overweight8, smoking9,10 and high blood pressure11,12 are 
not associated with poorer clinical outcome in cardiovascular patients. In line with this, 
biomarkers are better predictors of secondary cardiovascular events than traditional 
cardiovascular risk factors.13 Moreover, the absence of traditional risk factors is not 
associated with a positive prognosis after myocardial infarction.14 Such findings can 
be attributed to differential disease mechanisms for early and advanced stages of 
CAD15 or aggressive treatment of traditional risk factors in secondary prevention, 
which may attenuate risk estimates for subsequent cardiovascular events.13 Given the 
poor predictive value of traditional risk factors in secondary prevention, novel risk 
markers are required to improve prognosis of CAD and to advance understanding of 
the pathological pathways underlying disease progression.

With the advent of high-throughput nuclear magnetic resonance (NMR) and other 
metabolomics technologies, metabolic profiling has emerged as a powerful tool for 
biomarker assessment. Consequently, in-depth metabolic analysis is increasingly 
being used in cardiovascular epidemiology to study biomarkers associated 
with hypertension16, subclinical atherosclerosis17, left ventricular function18 and 
cardiovascular events in initially healthy individuals19. In this study, we used a 
NMR-based metabolomics platform to assess associations of 72 lipid and metabolite 
measures with the 3-year risk of subsequent cardiovascular events in two European 
cohorts, which included a total of 1,511 patients with angiographically documented 
CAD: the Utrecht Coronary Biobank (UCORBIO) and the Angiography and Genes 
Study (ANGES). To evaluate the predictive capacity of lipid and metabolite measures 
in comparison with demographic and clinical variables, we derived risk scores with 
and without metabolic biomarkers in UCORBIO and tested their performance in 
ANGES (Figure 1).
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Results for 72 lipid and metabolite measures were analyzed separately in UCORBIO and ANGES and 
combined using inverse variance weighting. Subsequently, risk prediction scores with and without 
biomarkers were derived in UCORBIO and tested in ANGES, using two prediction models. Model A was 
based on demographic and clinical variables selected by boosting: age, hypertension, multivessel disease, 
myocardial infarction at inclusion, history of cerebrovascular accident, history of CABG, use of renin 
inhibitors and use of diuretics. Model B was based on traditional risk factors: age, sex, BMI, hypertension, 
diabetes mellitus, current smoking status, total cholesterol and HDL cholesterol. LDL-TG, S-HDL and 
phenylalanine were added to each model to obtain biomarker risk scores. CABG: coronary artery bypass 
grafting; CAG: coronary angiography; HDL-C: high-density lipoprotein cholesterol; LDL-TG: triglycerides 
in low-density lipoprotein; S-HDL: small high-density lipoprotein particle concentration NMR: nuclear 
magnetic resonance; NRI: net reclassification index.

Figure 1: Illustration of the study design
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Materials and methods

Study populations
We used data from UCORBIO (Utrecht, the Netherlands) and ANGES (Tampere, 
Finland), two prospective angiographic cohort studies. Baseline characteristics are 
shown in Table 1. From these two cohorts, we included patients with angiographically 
documented CAD (≥50% stenosis of at least one coronary artery). The major endpoint 
was the first occurrence of a cardiovascular event after recruitment, including 
cardiovascular death, non-fatal myocardial infarction or ischemic stroke. UCORBIO 
enrolled 2,591 patients undergoing coronary angiography for any indication at the 
University Medical Center Utrecht (the Netherlands) between October 2011 and 
December 2014 (www.clinicaltrials.gov; identifier: NCT02304744). 951 out of 1,198 
patients, who were selected for metabolic profiling, (1) provided blood samples <30 

  UCORBIO 
(N=951)

ANGES 
(N=560)

Age, years 65.1 ± 10.9 64.3 ± 9.1
Male 724 (76.1) 430 (76.8)
BMI, kg/m2 27.4 ± 4.4 28.0 ± 4.1
Diabetes mellitus 231 (24.3) 189 (33.8)
Current smoker 230 (26.9) 74 (13.2)
Myocardial infarction (inclusion) 329 (34.6) 57 (10.2)
Multivessel disease 505 (53.1) 369 (65.9)
Hypertension 554 (59) 340 (60.9)
Medical history    
   Myocardial infarction 528 (56.2) 246 (45.5)
   Cerebrovascular accident 107 (11.3) 102 (19.3)
   PCI 283 (29.8) 79 (14.2)
   CABG 123 (12.9) 56 (15.8)
Lipid measures, mmol/l    
   Total cholesterol 4.2 ± 1.2 4.2 ± 1.0
   HDL-C 1.2 ± 0.3 1.2 ± 0.3
   Triglycerides 1.4 (1.0, 1.9) 1.5 (1.1, 1.8)
Medication use    
   Statins 584 (61.6) 432 (77.1)
   P2Y12 inhibitors 278 (29.3) 38 (6.8)
   Beta blockers 544 (57.4) 489 (87.3)
   Renin inhibitors 485 (51.2) 211 (37.7)
   Diuretics 281 (29.7) 139 (24.8)

Discrete data are expressed as absolute count (%), continuous data as mean ± SD or median (interquartile 
range). BMI: body mass index; CABG: coronary artery bypass grafting; HDL-C: high-density lipoprotein 
cholesterol; PCI: percutaneous coronary intervention; SD: standard deviation.

Figure 1: Illustration of the study design
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days after hospital admission (2) showed >50% stenosis, (3) were able to complete at 
least one follow-up questionnaire (recruitment before February, 2014) and were thus 
included in the analysis. ANGES recruited patients who were scheduled for coronary 
angiography at Tampere University Hospital (Finland) between September 2002 and 
July 2005. 560 out of 985 patients from ANGES, who were selected for metabolic 
profiling, showed >50% stenosis and were included in this study. 

In UCORBIO, patient characteristics and procedural details were assessed at inclusion. 
During follow-up, patients completed questionnaires once a year to obtain information 
on hospitalizations and subsequent cardiovascular events. General practitioners and 
hospitals were contacted to confirm reported cardiovascular events. All patients gave 
written informed consent prior to inclusion. The study was approved by the Ethics 
Committee of the University Medical Center Utrecht (reference number 11-183) and 
was conducted in accordance with the Declaration of Helsinki. In ANGES, study 
nurses collected patient characteristics using a questionnaire (for details see [20]). 
Follow-up data were collected from Pirkanmaa Hospital District medical records 
(diagnoses and procedural codes) and from Statistics Finland death records (cause 
of death). The study was approved by the Ethics Committee of Tampere University 
Hospital. All patients gave written informed consent, and the study conforms to the 
Declaration of Helsinki. 

Metabolic profiling
EDTA serum samples were stored at -80 °C prior to analysis. A high-throughput 1H 
NMR metabolomics platform21 was used to quantify 72 lipid and metabolite measures: 
56 lipid-related measures (including concentrations of 14 lipoprotein subclasses), 8 
amino acids, 4 glycolysis related metabolites and 4 other metabolites. 

Statistical analysis
Metabolic measures with skewness >2 were loge-transformed. To facilitate comparison 
of effect estimates across metabolic measures, all concentrations were scaled to 
standard deviation (SD) units within each cohort. In total, 0.5% of all metabolic 
measures and covariate values in UCORBIO and 1.9% in ANGES were missing. These 
values were imputed for each cohort separately based on all covariates, metabolic 
measures and (time to) events using single imputation by additive regression. Results 
for imputed and non-imputed metabolic measures are shown in Supplemental 
Table 1. To build a clinical prediction model for subsequent cardiovascular events, 
we selected informative variables in UCORBIO, using a boosting method for Cox 
proportional hazards models implemented in the CoxBoost R package (https://cran.r-
project.org/web/packages/CoxBoost/index.html). The optimal step size number was 
determined by 10-fold cross-validation. The following variables were considered: age, 
sex, BMI, diabetes mellitus, hypertension, current smoking status, multivessel disease, 
myocardial infarction at inclusion (indication for angiography), history of myocardial 
infarction, history of cerebrovascular accident, history of percutaneous coronary 
intervention (PCI), history of coronary artery bypass grafting (CABG), total serum 
cholesterol, HDL cholesterol, use of statins, use of renin inhibitors, use of diuretics, 
use of P2Y12-inhibitors and use of beta-blockers. Eight variables were selected to 
be included in the clinical prediction model: age, hypertension, multivessel disease, 
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myocardial infarction at inclusion, history of cerebrovascular accident, history of 
CABG, use of renin inhibitors and use of diuretics. 

These variables served as covariates in Cox proportional hazards models that were 
fit for each metabolic measure using time to first subsequent cardiovascular event 
as the outcome measure. Associations were analyzed separately for each cohort and 
meta-analyzed using inverse-variance weighting. Given the longer follow-up period in 
ANGES (maximum: 13 years) as compared to UCORBIO (maximum: 3 years), follow-
up data were truncated at 3 years in ANGES. The proportional hazards assumption 
was tested by assessing the correlations between scaled Schoenfeld residuals and 
follow-up time. In addition, we compared associations of metabolic measures with 
subsequent events over time in ANGES. Since several metabolic measures were 
highly correlated, we corrected for multiple testing by adjusting the nominal level of 
significance for the number of independent tests, which was estimated separately for 
each cohort according to the method of Li and Ji22. The number of independent tests 
was estimated at 25 in UCORBIO and 27 in ANGES. The maximum estimate was 
selected for multiple-testing correction, rendering an adjusted significance level of 
0.05/27=0.0019. 

To assess the ability of metabolic measures to improve risk prediction beyond clinical 
and demographic variables as well as traditional risk factors, we evaluated risk 
scores with and without metabolic markers derived in UCORBIO and tested their 
performance in ANGES. To construct biomarker risk scores, we added all possible 
combinations of metabolic measures, significantly associated with subsequent events, 
to the previously selected clinical covariates, including age, hypertension, multivessel 
disease, myocardial infarction at inclusion, history of cerebrovascular accident, history 
of CABG, use of renin inhibitors and use of diuretics (Model A). The biomarker 
combination resulting in the best fit in terms of Akaike Information Criterion was 
included in the risk scores. To further assess the predictive value of metabolic measures, 
we constructed another risk prediction model based on traditional cardiovascular risk 
factors, including age, sex, BMI, hypertension, diabetes mellitus, current smoking 
status, total cholesterol and HDL cholesterol (Model B).

To obtain weights for the reference risk scores without metabolic biomarkers, we first 
derived linear predictors for Model A and Model B in UCORBIO. We next added the 
three selected metabolic measures to each model and again derived linear predictors in 
UCORBIO to compute weights for the biomarker risk scores. All continuous variables 
were scaled to SD units for model derivation and validation. We next calculated 3-year 
absolute risk estimates in ANGES based on the linear predictors of the reference and 
biomarker risk scores derived from UCORBIO. Baseline hazard estimates were refit 
in ANGES to account for potential regional differences in experimental conditions 
between both cohorts. 

The predictive performance of the three metabolic measures was assessed by comparing 
the reference score of Model A and Model B to the corresponding biomarker score. 
To assess discrimination, we computed c-statistics for censored data using jackknife 
estimation.23 Based on the 3-year risk of subsequent cardiovascular events, we also 
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evaluated the continuous net reclassification improvement (NRI), as implemented 
in the nricens R package (https://cran.r-project.org/web/packages/nricens/index.
html). Confidence intervals for NRI were computed by bootstrapping. We did not 
evaluate categorical NRI due to the lack of established categories for the 3-year risk of 
subsequent cardiovascular events. Model calibration was assessed by the Greenwod-
Nam-D’Agostino goodness-of-fit test24 across risk deciles. Deciles with <5 events were 
collapsed with the next decile to prevent bias.24 An overview of the study design is 
shown in Figure 1. All statistical analyses were performed in R (version 3.3.2).

Results

A total of 1,511 patients with angiographically documented CAD were included in 
the analysis, 150 of whom suffered a subsequent cardiovascular event during 3 years 
of follow-up. The median follow-up was 2.1 years (interquartile range: 1.5-2.7 years) 
in UCORBIO and 11.0 years (5.7-12.2 years) in ANGES. Given the longer follow-up 
period in ANGES, follow-up data were truncated at 3 years. Both cohorts showed 
similar baseline characteristics in terms of age, sex, medical history, concentrations 
of routine lipids and medication (Table 1). A total of 72 metabolic measures were 
quantified in both cohorts using NMR spectrometry. Correlations between metabolic 
measures are displayed in Supplemental Figure 1.

Associations with subsequent events 
Associations with subsequent events were adjusted for age, hypertension, multivessel 
disease, myocardial infarction at inclusion, history of cerebrovascular accident, 
history of CABG, use of renin inhibitors and use of diuretics. Figure 2 displays 
overall associations of 72 metabolic measures with the 3-year risk of subsequent 
cardiovascular events. Effect sizes in SD units for UCORBIO and ANGES are given 
in Supplemental Table 2. We found significant associations for 5 metabolic measures: 
the concentration of small high-density lipoprotein particles (S-HDL-P; HR per SD: 
0.77 [95% CI: 0.66, 0.89]), triglycerides in intermediate-density lipoprotein (IDL-TG; 
HR=1.45 [1.23, 1.70]) and low-density lipoprotein (LDL-TG; HR=1.39 [1.18, 1.63]), 
phenylalanine (HR=1.32 [1.15, 1.52]) and creatinine (HR=1.28 1.05, 1.45]). These 
metabolic measures showed comparable risk estimates in UCORBIO and ANGES 
(Figure 3), but smaller effect magnitudes for long-term outcome in ANGES with the 
same direction of effect (Supplemental Table 3). Interestingly, cholesterol measures 
were not associated with subsequent event risk (Figure 2). 

Predictive performance 
We first derived two reference risk scores in UCORBIO, comprising clinical and 
demographic variables. Model A was based on the variables that served as covariates 
in the exploratory analysis and was derived in UCORBIO using a boosting approach 
for model selection. Model B was based on traditional risk factors: age, sex, BMI, 
hypertension, diabetes mellitus, current smoking status, total cholesterol and HDL 
cholesterol. We subsequently added all 5 significant metabolic measures to Model A, 
and selected the biomarker combination with the best model fit, including S-HDL-P, 
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HRs for 72 lipid and metabolite measures were analyzed separately in UCORBIO and ANGES and meta-analyzed using 
inverse variance weighting. Skewed metabolic measures were loge transformed. HRs are given per SD-unit adjusted for 
age, hypertension, multivessel disease, myocardial infarction at inclusion, history of cerebrovascular accident, history 
of CABG, use of renin inhibitors and use of diuretics. CABG: coronary artery bypass grafting; CI: confidence interval; 
HR: Hazard ratio; SD: standard deviation; Particle size: XXL: extremely large; XL: very large; L: large; M: medium; 
S: small; XS: very small; Lipids and metabolites: ApoA1: apolipoprotein A1; ApoB: apolipoprotein B; C: cholesterol; 
DHA: decosahexaenoic acid; FA: fatty acids; GlycA: glycoprotein A; HDL: high-density lipoprotein; IDL: intermediate-
density lipoprotein; LA: linoleic acid; LDL: low-density lipoprotein; PL: phospholipids; TG: triglycerides; VLDL: very 
low-density lipoprotein.

Figure 2: Illustration of the study design
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Figure 3: Metabolic measures in UCORBIO and ANGES

Prediction  
model

Difference c-statistic 
(95% CI)

Reclassification Continuous NRI 
(95% CI)

Model A

0.067 (0.028, 0.105) 
p=6x10-4 

Biomarker score: 0.670 
Reference score: 0.603

Events 27.6% (4.2%, 49.2%) 
p=0.02

No events 33.2% (24.7%, 41.2%) 
p=3x10-15

Net 60.8% (34.7%, 83.7%) 
p=1x10-6

Model B

0.103 (0.054, 0.153) 
p=4x10-5 

Biomarker score: 0.651 
Reference score: 0.548

Events 4.3% (-9.4%, 19.4%) 
p=0.56

No events 35.4% (25.7%, 44.9%) 
p=5x10-13

Net 39.6% (23.3%, 57.9%) 
p=7x10-6

Discrimination and reclassification for subsequent cardiovascular events in ANGES with and without 
metabolic biomarkers. Risk prediction (3-year absolute risk) in ANGES was based on two models derived 
in UCORBIO (Table 2). For both Model A and Model B, we compared risk estimates calculated from the 
reference score and the corresponding biomarker score to evaluate the added value of metabolic measures 
for risk assessment. Discrimination was assessed by comparing c-statistics. Reclassification was evaluated as 
continuous NRI. CI=confidence interval; NRI=net reclassification improvement.

Table 2: Predictive performance of biomarker scores in ANGES
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LDL-TG and phenylalanine. We incorporated the selected metabolic measures into 
both models to obtain biomarker risk scores and compared their performance to the 
corresponding reference risk score. The coefficients used to calculate risk scores and 
absolute risk estimates for both models can be found in Supplemental Table 4. While 
calibration was good for the biomarker score of Model A, the reference score showed 
mediocre calibration (Supplemental Table 5). For Model B, both the reference risk 
score and the biomarker risk score showed sufficient calibration. Metabolic measures 
significantly improved the discriminative performance of 3-year risk estimates for both 
models, which was evaluated by comparing c-statistics (Table 2). The biomarker score 
of Model A showed the best discriminative performance with a c-statistic of 0.670 
[95% CI: 0.611, 0.728]. Discrimination for traditional risk factors alone was not above 
chance, as indicated by the c-statistic for the reference score of Model B (0.548 [0.482, 
0.614]). The biomarker risk scores of both models significantly enhanced continuous 
reclassification in patients with a subsequent event and event-free patients, with a net 
reclassification of 60.8% for Model A and 54.7% for Model B.  

