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Abstract

We prove a convexity theorem for semisimple symmetric sp&gél which generalizes
an earlier theorem of the second named author to a settihgutitestrictions on the minimal
parabolic subgroup involved. The new more general resdtigfizes to Kostant’s non-
linear convexity theorem for a real semisimple Lie grd@iimn two ways, firstly by takingH
maximal compact and secondly by viewi@gas a symmetric space f@& x G.

1 Introduction

In this paper we prove a generalization of the convexity teeoin [4] for a symmetric space
G/H. HereG is a connected semisimple Lie group with finite centegn involution ofG and
H an open subgroup of the gro@y of fixed points fora. The generalization involves lwasawa
decompositions related to minimal parabolic subgroup& aif arbitrary type instead of the
particular type of parabolic subgroup considered In [4].

From now on we assume more generally tats a real reductive group of the Harish-
Chandra class; this will allow an inductive argument rgkato the real rank o6. Let 0 : G —
G be a Cartan involution o6 that commutes witlo; for its existence, seé [21, Thm. 6.16].
The associated groug := G? of fixed points is a maximal compact subgroup@f For the
infinitesimal involutions determined by and 8 we use the same symbol®; o : g — g; hereg
denotes the Lie algebra &. With respect to the infinitesimal involutiong decomposes as

g=tdp=>Hdyq,

wheret andp are the +1 and -1 eigenspaces tiand likewise,h andq are the +1 and -1
eigenspaces far. Note thatt is the Lie algebra oK and} is the Lie algebra oH.

Sinceo and 8 commute, their compositioa8 is again an involution ofi. With respect to
the latter involutiong decomposes into eigenspaces

g=0+Dg-.

Observe that the +1 eigenspagceequalstNh dpnNq, while the -1 eigenspage. equalstNq®
pNb.
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We fix a maximal abelian subspaggof p Mg, and a a maximal abelian subspacef p that
containsag. Thena is o-stable and decomposes as:

a=anDag, (1)

whereap := anb. The associated projection ontgwill be denoted by py: a — aq.

LetZ(g,a) be the set of roots af in g and>(g, aq) the set of roots ofiy in g. Both of these
sets form root systems, possibly non-reduced, see e.gof48l]. The associated Weyl groups
are given by

W(a) =Nk(a)/Zk(a)  and W(ag) = Nk(aq)/Z« (ag). ®)

Let A= expa and letZ(A) be the set of minimal parabolic subgroupg®€tontainingA. If
P e Z(A), thenP has a unique Langlands decomposition given by

P =MANs, 3)

whereM := Zx (a), Np = expnp andnp is the sum of the root spaces corresponding to a uniquely
determined positive system &fg,a). We denote this positive system ByP). The map given
by
P—ZXZ(P), PeZ(A),
defines a bijection betwee#?(A) and the set of positive systemsXffg, a).
Let
>(Po0):={acZ(P): gbacz(P)}

and
2(P)_:={aecZ(P0b): gba=a = 00|y, #idg,}. 4)

Any parabolic subgroup € &#(A) induces an lwasawa decomposition
G~KxAxNp

and the associated infinitesimal decompositoa £ © a @ np. The lwasawa projectiorcorre-
sponding taP is defined as the real analytic map

Hp:G—a, determinedby ge KexpHp(g)Np, (g€ G). (5)

The main result of [22], known as ‘Kostant’s (nonlinear) eexity theorem’ characterizes
the image undefyp of the setaK, for a € A, as follows:

$Hp(aK) = conMW(a) - loga).

Here 'conv’ indicates that the convex hulldns taken.

In our setting, it is natural to study the more general qoesti convexity of the sebp(aH),
for a € A. The first answer to this question was provided_in [4, Thm. @irider the assumption
thatP € & (A) satisfies>(P,06) = Z(P) \ ay;; herea;, andag are viewed as subspacesasfin
accordance with the decomposition (1).

In the present paper we generalizé [4, Thm 1.1] to any pai@abobgroupP € Z(A). To
prepare for our main result, we need a few remarks and defisitas well as new notation.

2



Remarkl.1 Since exp a — Alis a diffeomorphism, it follows thaf ~ Aq x A, whereAq ;=
explag) andAy, := exp(an) = ANH. Thus, we just need to considge A

Remarkl.2 Since$p(aH) = Hp(aHA,) = Hp(aH) + ay, it suffices to consider the image of
aH, for a € Aq, under the map

Hpqg = prqoﬁp : G — aq.
We recall from[[4, Eqn. (1.2)] that the subgroHpis said to beessentially connectsl
H = ZxH (ag)H®, (6)

whereH® denotes the identity componentidf

Let B be an extension of the Killing form frotg, g] to a bilinear form on the entire algebga
such thaB is Ad(G)-invariant, invariant under boté and o, negative definite ok and positive
definite onp. ThenB is non-degenerate.

We define a positive definite inner product @by

(U,V):=-B(U,8V), (U,Veg). 7)

Note that the root space decomposition and the eigenspaoengesitions (with respect t@
and o) are orthogonal with respect to this inner product. Moregtree extended Killing form
and the inner product coincide if eithgror V belongs tg.

Definition 1.3. The Weyl group Wy is defined as

WknH := NknH (aq)/szH (aq)~

Note thaWk~n may be viewed as a subgroupWwfag). If a is arootinZ(g,a) we denote by
Hq the element of perpendicular to kex with respect tq’-, ), and normalized by (Hq) = 2.

Definition 1.4. Let P be a minimal parabolic subgroup of G containingTaen we define the
finitely generated polyhedral coigP) in aq by

rP) = 5> Rsoprg(Ha). (8)
aex(P)—

Main Theorem (Theoreni10]1) et H be an essentially connected open subgroup bf$ge
(©). Let P be any minimal parabolic subgroup of G containingrl let ac Aq. Then

Hipg(aH) = conv W - loga) + T (P).

If the two involutionso and 6 are equal, theK = H and%(P,00) = Z(P). This implies that
W(a) =Wk~n and thatz(P)_ = 0. Thus, we obtain thdt(P) = 0 and hence, in this case our
main theorem coincides with the original non-linear coriyetheorem of Kostant [22].

For P satisfying>(P,a8) = Z(P) \ a;, the above result coincides with [4, Thm 1.1]. This will
be explained in detail in Sectién 2.2.



The proof of the main theorem follows the line of argumentcdégd below, which is a
considerable extension of the argumentation of [4], whicturn was inspired by [16].

We first prove the theorem for a regular elemam Aq. Since the mag)p : G — a is right
H N P-invariant, see Lemnia4.1, the map

Fa:H —aq, h— Hpg(ah)

factors through a map, : H/HNP — aq. In order for the idea of the proof inl[4] to work in
the present situation, one needs to establish properndiss nfapF,. This is done in Section 4
by reducing the problem to the case of a suitabistable parabolic subgrolpcombined with
application of results of |4]. The established propernegdies that the imagg,(H) is closed
in agq.

The considerations of Sectidh 4 also lead to the constraithe image(H) that it does
not contain any line ofiq, see Corollary 4.15.

In Sectiorib we introduce the functioRgx : H — R, for X € aq, defined by

Fax(h) = (X,Fa(h)) = B(X,Fa(h)).

Geometrically, these functions test the lwasawa projadiiy linear forms omyg, and give us
constraints on the image ¢f underF,. For a more detailed exposition ¢ x we refer the
reader to([9]. Our own study of this function follows ideag4hand [9].

In Sectior{® we calculate the critical s€{x of the functionF, x explicitly, for a € Ay® and
X € aq. In particular, we show that this set is the union of a finitdetilon.#5 x of injectively
immersed connected submanifoldstof If €3 x € H, then all submanifolds in#Z, x are lower
dimensional, so tha#, x is thin in the sense of the Baire theorem, i.e. its closureegmagty
interior. These considerations allow us to show that in é&geng) spansy, the seté; of points
in H whereF, is not submersive, is closed and thin, see Propodifidn @.patticular, we then
have that

Fa(%2) G Fa(H). )

In Sectiong17 andl8 we calculate the HessianB,gf and their transversal signatures along
all manifolds from.# x. These calculations, which are extensive, in particulavalls to de-
termine all points where the transversal signatures araitefiThis in turn gives us all points
whereF, x attains local maxima and minima. A main result of Section Basxma 8.1# which
asserts that for every local minimumof the functionF; x we have thatX, -) > mon the set

Q := conuWknH -loga) + T (P). (10)

In Sectiori® we prepare for the proof of the main theorem biygigilimit argument to reduce
to the case of a regular element Aq.

The proof of the main theorem is finally given in Section 10pribceeds by induction over
the rank of the root systeili(g, aq). More precisely, for € Ag® the seté, x depends oiX €
aq through the centralizegx of X in g. It is shown thatéax C H implies that rk(gx, aq) <
rkZ(g, aq) so that the induction hypothesis holds for the central@eof X in G. This allows us



to determine the imagE,(C, x) for suchX. In particular, this leads to a precise description of
the imageFa(%a) from which it is seen that the latter image contains the bamndf the sefd.

In the proof we use this observation, together with the eadbtained constraint that the
imageF,(H) does not contain a line, to conclude tikatH ) is contained ir. In particular, this
implies that, for eaclX € aq, every local minimum of x is global.

For the converse inclusion, we first show that the imageél af¢; under the map-, is a
union of connected components@f\ F3(4,). The established fact that every local minimum of
Fax is global then allows us to show that all connected compaempear in the image, thereby
completing the proof.

We conclude the paper with two appendidel, A lahd B. In AppeAdie give the proof of
Lemmd 2.1l concerning the decomposition of nilpotent gsanperms of subgroups generated
by roots, and in_.B we discuss the convexity theorem for the adsthe group viewed as a
symmetric space.

Both the linear and the nonlinear convexity theorems of &aistseel[22], have been exten-
sively studied. Heckman proved the linear theoren in [16fi®ans of techniques as above and
obtained the non-linear theorem from the linear one by a ltopyoargument. Inspired by this,
Duistermaat [8] obtained a remarkable universal homot@pyaining Heckman’s homotopy for
allae Aat once.

Both convexity theorems of Kostant have been explained enfthimework of symplectic
geometry: see [2]/113]/[7],114]/120] for the linear comiy theorem and([24],[[19] for the
nonlinear one.

The convexity theorem of [4], which generalizes Kostantialmear convexity theorem, has
been given a symplectic interpretation(in/[11]. This leaslsaususpect that such an interpretation
should be possible in the present case as well; we intendégtigate this in the future.

Finally, we wish to mention that many of our calculationséaeen inspired by [16] and|[9].

Acknowledgements. The authors would like to thank Job Kuit for the proof of Prspion
[2.14 and his useful comments. One of the authors, D.B., thivdn Marcut for his interest in
this work and all his good suggestions on how to improve it.

2 Some structure theory for parabolic subgroups

In this section we will construct a (minimal) parabolic sulgp in 22 (A), see the text preceding
@3), which has a special position relative to the involutanit will play an important role in
Section 4. We will also discuss some structure theory oflpadia subgroups from??(A) and
derive a useful decomposition for their unipotent radicals

We recall that every parabolic subgroBfrom £?(A) has a Langlands decomposition of the
form (3). Thus, its @-stable) Levi componeritp is given by

Lp=L=MA

and the multiplication map x Np — P is a diffeomorphism. The opposite parabolic subgrBup
is defined to be the unique parabolic subgroup fegttA) with (P) = —%(P). It equalsf(P).

5



2.1 Extremal minimal parabolic subgroups

If Tis any involution ofG which leaved\ invariant, then its infinitesimal versian: g — g leaves
a invariant, and we put
Z(P1):={aeZ(P): tacZ(P)}. (11)

Observe thak(P, 1) = Z(P)NTZ(P).

Definition 2.1. A minimal parabolic subgrou@ € Z2(A) is said to bey-extreme if

2(Q,0) =2(Q) \ ag. (12)

Starting with any minimal parabolic subgrofpe &?(A), we can obtain ah-extreme min-
imal parabolic subgroup by changing one simple root at a.tifieis process is described in
Lemmd 2.6 below.

Lemma 2.2. Let Pe #(A). Then
>(P)=Z(Po)uZz(P,00) (disjoint union)
Proof. Leta € Z(P). From the fact thab8a = —oa, the result follows easily. O
Lemma 2.3. Let P #(A) and assume that
2(P0) & Z(P)\ ag (13)
Then there exists a P-simple romte (P, 00) with a ¢ ag,

Remark2.4. Aroota € Z(g,a) is said to beP-simple if it is simple in the positive systeR{P).

Proof. Assume the contrary. Then eaksimple rootf3 € 3(P,00) satisfiesc63 = 3. In view
of Lemmal2.2 it follows that for every simple roft € ¥(P) we have eitheo3 € Z(P) or
oB=6p=-L.

The setz(P) is a positive system for the root systeity, a). Hence, there exists an element
X € a such thar(X) > 0 for all a € Z(P). PutX := (X + (X)). Then for every simple root
B in Z(P) we have eitheo3 = —f3, in which caseB3(Xy) = 0, or o3 € Z(P), in which case
B(Xn) > 0. In any case, for each simpfec Z(P), the valugB(Xy) is a nonnegative real number.
Moreover, the number is zero if and onlya3 = — 3. It follows that for alla € 2(P) the number
a(Xp) is nonnegative and furthermore, that it is zero if and only i ag. Sincea6(X,) = —Xq
we now infer tha& (P) \ agNZ(P,06) = 0, henceZ(P) \ ag C Z(P, 0), contradicting[(1B). [

For aroota € Z(g,a), the associated reflection is denotedshy a — a.
Corollary 2.5. If P anda are as in Lemm&a2l3, therl P= s4(P) has the following properties:
(@ Z(P)Nag=Z(P")Nay,
(b) Z(P o) C Z(P,0).