Discussion

Using NMR-based metabolic profiling in patients with established CAD from two 
European cohorts, we found five metabolic significantly associated with subsequent 
cardiovascular events. Phenylalanine, S-HDL-P and LDL-TG improved prediction 
of subsequent events relative to a clinical risk prediction model and traditional risk 
factors. These findings underscore the utility of high-throughput metabolic profiling 
for biomarker identification and extend data from previous NMR-based metabolic 
profiling studies on first CVD event risk19 to secondary cardiovascular prevention. 
Thus, metabolic measures may improve risk stratification in cardiovascular patients 
and provide novel insights into the molecular mechanisms driving CAD progression.

We found the strongest associations with subsequent cardiovascular events for LDL-
TG and IDL-TG. We observed very strong correlations between LDL-TG and IDL-TG 
(Supplemental Figure 1), reflecting their common metabolic pathway, in which lipolysis 
of IDL yields LDL. A study in CAD patients and matched controls demonstrated that 
LDL-TG was more strongly associated with subsequent cardiovascular events than LDL 
cholesterol.25 In addition, higher LDL-TG concentrations coincided with increased 
concentrations of biological markers related to vascular damage. This association was 
independent of the inflammatory marker C-reactive protein, suggesting that elevated 
LDL-TG itself may stimulate inflammatory processes within the vasculature, which 
play a more prominent role in advanced CAD than in early phases of atherogenesis.14 
In line with this, patients with myocardial infarction show increased LDL-TG 
as compared to stable CAD patients, associated higher levels of oxidized LDL and 
inflammatory marker interleukin 6, whereas the TG content of VLDL does not 
differ between these patients.26 Thus, LDL-TG and IDL-TG may be related to disease 
mechanisms particularly relevant to CAD progression and subsequent manifestations 
of CAD.
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S-HDL was the only measure that was inversely associated with outcome. Numerous 
population-based cohort studies have consistently shown that HDL cholesterol 
is associated with reduced cardiovascular risk.27 Interestingly, findings from 
experimental studies indicate that distinct HDL subpopulations differ in their anti-
atherogenic properties. Particularly small, dense HDL particles are thought to exert 
potent cardioprotective effects due to their anti-oxidative and anti-inflammatory 
activity.28 Prospective studies found inverse associations between small HDL particle 
concentration and cardiovascular risk, but also reported similar or even stronger 
effects for larger HDL particles,29,30 suggesting that distinct HDL subclasses do not 
differ in their cardioprotective capacities. However, these findings were mainly derived 
from general populations without CAD at inclusion. Given the greater significance of 
vascular inflammation in advanced CAD, the anti-inflammatory properties of S-HDL 
may confer a protective effect in patients with established CAD, whereas larger HDL 
species may play a minor role in CAD progression. This is in line with results from a 
case-control study in cardiovascular patients, showing that small HDL particles were 
inversely associated with subsequent events, whereas larger HDL particles were not.31

In addition, the aromatic amino acid phenylalanine predicted subsequent 
cardiovascular events, paralleling findings from a large-scale NMR metabolic profiling 
study of incident cardiovascular risk in three population-based cohorts.19 A case-
control study showed that an amino acid score, which included phenylalanine, was 
associated with future cardiovascular disease and intima-media thickness (IMT),32 a 
well-known marker of atherosclerosis. The latter finding was confirmed by a recent 
cross-sectional study, reporting a significant correlation between phenylalanine 
levels and IMT in randomly selected participants.33 Furthermore, ischemic stroke 
patients show a higher serum phenylalanine to tyrosine ratio as compared to healthy 
controls.34 Finally, phenylalanine, among other amino acids, has been linked to other 
cardiovascular risk factors, including diabetes mellitus35 and obesity36. While several 
studies have related phenylalanine to cardiovascular risk factors and cardiovascular 
events, further research is required to establish the molecular processes linking this 
amino acid to the pathogenesis of CAD. Since higher phenylalanine levels not only 
predict cardiovascular events in patients with established CAD, but also in initially 
healthy individuals,19 phenylalanine may be implicated in pathophysiological pathways 
common to primary and subsequent manifestations of CAD. 

Finally, creatinine was associated with poor outcome, but was not selected for the 
biomarker risk scores, indicating that creatinine did not provide additional predictive 
value beyond other metabolites. Creatinine is a well-established marker of kidney 
function and also associated with cardiovascular risk37-39 and short-term outcome6 
in patients with acute coronary syndrome. The association between chronic kidney 
disease and CAD is well documented. Pre-existing cardiovascular risk factors are 
known to contribute to renal dysfunction, suggesting common pathophysiological 
mechanisms. Conversely, chronic kidney disease has also been causally linked to the 
development of various cardiovascular risk factors, such as hypertension, dyslipidemia 
and chronic inflammation.40 Thus, elevated creatinine levels may serve as a marker of 
increased cardiovascular risk resulting from renal dysfunction.
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Interestingly, none of the routine or subclass cholesterol measures was associated with 
risk of subsequent events, which may be explained by the high degree of statin treatment 
in the study populations (Table 1). This finding was paralleled by the poor predictive 
performance of traditional risk factors in Model B. Consistent with our results, the 
prognostic value of traditional risk factors for secondary cardiovascular risk is low 
compared to circulating biomarkers.13 Moreover, the presence of multiple traditional 
risk factors does not result in poorer outcome in patients with myocardial infarction.14 
These findings do not argue against a causal role of traditional risk factors in secondary 
cardiovascular risk. However, most secondary prevention therapies target these risk 
factors, thereby compromising their predictive value.13 Thus, alternative risk indicators, 
such as biomarkers, are needed for risk stratification in secondary prevention. Current 
guidelines do not recommend the general use of biomarkers for clinical risk assessment, 
mainly because they do not or only marginally improve cardiovascular risk prediction 
beyond traditional risk factors in the general population.7 By contrast, our findings 
demonstrate that a combination of three metabolic biomarkers substantially improves 
cardiovascular risk prediction in patients with established CAD. However, further 
studies are required to further assess the clinical utility of these biomarkers.

This study also has some limitations that deserve consideration. Although we 
combined data from two cohorts, limited statistical power may have prevented us 
from detecting biomarkers with smaller effect sizes. Furthermore, the predictive 
performance of the biomarker risk was moderate, mainly due to limited set of clinical 
and demographic variables that were available in both cohorts. Therefore, future 
metabolic profiling studies should also include other known markers of subsequent 
events. Moreover, metabolic profiles were only analyzed once after symptom onset. 
Metabolic biomarkers, however, are highly sensitive to physiological changes. 
Therefore, repeated blood sampling may be helpful to identify biomarkers across 
different stages of CAD progression and to define windows of vulnerability during 
which patients are at elevated risk for subsequent events. 

Conclusions

Using high-throughput metabolic profiling, we identified LDL-TG, phenylalanine 
and S-HDL particles as biomarkers of subsequent events in patients with established 
CAD. These metabolic measures enhance risk prediction compared to demographic 
and clinical variables, underscoring the utility of metabolomics as a tool for biomarker 
discovery. Our findings provide novel insights into the pathophysiology of CAD 
progression and may help improve clinical risk assessment for secondary prevention. 
However, further research is needed to assess the clinical utility of these biomarkers. 
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UCORBIO (N=951) ANGES (N=560)
    miss. 

%
non, imputed 
HR (95% CI)

imputed 
HR (95% CI)

  miss. 
%

non, imputed 
HR (95% CI)

imputed 
HR (95% CI)

Lipoprotein subclasses
loge XXL-VLDL 0.3 1.13 (0.90, 1.42) 1.13 (0.90, 1.42) 1.4 0.97 (0.77, 1.21) 1.00 (0.80, 1.26)

loge XL-VLDL 0.1 1.10 (0.87, 1.40) 1.10 (0.87, 1.39) 1.4 0.96 (0.77, 1.21) 0.91 (0.74, 1.14)

loge L-VLDL 0.1 1.12 (0.89, 1.42) 1.12 (0.89, 1.42) 1.4 0.95 (0.75, 1.19) 0.91 (0.73, 1.14)

loge M-VLDL 0.1 1.11 (0.89, 1.39) 1.11 (0.89, 1.39) 1.4 0.97 (0.77, 1.23) 0.94 (0.75, 1.18)

loge S-VLDL 0.1 1.11 (0.89, 1.37) 1.10 (0.89, 1.37) 1.4 1.09 (0.86, 1.38) 1.14 (0.91, 1.44)

XS-VLDL 0.2 1.10 (0.89, 1.34) 1.10 (0.90, 1.35) 1.4 1.19 (0.99, 1.43) 1.16 (0.95, 1.41)

IDL 0.1 1.01 (0.81, 1.26) 1.01 (0.81, 1.26) 1.4 1.02 (0.81, 1.28) 1.05 (0.84, 1.31)

L-LDL 0.1 0.98 (0.78, 1.23) 0.98 (0.79, 1.23) 1.4 0.99 (0.78, 1.25) 1.01 (0.81, 1.27)

M-LDL 0.1 0.98 (0.79, 1.23) 0.99 (0.79, 1.23) 1.4 0.99 (0.78, 1.25) 1.00 (0.79, 1.26)

S-LDL 0.1 0.96 (0.76, 1.20) 0.96 (0.76, 1.20) 1.4 0.96 (0.75, 1.21) 0.91 (0.72, 1.16)

XL-HDL 0.2 1.00 (0.80, 1.24) 1.00 (0.80, 1.24) 1.4 1.10 (0.88, 1.38) 1.13 (0.91, 1.40)

L-HDL 1.8 1.01 (0.80, 1.26) 1.03 (0.83, 1.29) 1.4 0.97 (0.77, 1.23) 1.02 (0.81, 1.28)

M-HDL 0.1 0.76 (0.60, 0.96) 0.76 (0.60, 0.97) 1.4 0.64 (0.51, 0.79) 0.62 (0.50, 0.77)

S-HDL 0.1 0.81 (0.66, 0.99) 0.81 (0.66, 0.99) 1.4 0.70 (0.58, 0.84) 0.72 (0.61, 0.87)

Lipoprotein particle size
VLDL size 0.1 1.08 (0.87, 1.34) 1.08 (0.87, 1.34) 1.4 0.87 (0.69, 1.11) 0.88 (0.69, 1.11)

LDL size 0.1 1.13 (0.89, 1.44) 1.13 (0.89, 1.43) 1.4 1.28 (1.01, 1.62) 1.34 (1.07, 1.68)

HDL size 0.1 0.99 (0.79, 1.24) 0.99 (0.79, 1.24) 1.4 1.03 (0.82, 1.29) 1.06 (0.85, 1.32)

Cholesterol
Serum C 0.1 0.94 (0.74, 1.18) 0.94 (0.74, 1.18) 1.4 0.88 (0.68, 1.13) 0.87 (0.68, 1.11)

loge Remnant C 0.1 1.04 (0.84, 1.30) 1.04 (0.84, 1.30) 1.4 0.97 (0.76, 1.22) 0.96 (0.76, 1.21)

loge VLDL-C 0.1 1.07 (0.86, 1.34) 1.07 (0.86, 1.34) 1.4 1.03 (0.82, 1.30) 1.02 (0.82, 1.29)

LDL-C 0.1 0.94 (0.75, 1.19) 0.94 (0.75, 1.19) 1.4 0.94 (0.74, 1.20) 0.93 (0.73, 1.18)

IDL-C 0.3 0.94 (0.75, 1.18) 0.95 (0.75, 1.19) 1.4 0.90 (0.71, 1.15) 0.89 (0.70, 1.14)

HDL-C 0.1 0.85 (0.68, 1.07) 0.85 (0.68, 1.07) 1.4 0.80 (0.62, 1.03) 0.80 (0.62, 1.03)

HDL2-C 0.1 0.86 (0.69, 1.09) 0.86 (0.69, 1.09) 1.4 0.79 (0.61, 1.01) 0.79 (0.62, 1.01)

HDL3-C 0.1 0.86 (0.68, 1.09) 0.86 (0.68, 1.09) 1.4 1.02 (0.81, 1.28) 0.97 (0.77, 1.23)

Esterified C 0.7 0.89 (0.70, 1.13) 0.91 (0.72, 1.15) 2.3 0.87 (0.68, 1.11) 0.86 (0.68, 1.10)

Free C 0.7 1.03 (0.83, 1.27) 1.01 (0.81, 1.26) 2.3 0.95 (0.75, 1.21) 0.96 (0.76, 1.21)

Triglycerides
loge Serum TG 0.1 1.16 (0.94, 1.44) 1.17 (0.94, 1.44) 1.4 1.07 (0.85, 1.34) 1.07 (0.85, 1.34)

loge VLDL-TG 0.1 1.13 (0.91, 1.40) 1.13 (0.91, 1.41) 1.4 1.00 (0.80, 1.26) 0.97 (0.78, 1.23)

loge IDL-TG 0.3 1.36 (1.10, 1.67) 1.35 (1.09, 1.66) 1.4 1.51 (1.22, 1.86) 1.58 (1.30, 1.93)

loge LDL-TG 0.1 1.28 (1.03, 1.58) 1.27 (1.03, 1.57) 1.4 1.41 (1.15, 1.73) 1.44 (1.19, 1.74)

loge HDL-TG 0.1 1.22 (0.99, 1.50) 1.22 (0.99, 1.50) 1.4 1.05 (0.83, 1.33) 0.98 (0.78, 1.24)

Phospholipids
Total PL 2.2 0.91 (0.72, 1.16) 0.97 (0.77, 1.21) 1.4 0.79 (0.61, 1.02) 0.79 (0.61, 1.02)

loge VLDL-PL 0.4 1.11 (0.90, 1.38) 1.11 (0.89, 1.37) 1.4 1.01 (0.80, 1.27) 1.00 (0.79, 1.25)

IDL-PL 0.3 0.96 (0.77, 1.21) 0.97 (0.78, 1.21) 1.4 1.01 (0.80, 1.28) 1.00 (0.80, 1.26)

LDL-PL 0.1 0.94 (0.75, 1.19) 0.94 (0.75, 1.19) 1.4 0.88 (0.68, 1.13) 0.89 (0.69, 1.14)

HDL-PL 1.8 0.91 (0.72, 1.14) 0.90 (0.72, 1.13) 1.4 0.79 (0.62, 1.01) 0.80 (0.63, 1.02)

Supplemental Table 1: Results for imputed and non-imputed metabolic measures
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UCORBIO (N=951) ANGES (N=560)
miss. 

%
non, imputed 
HR (95% CI)

imputed 
HR (95% CI)

  miss.  
%

non, imputed 
HR (95% CI)

imputed 
HR (95% CI)

Apolipoproteins
ApoA1 0.1 0.89 (0.71, 1.13) 0.89 (0.71, 1.12) 1.4 0.72 (0.56, 0.94) 0.72 (0.56, 0.92)

loge ApoB 0.2 1.08 (0.87, 1.34) 1.08 (0.87, 1.34) 1.4 0.96 (0.76, 1.21) 0.97 (0.77, 1.23)

ApoB/ApoA1 0.2 1.17 (0.96, 1.43) 1.17 (0.96, 1.43) 1.4 1.14 (0.92, 1.42) 1.20 (0.97, 1.47)

Fatty acids
loge Total FA 0.5 1.07 (0.87, 1.33) 1.07 (0.86, 1.32) 2.5 0.92 (0.72, 1.17) 0.93 (0.74, 1.18)

Unsaturation 1.1 0.80 (0.64, 0.99) 0.78 (0.63, 0.97) 2.5 0.83 (0.64, 1.06) 0.91 (0.72, 1.16)

DHA 0.4 0.94 (0.75, 1.18) 0.94 (0.75, 1.18) 2.5 0.87 (0.67, 1.13) 0.88 (0.69, 1.13)

LA 0.9 1.03 (0.83, 1.28) 1.02 (0.82, 1.27) 2.5 0.91 (0.71, 1.16) 0.96 (0.76, 1.22)

Omega3-FA 0.6 0.94 (0.75, 1.19) 0.93 (0.74, 1.18) 2.5 0.83 (0.63, 1.08) 0.88 (0.68, 1.13)

Omega6-FA 0.9 1.00 (0.80, 1.25) 1.00 (0.80, 1.25) 2.5 0.86 (0.67, 1.11) 0.87 (0.68, 1.12)

PUFA 0.9 0.99 (0.79, 1.24) 0.99 (0.80, 1.24) 2.5 0.84 (0.65, 1.09) 0.86 (0.67, 1.11)

loge MUFA 0.6 1.05 (0.84, 1.31) 1.05 (0.84, 1.30) 2.5 1.00 (0.79, 1.27) 1.03 (0.82, 1.29)

loge SFA 1.1 1.14 (0.93, 1.41) 1.14 (0.92, 1.40) 2.5 0.93 (0.74, 1.18) 0.94 (0.74, 1.18)

Fatty acid ratios
DHA/FA 0.5 0.87 (0.69, 1.10) 0.86 (0.68, 1.09) 2.5 0.87 (0.68, 1.12) 0.92 (0.72, 1.17)

LA/FA 0.9 0.97 (0.78, 1.21) 0.95 (0.76, 1.18) 2.5 0.95 (0.75, 1.20) 0.95 (0.76, 1.20)

Omega3-FA/FA 0.6 0.83 (0.65, 1.07) 0.83 (0.64, 1.06) 2.5 0.84 (0.65, 1.08) 0.94 (0.74, 1.19)

Omega6-FA/FA 0.9 0.90 (0.72, 1.12) 0.89 (0.71, 1.10) 2.5 0.86 (0.68, 1.08) 0.84 (0.67, 1.05)

PUFA/FA 0.9 0.87 (0.70, 1.08) 0.86 (0.69, 1.06) 2.5 0.82 (0.65, 1.04) 0.83 (0.66, 1.05)

MUFA/FA 0.6 0.99 (0.79, 1.23) 0.99 (0.80, 1.24) 2.5 1.17 (0.93, 1.48) 1.15 (0.91, 1.44)

SFA/FA 1.1 1.36 (1.09, 1.71) 1.38 (1.11, 1.72) 2.5 1.05 (0.83, 1.33) 1.04 (0.83, 1.31)

Amino acids
Alanine 0.0 1.18 (0.96, 1.45) 1.18 (0.96, 1.45) 1.4 0.82 (0.64, 1.06) 0.82 (0.64, 1.04)

Glutamine 0.5 1.10 (0.88, 1.38) 1.10 (0.88, 1.38) 1.6 0.84 (0.66, 1.07) 0.82 (0.65, 1.04)

Histidine 0.2 0.82 (0.66, 1.03) 0.83 (0.66, 1.03) 1.4 0.65 (0.51, 0.83) 0.64 (0.50, 0.82)

Isoleucine 0.5 1.01 (0.81, 1.25) 1.00 (0.80, 1.25) 1.8 1.00 (0.79, 1.27) 0.99 (0.78, 1.25)

loge Leucine 0.1 0.78 (0.63, 0.98) 0.79 (0.63, 0.98) 1.6 0.93 (0.73, 1.17) 0.96 (0.76, 1.22)

Valine 0.4 0.82 (0.65, 1.04) 0.82 (0.65, 1.04) 1.8 0.86 (0.68, 1.10) 0.92 (0.73, 1.17)

Phenylalanine 1.6 1.56 (1.30, 1.86) 1.58 (1.34, 1.87) 1.6 1.46 (1.20, 1.78) 1.44 (1.18, 1.75)

Tyrosine 0.4 1.19 (0.96, 1.47) 1.17 (0.94, 1.44) 1.4 0.94 (0.74, 1.19) 0.96 (0.76, 1.22)

Glycolysis
loge Glucose 0.2 1.28 (1.07, 1.54) 1.28 (1.07, 1.54) 1.4 1.16 (0.94, 1.42) 1.15 (0.94, 1.41)

loge Lactate 0.0 1.16 (0.95, 1.44) 1.16 (0.95, 1.44) 1.4 1.02 (0.81, 1.30) 1.05 (0.83, 1.33)

Pyruvate 0.1 1.18 (0.97, 1.43) 1.18 (0.97, 1.43) 1.6 1.08 (0.86, 1.36) 1.09 (0.87, 1.36)

Citrate 0.1 1.34 (1.13, 1.60) 1.34 (1.13, 1.60) 2.1 1.10 (0.88, 1.39) 1.11 (0.89, 1.39)

Miscellaneous
loge Acetate 0.9 0.90 (0.70, 1.15) 0.91 (0.71, 1.15) 3.6 0.90 (0.70, 1.17) 0.90 (0.70, 1.16)

loge Acetoacetate 0.0 1.01 (0.81, 1.26) 1.01 (0.81, 1.26) 2.0 1.20 (0.95, 1.53) 1.16 (0.92, 1.47)

loge Creatinine 2.5 1.45 (1.26, 1.67) 1.44 (1.25, 1.65) 5.0 1.30 (1.06, 1.60) 1.26 (1.03, 1.53)

  GlycA 0.0 1.42 (1.20, 1.68) 1.42 (1.20, 1.68)   1.8 1.36 (1.11, 1.66) 1.31 (1.07, 1.61)

Unadjusted associations with subsequent cardiovascular events for imputed and non-imputed data. Skewed 
metabolic measures loge transformed. HRs are given per SD-unit. CI: confidence interval; HR: hazard ratio; 
miss.: missing. Abbreviations for lipids and metabolites are as in Figure 2.

Supplemental Table 1 (continued)
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UCORBIO (N=951) 
HR (95% CI)

ANGES (N=560) 
HR (95% CI)

Combined (N=1,511) 
HR (95% CI) p

Lipoprotein subclasses
loge XXL, VLDL 1.15 (0.90, 1.48) 1.07 (0.84, 1.36) 1.11 (0.93, 1.31) 0.25

loge XL, VLDL 1.09 (0.85, 1.40) 0.94 (0.74, 1.18) 1.00 (0.85, 1.19) 0.97

loge L, VLDL 1.09 (0.84, 1.41) 0.87 (0.67, 1.12) 0.97 (0.78, 1.22) 0.80

loge M, VLDL 1.10 (0.87, 1.40) 0.90 (0.70, 1.17) 1.00 (0.83, 1.21) 0.98

loge S, VLDL 1.14 (0.90, 1.43) 1.1 0(0.85, 1.43) 1.12 (0.94, 1.33) 0.19

XS, VLDL 1.24 (1.01, 1.52) 1.12 (0.89, 1.41) 1.18 (1.01, 1.38) 0.032

IDL 1.21 (0.98, 1.49) 1.05 (0.83, 1.33) 1.13 (0.97, 1.33) 0.12

L, LDL 1.18 (0.95, 1.47) 1.03 (0.81, 1.32) 1.11 (0.94, 1.31) 0.20

M, LDL 1.18 (0.95, 1.47) 1.02 (0.79, 1.30) 1.1 (0.94, 1.30) 0.24

S, LDL 1.15 (0.91, 1.44) 0.93 (0.72, 1.20) 1.04 (0.84, 1.28) 0.72

XL, HDL 1.08 (0.86, 1.36) 1.14 (0.91, 1.44) 1.11 (0.95, 1.31) 0.20

L, HDL 1.09 (0.87, 1.37) 1.06 (0.82, 1.37) 1.08 (0.91, 1.28) 0.39

M, HDL 0.84 (0.66, 1.07) 0.59 (0.46, 0.76) 0.71 (0.50, 1.00) 0.053

S, HDL 0.84 (0.67, 1.06) 0.72 (0.59, 0.88) 0.77 (0.66, 0.89) 5.1x10-4

Lipoprotein particle size
VLDL size 1.01 (0.80, 1.28) 0.87 (0.67, 1.13) 0.94 (0.79, 1.13) 0.53

LDL size 0.99 (0.79, 1.23) 1.33 (1.04, 1.70) 1.14 (0.85, 1.53) 0.38

HDL size 1.07 (0.85, 1.34) 1.09 (0.85, 1.38) 1.08 (0.91, 1.27) 0.39

Cholesterol
Serum C 1.14 (0.91, 1.43) 0.90 (0.70, 1.17) 1.02 (0.81, 1.28) 0.85

loge Remnant C 1.23 (0.98, 1.55) 0.97 (0.75, 1.24) 1.10 (0.87, 1.39) 0.44

loge VLDL, C 1.18 (0.94, 1.49) 1.02 (0.79, 1.31) 1.11 (0.93, 1.31) 0.25

LDL, C 1.15 (0.92, 1.44) 0.96 (0.75, 1.23) 1.06 (0.89, 1.26) 0.53

IDL, C 1.16 (0.93, 1.45) 0.92 (0.72, 1.18) 1.04 (0.83, 1.30) 0.72

HDL, C 0.94 (0.74, 1.19) 0.83 (0.64, 1.08) 0.89 (0.75, 1.06) 0.20

HDL2, C 0.93 (0.73, 1.18) 0.81 (0.62, 1.06) 0.88 (0.73, 1.05) 0.14

HDL3, C 1.02 (0.80, 1.29) 1.05 (0.83, 1.34) 1.04 (0.88, 1.22) 0.68

Esterified C 1.11 (0.88, 1.39) 0.89 (0.69, 1.15) 1.00 (0.81, 1.23) 0.99

Free C 1.21 (0.96, 1.52) 1.00 (0.78, 1.27) 1.10 (0.91, 1.33) 0.32

Triglycerides
loge Serum TG 1.15 (0.92, 1.46) 1.05 (0.81, 1.36) 1.11 (0.93, 1.32) 0.25

loge VLDL, TG 1.11 (0.87, 1.40) 0.93 (0.72, 1.21) 1.02 (0.86, 1.22) 0.79

loge IDL, TG 1.37 (1.09, 1.71) 1.54 (1.21, 1.96) 1.45 (1.23, 1.70) 1.1x10-5

loge LDL, TG 1.35 (1.07, 1.71) 1.42 (1.14, 1.79) 1.39 (1.18, 1.63) 7.5x10-5

loge HDL, TG 1.24 (0.99, 1.55) 1.00 (0.78, 1.29) 1.12 (0.92, 1.38) 0.26

Phospholipids
Total PL 1.13 (0.90, 1.41) 0.80 (0.62, 1.04) 0.96 (0.68, 1.34) 0.79

loge VLD, PL 1.16 (0.92, 1.46) 0.97 (0.75, 1.26) 1.07 (0.90, 1.27) 0.43

IDL, PL 1.17 (0.94, 1.46) 1.00 (0.78, 1.27) 1.09 (0.92, 1.28) 0.31

LDL, PL 1.15 (0.91, 1.44) 0.90 (0.69, 1.16) 1.02 (0.80, 1.30) 0.86

HDL, PL 0.97 (0.76, 1.22) 0.79 (0.61, 1.03) 0.88 (0.72, 1.07) 0.21

Supplemental Table 2: Results for UCORBIO and ANGES
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    UCORBIO (N=951) 
HR (95% CI)

ANGES (N=560) 
HR (95% CI)

Combined (N=1,511) 
HR (95% CI) p

Apolipoproteins
ApoA1 1.02 (0.81, 1.28) 0.79 (0.61, 1.02) 0.90 (0.70, 1.16) 0.42

loge ApoB 1.23 (0.98, 1.55) 0.98 (0.76, 1.27) 1.11 (0.89, 1.39) 0.36

ApoB/ApoA1 1.23 (1.00, 1.52) 1.17 (0.93, 1.47) 1.21 (1.03, 1.41) 0.018

Fatty acids
loge Total FA 1.19 (0.95, 1.49) 0.97 (0.76, 1.23) 1.08 (0.88, 1.32) 0.46

Unsaturation 0.79 (0.63, 0.98) 0.93 (0.72, 1.20) 0.84 (0.72, 0.99) 0.042

DHA 0.98 (0.78, 1.23) 0.92 (0.72, 1.18) 0.95 (0.80, 1.13) 0.57

LA 1.18 (0.95, 1.47) 1.02 (0.80, 1.30) 1.10 (0.94, 1.30) 0.23

Omega3, FA 0.97 (0.77, 1.22) 0.92 (0.71, 1.18) 0.94 (0.80, 1.12) 0.51

Omega6, FA 1.16 (0.93, 1.45) 0.93 (0.73, 1.20) 1.05 (0.85, 1.30) 0.65

PUFA 1.14 (0.91, 1.43) 0.92 (0.72, 1.19) 1.04 (0.84, 1.27) 0.74

loge MUFA 1.11 (0.88, 1.41) 1.02 (0.80, 1.31) 1.07 (0.90, 1.27) 0.42

loge SFA 1.24 (1.00, 1.55) 0.97 (0.76, 1.24) 1.10 (0.87, 1.40) 0.42

Fatty acid ratios
DHA/FA 0.82 (0.65, 1.05) 0.96 (0.74, 1.25) 0.88 (0.74, 1.05) 0.17

LA/FA 1.05 (0.84, 1.32) 1.01 (0.79, 1.30) 1.03 (0.87, 1.22) 0.72

Omega3, FA/FA 0.76 (0.58, 0.99) 0.96 (0.75, 1.25) 0.86 (0.68, 1.09) 0.21

Omega6, FA/FA 0.98 (0.78, 1.23) 0.88 (0.69, 1.13) 0.93 (0.79, 1.10) 0.42

PUFA/FA 0.93 (0.74, 1.16) 0.88 (0.68, 1.14) 0.91 (0.76, 1.07) 0.25

MUFA/FA 0.96 (0.75, 1.22) 1.08 (0.84, 1.39) 1.01 (0.85, 1.21) 0.89

SFA/FA 1.23 (0.99, 1.54) 1.05 (0.82, 1.34) 1.15 (0.97, 1.35) 0.10

Amino acids
Alanine 1.11 (0.91, 1.37) 0.88 (0.69, 1.13) 1.00 (0.80, 1.26) 0.97

Glutamine 1.15 (0.92, 1.44) 0.87 (0.69, 1.11) 1.00 (0.77, 1.32) 0.97

Histidine 0.92 (0.72, 1.17) 0.74 (0.58, 0.95) 0.83 (0.67, 1.02) 0.069

Isoleucine 1.05 (0.83, 1.32) 0.89 (0.69, 1.14) 0.97 (0.82, 1.15) 0.72

loge Leucine 0.90 (0.71, 1.13) 0.89 (0.70, 1.14) 0.90 (0.76, 1.06) 0.2

Valine 0.89 (0.71, 1.12) 0.87 (0.68, 1.11) 0.88 (0.74, 1.04) 0.13

Phenylalanine 1.40 (1.17, 1.68) 1.21 (0.97, 1.51) 1.32 (1.15, 1.52) 9.9x10-5

Tyrosine 1.18 (0.96, 1.46) 1.01 (0.80, 1.27) 1.10 (0.94, 1.29) 0.23

Glycolysis
loge Glucose 1.25 (1.03, 1.51) 1.16 (0.93, 1.45) 1.21 (1.05, 1.40) 0.0099

loge Lactate 1.14 (0.91, 1.43) 1.05 (0.83, 1.32) 1.10 (0.93, 1.29) 0.27

Pyruvate 1.10 (0.90, 1.34) 1.06 (0.83, 1.35) 1.08 (0.93, 1.26) 0.32

Citrate 1.28 (1.03, 1.59) 1.17 (0.92, 1.48) 1.23 (1.05, 1.44) 0.012

Miscellaneous
loge Acetate 0.95 (0.75, 1.22) 0.98 (0.75, 1.28) 0.96 (0.80, 1.16) 0.69

loge Acetoacetate 1.02 (0.82, 1.26) 1.34 (1.06, 1.70) 1.16 (0.89, 1.53) 0.27

loge Creatinine 1.26 (1.07, 1.48) 1.31 (1.06, 1.62) 1.28 (1.12, 1.45) 2.3x10-4

  GlycA 1.32 (1.10, 1.60) 1.13 (0.89, 1.44) 1.25 (1.07, 1.45) 0.0037

Associations with subsequent cardiovascular events for UCORBIO, ANGES adjusted for the same variables 
as in Figure 2. Results were combined using inverse variance weighting. Skewed metabolic measures were 
loge transformed. HRs are given in SD units. CI: confidence interval; HR: hazard ratio. Abbreviations for 
lipids and metabolites are as in Figure 2.
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    3 years 
HR (95% CI)

max. follow, up 
HR (95% CI)

Lipoprotein subclasses
loge XXL, VLDL 1.07 (0.84, 1.36) 1.09 (0.94, 1.26)

loge XL, VLDL 0.94 (0.74, 1.18) 1.03 (0.88, 1.21)

loge L, VLDL 0.87 (0.67, 1.12) 1.01 (0.86, 1.18)

loge M, VLDL 0.90 (0.70, 1.17) 1.01 (0.87, 1.17)

loge S, VLDL 1.10 (0.85, 1.43) 1.12 (0.96, 1.31)

XS, VLDL 1.12 (0.89, 1.41) 1.14 (1.00, 1.30)

IDL 1.05 (0.83, 1.33) 1.04 (0.91, 1.20)

L, LDL 1.03 (0.81, 1.32) 1.02 (0.89, 1.19)

M, LDL 1.02 (0.79, 1.30) 1.02 (0.88, 1.18)

S, LDL 0.93 (0.72, 1.20) 0.98 (0.84, 1.14)

XL, HDL 1.14 (0.91, 1.44) 1.09 (0.95, 1.26)

L, HDL 1.06 (0.82, 1.37) 1.01 (0.87, 1.17)

M, HDL 0.59 (0.46, 0.76) 0.83 (0.72, 0.96)

S, HDL 0.72 (0.59, 0.88) 0.88 (0.77, 1.00)

Lipoprotein particle size
VLDL size 0.87 (0.67, 1.13) 0.98 (0.84, 1.14)

LDL size 1.33 (1.04, 1.70) 1.17 (1.00, 1.37)

HDL size 1.09 (0.85, 1.38) 1.04 (0.90, 1.21)

Cholesterol
Serum C 0.90 (0.70, 1.17) 0.98 (0.84, 1.13)

loge Remnant C 0.97 (0.75, 1.24) 1.06 (0.91, 1.22)

loge VLDL, C 1.02 (0.79, 1.31) 1.10 (0.95, 1.27)