In the proof of the above corollary, we will follow the contam to write
R.:={a€R:3a¢R}

for any possibly non-reduced root syst&nThe elements oR, are called the indivisible roots
in R Furthermore, ifSC Ris any subset, we will writ&, := SNR,. Finally, we agree to write
>, (P) for Z(P)..

Proof. It suffices to prove (a) and (b) with everywheteeplaced by. SinceP’ := s4(P) with
a simple inX(P), we have

%(P) = (Z.(P)\{a})u{-a},

which implies (a).

LetB € 2,(P)NoZ,(P). Thenp # a andof # oa and we infer thaff ando 3 both belong
to 2, (P). It follows thatp3 € Z,(P') N 0Z,(P’). This proves the inclusion in (b). We still need to
show that equality cannot hold. This follows from the fadttba = —a € (P, 0)\ Z(P). O

Lemma 2.6. Let Pc Z(A). Then there exists a minimal parabolic subgroup®QZ?(A) such
that the following conditions hold:

(8) Z(Qn) Nag==(P) Nag,
(b) Z(Qn)Naj = Z(P) N,
(¢) Z(Po) C Z(Qn,0),
(d) Qnis h-extreme, se€l2).
Proof. If a € Z(P)Nag, thenoa = —a ¢ Z(P). Hence
>(P,0) =%(P)NoZ(P) C X(P)\ aj. (14)

If the above inclusion is an equality, the result holds vig¢h:= P. If not, then the inclusion in
(14) is proper and Lemnia 2.3 guarantees the existence ofpdesioota € Z(P) \ ag such that
o6a € Z(P). By applying Corollary 2.5 we see that the minimal parabslibgroug® := s, (P)
satisfies the above conditions (a) and (b), and

3(P.0) C X(F.0). (15)

PutP = P andP, = P'. By applying the above process repeatedly, we obtain a sequehn
parabolic subgroupB = Py, P, . .., B satisfying

(8) 2(R) Nag=3(P1) Nag,
(b) Z(R)Naj = Z(R1) Na,
©) 2(R.0) ¢ 3(Py1,0),



for 0 <i < k. The process ends when for sokne 0 the conditior®(F) N 0Z(F) = Z(F) \ ag
is satisfied. The parabolic subgro@p = P satisfies all assertions of the lemma. O

Remark2.7. In analogy with Definitiori_ 2]1, a parabolic subgroQps #2(A) is said to beg-
extreme ifZ(Q,00) = Z(Q) \ af. With obvious modifications in the proof, LemmaR.6 is valid
with everywheres 0 in place ofo and withg-extreme in place off-extreme. However, we will
not need this result in the present paper.

2.2 The convexity theorem for a g-extreme parabolic subgropi

We shall now explain why the result ofl[4] is a special casehefilain Theorem. We keep the
notation as above and impose titat & (A) is g-extreme, see Remalk 2.7. ThE(P, 06) =
Z(P)\ af, so that

AT :=3(P,00)|q,

is a positive system fo¥(g, aq). For a € 3(g,aq), the root spacgq is o6-invariant; we write
ga+ for the£1 eigenspaces @0, . Put

AT ={aelA": gq_ #0}.
Then [4, Thm 1.1] asserts that
Hpg(aH) = conWkH - loga) + Y(P),
whereY(P) is the finitely generated polyhedral conenndefined by

Y(P)= $ RsoHa;

aeht

hereH, denotes the element of with Hy L kera anda(Hq) = 2.
Thus, our main theorem coincides with [4, Thm. 1.1] provitieat (P) = Y(P). The latter
is asserted by the following lemma.

Lemma 2.8. Let P Z(A) beg-extreme. TheN(P) =T (P).

Proof. For a roota € (g,a) we denote by, € a the element determined by
(Hg, X) = a(X) (16)
for all X € a. Then it is readily verified that
H(\x/ = 2Ha/<Ha, Ha>- (17)

Similarly, for a € (g, aq) we defineH; to be the element af; determined by(16) for aX € aq.
For this element we also have {17), but now as an identityehehts ofug. If a € Z(g,a) has
non-zero restriction tag, thena|y, € Z(g,aq) and for natural reasons we have

prq(H(}/) = ng/|aq'
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From this we conclude that
pry(Ha) = CaHa|aq, (18)

with cq = HHO,HZHHO,MH‘2 > 0.

After these preliminary remarks we will now complete thegidroLet a € Z(P,08). Then
a|q, is non-zero, hence a root Mg, aq), and [18) is valid. Ao restricts to the identity on
ag, the a-rootsa and gfa have the same restriction tg giving the roota|,, of A™. If the
given a-roots are different, then the sugg + 06(gy) is direct and contained igo,|aq and we

see thatga|aq7, # 0, so thata € £(P)_ anda|q, € A*. On the other hand, ifr = 08a, then
9a = Oalq and we see that € 2(P)_ if and only if afq, € AT . 1t follows from this argument
thatZ(P)_|q, = A*. Using [I8) we now see that

rP) = Z RZOHGIaq = Z R>oHa = Y(P).
aes(P)_ ach”

2.3 Decompositions of nilpotent Lie groups

In this section we give a brief survey of a number of usefulltson decompositions of nilpotent
Lie groups that will be needed in this paper.
We start by recalling the following standard result.

Lemma 2.9. Let N be a connected and simply connected Lie group with teiigd.ie algebra
n. If ng is a subalgebra ofi, then the exponential map mapgdiffeomorphically onto a closed
subgroup of N

Lemma 2.10([18, Lemma1V.6.8]) Let N be a connected, simply connected nilpotent Lie group
with Lie algebran. Let(n;)o<i<k be a strictly decreasing sequence of ideals sfich thaig =n,
n =0and

[n,ni] Cnjya forall 0<i<k

Letb; andb, be two mutually complementary subspaces sxich that = b1 Nnj + boNn;, for
all 0 <i < k. Then the mapping

¢ : (X,Y) — expXexpY
is an analytic diffeomorphism frobn x b onto N.

Lemma 2.11. Let N> be the nilpotent radical of a minimal parabolic subgrougeR7 (A), let
np be its Lie algebra and leiy, ..., nx C np be linearly independent subalgebrasmpfthat are
direct sums ofi-root spaces. Assume that=n; & ... & ny is a subalgebra ofip. Denote by
N :=expn and by N:=expn;, i € {1,...,k}, the corresponding closed subgroups @f N'hen
the multiplication map

[.lZN1><...><Nk—>N

is a diffeomorphism.



This result is stated in [9, Lemma 2.3] for= np, with reference ta [23]. We need the present
slightly more general version with a subalgebra afip. A proof of this result can be found in
AppendixA.

2.4 Fixed points for the involution in minimal parabolic subgroups

LetP e &(A). The decompositioR = LNp induces a similar decomposition for the intersection
PNH. In the present subsection we present a proof for this faetftse lemma below.

Lemma 2.12.PNH ~ (LNH) x (NpNH)

Proof. Let p be an element iRPNH. According to the decompositidh= LNp, we writep = In.
Then,In = o(In) = o(I)o(n) and we obtain that(n)n~t = o(I)~! € L. Sincea(Np) is the
nilpotent radical of the parabolic subgroafiP) € &7(A), it follows from Lemmal 2.1l with
k = 2 that the multiplication map

(6(Np) NNp) x ((Np) NNp) — (Np)

induces a diffeomorphism. We thus see tgn)n—t € NpNp. Now, by [21, Lemma 7.64] it
follows thatNpNp NL = eand thuso(n) =nandoa(l) =1. O

2.5 Decomposition of nilpotent radicals induced by the inviution

In this subsection, we assume tiae & (A). We will show that the unipotent radicilp de-
composes as the producté NH and a suitable closed subgroip_. of Np. To describe this
subgroup, we need the existence of suitable elemenig @s usual, an eleme < aq is said

to be regular for the root systelig, aq) if no root of this system vanishes on it. The set of such
regular elements is denoted bif®. We observe that in terms of the syst&ify, a) this set may
be described as

ag ={X€ag: Vaei(ga): a(X)=0= a|, =0} (19)
Lemma 2.13.
(a) There exists an elemeng Z ag® such thata (Z) > Ofor all a € £(P,06).
(b) There exists an element Z a, such thata (Z,) > Ofor all a € (P, 0).
Proof. The set
d={Xea: Va,fei(g,a): aX)=L(X)=a=p}

is the complement of finitely many hyperplanesiichence open and dense. Let(P) denote
the positive chamber associated with the positive sys&é®) for Z(g,a). Fix Zp € a™(P)Na’.
Then it is readily verified thaly := Zp + 08(Zp) satisfies the requirements of (a). Likewise, the
elementz,, = Zp + 0(Zp) satisfies the requirements of (b). O
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Given Zy € agdwe put>(P,+) := {a € 3(P) : a(Z,) > 0}. Then

np4 = EB Ya

acz(P+)

is a subalgebra ofip. Let Np := expn;. be the corresponding closed subgroupNpf see
Lemmd2.9. Define
npg .= @ Ya

acX(Po)
andNp s as the corresponding closed subgroup.

Proposition 2.14. Let Z; € ag ° be as in Lemm&a2.13 (a) and lepN be defined as above. Then
the multiplication map
NPHr X (NpﬂH) — Np

is a diffeomorphism.
The proof of this result relies on the following lemma.
Lemma 2.15.Let Pe 2(A) and let Z € ag ° be as in Lemma2.13 (a). Put
2(Po,+):={aecZ(Po): a(Zg) > 0}.

Then the following statements hold:

(@) npo+ = DPges(Po,+)0a IS @ subalgebra ofipg,

(b) Npg + :=expnpg 4+ is a closed subgroup of ¥,

(C) npg =1npg.+ @ (npNh),

(d) the multiplication map
U :Npg X (NpﬂH) — Npg

is a diffeomorphism.

Proof. (a): Assume thatr,3 € (P, 0,+) anda + 8 € £(g,a). Thena + B € (P, o) and(a +
B)(Zq) > 0 so thata + 8 € Z(P, g, +). This implies (a).

Assertion (b) follows from (a) by application of Leminal2.9.

Next, we prove (c). lfa € X(P,0,+) thenoa(Zg) < 0, which impliesoa ¢ %(P,g,+).
Hencenpgs - Nh = {0}. It follows that

npg+ N (tlp N f)) = {0}

It remains to be shown that ad§/c np s can be written as

X = X + X,
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with X; € npg 4 andX, € npNb. It suffices to prove this foX € gq C npg. If a(Zy) > 0, then
X € npg 4+ by definition. On the other hand é(Zy) = 0, then by regularity oZq we have that
a € af, and thugyq € b, which implies thaiX € npNh. Finally, if a(Zg) <0, then

X = (X+0(X)) - g(X)

with X4+ 0(X) e npnh and—o(X) € nps 4, and we are done.

For (d) fixZ, as in Lemm&2.13 (b). Then for all € Z(P, o) we have thavy := a(Z;) > 0.
Let the set of positive real numbers thus obtained be ordered, < vq, < --- < Vq,,. We define
np =npg, nm=0, and for 1<i <m,

n .= @ da-
acx(Po)
a(Zn)>Vg;

Thenny,...,nyis a strictly decreasing sequence of idealsdg with [n,nj] C njy1 for0<i<m,
We note that each; is invariant undew. Hence by the same argument as used in the proof of
(c) above it follows that

ni=miNnpg 1) ®(MiN(npNh))

for all 0 <i < m. Thus, we may apply Lemnia 210 to conclude that
Npo =~ Npg 4 x expnpNh).
It remains to show that expp Nh) = Np N H. This follows from
NeNH C{neNp:a(n)=n}={expX : Xenpnh} CNpNH.
The proof is complete. O

Proof of Prop[Z2.14.Let

Npgp = Z Ja
aex(Po0)

and letNp ;¢ be the corresponding closed subgrouplef Thennp = np 59 ©np g and by Lemma
[2.11 we obtain that
Np ~ Npgg X Npg. (20)

Applying Lemmd_ 2.15 to the second component we obtain that
Np ~ Npgg X Npg + X (NP H).
On the other handyp = nps @ npge. From this we infer by application of Lemrha 2111 that
Npge X Neg,+ >~ Npy

The result follows. O

Remark2.16 For the case of ah-extreme parabolic subgroup, Proposition 2.14 is duélto [1]
where, for this special case, a different proof of the rasudiven.
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3 Auxiliary results in convex linear algebra

In this section we present a few results in convex lineartatgevhich will be used in Sectidn 4.

Lemma 3.1. Let V be a finite dimensional real linear space and_B/ a closed subset, star-
shaped about the origin. If B is non-compact, then thergeris< V \ {0} such thatR>ov C B.

Proof. SinceB is star-shaped, we hagB=t(s/t)B C tBfor all 0 < s< t. Fix a positive definite
inner product orV and letS be the associated unit sphere centered at the origin.s Bo®
we define the compact s€t:=s 1BNS Thens<t = CsD C. As B is unbounded and
starshaped, each of the s€tgs non-empty. It follows that the intersection

C:=Ns0GCs

is non-empty. Lew be a point in this intersection. Then# 0 and for alls > 0 we havesve
sG C B. Hence,R>qv C B. O

Lemma 3.2. Let V and W be two finite dimensional real linear spacesy p— W a linear map
andl" CV aclosed convex cone. Then the following assertions anyaegut.

(@) p|r is a proper map.
(b) kerpnl = {0}.

Proof. First we prove that (a) implies (b). Assume (b) doesn’t ho#éd,there exists € kerpNT,
v#0. ThenRxov C kerpnT = (p|r)~1(0) and we obtain thatp|r)~(0) is not compact and
hencep|r is not a proper map.

For the converse implication, assume that (a) does not Adldn there exists a compact set
K CW, such that the set~1(K)NT is not compact. As the latter set is closed, it is unbounded in
V. Let K be the convex hull oK U {0}. ThenK is compact angp—*(K) N T is convex, contains
0 and is unbounded M, hence not compact. We apply Lemial3.1 and obtain that théstsex
v 0 suchthatt > 0:tve p~1(K)NT. Hencet - p(v) € K for everyt > 0. SinceK is compact,

it follows thatp(v) = 0 andv € kerpN T, which implies that (b) cannot hold. O

Lemma 3.3. Let V be a finite dimensional real linear space, dna closed convex cone in V
such that there exists a linear functioréak V* with & > 0onT \ {0}. Then the following holds.

(a) Forevery R>0the set{xeTl : &(x) <R} is compact.
(b) The additionmap a(x,y) — x+y, I xI' =V, is proper.

Proof. LetR> 0. The setl r:= {xe I : &(X) <R} is closed and convex and it contains the
origin. If ve g\ {0} then the half lineR-v is not contained i r. By Lemmal3.1l we infer
thatl'r is compact, hence (a).

We turn to (b). Assumez” CV is compact. Then there exist &> 0 such tha€ < Ron
A . Let (x,y) € a }(¢). Then it follows thaté (x+y) < R, hence& (x) < Randé(y) <R so
that (x,y) belongs to the compact sEg x 'r. We conclude thaa=1(.7") is a closed subset of
'R x 'R, hence compact. 0
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If Sis a subset ok(g,a) then the convex cone

(S := Z R>oHq.
aesS
is finitely generated, hence closedainLikewise,
Mag(S) = prqra(S) = Z Rzoprq(Ha)
aesS

is a closed and convex conedg.

Corollary 3.4. Let Pe Z(A). Then the following assertions are valid.
(@) The maporg: Ma(Z(P,06)) — aqis proper.
(b) The addition map alq,(X(P,00)) x 4, (2(P,08)) — aq is proper.

Proof. We start with (a). In view of Lemnia 3.2 it suffices to estabtishclaim thaf ,(Z(P,0))N
ap = 0. This can be done as follows. There existé a a such thatr (Y) > 0 for all a € Z(P).
PutX =Y +ad0Y =Y —0a(Y), thenX € aqg and(X,Hq) = (Ha,Ha)a(X)/2 = (Ha,Ha) (0 +
o0a)(Y)/2> 0 for all a € Z(P,00). It follows that the linear functionaf = (X, -) € a* has
strictly positive values oiff ((£(P,08)) \ {0}. Now & = 0 ona, and we see that the claim is
valid. Hence, (a).

For (b) we proceed as follows. Létbe as above, then kerpt keré and we see that > 0
only,(Z(P,06))\ {0}. Now use Lemma 3]3. O

4 Properness of the lwasawa projection

LetP e Z(A) and letHHp : G — a be the lwasawa projection defined by (5). fgiq: G — aq
be defined as in Rematk 1.2. The purpose of this section iieghat the restriction dfpq to
H factors through a proper map/H NP — agq.

We start with a simple lemma.

Lemma 4.1. The mappg|n : H — aq is left KNH- and right(PNH)-invariant.

Proof. Leth e H, kg ¢ KNH andp € PN H. By the lIwasawa decomposition, the eleméant
may be decomposed hs= kan with k € K, a€ Aandn € Np. In view of Lemmd 2,12 we may
decompos@ = mbr, withme MNH, be AnH andn’ € NpNH. SinceMA normalizeNp and
centralizesA we find

kithp = kqkanmbh= (kykm)ab((mb)~tn(mb))n’ € KabNb.
From this we deduce that

Hpg(knhp) = pry(loga+ logb) = pr, loga = $Hpg(h). a

14



It follows from the above lemma that the restrictionssdq to H induces a smooth map
Hpq:iH/HNP = aq. (21)
The following proposition is the main result of this section
Proposition 4.2. The induced map_(21) is proper.

In order to prove the proposition, we will reduce to anotresutt, Prop[_47, establishing
some useful lemmas along the way.

We fix Qy in h-extreme position and related Bas in Lemma 216. LeZg(ap) denote the
centralizer ofa, in G and define the parabolic subgroup

R:=Zg(an)Ng,. (22)

Let ng be the sum of the root spacgs for a € Z(Qn,0) = Z(Qn) \ ag and puthg := exp(ng).
ThenNg is o-stable. It is readily seen th& has the Levi decompositioR = LrRNRr where
Lr = Zg(ap) is o-stable. HenceR is o-stable. Le&(R) denote the set af-roots that appear in
nR.

Lemma 4.3.Z(P)N%(R) C Z(P,00).

Proof. Leta € 2(P)NZ(R). Thena e Z((Eh)\a’g4 =—X(Qn,0), hencea ¢ 2(P,0), see Lemma
[2.8 (b). This implies thatr € Z(P, 0). O

Let R= MrARNR be the Langlands decompositionRfThenLr = MrAR.
Lemma 4.4. The multiplication map
g (KNH) x (MrRNH) x (NRNH)/(NRNHNP) — H/H NP,
given by(k,m, [n]) — kmn| is surjective.

Proof. The maK x ([rNp) x Nr — G given by(k, X, n) — kexpXnis a diffeomorphism. Since
K, [rRNp andNr areo-stable, whereall§ = NrNH, it follows that

H = (KNH)(LrNH)(NrNH). (23)
Now Lr = MrAR With Mg andAg both o-stable. Sinc&g "H normalizedNg N H, we have that

H = (KNH)(MrNH)(ARNH)(NrNH)
(KNH)(MrNH)(NRNH)(ARNH).

This implies the result. O
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We equipMrN H with the natural right-action of the closed subgrddpnH NP. The latter
group acts oMNrNH by conjugation. Moreover, sinddr normalizedNg andP normalizedNp,
the conjugation action leaves the closed subgigyp H NP invariant. Accordingly, we have an
induced right-action oMrNH NP on (NrRNH)/(NrRNHNP) given by

M-m:=[minm, (meMrNHNP neNrNH).

We equip(MrNH) with the usual right-action biirNH NP, and(NrNH)/(NrRNH NP) with
the product action. The latter action is proper and free hab the associated quotient space
(MRNH) XMerHAp (NRNH)/(NRNH N P) is a smooth manifold.

Lemma 4.5. The multiplication map of Lemnia 4.4 induces a surjectivecmmap
p:(KNH) x (MRNH) Xmeanrp (NROH) /(NRNHNP) - H/HNP.
Proof. Letke KNH, me MrNH andn € NkNH. Then forp e MRNH NP we have
H(k, (m[n))- p) = p(k,mp[p~*npl) = kmp(p~*np)[e] = kmrie] = p(k, m,[n]).

This implies thau induces a smooth mgpas described. The surjectivity pffollows from the
surjectivity of u. O

Propositiori. 4.2 will follow from the result that the compiisi $pq o [ is proper. The latter
map is left-invariant under the left action §fM H on the first component. Thus, Proposition 4.2
will already follow from the following result.

Lemma 4.6. The map(m,n) — $Hpq(mn) induces a smooth map
¢: (MRﬂ H) X MgNHNP (NRﬂ H)/(NRﬂ HN P) — dg
which is proper.

The inclusion mapNr " H — Ng induces an embedding 6NrNH)/(NrNH N P) onto a
closed submanifold oir/Nr N P. This embedding is equivariant for the conjugation action of
MrNHNP. Accordingly, we may view

(MRNH) XMgrHAP (NRNH)/(NRNHNP)
as a closed submanifold of
(MRNH) XMerHAP NR/(NRNP).
Thus, for the proof of Lemmia 4.6 it suffices to establish tHfang result.
Proposition 4.7. The mapy : (m,n) — $Hpq(mn) induces a smooth map
@ : (MRNH) XmerHnp NR/(NRNP) = ag. (24)

This map is proper.

16



Before we proceed with the proof of Proposition]4.7 we wilsffistudy the map#rN
H/MrNHNP — aq andNr/(NrRNP) — aq induced byspg.

Lemma4.8.The mapﬁpq = HpqlmMgnH induces a smooth maﬁﬁ (MrNH)/(MrNHNP) —
ag Which is proper and has image equal to the cd)'lag(ZR ), where

={aeZ(P)Nay: ga L ker(cd—1)}.
In particular, the image is contained in the cohg,(Z(P, 09)).

Proof. We start by noting thatMir, MrNH) is a reductive symmetric pair of the Harish-Chandra
class, which is invariant under the Cartan involutéhriFurthermorefag := mgrNais a maximal
abelian subspace afr N p (contained img) andMrN P is a minimal parabolic subgroup dfr
containing*Ar := exp*ar. Accordingly, by restriction the lwasawa projection mag, : H — aq
induces the similar projection maﬁﬁ MrNH — aq which is the analogue ahpq defined
relative to the datdlr, MRNK,PN MR, H N MR, in place ofG,K,P,H.

The*ar-roots inNp N MR are precisely the restrictions of the roots fra) N a;;. From this
we see that the minimal parabolic subgrdp Mg of Mr is 06-stable. Hence, in view of [4,
Theorem 1.1, Lemma 3.3], the m@S’q is proper and has image equal to the 05[;@25) given
above. The final assertion now follows from the observati@X(P) Nag C Z(P,00). O

The following lemma is well known. For completeness of theasition, we provide the
proof.

Lemma 4.9. The lwasawa magp|y : Np — a is proper. If Qe Z(A), then
Hp(NgNNp) = Fo(2(P) N Z(Q)-

Proof. For the first assertion, leinj) be sequence ilNe such that§yp(n; j) converges. Then
nj = k;ajn;j, with kj € K, aj = exp$Hp(n;j) andn; € Np. By passing to a converging subsequence,
we may arrange that in addition the seque(k;e converges irK. It follows thatn; nJ =kja;
converges irG. By [15, Lemma 39], the sequen¢e;) converges.

For the second assertion, we may assiiftg) N> (P) # 0 and use the idea due to S. Gindikin
and F. Karpelevic [12], to decompoblg N Np by using aP-simple root inz(Q) NZ(P). Let a
be such a root. Laiy = gq + g2¢ andNg = expng. PutQ = s;Qsy . Then, with the notation

of Subsection 2]1,
%(Q)NZe(P) = {a} LU (Z(Q) NZ:(P)),

so that B B B B B
NQmNP = Na(NQ/mNP) ~ Ng X (NQ/ﬁNP),

in view of Lemmd_2.1l1. Leh € NoNNp. Then according to the above decomposition we may
write n= ng’, whereng € Ny andn” € Noy NNp. Let g(a) be the semisimple subalgebra gener-
ated byny andng, and letG(a) be the corresponding analytic subgroug®fBy the Iwasawa
decomposition o6 (a ) for the minimal parabolic subgrolNG(a) we may writeny = Kgagng
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with kg € G(a) NK, ag € expRHg) andng € Ng. From application of Lemma2.11 we find
that _
NQ/ N Np ~ NQ//(NQ/ N Np)

and we see that there exists a diffeomorphigmfrom Ny N Np onto itself, such that
NgN € Tn, (N)Np, forall 0’ NQ/ﬂN_p.

This implies that
Hp(Nal) = Hp(agTn, (M)ag ") +logag,
and we see that _ _ _ _
HP(Na(NgNNp)) = Hp(NGNNp) + Hp(Na ).
Nows’_)p(l\_la) equals the image &, under the Iwasawa projectiohy for the split rank 1 group

G(a) and the minimal parabolic subgrot G(a). By [17, Thm. 1X.3.8], which is based on
SU(2,1)-reduction, we see thaiy (Ng) = R>oHg. It follows that

Hp(Na(NoNNp)) = Hp(NG N Np) +RxoHg.

The proof is completed by induction on the number of eleminks (Q) N Z,(P). O
The following lemma is the second ingredient for the prooPodpositior 4.17.

Lemma 4.10. The lwasawa magpg|ng : Nr — aq factors through a proper mapf¥NrNNp —
aq with image equal to the cone

Moy (Z(P)NZ(R)). (25)

P.00)).

—~ =

In particular, the image is contained in the cohg, (2

Proof. We denote the induced map by It follows by application of Lemm@a2.11 that the multi-
plication map(NrNNp) x (NRNNp) — Nris a diffeomorphism. Lev : Nk Np — Nr/Nr M Np
denote the induced d_iffeomorphism. Ther v equals Pg© HPR; whereﬁBR denotes the re-
striction of $3p to NN Np. This restriction is proper with imade, (%(P) N Z(R)), by Lemmd.4.D
above. In particular, the image is contained in the dof(&(P, 0 0)), by Lemmd4.B. In view of
Corollary[3.4 (a) it now follows tha®yov = pryo Hpr is proper with image equal t0 (25). This
implies the result. O

We proceed with a final lemma needed for the proof of Propms#i7.
Lemma 4.11.Let g be as in[(24) and let
EE_ : (MRﬂ H) XMgNHNP NR/(NRﬂ P) — (MRﬂ H)/(MRﬂ HN P)

denote the map induced by projection onto the first component
Let CC aq be a compact set. Then the sgi(¢1(C)) is relatively compact ifMgN
H)/(MrNHNP).
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Proof. Let m— [m] denote the canonical projectiigNH — (MrNH)/(MrRNHNP). Let
(m;) and(n;j) be sequences iM NH andNg, respectively, such thabp(mjn;) € C for all j.
Then it suffices to show that the sequerig®;]) in (MrNH)/(MrNHNP) has a converging
subsequence.

In accordance with the lwasawa decomposifitpy= (MrNK)(MrNA)(MrNNp), we may
decomposen; = Kja;Vvj. Sincean C ar = cente(lr) Np, we havemrNa = aﬁ Na C aq, so that
logaj = H54(M)).

The element; = a;v; belongs toMg, hencen] := tjnjtj_l € Ng, for all j. Frommjn; =
kjnjajvj it follows that

Hrg(mjn) = Hirg(kjn}) +1ogaj = Hpg(n}) + Hq(M;).

We now note that botlhpg(n}) and Hpq(m;) belong tol (P, 08) by Lemmag 4.70 and 4.8.