LDL, C 0.96 (0.75, 1.23) 0.98 (0.85, 1.14)

IDL, C 0.92 (0.72, 1.18) 0.99 (0.85, 1.14)

HDL, C 0.83 (0.64, 1.08) 0.93 (0.80, 1.08)

HDL2, C 0.81 (0.62, 1.06) 0.92 (0.79, 1.07)

HDL3, C 1.05 (0.83, 1.34) 1.00 (0.86, 1.16)

Esterified C 0.89 (0.69, 1.15) 1.00 (0.86, 1.16)

Free C 1.00 (0.78, 1.27) 0.99 (0.86, 1.14)

Triglycerides
loge Serum TG 1.05 (0.81, 1.36) 1.09 (0.94, 1.27)

loge VLDL, TG 0.93 (0.72, 1.21) 1.04 (0.90, 1.22)

loge IDL, TG 1.54 (1.21, 1.96) 1.36 (1.17, 1.58)

loge LDL, TG 1.42 (1.14, 1.79) 1.27 (1.10, 1.47)

loge HDL, TG 1.00 (0.78, 1.29) 1.06 (0.91, 1.22)

Phospholipids
Total PL 0.80 (0.62, 1.04) 0.95 (0.82, 1.10)

loge VLDL, PL 0.97 (0.75, 1.26) 1.07 (0.92, 1.24)

IDL, PL 1.00 (0.78, 1.27) 1.02 (0.89, 1.18)

LDL, PL 0.90 (0.69, 1.16) 0.97 (0.83, 1.12)

HDL, PL 0.79 (0.61, 1.03) 0.93 (0.80, 1.08)

Supplemental Table 3: Results for 3-year follow-up and long-term 
follow-up in ANGES
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    3 years 
HR (95% CI)

max. follow, up 
HR (95% CI)

Apolipoproteins
ApoA1 0.79 (0.61, 1.02) 0.89 (0.77, 1.04)

loge ApoB 0.98 (0.76, 1.27) 1.03 (0.89, 1.20)

ApoB/ApoA1 1.17 (0.93, 1.47) 1.12 (0.97, 1.30)

Fatty acids
loge Total FA 0.97 (0.76, 1.23) 0.98 (0.84, 1.13)

Unsaturation 0.93 (0.72, 1.20) 0.93 (0.80, 1.07)

DHA 0.92 (0.72, 1.18) 0.95 (0.82, 1.10)

LA 1.02 (0.80, 1.30) 1.00 (0.86, 1.15)

Omega3, FA 0.92 (0.71, 1.18) 0.92 (0.79, 1.07)

Omega6, FA 0.93 (0.73, 1.20) 0.95 (0.82, 1.10)

PUFA 0.92 (0.72, 1.19) 0.93 (0.80, 1.08)

loge MUFA 1.02 (0.80, 1.31) 1.04 (0.90, 1.20)

loge SFA 0.97 (0.76, 1.24) 0.97 (0.84, 1.12)

Fatty acid ratios
DHA/FA 0.96 (0.74, 1.25) 0.96 (0.83, 1.12)

LA/FA 1.01 (0.79, 1.30) 0.98 (0.84, 1.13)

Omega3, FA/FA 0.96 (0.75, 1.25) 0.93 (0.80, 1.09)

Omega6, FA/FA 0.88 (0.69, 1.13) 0.91 (0.79, 1.05)

PUFA/FA 0.88 (0.68, 1.14) 0.90 (0.78, 1.04)

MUFA/FA 1.08 (0.84, 1.39) 1.10 (0.95, 1.28)

SFA/FA 1.05 (0.82, 1.34) 0.99 (0.86, 1.15)

Amino acids
Alanine 0.88 (0.69, 1.13) 1.00 (0.87, 1.16)

Glutamine 0.87 (0.69, 1.11) 0.97 (0.84, 1.12)

Histidine 0.74 (0.58, 0.95) 0.81 (0.69, 0.94)

Isoleucine 0.89 (0.69, 1.14) 0.95 (0.82, 1.11)

loge Leucine 0.89 (0.70, 1.14) 0.96 (0.82, 1.11)

Valine 0.87 (0.68, 1.11) 0.97 (0.83, 1.12)

Phenylalanine 1.21 (0.97, 1.51) 1.25 (1.07, 1.46)

Tyrosine 1.01 (0.80, 1.27) 1.09 (0.95, 1.26)

Glycolysis
loge Glucose 1.16 (0.93, 1.45) 1.04 (0.90, 1.20)

loge Lactate 1.05 (0.83, 1.32) 1.13 (0.98, 1.31)

Pyruvate 1.06 (0.83, 1.35) 1.07 (0.92, 1.23)

Citrate 1.17 (0.92, 1.48) 1.03 (0.89, 1.20)

Miscellaneous
loge Acetate 0.98 (0.75, 1.28) 0.93 (0.79, 1.09)

loge Acetoacetate 1.34 (1.06, 1.70) 1.14 (0.99, 1.32)

loge Creatinine 1.31 (1.06, 1.62) 1.09 (0.95, 1.25)

  GlycA 1.13 (0.89, 1.44) 1.08 (0.93, 1.25)

Supplemental Table 3 (continued)

Results are adjusted demographic and clinical variables. Skewed metabolic measures 
were loge transformed. HRs are given in SD units. CI: confidence interval; HR: hazard 
ratio. Abbreviations for lipids and metabolites are as in Figure 2.
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  Reference score 
β (95% CI)

Biomarker score 
β (95% CI)

     

Model A    

Age, SD 0.41 (0.16, 0.66) 0.42 (0.16, 0.68)

Multivessel disease 0.33 (-0.15, 0.81) 0.27 (-0.22, 0.76)

Hypertension 0.45 (-0.12, 1.01) 0.43 (-0.13, 0.99)

Myocardial infarction (inclusion) 0.35 (-0.15, 0.85) 0.10 (-0.43, 0.62)

Cerebrovascular accident 0.35 (-0.23, 0.92) 0.30 (-0.28, 0.87)

CABG 0.78 (0.27, 1.30) 0.75 (0.23, 1.27)

Renin inhibitors 0.25 (-0.29, 0.79) 0.28 (-0.25, 0.82)

Diuretics 0.88 (0.38, 1.37) 0.80 (0.31, 1.29)

LDL-TG, SD - 0.35 (0.12, 0.57)

Phenylalanine, SD - 0.29 (0.10, 0.48)

S-HDL, SD -  -0.20 (-0.41, 0.01)

     

Model B    

Age, SD 0.61 (0.34 -0.87) 0.53 (0.26, 0.80)

Male sex  -0.14 (-0.66, 0.39)  -0.05 (-0.59, 0.48) 

Hypertension 0.77 (0.23, 1.30) 0.76 (0.22, 1.31)

BMI, SD  -0.05 (-0.31, 0.20)  -0.08 (-0.33, 0.17)

Diabetes mellitus 0.14 (-0.36, 0.65) 0.12 (-0.40, 0.63)

Current smoker 0.25 (-0.28, 0.79) 0.21 (-0.33, 0.76)

Total cholesterol, SD 0.21 (-0.06, 0.48)  -0.04 (-0.40, 0.32)

HDL-C, SD  -0.28 (-0.57, 0.01)  -0.04 (-0.35, 0.27) 

LDL-TG, SD  - 0.37 (0.06, 0.69) 

Phenylalanine, SD  - 0.31 (0.14, 0.49)

S-HDL, SD  -  -0.22 (-0.46, 0.03)
 HRs and regression coefficients (β) for subsequent cardiovascular events were derived in UCORBIO. Risk 
prediction was based on two reference risk score, including selected clinical and demographic variables 
(Model A) or traditional cardiovascular risk factors (Model B). LDL-TG, S-HDL and phenylalanine were 
added to each model to obtain biomarker risk scores. Regression coefficients from UCORBIO were used to 
calculate absolute risk estimates in ANGES. Continuous variables were scaled to SD units. BMI: body mass 
index; CABG: coronary artery bypass grafting; CI: confidence interval; HDL-C: high-density lipoprotein 
cholesterol; HR: hazard ratio; LDL-TG: triglycerides in low-density lipoprotein; S-HDL: small high-density 
lipoprotein particle concentration; SD: standard deviation.

Supplemental Table 4: Regression coefficients for subsequent cardiovascular events
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Risk score Decile Total n Events Observed counts - 
adjusted for censoring

Expected 
 count

Reference score 
(χ2=16.9, df=7, p=0.02)

1 + 2 112 8 8.0 3.6
3 + 4 112 8 8.1 6.7

5 56 10 10.0 4.7
6 56 8 8.1 5.6
7 56 9 9.1 7.1
8 56 9 9.0 9.3
9 56 8 8.1 12.2

10 56 12 12.2 20.4

Biomarker score 
(χ2=10.5, df=7, p=0.16)

1 + 2 112 6 6.0 2.8
3 + 4 112 8 8.1 5.9

5 56 5 5.0 4.1
6 56 9 9.1 5.4
7 56 10 10.0 7.2
8 56 6 6.1 9.5
9 56 12 12.0 13.0

10 56 16 16.5 22.5

Supplemental Table 5: Model calibration in ANGES

Model A

Risk score Decile Total n Events Observed counts - 
adjusted for censoring

Expected 
 count

Reference score 
(χ2=14.0, df=8, p=0.08)

1 56 6 6.0 2.1
2 56 8 8.0 3.3

3 + 4 112 8 8.0 9.2
5 56 7 7.0 5.7
6 56 10 10.1 6.6
7 56 6 6.0 7.7
8 56 8 8.0 9.3
9 56 10 10.2 12.3

10 56 9 9.1 15.2

Biomarker score 
(χ2=12.5, df=6, p=0.05)

1 + 2 112 5 5.0 3.8
3 + 4 112 14 14.0 7.6
5 + 6 112 9 9.0 11.3

7 56 9 9.1 7.8
8 56 12 12.1 9.5
9 56 6 6.1 12.2

10 56 17 17.2 19.4

Model B

Calibration across risk deciles for the reference scores and biomarkers scores of Model A and Model B 
in ANGES. The reference risk scores were based on demographic and clinical variables, the biomarker 
risk scores additionally three biomarkers. Risk estimates in ANGES were computed based on regression 
coefficients derived in UCORBIO. Calibration was assessed by the Greenwod-Nam-D’Agostino goodness-
of-fit test. Risk deciles with <5 events were collapsed with the next decile.
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coefficient. Abbreviations for metabolic measures are as in Figure 2.
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Abstract

Background: Left ventricular ejection fraction (LVEF) and infarct size (ISZ) are key 
predictors of long-term survival after myocardial infarction (MI). However, little is 
known about the biochemical pathways driving left ventricular dysfunction after 
MI. To identify novel biomarkers predicting post-MI LVEF and ISZ, we performed 
metabolic profiling in the GIPS-III randomized clinical trial. We also investigated 
the metabolic footprint of metformin, a drug associated with improved post-MI left 
ventricular function in experimental studies.

Results: Participants were ST-elevated MI (STEMI) patients who were randomly 
assigned to receive metformin or placebo for 4 months. Blood samples were obtained 
on admission, 24 h and 4 months post-MI. 233 lipoprotein and metabolite measures 
were quantified using nuclear magnetic resonance (NMR) spectrometry. LVEF 
and ISZ were assessed 4 months post-MI. 24 h post-MI measurements of HDL 
triglycerides (HDL-TG) predicted LVEF (β=1.90 [95% CI: 0.82, 2.98]; p=6.4x10-4) and 
ISZ (β=-0.41; [-0.60, -0.21]; p=3.2x10-5). Additionally, 24 h post-MI measurements 
of medium HDL-TG (β=-0.40 [-0.60, -0.20]; p=6.4x10-5), small HDL-TG (β=-0.34 
[-0.53, -0.14]; p=7.3x10-4) and the triglyceride content of very large HDL (β=-0.38 
[-0.58, -0.18]; p=2.7x10-4) were associated with ISZ. After the 4-month treatment, the 
phospholipid content of very large HDL was lower in metformin vs. placebo treated 
patients (28.89% vs. 38.79%; p=7.5x10-5); alanine levels were higher in the metformin 
group (0.46 mmol/l vs. 0.44 mmol/l; p=2.4x10-4). 

Conclusions: HDL triglyceride concentrations predict post-MI LVEF and ISZ.  
Metformin increases alanine levels and reduces the phospholipid content in very large 
HDL particles. 

Clinical Trial Registration: 
NCT01217307 (https://clinicaltrials.gov)
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Introduction

Myocardial Infarction (MI) is one of the leading causes of global morbidity and 
mortality. While the survival after MI has improved due to ameliorated treatment 
strategies, including primary percutaneous interventions, the long-term outcome 
of MI in general remains poor with a 1-year risk for recurrent cardiovascular (CV) 
events of over 10%.1 Left ventricular ejection fraction (LVEF) and infarct size (ISZ) 
are key predictors of long-term prognosis after MI.2,3 However, treatment options 
for left ventricular dysfunction are limited and the biochemical mechanisms driving 
functional decline of the myocardium after MI are largely unknown. 

Metformin, which is commonly used in the treatment of diabetes and more recently 
in insulin resistant conditions, has been found to preserve LVEF and to reduce ISZ 
in non-diabetic animal models of MI.4 The GIPS-III clinical trial was designed to 
study the effects of metformin therapy on LVEF in non-diabetic ST segment Elevation 
MI (STEMI) patients undergoing PCI. However, in contrast to preclinical findings, 
metformin did not improve LVEF compared with placebo 4 months post-MI.5 

This result may be explained by interindividual differences in metformin response, 
raising the possibility that metformin is effective in a subgroup of CV patients. 
Metabolic profiling has emerged as a powerful tool to explore drug effects and factors 
influencing drug response.6-8 Metabolomics is a relatively novel field in ‘omics’ sciences, 
which uses high-throughput technologies, such as nuclear magnetic resonance (NMR) 
spectroscopy, to concurrently quantify a large number of small molecules in different 
tissues. While recent studies reported changes in lipid and amino acid concentrations 
after metformin treatment,9-11 no study has yet used large-scale metabolic platforms 
to investigate the effects of metformin on a wide range of lipoprotein and metabolite 
measures at a time. Furthermore, metabolic profiling has been performed to improve 
diagnosis and prediction of CV events.12,13 A recent study identified metabolic profiles 
which discriminate heart failure patients from healthy controls.14 Metabolic profiling 
may thus help identify novel biomarkers of left ventricular function and ISZ to improve 
risk stratification in MI patients.

Metabolite concentrations can vary greatly over time and are highly sensitive to 
environmental influences. Lipid profiles have been shown to change shortly after MI 
and only gradually return to baseline after several weeks.15 The predictive value of a 
biomarker may thus vary over time. We therefore studied metabolic markers of LVEF, 
ISZ and metformin response in the GIPS-III cohort at three different time points: 
baseline (on admission), 24 h post-MI and 4 months post-MI. 

The objective of this ancillary study of the GIPS-III trial was to evaluate the effect 
of metformin on metabolic profiles in non-diabetic STEMI patients and to identify 
prognostic markers, which predict LVEF and ISZ 4 months post-MI. Furthermore 
we tested whether metformin improved LVEF and ISZ in subgroups of patients, as 
identified by metabolic profiling.  
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Methods

Study population
The GIPS-III study is a randomized trial that included 380 non-diabetic patients 
undergoing primary PCI for STEMI. Participants received a 4-month regimen with 
either metformin 500mg 2dd1 or matching placebo 2dd1. The design of the study has 
been previously described in more detail.4,5 All patients provided written informed 
consent. The study complied with the Declaration of Helsinki and was approved by the 
ethics committee of the University Medical Center Groningen (the Netherlands) and 
national authorities (NCT01217307). The primary outcome measure was LVEF, the 
secondary outcome measure was ISZ. Both measures were assessed 4 months post-MI 
by MRI as described below. 

Laboratory measurements
Non-fasting blood samples were obtained on admission (N=339), 24 h post-MI 
(N=329) and 4 months post-MI (N=316). Serum and EDTA anticoagulated plasma 
samples were stored at -80 °C until analyzed. Metabolic profiling was performed using 
a high-throughput 1H NMR metabolomics platform.16 We obtained a total of 233 
concentrations and ratios of metabolic measures, including 168 lipoprotein subclass 
measures, 45 lipid related measures, 5 glycolysis related metabolites, 9 amino acids, 
3 ketone bodies, 2 fluid balance related metabolites and 1 inflammatory marker. An 
overview of all NMR measures is given in Supplemental Table 1.

Cardiac magnetic resonance imaging
LVEF and ISZ were measured by cardiac magnetic resonance imaging (MRI) 4 months 
after MI as previously described in detail.4,5 Independent cardiologists analyzed all 
MRI data and assessed LVEF and ISZ, blinded for treatment assignment.

Statistical analysis
Missing NMR measures were imputed using random forest imputation as implemented 
in the R package missForest.17 Since most NMR measures showed skewed distributions, 
they were normalized using rank-based inverse normal transformation within each 
time point separately. Spearman’s correlation coefficients were calculated from the 
metabolite concentrations for each time point (baseline, 24 h post-MI and 4 months 
post-MI) and plotted using the corrplot function of the corrplot package of R. The 
correlation plots are presented in Supplemental Figure 1. Since many metabolites were 
highly correlated, principal component analysis (PCA) was applied to estimate the 
number of independent tests for multiple testing correction, using the prcomp function 
in R. To additionally account for multiple testing at different time points, principal 
components were calculated across all three time points. The first 68 PCs explained 
over 95% of the variation in the metabolite data, yielding an adjusted significance level 
of p<0.05/68=0.00074.