By application of Corollary_3]4 we infer that the sequerigg,(m;) is contained in a relatively

compact subset afy. By application of Lemma 418 it now follows thaim;]) is contained in a

relatively compact subset 0MrNH)/(MrNH NP), hence contains a convergent subsequence.
L

Completion of the proof of Proposition 4.Zet C be a compact subset of and let(m;) be
a sequence iMrNH and(nj) a sequence iiNr such thatp([(m;j,n;)]) € C for all j. Then it
suffices to show that the sequence of points

[(Mj,nj)] € (MRNH) XMgrHnP NR/(NRMNNp)

has a converging subsequence.

In view of Lemmal4.11 we may pass to a subsequence of indicdsassume that the
sequenceg[m;]) in D := (MrNH)/(MrNH NP) converges. Since the canonical projection
MrNH — D determines a principal fiber bundle, we may invoke a localdlization to ob-
tain a converging sequengam;) in MrNH such thatm; € mj(MrNHNP) for all j. Let
pj € MrRNH NP be such tham; =‘m;p; for all j. Then

[(mj,np)] = [(my, ")l

with ‘nj = pjn; pfl € Nr.

Replacing the original sequence of poirits;j,n;j) in this fashion if necessary, we may as
well assume that the original sequeriog) converges ilMrNH. Letme MrNH be the limit of
this sequence. As in the proof of Lemia 4.11 we may decomppsek;ja;vj andm= kav in
accordance with the lwasawa decomposifib= (MrNK)(MrNA)(MrRNNp). Thenk; — Kk,
aj —aandvj — v, for j — co. Puttj = a;vj andn :tjnjtj‘l. As in the proof of Lemma4.11 it
follows that

g([my,nj]) = loga; + Hpg(n).-
Since (a;j) converges, it follows that the sequen9ey(n}) is contained in a compact subset

j
C' C aq. By Lemma[4.1D it follows that the sequen({e’j]) in Nr/NrN Np is contained in a
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compact subset. Passing to a suitable subsequence ofsvdicenay as well assume that the
sequencé[n;]) converges to a poirjh], for somen € Nr. It follows that

] =ty iyl =t ] =t =[t"nt],  (j - ),

wheret = av. We conclude that the sequeri¢e;, nj)] converges with limit equal tffim,t ~nt)].
L
We finish this section with a number of results that will bedesgtin Sectiof 10.

Corollary 4.12. Let.«7 be a compact subset of,AThen
(@) Hrg(ah) € Hpq(FK) +Hpqg(h), forall (a,h) € o7 x H;
(b) the map(a, h) — Hpq(ah) induces a proper magp/ x H/HNP — ag.

Proof. We first prove (a). Lea € .« andh € H. We may decompode= kbnwithke K, be A
andn € Np. Furthermoreak = k'a’'n’ with k' € K, ' € Np and loge’ € $Hp(«/K). Now

ah= akbn=Ka'n'bn= k'abn’
with n”” = b~1n’bn e Np. It follows that
Hpg(ah) = pry(loga’ +logb) € Hpq(7K) +Hpq(h).

This establishes (a).
Sincefpq(/K) is compact, (b) follows from combining (a) with Propositié. O

Lemma 4.13.Let Pe Z(A). Then$Hpg(H) C o (2(P,00)).
Proof. By (23) we have
H = (HNK)(HNNR)(HNLR) € KNr(HNLR).

Fix h € H, then we may writdr = kngh_ with k € K, ng € Nrandh, € (HNLR). The groupPNLR

is a minimal parabolic subgroup bk, containingA. In accordance with the associated Iwasawa
decomposition fokr, we may writeh, = k a n_ with kg € KNLg, a. € Aandn. € NpNLg.
SincelLr normalized\R, it follows that

h = kngkLa, n € Knka n.

with ng € Nr. We now observe thaty € KbNe with b = exp$p(ng). Thus, h € Kba Np. It
follows that

$pq(h) = pry(logb+loga ) € Hpg(Nr) +Hpg(H NLR). (26)
SinceLrNH = (MrNH)(ANH), we haveHpq(HNLR) = Hpq(H NMR). The result now follows
from (26) by applying Lemmds 4.8 ahd 4.10. O
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Lemma 4.14. Let V be a finite dimensional real vector space (or more gdheaareal locally
convex Hausdorff spacd),; a convex cone in VI;» a closed convex cones inV andBV a
bounded subset. IF; C B+ thenl 1 C ).

Proof. Let y € '1. Then for any positive integer> 1 we have thahy € N1 C B+ 15, hence

y=Dbn/N+ ¥,

with b, € B andy, € . As B is boundedp,/n — 0 and we conclude that — y, for n — co.
Sincel ; is closed, it follows thay € I'5. O

Corollary 4.15. Let Pe &(A). Then for each & Aq, the sethpq(aH) does not contain any line
of aq.

Proof. From Corollanyf4.1I2 (a) combined with Lemima 4.13 we see that
Hrg(aH) € Hrpg(ak) +To(Z(P,08)). (27)

Arguing by contradiction, assume th@aq(aH) contains a line of the forrd + RY, with Y, Z €
ag, Y # 0. ThenRY C (-2Z) + Hpq(aK) + T (Z(P,o,0)), and by Lemma4.14 we conclude that
RY e '(£(P,08)). This implies that

Yel(Z(PoB))Nn—-T(Z(P,aB))={0},

contradiction. O

5 Ciritical points of components of the lwasawa map

In this section we assume thRte Z(A) is a fixed minimal parabolic subgroup and tlaais
a fixed element ofA;. We will investigate the critical sets of vector componentghe map
hi— Hpg(ah), H — aq. For this, letX € ag, and consider the functidf, x : H — R defined by

Fax(h) = (X, Hp(ah)) = (X, Hrg(ah)) = B(X, Hpg(@h)). (28)

The second equality is valid becauggandag are perpendicular with respect to the inner product
(-, -), while the third holds becausgrq(ah) € aq C p. We start with a result on derivatives of
the function

In order to formulate it, we need a bit of additional notatiti- € C*(G) andU € g, we define:

F(GU) =RUF(Q) = | Flgex(tu).

The following result and its proof can be foundin [9, Cor.]5Ree also[4, Cor. 4.2].
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Lemma5.1. Letge GandUec g. Then
Fx(g;U) = B(Ad(1(g))U, X) = B(U,Ad(v(g))X),

where we have used the decompositions k(g)7(g) and 1(g) = a(g)v(g), according to the
lwasawa decomposition & KANp.

We define the set of regular elementgipby A¢ % := exp(ag ), seel(IP). IiX € aqwe denote
by Gx the centralizer oK in G and put

Np7x ‘= Np N Gx. (30)

Lemma 5.2. Let ac Aq and let Xe aq. The point he H is a critical point for the function £x
if and only if ah= kbn for certain ke K, b€ A and ne Npx(Np N H).

Proof. Leth € H. Thenh s a critical point for the functiofra x if and only if
Y eh: 0=Fax(hU)=B(U,Ad(v(ah)~1)X). (31)

Sinceh andq are perpendicular with respectBosee text abové[7), the conditidn{31) is equiva-
lent to the assertion that Ad(ah)~1)X € q. Write n = v(ah) and decompose = n, ny accord-
ing to the decompositioNp = Np. (Np N H) of Propositiori 2.14. Since Ady) normalizesy,

the above condition is equivalent to &d ) !X € q. Now apply the lemma below to see that the
latter is equivalent to. € Np_ N"Npx. It follows that (31) is equivalentto € Npx(NpNH). O

Lemma 5.3. Let ne Np . (cf. Prop[2.14) and X € aq. Then
Ad(nN)X € q <= Ad(n)X = X.

Proof. The implication *=’ is obvious. Thus, assume that AgX € q. We may writen =
expU ), whereU € np_. Then by nilpotence aip_,,

Ad(N)X =YX € X +1np ;.

By assumption, Ath)X — X € q. Since obviouslyr (np ) Nnp 4 = 0, it follows thatnp . Ng =0
and we infer that Ath)X = X. O

GivenX € aq we agree to denote I3, x the set of critical points for the functidf, x. The
remainder of this section will be dedicated to proving thiofeing description of this set in
casea is regular. We recall the definitions of the Weyl grogaq) andWk~n from (2) and
Definition[1.3.

Remarks.4. In the following we will use the notation

W 1

a’'i=w ~-a

for a € Aq andw € W(aq). This notation has the advantage that)” = a"V and (a¥)P = a"#,
for v, w € W(aq) andp € 5(g, aq). In particular, Ada") = a"?l ongg.
We will use similar notation foa € A andw € W(a).
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Lemma 5.5. Let a€ Ay° and X € aq. Then

Cg&x = U WHx(Np NH ) (32)
weWknH

Proof. Let xy be a representative o¥ in NxH (aq), leth € Hx andnp € NeH. Then, with
notation as in Lemmia3’.1,

v(axyhnp) = v(x;,taxyhnp) = v(a¥hnp) = v(a"h)np.
The elemené"h belongs tdGy, and according td [9, Eqn. (2.6)],
Gx ~ KxANpx.

Thus,v(a"h) € Npx and it follows thatv(axyhnp) € Npx (Np N H). This proves that the set on
the right-hand side of(32) is included in the set on the lhgfitd side. It remains to prove the
converse inclusion.

Leth € Gax. Then by LemmaX’i2 we may writth= kbnxny with k € K, b € A, nx € Npx
andny € NpNH. From this we see that tahr;! = bny € Gx. The element’ := hni;*, belongs
to H. In view of the Cartan decompositidth = (KNH) x exp(p Nh), we may writeh’ = hihy,
whereh; € KNH andhy € exp(pNh). Then

k~tahyhy = k~thy(hytahg)hy € Gyx. (33)
By [25], the groupG decomposes as
G~Kxexp(png)xexppnh).
According to [25, Thm. 5]Gx has a similar decomposition
Gx ~ Kx x exp(pNax) x exp(p Nhx).
By the uniqueness properties of the latter decompositifoildws from (33) thatk 1h; € Ky,
h;tah € exp(p Nqx) andhy € exp(p Nhx).
We note thato 8 fixes X hence leaves the centraliz€k invariant. The fixed point group
Gx + of this involution inGx admits the Cartan decomposition
Gx7+ ~ (K N Hx) X exp(p N qx).

Obviouslyaq is a maximal abelian subspaceyafi qx. Hence, every element of the latter space
is conjugate to an element af under the groupk NHx)°. We infer that there exists an element
| € (KNHx)° such that

I~th; tal € Aq. (34)
Sincea was assumed to be regular fB(g,aq), it follows thata is regular forZ(g,,aq) as

well. Hence, [(34) implies that the elememi € KN H normalizesaq. It follows thath; €
NkH (aq)(K N Hx). Then,

h' =hihy € Nkqn (aqg) (KN Hx) exp(p N bhx) = Nknn (ag)Hx
and we conclude théﬁnﬁl € NknH (ag)Hx. This finally implies that
h € Nk (ag)Hx(NpNH),
which concludes the proof. O
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6 Properties of the set of critical points

As in the previous section, we assume tRat &7 (A) and thata is a regular point irAg. In the
previous section we defined the functibgx : H — R, for X € aq, by (28) and we determined
its set of critical point$6, x, see [(32). The purpose of the present section is to studyehia s
more detalil.

We start with the following lemma.

Lemma 6.1. The mapp : Hx x (NpNH) — H given by(h,n) — hn induces an injective immer-
sion
¢ HX XNPQHX (NpﬂH) — H

with image H(Np N H).

Proof. The groupHx x (NpNH) has a natural left action dr given by the formula(h,n)-x =
hxn1. The setHx (Np N H) is the orbit for this action through the identity elememtf H. Let F

be the stabilizer o&for this action. Then it follows that the map, n) — (h,n)-e=hn-! factors
through an injective immersiofHx x (NpNH))/F — H with imageHx (Np N H). The stabilizer

F consists of the elementh, h) with h € Hx N Np. To complete the proof of the lemma, we note
that the mag(h,n) — (h,n~1) induces a diffeomorphistly xnsaHy (NP H) — (Hx x (NpN
H))/F. O

Lemma 6.2. Let X € aq. Then the set, x is closed in H Moreover, the following holds.
(@) If bx+(npNbh) =0 then Eax =H.

(b) If bx+(npNh) Ch then G,x is a finite union of lower dimensional injectively immersed
submanifolds.

Proof. Since%, x is the set of critical points of the smooth functiBgy, it is closed.
From LemmaX5.Js combined with Lemimnalb. 1 it follows iy is a finite union of injectively
immersed submanifolds of dimensidg := dim(hx + (np N h)). From this, (b) is immediate.
For (a) we assume the hypothesis to be fulfilled, or equitiletinat dx = dim(H). Then
%ax 1s open inH. Since this set is also closed kh, and containdix(Np N H), it follows that
Cax 2 H°. From Lemma 55 it follows thats x is left NkqH (ag)-invariant, so thatéax 2
NknH (ag)H°. SinceH is essentially connected, the latter set eqttalsee [(6). O

Lemma 6.3. Let X € aq. Then the following assertions are equivalent:
(@) b= bx+(npNbh);
(b) Ya € Z(g,a) : a(X)=0.

Proof. First assume (b). Thegx = g and (a) follows. We will prove the converse implication
by contraposition. Thus, assume that (b) does not hold. Texe exists a rogk € (g, a) such
that3(X) # 0. By changing sign if necessary, we may in addition arrangegraZ(P).
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Given a subseti C %(g,a) U {0}, we agree to write

90 = Daco 9a- (35)

In particular, we see thatp = gsp). We also agree to writ¢’? := &'N g(0). Then using
0(ga) = goa We readily see that

goNh=(ggo)’ = DPweo/{1,0} (90)7; (36)
here¢? /{1, 0} denotes the set of orbits for the action@fi of the subgroud1, o} of Aut(g).
If we apply (36) to the set’x := {a € Z(g,a) : a(X)=0}uU{0}, we find

bx = Dwecoy /{100 (B0)’-
We note thak (P)? = Z(P, 0), so that

np b =gspo) Nb.