Unpaired t-tests were performed to assess the effect of metformin treatment on 
lipoprotein and metabolite measures. To identify biomarkers predictive of LVEF 
and ISZ, we analyzed all NMR measures at each time point separately, using linear 
regression adjusted for known predictors of ventricular function and medication use: 
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age, sex, baseline N-terminal prohormone of brain natriuretic peptide (NTproBNP) 
levels, baseline creatine kinase (CK)-MB levels, myocardial blush grade, metformin 
treatment and statin treatment (4 months post-MI). To meet the assumption of 
normality of residuals, we tested different transformations. Since square-root 
transformation provided the best results, ISZ was square-root transformed. In addition 
we performed stratified analyses for LVEF and ISZ. According to current guidelines,18 
LVEF 52%-72% was categorized as normal ventricular function; LVEF 41-51% was 
defined as mildly abnormal and LVEF <41% as abnormal for men. Categories were 
LVEF 54%-74% for normal ventricular function, LVEF 41-53% as mildly abnormal and 
LVEF <41% for abnormal for women. ISZ was stratified by tertiles to obtain the same 
number of strata as with LVEF. Associations of NMR measures with LVEF categories 
and ISZ tertiles were assessed using multinomial logistic regression, which provides 
pairwise comparisons between each level of the outcome variable and a reference level. 
Finally we added the interaction term of metformin treatment and NMR measure to 
the linear regression models to identify subgroups of patients in whom metformin 
was effective. R (version 3.02 or higher, http://www.r-project.org/) was used for all 
statistical analyses. 

Results

Patient characteristics and metabolic measures
A total of 380 patients received either metformin placebo treatment. Of these, 109 
did not undergo MRI 4 months post-MI or did not provide utilizable scans due to 
insufficient quality. Details on metformin/placebo treatment, clinical parameters 
and conventional lipid and (apo)lipoprotein measures have been published 
elsewhere.5,11 Briefly, metformin treatment resulted in a modest decrease in low-
density lipoprotein cholesterol (LDL-C) without significant effects on total cholesterol, 
high-density lipoprotein (HDL) cholesterol, triglycerides, apolipoprotein B (apoB) 
and apolipoprotein A-I (apoA1) when the values after 4 months and after 24 h were 
compared (data not shown).14 Metabolic profiles were quantified in a total of 376 
patients. Baseline, 24 h post-MI and 4-month post-MI measurements were available 
from 339, 326 and 316 patients, respectively. Premature dropout was neither related to 
metformin treatment nor to mortality as none of the participants died before MRI.5 A 
summary of all lipoprotein metabolite measures can be found in Supplemental Table 1. 
The correlation matrices revealed substantial correlation within lipoprotein subclasses, 
between amino acids and between fatty acids (Supplemental Figure 1). 

Association of NMR measures with LVEF and ISZ
Results for all metabolic measures tested are shown in Supplemental Tables 2-7. None 
of the NMR measures was significantly associated with LVEF 4 months post-MI. No 
baseline NMR measure predicted LVEF. Patients with higher HDL triglyceride (TG) 
levels 24 h post-MI showed significantly better LVEF (β=1.90 [95% CI: 0.82, 2.97]; 
p=6.4x10-4) after adjustment for metformin treatment, age, sex, baseline NTproBNP 
levels, baseline CK-MB levels, myocardial blush grade and statin use (Table 1). When 
LVEF was entered as categorical variable (normal, mildly abnormal, abnormal left 
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ventricular function), 24 h post-MI measurements of HDL-TG (OR=0.36 [95% CI: 
0.21, 0.61]; p=1.8x10-4), medium (M-) HDL-TG (OR=0.37 [0.22, 0.63]; p=2.3x10-4) 
and small (S-) HDL-TG (OR=0.35 [0.20, 0.61]; p=2.1x10-4) significantly predicted 
normal vs. abnormal LVEF 4 months post-MI (Figure 1A, Table 2). Notably, all HDL-
TG related measures showed a positive association with LVEF, suggesting a beneficial 
effect of increased triglyceride content in HDL. We found no association of 24 h post-
MI measurements with mildly abnormal LVEF relative to normal LVEF. In addition, 
24 h post-MI measurements of triglycerides (OR=0.39 [0.23, 0.66]; p=5.2x10-4) and 
the cholesterol (OR=2.52 [1.48, 4.30]; p=6.6x10-4) in very small (XS-) very low-density 
lipoprotein (VLDL) particles was associated with abnormal LVEF compared to normal 
left ventricular function. Finally, baseline measurements of the TG to total lipids ratio 
in large (L-) LDL (L-LDL-TG%) predicted abnormal LVEF (OR=0.37 [0.21, 0.65]; 
p=6.2x10-4). Addition of a treatment x NMR measure interaction term did not reveal 
any patient subgroup in whom metformin improved LVEF (Table 3).

We did not find any association between NMR measures and ISZ at baseline and 4 
months post-MI. In the adjusted model, HDL-TG (β=-0.41 [-0.60, -0.22]; p=3.2x10-5), 
M-HDL-TG (β=-0.40 [-0.60, -0.21]; p=6.4x10-5), very large (XL-) HDL-TG% (β=-0.38 
[-0.58, -0.18]; p=2.7x10-4) and S-HDL-TG (β=-0.34 [-0.54, -0.15]; p=7.3x10-4) were

Unadjusted model Ajusted model
β (95% CI) p   β (95% CI) p

LVEF (N=245)
HDL-TG 1.84 (0.78, 2.89) 7.4x10-4 1.90 (0.82, 2.97) 6.4x10-4*
M-HDL-TG 1.70 (0.65, 2.75) 0.002 1.65 (0.55, 2.74) 0.003
XL-HDL-TG% 1.67 (0.56, 2.77) 0.003 1.82 (0.68, 2.96) 0.002
S-HDL-TG  1.51 (0.45, 2.57) 0.006  1.68 (0.58, 2.78) 0.003
Albumin 1.10 (0.04, 2.16) 0.044 1.25 (0.10, 2.40) 0.034
Phenylalanine   -0.90 (-2.01, 0.21) 0.113 -0.55 (-1.68, 0.58) 0.344

ISZ (N=231)
HDL-TG  -0.42 (-0.60, -0.24) 1.2x10-5*  -0.41 (-0.60, -0.22) 3.2x10-5*
M-HDL-TG  -0.42 (-0.60, -0.23) 1.4x10-5*  -0.40 (-0.60, -0.21) 6.4x10-5*
XL-HDL-TG%  -0.37 (-0.56, -0.18) 1.9x10-4*  -0.38 (-0.58, -0.18) 2.7x10-4*
S-HDL-TG  -0.33 (-0.52, -0.14) 6.8x10-4*  -0.34 (-0.54, -0.15) 7.3x10-4*
Albumin  -0.33 (-0.52, -0.15) 5.2x10-4*  -0.33 (-0.54, -0.13) 0.002
Phenylalanine 0.38 (0.18, 0.58) 1.9x10-4*    0.34 (0.14, 0.55) 0.001

Table 1: Associations of selected NMR measures with LVEF and ISZ 24 h post–MI

Results for metabolic measures that showed signifiacnt associations in the unadjusted model or the adjusted 
model, including age, sex, treatment, statin use, CKMB, NTproBNP and MBG as covariates. *Effects 
significant after correction for multiple testing (p<7.4x10-4). CI: confidence interval; LVEF: left ventricular 
ejection fraction; ISZ: infarct size; HDL-TG: triglycerides in HDL particles; M-HDL-TG: triglycerides 
in medium HDL particles; XL-HDL-TG%: triglycerides to total lipids ratio in very large HDL particles; 
S-HDL-TG: triglycerides in small HDL particles.
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OR (95% CI) p   OR (95% CI) p

LVEF normal vs.  
mildly abnormal

normal vs.  
abnormal

Baseline
    L-LDL-TG% 1.05 (0.76, 1.45) 0.774 0.37 (0.21, 0.65) 6.2x10-4

24 h post-MI
    HDL-TG 0.70 (0.51, 0.96) 0.027 0.36 (0.21, 0.61) 1.8x10-4

    M-HDL-TG 0.72 (0.52, 1.00) 0.050 0.37 (0.22, 0.63) 2.3x10-4

    S-HDL-TG 0.74 (0.53, 1.02) 0.062 0.35 (0.20, 0.61) 2.1x10-4

    XS-VLDL-TG% 0.83 (0.61, 1.14) 0.247 0.39 (0.23, 0.66) 5.2x10-4

    XS-VLDL-C% 1.10 (0.82, 1.49) 0.523  2.52 (1.48, 4.30) 6.6x10-4

ISZ 1st tertile vs.  
2nd tertile

1st tertile vs. 
 3rd tertile

24 h post-MI
    HDL-TG 0.78 (0.55, 1.11) 0.169 0.48 (0.33, 0.69) 9.2x10-5

    M-HDL-TG 0.88 (0.62, 1.25) 0.472 0.46 (0.31, 0.67) 6.2x10-5

    S-HDL-TG 0.92 (0.64, 1.30) 0.621 0.51 (0.35, 0.74) 3.9x10-4

    XL-HDL-TG% 0.75 (0.52, 1.07) 0.116   0.49 (0.33, 0.72) 3.2x10-4

Table 2: Associations of selected NMR measures with LVEF and ISZ categories

Associations of metabolic measures with LVEF categories (normal, mildly abnormal, abnormal) and ISZ 
categories (tertiles), and adjusted for age, sex, treatment, statin use, CKMB, NTproBNP and MBG. Results 
for pairwise comparisons are given Metabolic measures with at least one significant pairwise between-group 
comparison are shown. *Effects significant after correction for multiple testing (p<7.4x10-4). CI: confidence 
interval; LVEF: left ventricular ejection fraction; ISZ: infarct size; L-LDL-TG%: triglyceride to total lipids 
ratio in large LDL particles; HDL-TG: triglycerides in HDL particles; M-HDL-TG: triglycerides in medium 
HDL particles; S-HDL-TG: triglycerides in small HDL particles; XL-HDL-TG%: triglycerides to total lipids 
ratio in very large HDL particles; XS-VLDL-TG%: triglycerides to total lipids ratio in very small VLDL 
particles; XS-VLDL-C%: cholesterol to total lipids ratio in very small VLDL particles.

significantly associated with ISZ 24 h post-MI (Table 1). In addition, phenylalanine 
(β=0.38 [0.18, 0.58]; p=1.9x10-4) and albumin (β=-0.33 [-0.52, -0.15]; p=5.2x10-4) 
reached significance in the unadjusted model, but not in the adjusted model. Similarly, 
24 h post-MI measurements of HDL-TG (OR=0.48 [0.33, 0.69]; p=9.2x10-5), M-HDL-
TG (OR=0.46 [0.31, 0.67]; p=6.2x10-5), S-HDL-TG (OR=0.51 [0.35, 0.74]; p=3.9x10-4) 
and XL-HDL-TG% (OR=0.49 [0.33, 0.72]; p=3.2x10-4) predicted ISZ, when the first 
tertile was compared to the third tertile (Figure 1B, Table 2). Again, our findings suggest 
a beneficial effect of higher HDL-TG levels. We found no significant interactions 
between treatment and NMR measures (Table 3). As shown in Supplemental Table 8, 
HDL-TG, M-HDL-TG, S-HDL-TG and XL-HDL-TG% increased between baseline 
and 24 h post-MI and remained relatively stable between 24 h and 4 months post-MI, 
except for XL-HDL-TG%, which showed a moderate gain. Similar to HDL-TG, serum 
triglyceride levels increased between baseline and 24 h post-MI, but were decreased 4 
months after MI. 
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Figure 1: Categorical analysis for LVEF and ISZ

Box plots comparing selected NMR measures (24 h post-MI) between distinct LVEF (A) and ISZ (B) 
categories. For all plots, the lower and the upper margins represent the first and third quartile, respectively. 
Vertical lines indicate median values; squares indicate mean values. The whiskers represent the lowest and 
the highest value within 1.5 interquartile ranges. Outliers are not shown. Differences between categories 
were assessed using multinomial logistic regression adjusted for treatment, age, sex, NTproBNP levels, 
CK-MB levels, myocardial blush grade, statin use. *Effects significant after correction for multiple testing 
(p<7.4x10-4). Abbreviations are as in Table 2.

A

B
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Effects of metformin of metabolic profiles
Results for all lipoprotein and metabolite measures are shown in Supplemental Table 
9. To assess baseline differences in metabolic profiles, we compared NMR measures 
between the treatment group and controls at baseline. We did not find any difference 
between the two groups at baseline. Table 4 summarizes metabolic measurements for 
24 h post-MI and 4 months post-MI. 24 h post-MI, after the administration of the first 
doses of the treatment. Both alanine (median: 0.49 mmol/l vs. 0.46 mmol/l; p=9.0x10-4) 
and pyruvate (median: 0.16 mmol/l vs. 0.14 mmol/l; p=0.001) displayed trends 
towards increased concentrations in the metformin group compared to the placebo 
group. After the 4-month treatment period, alanine levels were significantly elevated 
in metformin-treated patients (median: 0.46 mmol/l vs. 0.44 mmol/l; p=2.4x10-4). In 
addition, the phospholipids to total lipids ratio in XL-HDL particles (XL-HDL-PL%) 
was significantly reduced in the metformin group compared to the placebo group 
(median: 28.89% vs. 38.79%; p=7.5x10-5).

Unadjusted model Adjusted model
β (95% CI) p   β (95% CI) p

LVEF (N=245)
Treatment X
    HDL-TG 1.15 (-0.96, 3.26) 0.285 0.94 (-1.18, 3.06) 0.387
    M-HDL-TG 1.09 (-1.01, 3.19) 0.311 0.82 (-1.30, 2.94) 0.449
    XL-HDL-TG% 0.71 (-1.50, 2.92) 0.529 0.60 (-1.61, 2.82) 0.593
    S-HDL-TG  0.73 (-1.42, 2.87) 0.506  0.68 (-1.46, 2.82) 0.534
    Albumin 0.36 (-1.77, 2.49) 0.740 0.38 (-1.74, 2.51) 0.725
    Phenylalanine   -1.02 (-3.25, 1.22) 0.373 -1.24 (-3.51, 1.03) 0.286

ISZ (N=231)
Treatment X
    HDL-TG  -0.07 (-0.44, -0.30) 0.701  -0.04 (-0.41, 0.34) 0.856
    M-HDL-TG  -0.19 (-0.56, 0.18) 0.316  -0.14 (-0.52, 0.24) 0.465
    XL-HDL-TG%  0.04 (-0.35, 0.42) 0.849  0.04 (-0.35, 0.44) 0.827
    S-HDL-TG  -0.04 (-0.42, 0.35) 0.857  -0.03 (-0.41, 0.36) 0.891
    Albumin  -0.06 (-0.43, 0.32) 0.762  -0.05 (-0.43, 0.33) 0.804
    Phenylalanine 0.01 (-0.39, 0.40) 0.977    0.04 (-0.36, 0.45) 0.834

Table 3: Interaction between treatment and selected NMR measures

Association of treatment x NMR measure interaction (24 h post-MI) with LVEF and ISZ. Results are 
shown for the unadjusted model and adjusted model including age, sex, statin use, CKMB, NTproBNP 
and MBG as covariates. CI: confidence interval; LVEF: left ventricular ejection fraction; ISZ: infarct size; 
HDL-TG: triglycerides in HDL particles; M-HDL-TG: triglycerides in medium HDL particles; XL-HDL-
TG%: triglycerides to total lipids ratio in very large HDL particles; S-HDL-TG: triglycerides in small HDL 
particles.
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Discussion

We used NMR spectrometry-based lipoprotein and metabolite measures to evaluate 
the effects of metformin on metabolic profiles of non-diabetic MI patients and to study 
prognostic metabolic measures predicting LVEF and ISZ 4 months post-MI. Moreover 
we investigated whether metabolic profiling could be used to identify subgroups of 
patients in whom metformin was effective. After the 4-month treatment period, we 
found higher alanine levels and lower XL-HDL-PL% in metformin-treated patients 
as compared to controls. Remarkably, higher triglyceride levels in HDL and several 
HDL subclassess measured 24 h post-MI were associated with a favorable outcome, as 
inferred from higher LVEF and smaller ISZ 4 months post-MI. Moreover, categorical 
analysis of LVEF revealed that besides HDL-TG, the composition of XS-VLDL (24 h 
post-MI) and L-LDL (baseline) was associated with abnormal left ventricular function 
4 months post-MI. We could not identify metabolic profiles associated with treatment 
benefits from metformin.

Similar to our results, the CAMERA study, a clinical trial investigating the effects of 
metformin on different amino acids, found substantially increased alanine levels 18 
months after treatment onset.13 Alanine plays a crucial role in the alanine-glucose 
cycle, in which alanine released by muscle tissue is transported to the liver before it 
is converted into pyruvate for gluconeogenesis. Findings from animal studies suggest 
that metformin reduces gluconeogenesis by inhibiting hepatic alanine uptake and 
by hampering fat-induced changes in the glycolysis metabolic pathway.19,20 As a 
result of reduced uptake into the liver, blood alanine levels may rise in metformin-
treated patients. Interestingly, we observed a trend towards increased alanine levels 
in the metformin group 24 h post-MI, suggesting rapid effects of metformin on 
gluconeogenesis.

Placebo  Metformin
Median (IQR) Median (IQR) p

24 h post-MI N=170 N=159
    Alanine in mmol/l 0.46 (0.09) 0.49 (0.09) 9.0x10-4

    Pyruvate in mmol/l 0.14 (0.05) 0.16 (0.07) 0.001
    XL-HDL-PL% 36.11 (17.52) 33.98 (14.65) 0.908

4 months post-MI N=159 N=157
    Alanine in mmol/l 0.44 (0.08) 0.46 (0.09) 2.4x10-4*
    Pyruvate in mmol/l 0.10 (0.04) 0.11 (0.04) 0.006
    XL-HDL-PL% 38.79 (19.50) 28.89 (23.90) 7.5x10-5*

Table 4: Treatment effects of metformin

Effects of treatment on selected NMR measures 24 h post-MI and 4 months post-MI. 
*Significant effects (p<7.4x10-4). IQR: inter-quartile range; XL-HDL-PL%: phospholipids 
to total lipids ratio in very large HDL particles. 
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Numerous randomized controlled trials have studied the effects of metformin 
treatment on lipid levels in patients with type 2 diabetes. A recent study in diabetic 
patients found that metformin lowered total cholesterol and LDL-C.21 Another study 
in patients at risk for diabetes reported changes in lipoprotein subclasses after one 
year of metformin treatment, with reduced particle concentrations of small LDL and 
elevated concentrations of large LDL, small HDL and large HDL.9 In our recent report, 
we observed modest decreases in LDL cholesterol, no change in apolipoprotein B, and 
as a result a small decrease in LDL particle size.11 In the present study, which used a 
different NMR-based method, only the phospholipid content of large HDL particles 
was decreased in response to metformin. 

We also tested whether lipoprotein characteristics and NMR measures at baseline, 24 
h post-MI and 4 months post-MI were associated with 4 months post-MI LVEF and 
ISZ. We found that increased HDL-TG levels measured 24 h post-MI were associated 
with a greater LVEF. In addition, decreased HDL-TG, M-HDL-TG, XL-HDL-TG% 
and S-HDL-TG measured 24 h post-MI predicted higher ISZ. Categorical analysis 
of LVEF and ISZ provided similar results with more favorable outcomes for patients 
with higher HDL-TG levels. No NMR measure showed a significant interaction with 
metformin treatment, suggesting that there was no metabolic subgroup of patients in 
whom metformin was effective. 

Our findings suggest beneficial effects of higher triglyceride levels in HDL and 
in HDL subclasses measured 24 h post-MI on ISZ and LVEF. Clinical studies have 
identified low admission triglyceride levels as a risk factor for recurrent CV events 
and mortality in STEMI patients.22,23 Likewise, low triglyceride levels are associated 
with a poor prognosis in stroke patients.24 This contrasts with findings from large-
scale case-control and prospective cohort studies indicating that hypertriglycemia 
is a strong predictor of CV events, even independent of cholesterol levels.25,26 These 
epidemiological findings, however, apply to individuals who were not studied during 
the course of an acute coronary event. Similarly paradoxical findings have been 
obtained for plasma cholesterol levels. While hypercholesterolemia is an established 
CV risk factor in the general population, admission LDL-C levels <70 mg/dl are 
associated with higher mortality and incidence of heart failure in statin-naïve STEMI 
patients.27 The pathogenic mechanisms underlying recurrent CV events shortly after 
an acute event are still poorly understood. It is possible that in the acute setting HDL-
TG plays a distinct role on CV outcome .

VLDL is the most important triglyceride carrier in plasma. The triglyceride content 
of VLDL showed substantial correlation with HDL-TG 24 h post-MI (Supplemental 
Figure 1B). However, only the triglyceride content of very small VLDL particles was 
associated with LVEF categories. In addition, the TG content of large LDL particles at 
baseline predicted abnormal LVEF 4 months post-MI. Inhibition of fatty acid uptake 
by relocation of FAT/CD36 may reduce intracellular fatty acid concentrations,28 
resulting in increased extracellular fatty acid levels and diminished lipolysis of lipid-
bound triglycerides. This may initially lead to triglyceride enrichment of VLDL and 
LDL particles, which subsequently transfer excess triglycerides to HDL particles 
in exchange for cholesteryl esters by the action of cholesteryl ester transfer protein 
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(CETP), thereby increasing the triglyceride content in HDL.29 In line with this, blood 
samples of MI patients collected immediately after diagnosis show strong triglyceride 
enrichment of HDL2 particles.30 Higher plasma HDL-TG levels could thus be 
consequent to inhibition of fatty acid uptake, and coincide with diminished fatty 
acid oxidation and prevention of further myocardial damage.31 Larger triglyceride-
rich particles are converted to small VLDL subclasses as a result of lipase-mediated 
delipidation,32 suggesting that triglyceride enrichment may be secondary to initial 
triglyceride uptake of large VLDL. Larger VLDL particles may be delipidated rapidly, 
which may explain why the association of triglycerides with LVEF was limited to 
very small VLDL 24 h post-MI. Similarly, a major proportion of LDL-TG is derived 
from large VLDL,32 which may partly result from CETP-mediated delipidation of 
large VLDL. Taken together, early metabolic changes after MI could reflect adaptive 
mechanisms that promote functional recovery.

We observed associations of LVEF categories with 24 h post-MI measurements of XS-
VLDL-TG% and XS-VLDL-C%. However, these NMR measures did not significantly 
predict LVEF when LVEF was analyzed as a continuous variable. The regression 
model with continuous outcome assumes linearity between NMR measures and 
LVEF, whereas categorical analysis of LVEF in combination with multinomial logistic 
regression renders the model sensitive to non-linear associations. As shown in Figure 
1A, HDL-TG, M-HDL-TG and S-HDL-TG follow a linear trend across the three LVEF 
categories, whereas XS-VLDL-TG% and XS-VLDL-C% display non-linear trends.

Limitations

The GIPS-III trial was originally designed to assess differences in LVEF between 
metformin treated patients and controls. We conducted 68 independent tests, raising 
the possibility that our study was not powered to detect smaller changes. However, 
we were able to detect a significant effect for alanine levels, which were only slightly 
increased in the metformin group (median difference: 0.03 mmol/l), demonstrating 
sufficient power to perform a metabolic profiling analysis. In addition, all patients 
received intravenous heparin before PCI when baseline blood samples were drawn. 
Heparin stimulates lipolysis and hence acutely reduces plasma triglyceride levels,33 
which is in line with the marked increase in triglyceride levels between baseline 
and the other time points (Supplemental Table 8). STEMI patients routinely receive 
heparin before PCI, rendering the results for baseline measurements relevant to 
clinical settings. These findings measurements should nevertheless be interpreted with 
caution. Moreover, we performed metabolic profiling in non-fasting blood samples, 
warranting further research to substantiate our findings under fasting conditions. 
However, the NMR platform used in our study mainly quantifies lipid measures, 
which change only slightly after food consumption and show similar associations with 
cardiovascular risk in fasting and non-fasting individuals.34 
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Conclusions

In summary, our study suggests that metformin treatment started directly after 
presentation with STEMI produces changes in alanine and XL-HDL-PL% as assessed 
after 4 months. Higher triglyceride levels in HDL and in HDL subclasses measured 24 
h post-MI were predictive of better LVEF and smaller ISZ 4 months post-MI. HDL-
TG may thus serve as an early biomarker of left ventricular dysfunction in STEMI 
patients. However, further studies are required to substantiate the clinical significance 
of HDL-TG in CV risk prediction and to investigate the biological mechanism 
underlying associations of metabolic biomarkers with recurrent CV events. Our 
findings emphasize the utility of high-throughput metabolic profiling as a tool to study 
drug effects and to identify prognostic biomarkers of LVEF and ISZ.

Supplemental materials are available online.
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Abstract

Background: Statins lower cholesterol by inhibiting HMG-CoA reductase, the 
rate limiting enzyme of the metabolic pathway that produces cholesterol and other 
isoprenoids. Surprisingly little is known about their effects on metabolite and 
lipoprotein subclass profiles. We therefore investigated the molecular changes 
associated with pravastatin treatment compared to placebo administration, using a 
nuclear magnetic resonance (NMR)-based metabolomics platform. 

Results: We performed metabolic profiling of 231 lipoprotein and metabolite measures 
in the PREVEND IT study, a placebo-controlled randomized clinical trial designed to 
test the effects of pravastatin (40 mg once daily) on cardiovascular risk. Metabolic 
profiles were assessed at baseline and after 3 months of treatment. Pravastatin 
lowered low-density lipoprotein cholesterol (LDL-C; change in SD units: -1.01 [95% 
CI: -1.14, -0.88]), remnant cholesterol (change in SD units: -1.03 [-1.17, -0.89]) and 
apolipoprotein B (apoB; change in SD units: -0.98 [-1.11, -0.86]) with similar effect 
magnitudes. In addition, pravastatin globally lowered levels of lipoprotein subclasses, 
with the exception of high-density lipoprotein (HDL) subclasses, which displayed a 
more heterogeneous response pattern. The lipid lowering effect of pravastatin was 
accompanied by selective changes in lipid composition, particularly in the cholesterol 
content of very low-density lipoprotein (VLDL) particles. In addition, pravastatin 
reduced levels of several fatty acids, but had limited effects on fatty acid ratios.

Conclusions: These randomized clinical trial data demonstrate the widespread effects 
of pravastatin treatment on lipoprotein subclass profiles and fatty acids. 

Clinical Trial Registration: 
NCT03073018 (https://clinicaltrials.gov) 
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Introduction

Statins hamper cholesterol production in the liver through inhibition of HMG-CoA 
reductase, which, in turn, stimulates hepatic synthesis of low-density lipoprotein 
(LDL) receptors as a compensatory mechanism. These receptors bind to apoB-
rich lipoproteins and facilitate their absorption by hepatocytes, leading to a further 
reduction in plasma cholesterol levels.1 The cardiovascular risk reduction achieved 
through statins is believed to primarily result from their LDL cholesterol (LDL-C) 
lowering properties.2 Lowering of LDL-C has therefore been identified as the primary 
treatment target of statin therapy.3 However, statins act early in the mevalonate 
pathway and have the potential to extensively modify the metabolic profile in addition 
to their effect on cholesterol metabolism. This has led to the hypothesis that statins may 
provide cardioprotective benefits beyond LDL-C reduction. While there is mounting 
evidence underpinning the therapeutic capacities of such pleiotropic statin effects,4-6 

little is known about the underlying molecular pathways. 

Nuclear magnetic resonance (NMR)-based metabolic profiling has evolved into a 
versatile high-throughput tool for biomarker discovery that allows simultaneous 
quantifications of numerous molecules, ranging from amino acids to a variety of 
lipoprotein subclass measures. Metabolic profiling has been widely used both in 
epidemiology and in drug research.7-9 Better characterization of the metabolic footprint 
of statins may provide novel insights into their mechanisms of action and help guide 
drug discovery. A recent study of four observational population-based cohorts 
investigated the longitudinal effects of statins on metabolic profiles by comparing 
users to non-users, followed by confirmatory Mendelian randomization analysis.9 

Besides cholesterol lowering, statins influenced fatty acid levels, whereas amino 
acids and other metabolites were not substantially altered. While this study revealed 
extensive changes in routine lipid measures, little is known about the effect of statins 
on lipoprotein subclass profiles, even though mounting evidence suggests distinct 
roles for lipoprotein subclasses in the pathophysiology of cardiovascular disease.10-12 In 
addition, no study has yet comprehensively investigated the metabolic effects of statin 
therapy in a placebo-controlled randomized setting. Here we present the first data on 
pravastatin treatment derived from the Prevention of Renal and Vascular End-stage 
Disease Intervention Trial (PREVEND IT) study, a randomized placebo-controlled 
clinical trial. In addition to previously quantified parameters, including lipids, fatty 
acids, amino acids and glycolysis metabolites, we report results for over 160 measures 
of lipoprotein subclasses. An overview of lipoprotein subclasses is given in Table 1. 

Materials and methods

Participants
Details on the PREVEND IT study have been published elsewhere.13 Briefly, 
PREVEND IT is a double-blind, placebo-controlled clinical trial, in which 
participants were randomized to receive 20 mg fosinopril or matching placebo and 40 
mg pravastatin or matching placebo. PREVEND IT participants were recruited from 
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the PREVEND program, which investigated the influence of microalbuminuria on 
cardiovascular and renal risk. The main inclusion criteria for PREVEND IT were a 
urine albumin concentration of >10 mg/l in one morning spot sample and at least once 
a concentration of 15 to 300 mg/24 h in two successive 24-hour urine samples, a blood 
pressure of <160/100 mm Hg, no hypertensive treatment and a total serum cholesterol 
concentration <8.0 mmol/l (or <5.0 mmol/l in case of prior myocardial infarction) and 
no lipid-lowering treatment. 864 subjects were randomized to receive study medication 
(see above) after giving informed consent. Blood samples for metabolic profiling were 
limited by sample availability and could be obtained in 394 participants at baseline and 
after 3 months of treatment. The study was approved by the Institutional Review Board 
and was conducted in according to the guidelines of the Declaration of Helsinki.  

Laboratory measurements
Fasting blood samples were drawn before treatment onset (baseline) and at the 3-month 
medical review (N=394). Metabolic profiling was performed in EDTA anticoagulated 
plasma samples using high-throughput 1H NMR metabolomics (Brainshake Ltd, 
Helsinki, Finland).8 This method provides accurate quantification of 231 lipoprotein 
and metabolite measures, including routine lipids, lipoprotein profiles with 14 
lipoprotein subclasses, glycolysis related metabolites, amino acids, ketone bodies, 

Lipoprotein Subclass Average particle  
diameter (in nm)*

VLDL XXL >75
XL 64.0
L 53.6
M 44.5
S 36.8

XS 31.3
IDL   28.6
LDL L 25.5

M 23.0
S 18.7

HDL XL 14.3
L 12.1
M 10.9
S 8.7

Table 1: Average particle size of lipoprotein subclasses

Average particle size of lipoprotein sublcasses expressed as diameter 
in nm. The values above are adapted from [8]. *Cut points for size 
ranges can be approximated by the midpoint between the average 
diameters of two consecutive lipoprotein subclasses, e.g. the lower 
bound of XS-VLDL is approximately 30 nm. HDL: high-density 
lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density 
lipoprotein; VLDL: very low-density lipoprotein; XXL: extremely 
large; XL: very large; L: large; M: medium; S: small; XS: very small. 
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fluid balance related metabolites and one inflammatory marker (Supplemental Table 
1). Recent studies have demonstrated that NMR measurements quantified with this 
platform are in good agreement with routine clinical chemistry assays.8 Representative 
coefficients of variation for this platform have been reported elsewhere.14

Statistical analysis
Correlations between different lipoprotein and metabolite measures were calculated 
using Spearman’s correlation coefficients. The effect of statin treatment on each NMR 
measure was assessed by linear regression on the change during the treatment period, 
similarly as previously described.9 The effect estimate (regression coefficient) of this 
regression model can be interpreted as the longitudinal change of a NMR measure 
attributable to pravastatin treatment. To facilitate comparison between different 
lipoprotein and metabolite measures, differences between pre- and post-treatment 
values were scaled to baseline SD units. Consequently, statin effects on NMR measures 
are expressed in baseline SD units. We additionally performed a sensitivity analysis 
adjusted for sex as the pravastatin group showed a higher percentage of male patients. 
Since many NMR measures were highly correlated (see Supplemental Table 1), we 
accounted for multiple testing by correcting the nominal level of significance for the 
number of independent tests, which was estimated by the method of Li and Ji,15 using 
the matrix spectral decomposition (matSpD) tool (http://gump.qimr.edu.au/general/
daleN/matSpD/). The number of independent tests was estimated to be 85, yielding a 
corrected significance threshold of 0.05/85=0.00059. 

Results

Baseline characteristics and NMR measures
Baseline characteristics of all patients included in this study are listed in Table 2. Of 394 
participants, 195 received pravastatin and 199 placebo during the 3-month treatment 
period. A summary of all 231 lipoprotein and metabolite measures can be found in 
Supplemental Table 1. NMR and available clinical chemistry measures showed strong 
correlations for baseline and post-treatment measurements (Supplemental Table 2), 
indicating consistency between different analytical methods. Heat maps of correlations 
between NMR measures are displayed in Supplemental Figure 1, revealing substantial 
correlation within lipoprotein subclasses, between amino acids and between fatty 
acids.