We now consider the seétg := {3,03,—B,—~0B}. SinceOx N O = 0, it follows from the
above that
(bx +(npNb)) Mg, =npNHNge, = (8x(Po)ne,) - (37)
On the other hand,
hNag, = (96,)°

From B(X) # 0 it follows thatf ¢ af. If B € ag thenZ(P,o)N g =0 and if B ¢ ag then
2(Po)nop C{B,0B}. In any caseX(P,0) N Op is a propero-invariant subset olg. By
application of [(36) it now follows that

(gspo)ne)’ < (90)°.
Using (37) we infer that (a) is not valid. O

We agree to write
Si=aq\ Naex(g.09) KETO- (38)

Remark6.4. If 3(g,aq) spansig then it follows thatS= aq\ {0}.
Corollary 6.5. S={X € aq: %ax CH}.

Proof. Let X € aq. In the situation of Lemm@a_8.2 (b) the séf x is a countable union of lower
dimensional submanifolds, hence nowhere dense by the &atiegory theorem. Thus, by appli-
cation of Lemmas 6l2 arid 6.3 it follows tHégx CH <— X €S O

For eacl? € aq, let 3(Z) denote the collection of roots Kxg, agq) vanishing orZ. We define
the equivalence relatior onaq by

X~ Y = 5(X)=2(Y).
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Then clearly~ has finitely many equivalence classesijrand
X~Y < Gx =0Gy.

The class of 0 is given bjp] = Naes(g,aq) KT @andSis the union of the remaining finitely many
equivalence classes fev. Furthermore, the s&f; x depends oiX € Sthrough the centralizer
Gx, hence through the equivalence cl@¥$ for ~ . Accordingly, we will also writeé x; for
this set.
We define
Ga = Uxes Cax- (39)

Lemma 6.6.
(a) There exists a finite subset S S such that (39) is valid for the union oveyi8 place of S

(b) The seté;, is closed and a finite union of lower dimensional injectivietynersed submani-
folds of H.

(c) The sets, is nowhere dense in H

Proof. By the discussion preceding the lemrfga,is the union of the setg;, ), for [X] € S/ ~ .
Since the latter set is finite, assertion (a) follows wiha complete set of representatives for
S/ ~ . Assertion (b) now follows by application of Corolldry 6.5cahemmd 6.P. Assertion (c)
follows from (b) by application of the Baire category theore O

The following result illustrates the importance of the ggt

Proposition 6.7. The set H\ ¢, is open and dense in Fhssume thak (g, aq) spansag. Then the
map R :h— $Hpg(ah), H — aq is submersive at all points of k¢a.

Proof. The first assertion is a consequence of Lerhma 6.6.
Let hg € H \ %a. Then for everyX e Sthe pointhg is not critical for the functiorFa x. As
S=uaq\ {0}, see Remark€l4, it follows th& : h — Hpq(ah) is submersive ato. O

Lemma 6.8. Let Pc #(A) and ac Ay . Then the following assertions are valid.
(a) The sets)pg(aH) and$Hpy(a%a) are closed img.
(b) If Z(g,aq) spansug then the sefipg(aH) \ Hrq(aa) is open and closed ing \ Hpg(asa).

Proof. For.«Z C A compact, the mapZ x H/(HNP) — aq, (b, [n]) — $Hpq(bh) is proper, hence
closed; see Corollaty 4.112. In particular, it follows tlfaiq(aH) is closed img.

It follows from Lemmal6.b tha¥; is closed inH. Moreover, %, is a countable union of
lower dimensional submanifolds &f. Thus, by the Baire propertg, has empty interior irH.
In particular, it is a proper subset Bif.

Furthermore, the se&;, is right H N P-invariant, hence has closed imageHnH N P. It
follows that$pq(a%a) is closed ing. This establishes (a).
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By Propositiori 6.I7 the mapa : h— $pq(ah) is submersive at the points bf\ 2. Hence
Hpg(a(H\ %a)) is open inag. It follows that

Hpg@H) \ Hrg(@ta) = Heg(@(H \ €a)) \ Hrq(a@%a) (40)

is open inagq hence inag \ Hpq(ada). Finally, sincesipq(aH) is closed, the first set i (40) is
closed inag \ $pq(a%a). We conclude that the s (40) is both open and closeg \Mpq(a%a).
U

Lemma 6.9. Assume thak (g, aq) spansag. Thenfpg(aH) \ Hpq(a®a) # 0.

Proof. Under the assumption thatg, aq) spansig, the mapipq: aH — aq is submersive except
at points ofé,. The setH \ 4, is open and non-empty. Thugpq(a(H \ %a)) is open and non-
empty. By Sard’s Theorenfypq(a%a) has measure zero. This implies that

Hpg(aH \%a)) \ Hrq(ata) # 0,

and hence
$Hpg(aH) \ Hpq(ata) # 0.

Remark6.10 The lemma can readily be extended to the caseXf@ging) does not spang.

7 The computation of Hessians

We retain the assumption thRte (A). Furthermore, we assume trea€ Ag° andX € ag. In
this section we will compute the Hessian of the functiarx : H — R, defined in [(28), at all
points of its critical locusta x.

GivenU € b, we denote byry the associated left-invariant vectorfield Hndefined by

Ru(h) = di(@)U = 2 (hexptU)l-o,  (he H).

The associated derivation @7 (H) is denoted by the same symbol.
If f:H — R is aC2-function with critical point ah, then its Hessian dt is the symmetric
bilinear formH (f)(h) = H(f), onTyH given by

H(f)n(Ru(h),Rv(h)) := RuRy f(h) = ds¢ f (hexpsUexptV)|s—t—o,
forU,V € b.

Lemma 7.1. Let ac Aq, X € agand he H. Then for all U,V € h we have:

Ru R\/Fa,X(h) = B(U7 La,X,h<V)) = _<U7 9La,X,h<V)>7
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where lax n : h — b is the linear map given by
Laxn(V) = —Ad(h ) o o0Ad(@?t) oAd(ka(h)) cad X) o Ego Ad(t(ah))V.  (41)

Here g, : g — b denotes the projection according to the decomposiienh ©qgand g : g — £

is the projection associated with the Iwasawa decompasijic= ¢ ® a & np. The notation
ka(h) is used to express the K-part of the element ah with respetietdwasawa decomposi-
tion G= KANk. Finally, T(ah) denotes th¢ ANp)-part of ah with respect to the same lwasawa
decomposition.

Proof. By [4, Lemma 5.1], see alsd![9], we obtain that foe G andU,V € g,
RUR/Fx(x) = B([Ad(T)U, E 0 Ad(T)V], X),
whereFy is the function defined in.(29) and where= t(x). Therefore,
RURVFx(X) = —B(Ad(T)U, adX o E; 0 Ad(T)V)
= —B(U,Ad(1) toadX o Ego Ad(T)V).
We can restrict now to the case where ahandU,V € ). SinceF, x (h) = Fx(ah), we obtain

RuR/Fax(h) = RyRyFx(ah) = BU, =15, 0 Ad(T) toadX o E;o Ad(T)V).  (42)

Sinceah = ky(h)1(ah), it follows thatt—* = 1(ah)~ = h—ta~1k,(h) and by applying Ad to this
equality we obtain
Ad(1) 1 =Ad(h 1)Ad(a 1)Ad(ka(h)).

We complete the proof by substituting this equality(inl (429l @bserving thatg, commutes with
Ad(h1). O

8 The transversal signature of the Hessian

In this section we fiP € 2(A), ac Ay° andX € aq. We will study the behavior of the Hessian
H(Fax)n of the functionFax : H — R defined in [(28) at each poitht of its critical set%, x.
This Hessian is a symmetric bilinear form @gH. Its kernel ath is by definition equal to the
following linear subspace di,H,

ker(H (Fax)(h)) := {V € TiH : H(Fax)(h)(V, -) = 0}.

By symmetry, the Hessian induces a non-degenerate synenidiriear form I—T(Fa7x)(h) on
the quotient spac&,H /ker(H(Fax)(h)). For eachw € Wk~ we select a representatixg
NknH (aq). The set

Cga’)(’w = XWHx(H N Np)

is an injectively immersed submanifold b, see Lemma6l1. In particular this set has a well-
defined tangent space at each of its points. We will show kigaktfessian oF, x is transversally
non-degenerate alor x w.
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Lemma 8.1. Let we Wk~H. Then at each poirﬁe Cax w the kernel of the Hessian (Ha x ) (h)
equals the tangent spacgdh x w-

The proof of this lemma will make use of Lemmal8.2 below. Irt teenma,L, x hn € End(h)
is defined as i (41). Lek, ;= 1ok, : H — K /M, wherek, : H — K is defined as in Lemnia7.1
and wheret denotes the canonical projectisin— K /M.

Lemma 8.2. Let he Hg and V € h. Then the following statements are equivalent.
(@) V ekerLaxh,
(b) Al )1 0Kaoln)(€)(V) € bx/m,
(€) Vebx+(hNnp).
Proof. First, we prove that (&= (b). Assume (a) holds. In view df (#1) this is equivalent to

Ad(a™1) o Ad(ka(h)) cad X) o Exo Ad(T(ah))V € g. (43)

Observe that Atka(h)) cad X) o E;o Ad(T(ah))V € p. In view of [4, Lemma 5.7] we see that
(43) implies that
Ad(ka(h)) cadX) o E;o Ad(T(ah))V € agq. (44)

Sinceh € Hx andGx = KxANbx, seel(3D), it follows thaka(h) centralizesX. Thus, Adka(h))
and adX) commute. Now Adka(h)) o E; o Ad(T(ah))V is an element ir¢, which decomposes
as

t=tx+ P (1+6)ga.
aeZ(P)
a(X)#£0

Furthermore, by[(44), we know that @) maps this element to an elementwf This

implies that
Ad(ka(h)) o Ezo Ad(T(ah))V € x.

Sincekgy(h) € Kx, we obtain that
E;oAd(1(ah))V € tx. (45)
By the use of[[4, Lemma 5.2], we may rewrite
E:.oAd(1(ah)) = dlka(h)(e)*l odka(h) o dln(€) = d(li,ny-1 o kaoln)(€).

Hence,[(4b) implies
d(lka(h)*l o kaO |h) (e) (V) € tx. (46)

Observe that d(e) : tx — tx/m is given by the canonical projection and that the mapnd
Ika(h)fl commute. Hence, equatidn (46) is equivalent to

Al -1 okaoln)()(V) € tx/m (47)
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and (b) follows.

Next, we prove that (b)=- (c). Assume (b) and denote igythe diffeomorphisng : K/M —
G/P arising from the lwasawa decompositiGr= KANe. The inclusiorH — G induces the map
Y :H — G/P. Itis easy to check that the diagram given below commutes.

H — Y% LGP
ka l l|a (48)
kM —* G
The mapy commutes with the left multiplication by an elemdnt H, viewed either as the
mapl, : H — H or as the mapy, : G/P — G/P. On the other hand, the diffeomorphigpn
introduced above, commutes with the left multiplicatipnK /M — K /M, wherek € K. Hence,
the commutative diagrani (48) gives rise to the following cmmative diagram. We use the
notationk := ky(h).
H — Y% LGP
IIZlOEaOIhJ/ J/kalah (49)

kM —* G/

Note that under each of the four maps in diagram (49), theroafithe domain is mapped to

the origin of the codomain. Taking derivatives at the orggive obtain the commutative diagram

given below.

h —— g/p

T| |1 e) (50)

t/m L g/p

Here
p=mbadnp

denotes the Lie algebra &fandT denotes the map(t[lo ka o Ih)(e) : h — ¢/m. Furthermore,
¢. =d¢(eM) andy,. = dy(e).

Observe thak~tah= 1 := 1(ah). Sinceh belongs tdHy, it follows thatt andt—* belong to
ANpx C P. This in turn implies that Adr*l) is a bijection fromgx to gx which normalizes.

LetAd(T) : g/p — g/p be the map induced by Ad) : g — g. Then

d(l-1an) (€P) = Ad(T).
We use the commutativity of diagraim (50) to compute the prage oftx /m under the maf :
T H(ex/m) = @ T o Ad(T71) 0 p.(Ex/m)
= i, H(Ad(T~1) (x +p))
= @ H(Ad(T1) (gx +

30



= ¢ H((Ad(T Hgx) +p)

= Y (ox+p)

={Ueh: U+pecogx+p}
=bx +(hNp).

SincehNp = (mda)Nh® (npNh), see Subsectidn 2.4, afish & a) Nh C hx, we obtain
thathx + (hNp) = bx + (hNnp). Thus if (b) holds, theT (V) € &x/m and we infer thaV €
bx + (hNp) hence (c).

Finally, the implication (c}= (a) is easy. O

Proof of Lemma 8l1Recall thaHH is essentially connected. By [4, Prop. 2.3], the centralize
Hx is essentially connected as well (relativedg).
Assume first thah = h € Hy. Then, by Lemma8l2 above, we have that

kerLaxh=bx+ (npNh).

Sincedly(e) is a linear isomorphisng — ThG, mappingTe[Hx (NP NH)] onto Ty[Hx (Np N H)],
we obtain that
kerH (Fax)(h) = dly(€)(kerLax n) = Th[Hx(Ne N H)],

which establishes the assertion for h e Hy.
Let nowh = hn, with n € NpNH. Then the right-multiplicatiom, : H — H is a diffeomor-
phism andF x o rh = Fa x, so that

kerH (Fax)(hn) = drp(h)[kerH (Fax)(h)] = dra(h) Ta[Hx (Ne N H)].

As the latter space equalsn[Hx (Np M H)] this proves the assertion fare Hy (Np N H).

Finally, we discuss the general case wHx(Np N H). SinceH, respectivelyHy, is es-
sentially connected, segl (6), we may wiite= x,hn, whereh € Hg, n€ NpNH andxy is a
representative of in Nknn (ag) chosen accordingly. Sinog, normalizesAq,

Fayx (¢] |XW = wala7x.

Furthermore, frona € Ay it follows thatw~1a € Ay®. Sincely, is a diffeomorphism front to
itself, it follows thatdly, (hn) is a linear isomorphism frorf,,H onto T;H and that

kerH(Fax)(h) = kerH(Fax)(xwhn)
= dly,(hn)[kerH (F_1, x ) (hn)]
= dlx, (hn)Tha[Hx(NpeNH)]
= TiPwHx(NenH)]

Tﬁcga,Xw- (5 1)
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We will now determine the set of critical points where the sias is transversally positive
definite. For the description of our next result we define tiilWing subsets oE(P). If a €
2(g,a) Nag, then the associated root spageis o 6-invariant. Hence, for such a roat

9a = 8a,+ DYa,—

where
ga+={U€gg: 06U==2U}.

Accordingly, we define
S(g,aq)+ = {a € Z(g,aq) : ga+ #O}.

In order to formulate the first main result of this section,veed to specify particular subsets of
>(P).

Definition 8.3.
@ Z(P).:={acZ(P): aca; = ga.+ #0}.
(b) 2(P)- :={aecZ(P0b): acay = ga- #0}.
Note that (b) in this definition is consistent wiff (4).

Proposition 8.4. Let we Wk~H. Then the Hessian HFa x ) (Xw) iS positive definite transversally
to Gax w if and only if the following two conditions are fulfilled

(@) Ya € Z(P), : a(X)a(w (loga)) <0;
(b) Va e Z(P)_: a(X)>0.

Remark8.5. For the geometric meaning of these conditions we refer torhaB.14, towards
the end of this section.

Proof. We will prove the proposition in a number of steps. As a firgpstetl,, := Iy, denote left
multiplication byx, on H. Then the tangent space @ x w at X is the image ohx + (hNnp)
under the tangent magly(e) : h — Ty, H. We will denote by H, the pull-back of the Hessian
H(Fax)(%w) underdly(e). Then, in view of [51),

kerHy = bhx + (npNh) (52)
and the following conditions are equivalent:
(a) the Hessiah (Faw)(Xw) is positive definite transversally @5 x w;
(b) the bilinear form K, is positive definite transversally tx + (h Nnp).

Accordingly, we will concentrate on deriving necessary aafficient conditions for (b) to
be valid.
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Lemma 8.6. The bilinear formH,, on is given by
Hw(U,V) = (U,LyV),  (U,V ebh),
where ly, : h — b is the linear map given by
Lw = —m cad X) o Ad(a") o Ego Ad(a").
Proof. LetU,V € h. Then in view of Lemma<7]1 we have
Hw(U,V) = RUR/Fax (%w) =B(U,LaxnV) = —(U,0LaxnV)

with h = xy andLa x n defined as in Lemmla_4.1. Noah = axy = x,@" and we see that =
T(ah) = a"¥ andky(h) = x. Hence,

—0Bolaxn(V) = 6oAd(x, 1)orlhoA (@ 1) o Ad(xw) cad X) o Eo Ad(a")V
= 0oy o Ad(x,1) oAd( a 1) o Ad(xw) cad X) o E;o Ad(a")V
= BomoAd(@")” loadX) o Ego Ad(a")V
= —moAd(@")ocadX)oE;oAd(a")V.
The result now follows since Ad") and adX) commute. O

In the sequel it will be useful to consider the finite subgroup
F={1,0,0,00} CAut(g).

The natural left action oF on g leavesa invariant, and induces natural left actionscrand on
2(g,a). Accordingly, if T € F anda € (g, a), then
T(ga) = 91a
If & is an orbit for the--action onZ (g, a), we write, in accordance witl (85),
90 = EB da-
aco

Then obviously,

g=00® P 9o, (53)
03 (g,0)/F

with mutually orthogonal summands. Each of the summanésiis/ariant, hences-invariant.
In particular, if we writehp = hNgo andh, = hNgs, then

0ex(g,a)/F

with F-stable orthogonal summands.
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Lemma 8.7.
(a) The decompositiofbd4)is orthogonal for(-, ).
(b) The decompositiof@4) is preserved by |
(c) The decompositiof®4) is orthogonal forH,,.

Proof. The validity of (a) follows immediately from the fact thatlagve to the given inner
product, the root spaces are mutually orthogonal, as welitasgonal tgyo.

For (b) we note that the decompositionl(53) is preserved byM\dad(a), E¢ andrg,. Flnally
in view of Lemmé_ 8.6, the validity of (c) follows from (a) and)(

It follows from the above lemma that the kernel of idecomposes in accordance withl(54).
Letvpx := (kerHy)* Nh. Then in view of [52) we have

vpx =bxN(bNnp) ' Nh= P vy, (55)
0ex(g,a)/F
with
be =bxN(hNnp) Nhy (56)

From these definitions it follows thatHs non-degenerate on each of the spagesMoreover,

Hyw Is positive definite if and only if the restriction of fHto v, is positive definite for every

0 € Z(g,a)/F. This in turn is equivalent to the condition that the symneetnapL,, : h — h has

a positive definite restriction to each of the spaggqif v, is zero, we agree that the latter is

automatic). We will now systematically discuss the typesrbits & for which v is non-trivial.
First of all, we note thatr € ¢ — —a = 6a € 0. Therefore, we see that N Z(P) # 0

forall & € Z(g,a)/F. Let ~ denote the equivalence relation B(P) defined by

a~pB < Fa=Fp,

then the mapr — Fa induces a bijection fronx(P)/~ ontoX(g,a)/F. The following lemma
summarizes all possibilities for the spaees as¢ € 2(g,a)/F.

Lemma 8.8. Leta € 3(P), and putd = Fa.
(@) If a(X)=0thenv, =0.
(b) If a(X) # 0then we are in one of the following two cagbsl) and(b.2).

(b.1) a € Z(P,0);inthiscasevny ={V+0o(V): Veg_q}.
(b.2) a € 2(P,00); in this casens = h4.

Proof. (a) If a(X) =0 thenh, C gx, so thato, = {0}.
(b) Assume thatr (X) # 0. Then it follows thato ¢ a;, so thata # oa. By Lemma 2.2 we
are in one of the cases (b.1) and (b.2).
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We first discuss case (b.1). Them € Z(P) so thatoa # —a and¢ = Fa consists of the
four distinct elementsr, 0o = —a,0a andoBa = —oa. We see thab, consists of sums of
elements of the ford + o (U) andV + o(V) withU € g4 andV € g_qo. The elementtl + o (U)
belong toh Nnp, whereas the elemens+ o (V) belong tohy N (hNnp)L. In view of (56) this
implies the assertion of (b.1).

Next, we discuss case (b.2). ThémZ(P) = {a,—oa} so thamp N = 0. Since obviously
he L bx, we infer the assertion of (b.2). O

We will now proceed by explicitly calculating the restratisL|,,, for all these cases. The
following lemma will be instrumental in our calculations.

Lemma 8.9. Let Ty : g — g be defined by
Tw = adX) o Ad(a") o E; 0o Ad(a").
LetB € Z(g,a) and Ug € gg.
(@) If B € Z(P) then Ty(Ug) = 0.
(b) If B € —5(P) then Ty(Up) = B(X) (a®PUg — 8Up).
Proof. Assumeg € 2(P). Thengg C np C kerE;. Since Ada") preservegg, (a) follows.
For (b), assume th@# € —Z(P). ThenUg equalsUg + 8Ug modulonp, so thatE,(Ug) =
Ug + 8Up. Hence,
Tw(Ug) = adX)oAd(a")[a"f(Ug+6Up)]
= adX)(@Pug + 6Up)
= B(X)(@"Ug—6Up).
]

In our calculations ot |y, , we will distinguish between the cases described in Lemma 8.8
Case (@) is trivial.

Lemma 8.10(Case b.1) Let &' = Fa with a € Z(P,0) anda(X) # 0. Then

a(X),

In particular, this restriction is positive definite if anahly if a(X)a(w~tloga) < 0.

Proof. LetV € g_q and putZ .=V +o(V). Since—a,—oa € —Z(P), it follows from Lemma
B.9 that

Tw(Z) = —a(X)(@?"Vv —-6V)—a(oX)(@" oV —0aV)
a(X)[-a~2"V +a?"9 gV + 6V — BoV]
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so that X)
a
It follows thatL,y restricts to multiplication by a scalar ar;. The sign of this scalar equals the
sign of —a(X)a(wtloga). The result follows. O

(afZ\Na o aZWG)Z.

We now turn to the calculation &fy|,, in case (b.2), wheré = Fa, with a € Z(P,06) and
a(X) # 0. There are two possibilities between which we will distirgjui

(b.2.1) a € 2(P,00) \ ag,
(b.2.2) a € Z(P)Na,.
In each of these casesy; = hy by Lemmd 8.10. We will use the notation
b(U)=HU)=hnspanF-U),

forU € gq. In case (b.2.1), the orb®#’ = Fa consists of the four distinct roots, ca,68a and
ofa, and
p(U)=RU+0ol))eR(cBU)+06(U)).

In case (b.2.2)¢ = Fa = {a,—a}, and we see that
p(U)=RU+a(U)).

In all of these cases, we see thdlif,...,Un is an orthonormal basis @f,, then
m
v = PoU)), (57)
j=1

with mutually orthogonal summands.

Lemma 8.11(Case (b.2.1))Let & = Fa, witha € Z(P,00) \ ag anda(X) # 0. Then Ly|y, is
positive definite if and only i (X) > 0anda(X)a(w tloga) < 0.

Proof. Fix an elemenU € g4 and putZ; =U 4+ o(U) andZ, = 6Z; = 6U 4+ g6U. Then
Tw(U) =0 by Lemmd80, hence

Tw(Z1) = Tw(oU)
= oa(X)(@"%g(U)—00(U))
a(X)(8o(U)—a*"a(U)),

from which we see that

Lw(Za) = — 15 Tw(Z1) = —2 (@292 — Z).
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Likewise,
a(XxX), _
Lw(Z2) = %(a Waz, —7;).
It follows thatL,, preserves the subspae@J) of v, spanned by the orthogonal vect@s Z,

and that the restrictioby|,y) has the following matrix with respect to this basis:

a(X afZW(X -1
mal(LW‘n(U)) = % ( 1 g 2wa )

This matrix is positive definite if and only if both its tracecadeterminant are positive. This is
equivalent to
a(X)>0 and a(X)(@a*—1)>0.

It follows thatL,y is positive definite on the subspag@) ) if and only if the inequalitiest (X) > 0
anda (X)a(wtloga) < 0 are valid.

LetU,,...,Uny be an orthonormal basis fgg. Then by [57) we see that may, is positive
definite if and only if all restriction$W|U(Uj) are positive definite. This is true if and only if
a(X) > 0 anda(X)a(w tloga) < 0. O
Lemma 8.12(Case (b.2.2))Let & = Fa with a € Z(P) Nag and a(X) # 0. Then Ly, is
positive definite if and only if the following two conditicare fulfilled.

@ aeZ(P);na; = a(X)a(w tloga)) <O.
(b) a € Z(P)-Nag = a(X)>0.
Proof. We recall thab, = b4 in this case and write,; . =vsNEandv, - =vsNp. Then
by =0y Dby,

with orthogonal summands. We will show tHa} preserves this decomposition, and determine
when both restrictionky |y, . are positive definite.

LetUs € gg,+ and putZy =Uy +0(U+). ThenZy € vy 1, and every element af, . can
be expressed in this way.

By a straightforward computation, involving Leminal8.9, wefi

1 _
Lw(Zs) = Sa(X)(a W )7,

This shows that, acts by a real scal&€. onv, .. The restriction ofL,, to vy, is positive
definite if and only if the restrictions df,, to both subspaces, .. are positive definite. The
latter condition is equivalent to

bo+#0 = C. >0 and vy_#0= C_>0.

The space . is non-trivial if and only ifgq + # 0, which in turn is equivalent tor € Z(P)+ N
ag. On the other hand, the sign Gf. equals that of-a(X)a(wtloga) whereas the sign &_
equals that oty (X). From this the desired result follows. O
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Completion of the proof of Proposition 8.4<irst assume that Jlis positive definite. Then
L restricts to a positive definite symmetric map on each of plaesx , for & =Fa, a € Z(P).
First assume that € Z(P),.. If a(X) =0, then

a(X)a(w tloga) <0 (58)

holds. Ifa(X) # 0, we are in one of the cases (b.1) or (b.2) of Lenim& 8.8. In therlatse, we
are either in the subcase (b.2.1) orin (b.2.2) with Z(P) . Nag. In all of these cases, inequality
(58) is valid. We conclude that assertion (a) of the projpasis valid.

For the validity of assertion (b), assume that (P)_. If a(X) =0, then

a(X)>0. (59)

If a(X) # 0, then we must be in case (b.2) of Lemmal 8.8, sihge)_ NZ(P,o) = 0. We are
either in subcase (b.2.1) or in subcase (b.2.2) withZ(P). Nag. In both subcased, (59) holds.
This establishes condition (b) of the proposition, and thelication in one direction.

For the converse implication, assume that conditions (d)ayof the proposition hold. Let
a € 2(P) and put¢ = Fa. Then it suffices to show thatHs positive definite om .

If a(X) =0, thenv, =0 by Lemm& 8.8 and it follows thatHis positive definite orv,.
Thus, assume that(X) # 0. Then by regularity of log, the expressiom (X)a(wtloga) is
different from zero. Hence if any of the inequaliti€s](58)(68) holds, it holds as a strict in-
equality.