Statin effects
We compared longitudinal changes of NMR measures between the pravastatin group 
and controls, using linear regression. To facilitate comparison between different 
measures, differences between pre- and post-treatment values were scaled to baseline 
SD units. After the 3-month treatment period, a total of 150 NMR measures were 
significantly altered (p<0.00059) between the pravastatin group and the control group. 
Absolute concentration changes are given for all lipoprotein and metabolite measures 
in Supplemental Table 3. Additional sensitivity analysis adjusted for sex provided 
similar findings, suggesting that our results were not confounded by the imbalance in 
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sex ratio between the pravastatin group and the control group (Supplemental Table 4). 
As compared with placebo, pravastatin reduced levels of conventional lipid measures 
(Figure 1), including total serum cholesterol (change associated with pravastatin in 
SD units: -1.01 [95% CI: -1.14, -0.88]; p=7.3x10-41), LDL-C (change in SD units: -1.01 
[-1.13, -0.88]; p=6.7x10-42) and total serum triglycerides (change in SD units: -0.46 
[-0.60, -0.33]; p=1.8x10-11), whereas HDL-C levels were not affected by statin treatment 
(change in SD units: -0.01 [-0.11, 0.09]; p=0.829). However, pravastatin significantly 
increased cholesterol in large lipid-rich HDL2 particles (change in SD units: 0.18 
[0.08, 0.27]; p=0.00048) and decreased cholesterol in small less dense HDL3 particles 
(change in SD units: -0.69 [-0.87, -0.51]; p=3.1x10-13). 

Moreover, pravastatin treatment markedly lowered remnant cholesterol levels (change 
in SD units: -1.03 [-1.17, -0.89]; p=2.0x10-38), which reflects the total cholesterol 
content in very large-density lipoprotein (VLDL; change in SD units: -0.88 [-1.02, 
-0.74]; p=2.1x10-29) and intermediate-density lipoprotein (IDL; change in SD units: 
1.03 [-1.16, -0.89]; p=1.3x10-39). The effect of pravastatin on apolipoprotein B (apoB; 
change in SD units: -0.98 [-1.11, -0.86]; p=1.1x10-44) was comparable to the change in 
LDL-C. Pravastatin globally lowered levels of VLDL, LDL and IDL subclasses (Figure 

Variable Placebo 
(n=199)

Pravastatin  
(n=195)

Age (years) 50.6±11.1 51.5±11.5
Male 121 (60.8) 141 (72.3)
BMI (kg/m2) 26.5±4.5 26.3±4.1
Current smoker 79 (39.7) 82 (42.1)
SBP (mm Hg) 130.6±17.3 131.6±18.3
DBP (mm Hg) 75.8±9.9 76.6±9.4
Cholesterol (mmol/l) 5.9±1.0 5.9±1.1
HDL (mmol/l) 1.0±0.3 1.0±0.3
LDL (mmol/l) 4.1±0.9 4.2±1.0
Triglycerides (mmol/l) 1.3 (0.9, 1.9) 1.4 (0.9, 1.9)
Glucose (mmol/l) 4.9 (4.5, 5.3) 4.9 (4.5, 5.3)
Creatinine (μmol/l) 84.0±15.1 86.4±13.2
Medication use
     Beta-blockers 4 (2.0) 0 (0.0)
     Nitrate 2 (1.0) 0 (0.0)
     Diuretics 4 (2.0) 0 (0.0)
     Calcium channel blockers 0 (0.0) 1 (0.5)
     Digoxin 1 (0.5) 2 (1.0)

Table 2: Average particle size of lipoprotein subclasses

Baseline characteristics. Discrete variables are expressed as absolute count (%) and continuous variables as 
mean±SD or median (interquartile range). Lipids, glucose and creatinine as measured by clinical chemistry. 
SD: standard deviation; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; 
HDL: high-density lipoprotein; LDL: low-density lipoprotein; SD: standard deviation.
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Concentration changes in lipids and lipid-
related measures associated with pravastatin 
treatment (n=195) compared with placebo 
treatment (n=199). Effect estimates indicate 
changes over the treatment period (3 months) 
associated with pravastatin treatment in 
baseline SD-units. Error bars represent 95% 
confidence intervals. The dotted line shows 
the effect estimate for LDL-C. Red marks 
indicate significant changes (p<0.00059). 
HDL: high-density lipoprotein; LDL: low-
density lipoprotein; VLDL: very low-density 
lipoprotein; D: diameter; C: cholesterol; 
TG: triglycerides; DAG: diacylglycerol; PG: 
phosphoglycerides; PC: phosphatidylcholine; 
SM: sphingomyelins; Total Chol: total 
cholines; apoA1: apolipoprotein A1; apoB: 
apolipoprotein B.

Figure 1: Lipids and lipid-related NMR 
measures

2), whereas changes in HDL subclasses were less consistent, with significant increases 
across large HDL subclasses measures and a reduction in small and very large HDL-C. 

Particle concentrations of all VLDL, IDL and LDL subclasses decreased in response to 
statin treatment. IDL was the subclass with the greatest change in particle concentration 
(change in SD units: -1.04 [-1.17, -0.91]; p=7.6x10-45). In addition, we analyzed the lipid 
composition of different lipoprotein subclasses, expressed as the ratio of individual 
lipid concentrations to the total lipid concentration (Figure 3). Pravastatin treatment 
markedly lowered the cholesterol and cholesteryl ester to total lipids ratio in IDL 
and across all LDL subclasses, concomitant with an elevated relative content of free 
cholesterol and phospholipids in LDL. Furthermore, pravastatin selectively reduced 
cholesterol ratios in small and medium VLDL particles. 
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Figure 2: Lipid concentrations in different liporotein suclasses

Changes in lipid concentrations across lipoprotein subclasses associated with pravastatin treatment (n=195) compared 
with placebo treatment (n=199). Effect estimates indicate changes over the treatment period (3 months) associated 
with pravastatin treatment in SD-units. Error bars represent 95% confidence intervals. The dotted line shows the effect 
estimate for LDL-C. Red marks indicate significant changes (p<0.00059). XXL: extremely large; XL: very large; L: large; 
M: medium; S: small; XS: very small; HDL: high-density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-
density lipoprotein; VLDL: very low-density lipoprotein; P: particle concentration; L: total lipids; PL: phospholipids; C: 
cholesterol; CE: cholesteryl esters; FC: free cholesterol; TG: triglycerides
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Figure 3: Lipid composition of lipoprotein subclasses

Changes in lipid composition of lipoprotein subclasses associated with pravastatin treatment (n=195) compared with 
placebo treatment (n=199). Effect estimates indicate changes over the treatment period (3 months) associated with 
pravastatin treatment in baseline SD-units. Error bars represent 95% confidence intervals. The dotted line shows the 
effect estimate for LDL-C. Red marks indicate significant changes (p<0.00059). %: lipid concentration relative to total 
lipd concentration; XXL: extremely large; XL: very large; L: large; M: medium; S: small; XS: very small; HDL: high-
density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density lipoprotein; VLDL: very low-density 
lipoprotein; P: particle concentration; L: total lipids; PL: phospholipids; C: cholesterol; CE: cholesteryl esters; FC: free 
cholesterol; TG: triglycerides.
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In parallel with cholesterol and triglycerides, pravastatin lowered fatty acid 
concentrations (Figure 4), particularly ω-6 fatty acids (change in SD units: -0.85 
[-1.00, -0.71]; p=3.5x10-26), total polyunsaturated fatty acids (PUFA, change in SD 
units: -0.84 [-0.98, -0.69]; p=3.4x10-26). By contrast, pravastatin treatment only altered 
the saturated fatty acid to total fatty acid ratio (SFA/FA; change in SD units: 0.51 [0.29, 
0.74]; p=9.4x10-6) and the linoleic acid to total fatty acid ratio (LA/FA; change in SD 
units: -0.35 [-0.48, -0.21]; p=7.2x10-7), but produced no changes in other fatty acid 
ratios. Glycolysis-related metabolites, amino acids and other metabolites remained 
unchanged. 

We next evaluated the effect of pravastatin on correlations between different NMR 
measures. Results are illustrated in a correlation difference map that provides a post-

Figure 4: Fatty acids, amino acids and other 
metabolites

Concentration changes in fatty acids, amino 
acids and other metabolites associated with 
pravastatin treatment (n=195) compared with 
placebo treatment (n=199). Effect estimates 
indicate changes over the treatment period (3 
months) associated with pravastatin treatment 
in baseline SD-units. Error bars represent 95% 
confidence intervals. The dotted line shows 
the effect estimate for LDL-C. Red marks 
indicate significant changes (p<0.00059). FA: 
fatty acids; Unsat Deg: degree of unsaturation; 
DHA: docosahexaenoic acid; LA: linoleic acid; 
CLA: conjugated linoleic acid; ω-3 FA: omega-3 
fatty acids; ω-6 FA: omega-6 fatty acids; 
PUFA: polyunsaturated fatty acids; MUFA: 
monounsaturated fatty acids; SFA: saturated 
fatty acids; bOHbut: 3-hydroxybutyrate; Gp: 
glycoprotein acetyls.
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treatment comparison between the pravastatin group and controls (Supplemental 
Figure 2). Pravastatin induced negative associations between the relative cholesterol 
content of medium HDL and cholesterol levels in small VLDL, IDL and LDL. We 
observed similar, but weaker effects for absolute cholesterol concentrations in medium 
HDL. Conversely, pravastatin strengthened or induced positive correlations between 
the phospholipid to total lipids ratio in medium HDL and lipid concentrations in other 
lipoproteins. Furthermore, correlations between absolute lipid concentrations and the 
relative lipid content were altered across VLDL subclasses. Finally, lactate and pyruvate 
showed weaker associations with lipid concentrations in VLDL following pravastatin 
treatment.

Discussion

This is the first placebo-controlled NMR-based study to assess metabolic changes 
associated with statin treatment, using data from the PREVEND IT trial. Our study 
adds to previous findings from observational NMR studies and additionally explored 
statin-induced changes in over 160 novel measures of lipid concentrations and lipid 
composition for 14 lipoprotein subclasses. Besides the well-known effects on LDL-C, 
statins altered a wide range of lipids and concentrations of fatty acids. These findings 
are supported by observational studies comparing statin users to non-users,9,16 and 
fit with previous clinical trial data on fatty acids.17 By contrast, pravastatin treatment 
only altered LA/FA and SFA/FA, but had no effect on other fatty acid ratios. In 
addition, pravastatin globally lowered levels of lipoprotein subclasses, except for 
HDL concentrations, which displayed a more intricate response pattern. Detailed 
lipid profiling revealed that the substantial lowering of VLDL-C, IDL-C and LDL-C 
was paralleled by more selective changes in lipid composition of different lipoprotein 
particles. Finally amino acids and other metabolites were not affected by statin 
treatment. 

Statins not only act on LDL, but also on other apoB-rich lipoproteins. In our study, 
pravastatin reduced apoB and LDL-C with similar effect magnitudes. ApoB has been 
proposed as a more robust cardiovascular risk marker than LDL-C, supporting the 
use of apoB as an alternative treatment target for statin therapy.18,19 Consistent with 
previous findings,9,20 statin treatment substantially lowered cholesterol in apoB-
containing, triglyceride-rich remnant particles, including IDL and VLDL. Since 
VLDL is the main carrier of triglycerides, remnant cholesterol is strongly associated 
with triglyceride levels. Although triglycerides are well-established markers of 
cardiovascular risk, their relationship with atherogenesis is not straightforward.21 By 
contrast, remnant cholesterol is likely to play a causal role in cardiovascular disease 
risk.22,23 In line with this, remnant cholesterol is associated with both ischemic heart 
disease and low-grade inflammation.24 Compared with VLDL-C and IDL-C, HDL-C 
showed a more complex response to statin treatment, with cholesterol depletion of 
small HDL3 particles and slight cholesterol enrichment of larger HDL2 particles. 
Prospective cohort studies have consistently reported inverse associations between 
HDL-C levels and risk of cardiovascular disease,25 whereas findings from recent 
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Mendelian randomization studies26,27 and the failure of HDL-raising drugs to improve 
cardiovascular outcomes28 may argue against a causal role for HDL-C in cardiovascular 
disease per se. Findings from experimental studies suggest that HDL3 and HDL2 differ 
in their cardioprotective capacities.29 However, the relationship between different 
HDL subclasses and cardiovascular risk remains a matter of debate as results from 
observational studies are inconclusive.30

It has been suggested that small dense LDL particles are more atherogenic than 
larger LDL species as they are readily taken up by the arterial wall, are cleared from 
circulation at reduced rates due to their low affinity for LDL receptors and are more 
susceptible to oxidation, promoting the formation of atherosclerotic plaques.10,12 

This is supported by large cohort studies, demonstrating that concentrations of 
small rather than large LDL particles are associated with future cardiovascular risk 
after adjustment for non-lipid risk factors.31-33 However, effect estimates for small 
LDL particles are not superior to total LDL concentrations and do not improve risk 
prediction beyond routine lipid measures.31 Moreover, a systematic review of NMR-
based studies found no association of LDL subclasses with cardiovascular disease 
after adjustment for other lipid measurements.34 Experimental findings suggest that, 
similar to LDL particles, the atherogenic capacity of VLDL may depend on particle 
size as large VLDL subpopulations are unable to enter the arterial wall and are thus 
less likely to contribute to the formation of atherosclerotic plaques.35 However, there 
is little evidence from clinical studies that smaller and larger VLDL particles differ in 
their atherogenic potential. While different lipoprotein subclasses may play distinct 
roles in the pathophysiology of cardiovascular disease, pravastatin treatment lowered 
lipoprotein particle concentrations and lipid concentrations across VLDL, IDL and 
LDL subclasses, which may be an indirect consequence of enhanced clearance and/or 
reduced synthesis of these lipoproteins.

While the cholesterol to total lipids ratio was decreased in IDL and all LDL 
subpopulations, pravastatin selectively reduced the cholesterol content of small 
and medium VLDL, raising the possibility that statins specifically target potentially 
atherogenic VLDL subpopulations.35 At the same time, pravastatin lowered the 
triglyceride to total lipids ratio across all HDL subpopulations, but increased the 
triglyceride content of several VLDL and LDL subclasses as well as IDL. These changes 
in lipid composition may be attributable to statin effects on the reverse cholesterol 
transport pathway, in which cholesteryl ester transfer protein (CETP) transfers 
cholesteryl esters from HDL to triglyceride-rich, apoB-containing lipoproteins 
(LDL, IDL and VLDL) in exchange for triglycerides.36 The statin-induced decrease 
in lipoprotein concentrations is associated with reduced CETP activity, resulting 
in cholesterol enrichment of HDL and cholesterol depletion of apoB containing 
lipoproteins.37-39 Consistent with reduced CETP activity, pravastatin induced negative 
correlations between the cholesterol content of medium HDL and cholesterol levels in 
non-HDL particles. Correlation coefficients for other HDL subpopulations, however, 
were only moderately altered after pravastatin treatment.
 
The relative reduction in LDL cholesterol was associated with no or only minor 
changes in the triglyceride content of LDL particles. By contrast, there was triglyceride 
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enrichment of IDL as well as medium and large VLDL particles. Statin-induced 
lowering CETP activity may also hamper TG transfer from VLDL and IDL to LDL,40 
which would explain the increased relative triglyceride content of IDL and VLDL. 
Besides lowering the cholesterol content of IDL and LDL, pravastatin treatment led 
to a relative increase in phospholipids and free cholesterol, which may result from 
reduced enzymatic cholesterol esterification due to blocked cholesterol synthesis.41 

Taken together, detailed analysis of lipoprotein subclasses revealed selective changes 
in lipid composition, whereas lipid concentrations were reduced across all VLDL, IDL 
and LDL subclasses, following pravastatin treatment.  

Several studies have shown that besides lipid lowering, statins alter fatty acid 
levels.9,16,17 Since the vast majority of circulating fatty acids are bound in triglycerides, 
cholesteryl esters and phospholipids,17 the reduction in fatty acid levels associated may 
result from the statin-induced decrease in lipoproteins providing the main source 
of circulating lipids. Alternatively, statins may interfere with fatty acid metabolism 
through different molecular pathways. Simvastatin treatment increases metabolic 
indices indicating elevated activity of elongases and desaturases,17 two enzymes that 
catalyze the formation of highly unsaturated long-chain fatty acids. Moreover, statin 
treatment may stimulate hepatic uptake and beta-oxidation of fatty acids by enhancing 
expression of peroxisome proliferator-activated receptors (PPARs).42 We observed 
elevated SFA/FA and reduced LA/FA, but no effects on other fatty acid ratios, which 
more appropriately reflect fatty acid metabolism than fatty acid concentrations given 
the lipoprotein-lowering effect of statins. By contrast, a recent observational study 
reported stronger effects on docosahexaenoic acid (DHA)/FA, whereas SFA/FA was 
unchanged after statin treatment.9 In this study, however, information on statin type 
and dosage was not available. Consistent with our findings, data from a clinical trial 
suggest that simvastatin does not enhance DHA/FA.17 Interestingly, studies comparing 
different statins reported that pravastatin, in contrast to other statins, did not influence 
selected fatty acid ratios, indicating that changes in fatty acid metabolisms depend on 
the statin type.43,44 While the decrease in LA/FA is supported by other studies,9,17 the 
underlying metabolic processes remain unclear. Statins increase lecithin:cholesterol 
acyltransferase (LCAT) activity, which synthesizes cholesteryl esters from cholesterol 
and fatty acids.45 Since LA is the preferential substrate of LCAT, elevated LCAT activity 
would be consistent with higher LA/FA. Collectively, changes in absolute fatty acid 
levels are mainly driven by statin-induced lipid lowering, whereas statin effects on 
fatty acid metabolism remain uncertain and may differ between statins.  