In case (b.1)a € 3(P,0) C Z(P)+ so that[(58) is valid. Therefore,,, is positive definite
by Lemm& 8.1D. In case (b.2.19,€ Z(P,00) \ ag C Z(P)+ NZ(P)_ so that[(5B) and(59) are
both valid. Hence, H|,, is positive definite by Lemma8.]L1.

Finally, assume we are in case (b.2.2). The# ag, hence it follows from hypotheses (a)
and (b) of the proposition that conditions (a) and (b) of LeaBul2 are fulfilled. Hence, iy,
is positive definite. O

Corollary 8.13. Let we Wk~H. Then the function£x as well as the signature and rank of its
Hessian are constant on the immersed submanifold (Md N H).

Proof. As the groupH is essentially connectetlix = ZxnH (aq)Hy. Letxy be a representative
of win NknH. SinceZknn (aq) is normal inNkH (aq), it follows that

WHx(Np N H) = XwZKNH (aq) H;(Npﬂ H) =ZKnH (aq)XWH)%(Np N H).

The functionFax : H — R is left Zxnn (ag)- and right(Np N H)-invariant. Hence, it suffices
to prove the assertions for the sgHy of critical points. This set is connected, so thak is
constant on it. From LemniaBit follows that rank and signature of its Hessian remainstant
along this set as well. O

As in (10) we define
Q := conMWknH -loga) + T (P).
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Lemma 8.14.Let ac Ag¥and X< aq. Assume that the function k has a local minimum at the
critical point he 63 x. Then for every U= Q

X,U) = (X, Hpg(ah)).
In particular, Q lies on one side of the hyperplasigq(ah) + Xt

Proof. The critical pointh belongs to a connected immersed submanifold of the s (H N
Np). All points of this submanifold are critical fdfa x, SO thatF, x is constant along it. We see
that

Fax(h) = Fax(xw) = (X, 9rq(%y'@%)) = (X,w *loga).

The Hessian of, x at the critical pointh must be positive semidefinite. It now follows from
Propositio 8.4 that

(@) Ya € Z(P), : a(X)a(w (loga)) <O0;
(b) Va € 2(P)_: a(X)>0.
By (@) and Lemm&8.17 below (appliedt), it follows that
(X,U) > (X,w tloga) = Fax(h),

for all U; € conMWi~H -wtloga). From (b) it follows that(X,Hg) = (Hg, Hg)a (X)/2 > O for
all o € Z(P)_, so that

(X,Uz) >0 (YU2€T(P)).
Since every elemed € Q may be decomposed &s= U; + U, with U; andU, as above, the
assertion follows. O

Remark8.15 It can be readily shown that the converse implication alsildsolndeed if for
everyU € Q
(X,U) > (X,w*(loga))),

then the two conditions of Propositibn B.4 hold.

Lemma 8.16. The se€ (P); consists of all rootsr € 2(P) with a € aj, or d|o, € Z(g,0q)+-

Proof. In view of Definition[8.3 it suffices to show that far € 2(g,a) \ (af U ag) we have
alq, € 2(g,0q)+- Assumea ¢ afUag. Thena andg6a are distinct roots that restrict to the
same rootr of X(g,aq). Thus, the sunyy + 00y, is direct and contained igg and we see that

ga+ 7 0. O

Lemma 8.17.Let Pe Z(A). Let XY € aq and assume that (X)a(Y) > Oforall a € 3(P).
Then
(X,U) <(X,Y), forall U e conuWknn -Y).
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Proof. In view of Lemmd 8.1B, the hypothesis is equivalent to
a(X)a(Y)>0

for all rootsa € (g, aq)+. We may now fix a Weyl chambe:a“ for the root systenx(g, aq)+
such thaiX andY belong to the closure af{. Then it is well known thatX,wY) < (X,Y) for
all win the reflection groupV(Z(g, aq)+) generated b¥ (g, aq)+. Since this reflection group is
equal towkH, by Proposition 2.2 in [4], the result follows. O

9 Reduction by a limit argument

Before turning to the proof of our main theorem, Theofem J1@& will first prove a lemma
that reduces the validity of the theorem to its validity unttee additional assumption that the
elementa be regular inAy. We assume tha® € ?(A) and recall the definition of the closed
convex polyhedral cong(P) given in Definition 1.4.

Lemma 9.1. Assume that the assertion
pryoHp(aH) = conMWkr -loga) + T (P) (60)
is valid for all a€ Ay®. Then assertiori{60) holds for all@A,.

Proof. Assume the assertion is valid for alE Ay®, and leta € Aq be an arbitrary fixed element.
Fix a sequencéa;)j>1 in A > with limit a. We will establish the equality (60) fa

First we will show that the set on the left-hand side of theaditjiis contained in the set on
the right-hand side. For this, assume thatH. By the validity of [60) fora; in place ofa, there
exist, for eachj > 1, elements\j € [0, 1] with 3w, Awj = 1 and elementg; € I'(P) such
that

Hpg(ajh) = % Awjw(loga;j) + ;.
WeVWKNH

By passing to a subsequence of indices we may arrange thegdioenceAy, j); converges with
limit Ay € [0,1] for eachw € Wiy . It follows that the sequencg;) must have a limity € aq
such that

Hpg(@ah) = lim Hpq4(ajh) = %K Aww(loga) +y.
I=e WellR

By taking the limit we see th&t,,Aw = 1 and sincd (P) is closedy € I' (P). Hence $pq(ah) €
conWkH -loga) + I (P), and we obtain the desired first inclusion.

For the converse inclusion, assume tifat conMWk~n - loga) + I (P). Then there exist
y € ['(P) andAy € [0, 1] with ¥ cw ., Aw = 1 such that

Y = % Aww(loga) +y.
WeWKNH

Put
Yj = %K Aww(logaj) + .
WeEVWKNH
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Then for everyj there existd; € H such thathpq(ajh;) = Y;. The sequencgy;)) is convergent,
hence contained in a compact setngf Likewise, the sequend@, ) is contained in a compact
subsets C Aq. By Corollary[4.12 (b) there exists a compact subgétof H/H NP such that
hj(HNP) € ¢ for all j. By passing to a subsequence we may arrangehilibitn P) converges
in H/H NP. By continuity of the induced mappq: H/H NP — aq, see(21), it now follows
that

Y = limY; = lim $ra(ajhj) = Hpq(ah) € Hrg(aH).

joroo

10 Proof of the main theorem

In this section we will prove our main result. FBr= &7(A) we recall the definition of the closed
convex polyhedral cong(P) given in Definition 1.4.

Theorem 10.1.Let P be a minimal parabolic subgroup of G containing A andaletAy. Then
pryo Hp(aH) = Hipg(aH) = conWknp -loga) + T (P). (61)

The proof of our main theorem proceeds by induction, for véinduction step the following
lemma is a key ingredient.

If X € aq, we denote byGx the centralizer oX in G. This group belongs to the Harish-
Chandra class and @-stable. Moreover, by [4, Prop. 2.3], the centraliklr:= H NGy is an
essentially connected open subgroup®@s)°. From

PN Gx = (Z«(a)ANe) N (KxANex) = Zk (a)ANpx,

see((3D) for notation, we see that:= PN Gy is a minimal parabolic subgroup & .
We agree to writé (Px) for the cone imq spanned by pHq, for a € Z(P)_ with a(X) = 0.
Furthermore, for a givea € Aq, we defineQa x = Qx by

Qx:= |J Qxw where (62)
weWknH
Qx w := CONWk y - W loga) + I (Px). (63)

We writeQ := Qg and note that this set equals cOWk -loga) + I (P) hence containQx
for everyX € aj.

Remarkl10.2 Itis clear from the definition that the s@ \, for w € Wkn, is a closed convex
polyhedral set, contained in the affine subsetloga+span{Hy : o € Z(gx,aq)} of ag. In
particular,

Qxw C W tloga+X=.
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Lemma 10.3.Let X S ac Aaeg and let%a x C H be the set of critical points of the function
Fax : H = R; cf. Lemma5l)5 an@@8). If the analogue of the assertion of Theorlem 110.1 holds
for the data G, Hx, Kx and B in place of GH,K and P then

ﬁRq(a%@x) = Qx. (64)

Proof. Using the characterization @f, x given in Lemma5J5, we obtain

Srq@tax) = |J Hrgl@awhx(NeNH))

WeWK H

= U 9rq(@"Hx), (65)

weWK AH

wherea" = wlawis regular INAg, for eachw € Wk .

By the compatibility of the Iwasawa decompositions for the igroupsG and Gx we see
that the restriction ofjpq : G — aq to Gx equals the similar projectioBx — aq associated with
Px; we denote the latter bgjp, 4. Hence,

Hpq(@"Hx) = Hp q(@"Hx).
In view of the hypothesis that the convexity theorem holdgtie dataGy, Hx, Px, we infer that
Hpg(a¥Hx) = conu Wk iy - loga™) + T (Px) = Qx w.
In view of (63) and[(6R) we now obtaif (64). O

Proof of Theorerh 1011 The proof relies on an inductive procedure, with inductigardhe rank
of the root systen (g, aq). The legitimacy of this procedure has been discussed athiemdd,
Sect. 2].

We start the induction with rk(g, aq) = 0. In this case,

Va €2(g,a): afq,=0. (66)

This implies thatag is central ing. As G is of the Harish-Chandra class, &8) C Int(gc) so
that G centralizesng. HenceAq is central inG. Furthermore,[(66) also implies that every root
a € 3(g,a) is fixed byo, so thatg, is o-invariant. This implies that the lwasawa decomposition
G = KANp is o-stable, so thatl = (HNK)(HNA)(HNNp). We conclude that

Hpg(aH) = Hrq(Ha) = Hpq(HNA) +loga = loga. (67)

On the other hand, it follows fronl (66) thatP)_ = 0, so thatl (P) = {0}. Furthermore, since
G centralizesiy, we see thatk 1 = {e}, so that

conMWkn -loga) + T (P) = loga. (68)
From (67) and[(68) we see that the equalityl (61) holds in daEégt aq) = 0.
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Now assume tham is a positive integer, that &g, aq) = m and that the assertion of the
theorem has already been established for the case the,dg) < m.

By Lemmal9.1 it suffices to prove the validity 6f{61) under #ssumption thaa € Ag™.
We will first do so under the additional assumption theg, aq) spanssg. In the end, the general
case will be reduced to this.

Our assumption thai(g,aq) is spanning guarantees that for each non-2€r aq not all
roots of Z(g,aq) vanish onX. Therefore, the rank oE(gx,aq) is strictly smaller tharm =
rkX(g, aq). By the induction hypothesis, the convexity theorem hold$®, Hx,Kx, Px). Hence,
by Lemmd_10.B we have that

ﬁRq(a%@x) = Qx. (69)
By Remark 10.P the complememy \ Qx is open and dense in,.

Let S C Shbe afinite subset as in Lemiinal6.6. Then it follows by applicatif Lemma 103
that

Hpg(@ba) = UxegQx- (70)
In particular, the complement of this setdg is dense. Moreover, it follows frond_(¥0) and the
text below [63) that
Hpg(ata) € Q =conWknH -loga) +T(P). (71)
From Lemma6.8 we see th@hq(aH) and$pq(asa) are closed subsets af and thatipq(aH) \
$Hrq(a%a) is an open and closed subset of the (open and dense) sighs®bq(aca), hence a
union of connected components of the latter set. Leinna &8res that at least one connected

component ofig \ Hpg(aéa) must belong tdpg(aH) \ Hpg(ata).
From (71) it follows that

ag\ Q C aq\ Hrg(ata).

Now aq\ Q is connected hence must be contained in a connected contpboéng \ Hpq(ata).
There are two possibilities:

(@) A\ C Hpg(@H) \ Hpg(ata);
(b) AN (Hpg(aH)\ Hrpq(ata)) = 0.

From its definition, one sees th@tis strictly contained in a half-space, which implies thgt Q,
and thereforé\, must contain a line afq. From Corollary 4.16 we know thaipq(aH) does not
contain such a line, so that we may exclude case (a) aboven (ot follows that

(ag\ Q) NHrg(aH) \ Hrg(aéa) =0,
which implies thatipg(aH) \ Hrq(a%a) C Q. Combining this with[(711) we conclude that

We now turn to the proof of the converse inclusion.
In the above we concluded that the $efy(aH) \ Hpq(a%a) is open and closed as a subset of
aq\ Hpq(a%a). Inview of (72) the set is also open and closed as a subst 8fpq(a%a). Thus,
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Hpg(aH) \ Hpq(ada) is a union of connected components®f, Hpq(aca). We will establish
the converse of (72) by showing that all connected compenefi® \ $Hpq(a¢s) are contained
in Hpg(aH).

Again by the use of Lemma 6.9 we infer that at least one cordexdtmponent\; of Q \
$Hpq(a®a) is contained inHpq(a%a). Arguing by contradiction, assume this were not the case
for all components. Then there exists a second connectegament/\, of Q\ Hpq(ada) =
Q\ Uxeg,Qx such that

N2 ﬁﬁgq(aH) =0. (73)

In view of RemarK 102, we may apply Lemina 10.4 below to th&X»sehd the finite collection
of subsetLyx v, whereX € § andw € Wk~H, and obtain a line segment with the properties
of Lemmal10.4, connectind; andA,. By following intersections along this line segment, we
see that we may assume that the connected componeraad /A, exist with the additional
property that they are adjacent, i.e., there exists a catiiog 1 subse®y v C Q together with

a pointY € Qx w and a positive number> 0 such thaB(Y; €) \ Qx w consists of two connected
components\; and/A\; such that\| C Aj for j = 1,2. In particular, this implies that} and

N, are on different sides of the hyperplane(&fk w) = Y + X1, We may replace& by —X if
necessary, to arrange théat-tX € Aq fort | 0. Then

X,y > (X,Y) on cl(A}). (74)

By (69) there exists a poiitc €5 x such that)pq(ah) =Y. For a sufficiently small neighborhood
U of hin H we havefpq(aU) C B(Y; ). Combined with[(7B) this implieg§pq(al) C cl(A}). In
view of (74) we now infer thaFa x > (X,Y) = Fax(h) onU. Hence,F, x has a local minimum
at h. By what we established in Lemna 8114 this implies thashould be on one side of the
hyperplaner + X, contradicting the observation tha} and/A,, are non-empty open subsets on
different sides of this hyperplane, but both containe@in

In view of this contradiction we conclude that all comporsesitQ \ $Hpq(a%,) are contained
in Hpq(aH).

This finishes the proof in casé{g, aq) has ranknand spans;. We finally consider the case
with rk>(g, ag) = min general.

Let ¢ be the intersection of the root hyperplanes&et aq for a € Z(g,aq). Thenc is con-
tained inag and central ing. SinceG is of the Harish-Chandra class, &G8l) is contained in
Int(gc), hence centralizes Therefore, the subgroup:= exp(c) is central inG.

Let ‘p be the orthocomplement efin p. Then'g = £®'p is an ideal ofg which is comple-
mentary toc.

By the Cartan decomposition and the fact thiatcentral, it follows that the malg x 'p x ¢ —

G, (k,X,Z) — kexpXexpZ is a diffeomorphism onto. It readily follows th&B = Kexp'p is

a group of the Harish-Chandra class, with the indicatedd@atecomposition for the Cartan
involution ‘6 = 6|.g. The restricted mapo := g is an involution of'G which commutes
with ‘6. The group'H := H is an open subgroup c(fG)\U, which is essentially connected.
Furthermore)aq :=‘p Naq is maximal abelian inp N g and‘a = ‘p Na is maximal abelian ifp.
The root systenx (g, ‘aq) consists of the restrictions of the roots fraity, aq), hence spans the
dual of‘aq.
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The groupP = ‘GNP is a minimal parabolic subgroup & containing’A. We note that
‘P =MAN-.

We note thatg® ~ Ag? x C. Leta € Ag®. Then we may writea = ‘a- ¢, with ‘a € 'Ag % and
c € C. By the convexity theorem foG and sincet is central inG, it now follows that

Hpg(@H) = Hirq(‘aHe)
= $Hpq(‘aH)+logc
= conUWknn -log'a) + T (‘P) +logc
= conWknH -loga) + T (P).

O
We recall that the relative interior of a convex subSedf a finite dimensional real linear
space is defined to be the interior®in its affine span affS).

Lemma 10.4.LetV be a finite dimensional real linear space and® a closed convex polyhe-
dral subset with non-empty interior. Let € € {1,...,n}) be closed convex polyhedral subsets
of C, of positive codimension. Then the following statemard true.

(@) The complement'C=C\ U;_,C; is dense in C.

(b) Let A and B be open subsets of V contained'inT@en for each & A there exists & B
such that for each i with & [a, b] # 0 the following assertions are valid,

(1) codimG) =1,
(2) [a,b]NC; consists of a single point p which belongs to the relativeriot of G.
Furthermore, if pc C; for somel < j < n, thenaff(C;) = aff(G;).

Proof. Standard, and left to the reader. O

A Proof of Lemmal(2.11

Finally, we prove Lemma2.11.

We begin by showing that the result holds e complex semi-simple Lie group, connected
with trivial center. That proof will be based on the followigeneral lemma, inspired by [23,
Prop. 1].

Let h be a complex abelian Lie algebra and lét be the class of complex finite dimen-
sional nilpotent Lie algebras, equipped with a representationtpby derivations, such that the
following conditions are fulfilled

(a) the representation gfin n is semi-simple;
(b) all weight spaces df in n have complex dimension one.

If n belongs to the class/’, we write A(n) for the set ofy-weights inn. If A € A(n), then the
associated weight space is denotedfy
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Lemma A.l. Letn € .4 and let N be the connected, simply-connected Lie group weh L
algebran. LetAq,...,Ap be the distinct weights df in n. Then the map

W (Xe,..., Xm) > €XPXq -+ €XPXim

defines a diffeomorphism

Il)\lX...th)\m i> N.

Proof. We will use induction on dim(n). If dimcn = 1 thenn is abelian and the result holds
trivially.

Next, assume thah > 1 and assume that the result has been establishadifth dimen <
m. Assume thah € .4#" has dimensiom.

Denote byn; the center oh, which is non-trivial. Ifn; = n thenn is abelian and the result is
trivially true. Thus, we may as well assume that @; C n. In particular, this implies that both
ny andn/n; have dimensions at most— 1. Putl := dimn;.

The idealn; is stable under the action ofand it is readily verified that; andn/n, with the
naturalh-representations belong td¢”. Furthermore, since all weight spaces are 1-dimensional,
we see that

A(n) =A(ng) UA(n/ng).
We will first prove thaty is a diffeomorphism under the assumption thathgeights inn are
numbered in such a way that

/\(tll) = {A]_, . ,A|} and /\(n/nl) = {A|+1, . ,Am}.

SinceN is simply-connected, the map exp = N is a diffeomorphism; hencéy; := exp(nj)

is the connected subgroup Nfwith Lie algebrani. In particular,N; is simply connected as
well. Sincen; is an idealN/N; has a unique structure of Lie group for which the natural map
N — N/N;j is a Lie group homomorphism. We now observe that> N/N;j is a principal fiber
bundle with fibeN;. By standard homotopy theory we have a natural exact sequenc

7T1(N) — 7T1(N/N1) — TIO(N1>.
SinceN is simply-connected, ang; connected, we conclude thidfN; is the simply connected
group with Lie algebra /n;.
By the induction hypothesis, the maps
L.Unl :n,\lx...xn,\l—>N1
Wamy T (/n1)p, X x (n/na)y, — N/Ng

are diffeomorphisms. For eveijye {l +1,...,m} the canonical projectiom — n/n; induces the
isomorphisms of weight spaceg, — (n/n1),,. Let Wiy, x...xny — N/Np be defined by

YK, Xm) = €XpXii1- ... -eXpXm- N1. Then the following diagram commutes:

v
Mpp g X eee X T — T N/N

*| H

wn/n
(n/ma)p,, X x (n/ng)y, ~— N/Np
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From this we infer thaty is a diffeomorphism. We now obtain that the mgp My, X oo X
), X Nl — N,

(Xit1ye s Xy N1) = (€XPXi 11+ .. - €XPXm)Ny,
is a diffeomorphism ontdl. Since

WX, X X1, Xm) = PR, Xy Yy (X, -0, X))

it follows that is a diffeomorphism as well. Clearly, the above proof worksdvery enumer-
ation of the weights im\(n/n1). Since the weight spacés;), for A € A(nq) are all central in
n, we conclude that the result holds for any enumeration of thights inA(n). OJ

Corollary A.2. Let G be a connected complex semi-simple Lie groupgribde nilpotent radical
of a Borel subalgebra of g. Leth be a Cartan subalgebra contained bn Letny,...,ng be
linearly independent subalgebras of, each of which is a direct sum @froot spaces, and
assume that their direct sum:=n; @ ... @ ng is again a subalgebra. Put N= expn and
Nj :=exp(n;j),for1 < j <k
Then the multiplication map
HiNgx...xNg—N

is a diffeomorphism.

Proof. This is an immediate consequence of Lenimd A.1. O

Proof of Lemma 2.11We assume thds is a real reductive Lie group of the Harish-Chandra

class. Define

g1:=[g,4,
the semi-simple part of the Lie algebra Gf Let G; be the analytic subgroup @ with Lie
algebragi. Since the nilpotent radicdlp of P is completely contained i1, we may assume
from the start thaG = G4, i.e. G is connected semi-simple with finite center.

Since Ad is a finite covering homomorphism fragnonto Aut(g)°, mappingN diffeomor-
phically onto AdN), whereas Autg)® is a connected real form of Ifgc), we may assume that
G is a connected real form of a connected complex semi-simplgioupGc with trivial center.
Let T be the conjugation 06, such that

G=(GL)°.

Let gc denote the Lie algebra @¢, thenge = g @ ig. Note that the complexificatiompc of np
equalsip @ inp and that
Np = (Npc)©.

Take a Cartan subalgebragf, containingac = a®ia. Itis of the form

bc =tc Dac,
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wheret is a maximal abelian subspacemf= Z;(a). Sincet centralizes:, all a-root spaces are
invariant under a@). This implies that the subalgebrag: :=nj @ in; (j € {1,...,k}) of npc
are direct sums djc-root spaces. Furthermore, their direct sum equals- n®in, hence is a
subalgebra. Finally, there exists a Borel subalgebra atntahc + nc. By Corollary[A.2, the
multiplication map

I«l(C:Nl(CX---XNk(C_)N(C

is a diffeomorphism. It readily follows thaic restricts to a bijection froniN;¢)? x - -+ X (Nkc)?
onto(N¢)®. Since

(Nc)'=N and (Njo)'=N; forall1<j <k,

it follows that u is a bijective embedding from; x --- x N, ontoN, hence a diffeomorphism.

B The case of the group

Every semisimple Lie grouf® can be viewed as a semi-simple symmetric space for the group
G x G. In this section we investigate what our convexity theorenamsdor this particular exam-
ple. An independent proof for this case is presented!in [8ti&®3.2.2].

More generally, leGG be real reductive group of the Harish-Chandra cl@isa,Cartan invo-
lution, K := G? the associated maximal compact subgroup g@rdt @ p the associated Cartan
decomposition as in Sectidh 1. Lebe a maximal abelian subspacepof = expa andZ(g, a)
the associated root system.

Let

G :=GxG.

Then®' := 6 x 6 is a Cartan decomposition & with associated maximal compact subgroup
K’ := K x K. The involution
0':G =G, (xy) = (V%)

commutes withf’. Its fixed point groupH’ equals the diagonal i6 x G and is essentially
connected irG’, seel[3, Example 2.3.7].
The associated spapenq’ equals{(X,—X) : X € p} and has

ag:={(X,=X): Xea}
as a maximal abelian subspace. Its root system is given by
2(¢',aq) = Z(g,a) x {0} U{0} x X(g,0).

Finally, ag is contained in the maximal abelian subspalce- a x a of p’. We putA’ := exp(a’) =
Ax A. Note that the projection mapra’ — ag is given by

prq(U7V) = (%(U _V)7%<V _U))' (75)
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Let P andQ be minimal parabolic subgroups &f containingA, i.e. PQ € #(A). Then
P x Q is a minimal parabolic subgroup @’ containingA’. Moreover, any minimal parabolic
subgroup ofG’ containingA’ is of this form. The positive system af-roots associated with
P x Qs given by
Z(Px Q) :=Z(P) x {0} U{0} x Z(Q),

whereZ(P) andZ(Q) are positive systems fd(g,a) corresponding to the minimal parabolic
subgroup$ andQ.
In the present setting, our main result, Theofeml10.1, tslihat fora € A{q we have

prg o HHpxq(aH’) = conWiinwr -loga) + (P x Q).

In order to determine the coméP x Q), we need to determine the 6P x Q, a’8’) of roots
y € Z(P x Q) for whicho’0'y € (P x Q). Lety= (a,0) be such a root. Thea € Z(P) and
0’0’y = (0, —a) must be an element gD} x Z(Q) so thata € Z(P) NZ(Q). Likewise, if (0, )
belongs to this set theh € 3(Q) N Z(P). We thus see that

(P xQ,08") = (£(P)NZ(Q)) x {0} U {0} x (Z(P) NZ(Q)).

Notice that there are no rootsc Z(P x Q) for which 0’6’y = y. Thus,Z(P x Q)_ = Z(P x
Q, 0’6’) and we conclude that

FPxQ)= ra{](z(P xQ,0'8')) = Z RzoprqH;,.
yes(PX0,00")

If yis of the form(a,0) thenH|, = (Hq,0) and ify = (0, a), thenH|, = (0,Hg). In view of (75)
we now obtain

rPxQ) =

= Z RZ()(%HG,—%HQ)—F Z RZO(_%H(M%HU)
acz(P)NZ(Q) aez(P)NZ(Q)

= Z R>0(Ha, —Ha) + Z R>o(H-q,—H-q)
acz(P)NZ(Q) aex(P)Nz(Q)

= Z R>o(Ha, —Ha) + Z R>0(Ha, —Ha)
acz(PNz(Q) aez(P)NZ(Q)

= Z RZO(HCH_HC{)
acz(P)NZ(Q)

We will identify ag with a via the map(X, —X) — X. Thus,

Mo (Z(Px Q) = Tu(E(P)NEZ(Q)).

For Q = P, the resulting cone is the zero one, and we retrieve the ineasl convexity the-
orem of Kostant[[22] for the grouf. At the other extreme, fo@ = P, the resulting cone is
maximal, and we retrieve the convexity theorem(of [4] for plaér (G',H’).
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Takinga = e we obtain, with the same identificatiag ~q,

Pry OE)PXQ(H/) =T.(Z(P)NZ(Q)) (76)
On the other hand,
prgoHpxq(H’) = pryoHpxq(diagG x G))

= prg({(%pr(9),90(9)) : 9€G})

= pq({(Hr(kan), Ho(kanp)) : ke K,ae Anpe Np})
= prq({(loga, Hig(anpa ') +loga) : a€AnpeNp})
= pry({(loga,Ho(np) +loga) : a€ A,np € Np})

= {(=29a(np), 390(Np)) : Np € Np}.

Using the same identificatiolﬁ1 ~ a as above, we conclude that

p 1
pryoHexq(H) = —éﬁQ(NP)

= —160((N O_N_Q)(NPm No))
= —39(NpNNg).

Thus, by equatiori(76), we obtain that

_%ngpm No) = Mo(2(P)NZ(Q)),

which is equivalent to _ _
Ha(NpMNg) = Ta(2(P)NZ(Q))-

Thus we retrieve the identity of Lemrha 4.9, which, of coursas used in the proof of our main
theorem.
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