Pyruvate and lactate showed weaker correlations with VLDL-related measures after 
pravastatin treatment, whereas absolute concentrations of these two metabolites 
remained unchanged. In addition to producing lactate, pyruvate is involved in glucose 
and fatty acid metabolism by forming acetyl-coenzyme A, which is involved in fatty 
acid synthesis.46 Fatty acids, in turn, are joined with glycerol to form triglycerides, the 
main component of VLDL. Pyruvate and lactate as a metabolic product of pyruvate 
are thus associated with enhanced hepatic VLDL synthesis and consequently should 
show a positive correlation with serum VLDL levels. This is in line with the correlation 
patterns of pyruvate and lactate in the placebo group (Supplemental Figure 2B). 
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Statins, however, facilitate hepatic uptake of non-HDL particles, including VLDL, by 
increasing LDL receptor activity.1 The resulting decrease in VLDL levels coupled with 
unchanged pyruvate and lactate levels is consistent with weaker correlations in the 
pravastatin group (Supplemental Figure 2A). 

Our study was powered to detect a large number of significant changes in lipoprotein 
and metabolite measures after pravastatin treatment, underscoring the strengths of a 
placebo controlled randomized setting with pre/post treatment comparisons, which 
limits potential sources of confounding to a minimum. We report associations for 
231 NMR measures, including over 160 novel measures of lipid concentrations and 
lipid composition for different lipoprotein subclasses. No other study has assessed the 
effect of statins on lipoprotein subclasses in such detail. However, further research is 
warranted to confirm our findings on lipoprotein subclasses as we did not replicate our 
results in an independent study. In comparison with a recent observational study that 
used the same NMR metabolomics platform,9 we observed more moderate effects of 
statin treatment on several lipid measures, including LDL-C, apoB and apoA1. Würtz 
et al. compared statin users, who commenced statin treatment, to non-users. While 
information on statin type and dosage was not available for this study, all statin users 
had an indication for statin therapy, such as hypercholesterolemia, suggesting that 
many of them underwent aggressive treatment. In our study, however, participants 
were randomly assigned to a moderate dose of a relatively week statin,47 which may 
account for the lower effect estimates. 

In conclusion, metabolic profiling in a randomized clinical trial revealed causal 
associations of statin treatment with globally reduced lipid levels across lipoprotein 
subclasses, accompanied by more selective changes in the lipid composition of 
lipoproteins. Additionally, pravastatin treatment lowered fatty acid concentrations, 
but had limited effects on fatty acid ratios. In line with previous findings,9 statin 
treatment did not alter concentrations of non-lipid measures, such as amino acids 
and glycolysis-related metabolites, suggesting that these metabolites do not reflect 
pleiotropic statin effects. Our findings demonstrate that high-throughput metabolic 
profiling is emerging as a powerful tool to dissect a drug’s metabolic footprint, 
providing important information that may be used to improve current treatments. 

Supplemental materials will be available online soon.
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Chapter 8

This chapter summarizes the findings detailed in the previous chapters and discusses 
the potential of biomarkers in clinical risk stratification and drug discovery, followed 
by an outlook on emerging developments in omics research.

Summary

Chapters 2, 3 and 4 present findings from biomarker studies in patients with established 
atherosclerotic disease. In Chapter 2, we identified common molecular pathways for 
childhood obesity and atherosclerotic disease complexity in adults. Childhood obesity 
may promote the development of cardiovascular disease by predisposing individuals 
to cardiovascular risk factors in later life.1 Moreover, both obesity and atherosclerosis 
are characterized by inflammatory processes associated with increased monocytosis 
and activation of inflammatory monocytes.2,3 Thus, monocytes may provide a 
pathophysiological link between both diseases. We compared monocyte gene 
expression in obese children to lean controls and subsequently studied the association 
of differentially expressed genes with complexity of coronary atherosclerosis in 
adults (SYNTAX score). We observed downregulation of IMPDH2 and TMEM134 
expression both in obese children and obese adults. Downregulation of TMEM134 
was also related to a higher SYNTAX score. Obese children display alterations in 
monocyte gene expression associated with atherosclerotic burden in adulthood.

In Chapter 3, we investigated whether loss of chromosome Y was related to 
atherosclerotic plaque characteristics and clinical outcome in patients with carotid 
atherosclerosis. Recent evidence indicates that loss of chromosome Y is associated 
with smoking4 and predicts cancer and all-cause mortality5. Genetic variation in 
chromosome Y is associated with altered gene expression in immune cells6 and may 
contribute to the risk of coronary artery disease via immune-regulatory pathways,7 

suggesting that loss of chromosome Y may be related to severity of atherosclerosis and 
clinical outcome after carotid endarterectomy. Loss of chromosome Y was associated 
with larger atheroma size and independently predicted major cardiovascular events, 
but was not related to plaque phenotype and inflammation. Loss of chromosome Y 
may contribute to adverse cardiovascular events through mechanisms other than 
inflammation.

While traditional cardiovascular risk factors, such as smoking, hypertension, diabetes, 
obesity and hyperlipidemia, are important predictors of cardiovascular events in the 
general population,8-10 their ability to predict secondary manifestations of atherosclerotic 
disease is limited.11-13 Several biomarkers have been associated with prognosis of 
vascular disease, including routinely measured hematological parameters.14 However, 
it is unknown whether hematological parameters improve prediction of recurrent 
vascular events beyond established assessment tools for secondary prevention, such as 
the SMART score. As detailed in Chapter 4, we found four parameters that predicted 
recurrent events independently of SMART score variables. Of these, lymphocyte % 
improved both reclassification and discrimination compared to the SMART risk score. 
The remaining chapters report findings from nuclear magnetic resonance (NMR)-
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based metabolomics studies. To identify further biomarkers for risk stratification in 
secondary prevention, we performed metabolic profiling in two European cohorts that 
enrolled patients with angiographically documented coronary artery disease (Chapter 
5). Triglyceride in IDL and LDL, phenylalanine, creatinine and the concentration 
of small HDL particles were associated with subsequent cardiovascular events. The 
combination of LDL triglyceride, phenylalanine and small HDL particles improved 
prediction of clinical outcome compared to a clinical risk prediction model and 
conventional cardiovascular risk factors. 

Left ventricular ejection fraction (LVEF) and infarct size are predictors of survival after 
myocardial infarction (MI). Metformin, which is commonly used in the treatment of 
diabetes, has emerged as a candidate drug to preserve LVEF and reduce infarct size 
following MI.15 However, recent clinical trial data indicate that metformin does not 
improve LVEF in MI patients compared to placebo treatment.16 Chapter 6 presents 
a metabolic profiling study in the GIPS-III clinical that was designed to investigate 
the effect of metformin therapy on LVEF in non-diabetic ST-elevated MI patients. 
We measured metabolic profiles at different time points to study the systemic effects 
of metformin treatment and to establish prognostic biomarkers for the prediction of 
LVEF and infarct size 4 months post-MI. HDL triglyceride measured 24 h post-MI 
predicted LVEF and infarct size 4 months post-MI. Additionally triglyceride measures 
in different HDL subclasses were associated with infarct size. After the 4-month 
treatment period, the metformin group showed increased alanine levels and a reduced 
phospholipid content of very large HDL particles. Taken together, this study identified 
potential earlier biomarkers of ventricular dysfunction in MI patients and provided a 
detailed characterization of the metabolic effects of metformin.

Statins are thought to primarily reduce cardiovascular risk through their LDL 
cholesterol lowering action. However, statins act early in the mevalonate pathway, 
raising the possibility that statins exhibit cholesterol-independent effects. Furthermore, 
there is growing evidence that different LDL and HDL lipoprotein subclasses may 
vary in their contribution to cardiovascular risk.17-19 However, little is known about 
statin effects on lipoprotein subclass profiles. In addition to previously quantified 
lipoprotein and metabolite measures,20 we studied the longitudinal effect of pravastatin 
treatment on over 160 novel measures of lipid concentrations and lipid composition 
for 14 lipoprotein subclasses in the PREVEND IT clinical trial (Chapter 7). Besides 
cholesterol measures, pravastatin extensively altered lipids measures and absolute 
concentrations of fatty acids, whereas most fatty acid ratios were not affected by 
statin treatment. Moreover, pravastatin globally lowered concentrations of lipoprotein 
subclasses, with the exception of HDL. The lipid lowering effect of pravastatin was 
accompanied by more selective alteration in the lipid composition of different 
lipoprotein subclasses. Amino acids and glycolysis-related metabolites remained 
unchanged. Thus, pravastatin exhibits widespread effects on lipid concentrations and 
fatty acids, along with more selective changes in lipoprotein composition.
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Discussion

Reliable identification of individuals at risk and detailed understanding of molecular 
disease mechanisms are crucial for prevention, prognosis and treatment of 
cardiovascular disease (CVD). In this thesis, we studied cardiovascular biomarkers 
in different clinical settings and evaluated their ability to improve risk stratification 
in secondary prevention. Moreover, we used high-throughput metabolic profiling to 
study the molecular signature of different drugs. 

Biomarkers in risk assessment
Whether or not the biomarkers described in this thesis will be useful in clinical 
practice has to be determined by further research. In recent year, numerous potential 
cardiovascular biomarkers have emerged, but only few of them have been sufficiently 
validated to support their clinical application. Several criteria have been proposed 
to evaluate the clinical utility of a candidate biomarker: (1) Methods for biomarker 
analysis must provide accurate and reliable measurements and high-throughput at 
reasonable cost. (2) Novel biomarkers must be consistently associated with disease and 
disease outcome across studies and add information to established clinical assessment 
tools. (3) The routine use of a biomarker should improve clinical management of 
patients.21

High-throughput omics technologies allow inexpensive measurement of candidate 
biomarkers in large quantities, using standardized assays to ensure reproducibility. 
In Chapter 5, 6 and 7, we used a NMR-based metabolomics platform that has been 
widely applied in epidemiological studies and drug research with a total of over 
400,000 profiled samples. This platform has been validated against routine clinical 
chemistry assays22 and enables reliable quantification of a wide range of lipoprotein 
and metabolite measures (coefficients of variation published in [23]). In Chapter 4, 
we tested the ability of hematological parameters to predict recurrent vascular events. 
These parameters are routinely measured by most hematology analyzers approved for 
clinical use and do not rely on expensive equipment for analysis. 

The reproducibility of measurements also depends on the variability and temporal 
resolution of a biomarker. Even though the genome undergoes structural changes 
over time (see Chapter 3), it is considered relatively stable, reflecting the heritable 
components of disease susceptibility. By contrast, many circulating biomarkers, such 
as lipoproteins and metabolites, are highly sensitive to environmental influences 
and pathophysiological changes. On the one hand, this creates a particular need 
for standardization as biomarker concentrations may be influenced by sampling 
conditions, including nutritional state of patients, drug use, storage conditions and 
storage duration. On the other hand, such biomarkers offer the possibility of studying 
drug effects and disease progression over time. In cardiovascular prevention, the 
detailed analysis of temporal fluctuation patterns may help define windows of 
vulnerability in which individuals are at elevated short-term risk for cardiovascular 
events and require immediate treatment.24 While the studies described in Chapters 
4 and 5 used single measurements, in Chapter 6, we analyzed metabolic profiles at 
multiple time points to study the effects of metformin and to identify biomarkers 
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of left ventricular dysfunction after MI. Interestingly, only 24 h measurements were 
significantly associated with outcome, underscoring the added value of repeated 
sampling. More studies, such as BIOMArCS24, are required to follow biomarker 
patterns over the course of CVD progression, using multiple sampling time points. 
Finally, comparison of biomarker dynamics across different age and disease groups 
may improve our understanding of how pathophysiological changes in childhood 
contribute to cardiovascular risk in later life (Chapter 1).

Our findings need to be confirmed by larger studies to evaluate the clinical potential 
of the novel biomarkers described in this thesis. Biomarker development will greatly 
benefit from biobanks, such as UK Biobank25, that allow fast replication in very large 
samples and enhance reproducibility through data sharing and open access. The 
diagnostic and prognostic utility of a biomarker also depends on the added value 
it provides compared to established clinical tools. In Chapter 4, we assessed the 
incremental value of hematological parameters compared to the SMART risk score. 
However, clinical studies often do not collect all the information required for the use 
of existing tools. In Chapter 5, we therefore compared a combination of biomarkers to 
traditional cardiovascular risk factors and other disease-related variables rather than 
commonly used risk prediction models. To enhance biomarker development, clinical 
studies should put more emphasis on the collection of information used by established 
tools for diagnosis and prognosis. Moreover, existing tools should be complemented 
with validated candidate biomarkers to improve clinical care.

From biological pathways to drug discovery
Besides their potential in clinical risk assessment, omics biomarkers yield insights into 
disease mechanisms, which may help guide preclinical drug discovery. In this thesis, 
we identified different biomarkers of cardiovascular disease progression that could 
serve as therapeutic targets in the future. However, our observational findings cannot 
establish a causal link between biomarkers and cardiovascular outcome, raising the 
possibility of reverse causation. Additionally, biases and confounding may have affected 
our results. The causal role of biomarkers in cardiovascular disease progression can 
be examined by conducting a Mendelian randomization analysis, which uses genetic 
variants as proxies for modifiable exposures (e.g. biomarkers) that are less susceptible 
to confounding.26 Future research could use this technique to assess the potential of 
our findings for drug discovery. 

Omics profiling has not only emerged as an effective tool to study disease mechanisms, 
but can also provide a detailed characterization of molecular drug effects (Chapter 6 
and 7). This information can be used in combination with data from epidemiological 
omics studies to optimize and complement established treatments. In Chapter 5, we 
identified several lipoprotein and metabolite measures associated with subsequent 
cardiovascular events in CAD patients. However, established cardiovascular drugs, 
such as statins, do not target all of these biomarkers (Chapter 7). Thus, secondary 
prevention therapies could be specifically developed to act on pathophysiological 
pathways that are not affected by current cardiovascular treatments. 
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Future directions
The growing availability of large-scale clinical databases offers the opportunity 
to develop personalized algorithms for clinical decision making and to identify 
disease subgroups for drug development based on clinical and biomarker profiles, 
sparking international initiatives to combine data resources. For example, the 
BigData@Heart consortium joins medical and omics data on over 25 million 
healthy individuals and cardiovascular patients across Europe.27 In cardiovascular 
medicine, current therapeutic approaches mainly focus on treating symptoms rather 
underlying molecular mechanisms and, as a result, apply the same set of treatments 
to etiologically heterogeneous subgroups of patients (“one size fits all” medicine). 
Consequently, patients often receive inefficacious therapies, leading to poor outcomes 
and unnecessary health costs. Therefore, BigData@Heart aims to refine phenotype 
and outcome definitions in acute coronary syndrome, atrial fibrillation and heart 
failure, using omics biomarkers and big data analytics (e.g. machine learning), to 
identify patient subgroups with similar molecular characteristics. Such molecular sub-
phenotypes can be used to improve diagnosis and risk stratification, identify novel 
drug targets and to inform treatment selection. Collectively, the combination of omics 
profiling and Big Data analytics holds the promise of stimulating drug discovery and 
transforming cardiovascular medicine towards personalized care.
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Samenvatting

Hart- en vaatziekten gaan gepaard met hoge kosten voor de gezondheidszorg en 
maatschappelijke productiviteit. Dit onderstreept de noodzaak van biomarkers die ons 
helpen onderliggende pathofysiologische mechanismen van hart- en vaatziekten beter 
te begrijpen en die personen met een hoog cardiovasculair risico kunnen identificeren 
om ze vroegtijdig te behandelen. Deze patiënten kunnen daardoor mogelijk eerder 
en beter behandeld worden. Daarnaast kunnen biomarkers worden gebruikt om 
effecten van geneesmiddelen te bestuderen en bestaande cardiovasculaire therapieën 
te verbeteren. In Hoofdstuk 2 van dit proefschrift kijken we naar de associatie van 
veranderde genexpressie in spiercellen van kinderen met obesitas met vaatziekten 
bij volwassen cardiovasculaire patiënten. Hoofdstuk 3 onderzoekt de associatie van 
verlies van het Y-chromosoom met atherosclerotische plaquekenmerken en klinische 
uitkomsten bij patiënten met atherosclerose. In Hoofdstuk 4 testen we of hematologische 
parameters (gemeten tijdens routinemetingen) kunnen voorspellen welke patiënten 
een hoger risico hebben op een recidiverende vasculaire aandoeningen. In de overige 
hoofdstukken bestuderen we metabolietprofielen bij cardiovasculaire patiënten. 
Hoofdstuk 5 presenteert bevindingen van een prospectieve studie in patiënten die 
lijden aan coronaire hartziekten. Hierin hebben we biomarkers geïdentificeerd die 
beter voorspellen welke patiënten later opnieuw een cardiovasculaire aandoening 
krijgen. In Hoofdstuk 6 gebruiken we klinische gegevens om het effect van 
metformine op metabolietprofielen te onderzoeken. Verder kijken we in dit hoofdstuk 
naar de associatie van biomarkers met infarctgrootte en verminderde pompfunctie 
van de linkerhartkamer na een myocardinfarct. In Hoofdstuk 7 onderzoeken we het 
effect van statinegebruik op metabolietprofielen, met behulp van gegevens uit een 
gerandomiseerde klinische studie.
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