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Abstract

We prove a convexity theorem for semisimple symmetric spaces G/H which generalizes
an earlier theorem of the second named author to a setting without restrictions on the minimal
parabolic subgroup involved. The new more general result specializes to Kostant’s non-
linear convexity theorem for a real semisimple Lie groupG in two ways, firstly by takingH
maximal compact and secondly by viewingG as a symmetric space forG×G.

1 Introduction

In this paper we prove a generalization of the convexity theorem in [4] for a symmetric space
G/H. HereG is a connected semisimple Lie group with finite center,σ an involution ofG and
H an open subgroup of the groupGσ of fixed points forσ . The generalization involves Iwasawa
decompositions related to minimal parabolic subgroups ofG of arbitrary type instead of the
particular type of parabolic subgroup considered in [4].

From now on we assume more generally thatG is a real reductive group of the Harish-
Chandra class; this will allow an inductive argument relative to the real rank ofG. Let θ : G→
G be a Cartan involution ofG that commutes withσ ; for its existence, see [21, Thm. 6.16].
The associated groupK := Gθ of fixed points is a maximal compact subgroup ofG. For the
infinitesimal involutions determined byσ andθ we use the same symbols:θ ,σ : g→ g; hereg
denotes the Lie algebra ofG. With respect to the infinitesimal involutions,g decomposes as

g= k⊕p= h⊕q,

wherek and p are the +1 and -1 eigenspaces forθ and likewise,h and q are the +1 and -1
eigenspaces forσ . Note thatk is the Lie algebra ofK andh is the Lie algebra ofH.

Sinceσ andθ commute, their compositionσθ is again an involution ofg. With respect to
the latter involution,g decomposes into eigenspaces

g= g+⊕g−.

Observe that the +1 eigenspaceg+ equalsk∩h⊕p∩q, while the -1 eigenspaceg− equalsk∩q⊕
p∩h.
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We fix a maximal abelian subspaceaq of p∩q, and a a maximal abelian subspacea of p that
containsaq. Thena is σ -stable and decomposes as:

a= ah⊕aq, (1)

whereah := a∩h. The associated projection ontoaq will be denoted by prq : a→ aq.
Let Σ(g,a) be the set of roots ofa in g andΣ(g,aq) the set of roots ofaq in g. Both of these

sets form root systems, possibly non-reduced, see e.g. [26]or [21]. The associated Weyl groups
are given by

W(a) = NK(a)/ZK(a) and W(aq) = NK(aq)/ZK(aq). (2)

Let A= expa and letP(A) be the set of minimal parabolic subgroups ofG containingA. If
P∈ P(A), thenP has a unique Langlands decomposition given by

P= MANP, (3)

whereM := ZK(a), NP = expnP andnP is the sum of the root spaces corresponding to a uniquely
determined positive system ofΣ(g,a). We denote this positive system byΣ(P). The map given
by

P 7→ Σ(P), P∈ P(A),

defines a bijection betweenP(A) and the set of positive systems ofΣ(g,a).
Let

Σ(P,σθ) := {α ∈ Σ(P) : σθα ∈ Σ(P)}

and
Σ(P)− := {α ∈ Σ(P,σθ) : σθα = α =⇒ σθ |gα 6= idgα}. (4)

Any parabolic subgroupP∈ P(A) induces an Iwasawa decomposition

G≃ K ×A×NP

and the associated infinitesimal decompositiong = k⊕ a⊕ nP. The Iwasawa projectioncorre-
sponding toP is defined as the real analytic map

HP : G−→ a, determined by g∈ K expHP(g)NP, (g∈ G). (5)

The main result of [22], known as ‘Kostant’s (nonlinear) convexity theorem’ characterizes
the image underHP of the setaK, for a∈ A, as follows:

HP(aK) = conv(W(a) · loga).

Here ’conv’ indicates that the convex hull ina is taken.
In our setting, it is natural to study the more general question of convexity of the setHP(aH),

for a∈ A. The first answer to this question was provided in [4, Thm. 1.1]under the assumption
thatP ∈ P(A) satisfiesΣ(P,σθ) = Σ(P) \ a∗h; herea∗h anda∗q are viewed as subspaces ofa∗ in
accordance with the decomposition (1).

In the present paper we generalize [4, Thm 1.1] to any parabolic subgroupP ∈ P(A). To
prepare for our main result, we need a few remarks and definitions as well as new notation.
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Remark1.1. Since exp :a → A is a diffeomorphism, it follows thatA ≃ Aq×Ah whereAq :=
exp(aq) andAh := exp(ah) = A∩H. Thus, we just need to considera∈ Aq.

Remark1.2. SinceHP(aH) = HP(aHAh) = HP(aH)+ ah, it suffices to consider the image of
aH, for a∈ Aq, under the map

HP,q := prq◦HP : G→ aq.

We recall from [4, Eqn. (1.2)] that the subgroupH is said to beessentially connectedif

H = ZK∩H(aq)H
◦, (6)

whereH◦ denotes the identity component ofH.
Let B be an extension of the Killing form from[g,g] to a bilinear form on the entire algebrag,

such thatB is Ad(G)-invariant, invariant under bothθ andσ , negative definite onk and positive
definite onp. ThenB is non-degenerate.

We define a positive definite inner product ong by

〈U,V〉 :=−B(U,θV), (U,V ∈ g). (7)

Note that the root space decomposition and the eigenspace decompositions (with respect toθ
andσ ) are orthogonal with respect to this inner product. Moreover, the extended Killing form
and the inner product coincide if eitherU or V belongs top.

Definition 1.3. The Weyl group WK∩H is defined as

WK∩H := NK∩H(aq)/ZK∩H(aq).

Note thatWK∩H may be viewed as a subgroup ofW(aq). If α is a root inΣ(g,a) we denote by
Hα the element ofa perpendicular to kerα with respect to〈·, ·〉, and normalized byα(Hα) = 2.

Definition 1.4. Let P be a minimal parabolic subgroup of G containing A. Then we define the
finitely generated polyhedral coneΓ(P) in aq by

Γ(P) := ∑
α∈Σ(P)−

R≥0 prq(Hα). (8)

Main Theorem (Theorem 10.1)Let H be an essentially connected open subgroup of Gσ , see
(6). Let P be any minimal parabolic subgroup of G containing Aand let a∈ Aq. Then

HP,q(aH) = conv(WK∩H · loga)+Γ(P).

If the two involutionsσ andθ are equal, thenK = H andΣ(P,σθ) = Σ(P). This implies that
W(a) = WK∩H and thatΣ(P)− = /0. Thus, we obtain thatΓ(P) = 0 and hence, in this case our
main theorem coincides with the original non-linear convexity theorem of Kostant [22].

ForP satisfyingΣ(P,σθ) = Σ(P)\a∗h the above result coincides with [4, Thm 1.1]. This will
be explained in detail in Section 2.2.
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The proof of the main theorem follows the line of argument described below, which is a
considerable extension of the argumentation of [4], which in turn was inspired by [16].

We first prove the theorem for a regular elementa∈ Aq. Since the mapHP : G→ a is right
H ∩P-invariant, see Lemma 4.1, the map

Fa : H → aq, h 7→ HP,q(ah)

factors through a map̄Fa : H/H ∩P → aq. In order for the idea of the proof in [4] to work in
the present situation, one needs to establish properness ofthe mapF̄a. This is done in Section 4
by reducing the problem to the case of a suitableσ -stable parabolic subgroupR combined with
application of results of [4]. The established properness implies that the imageFa(H) is closed
in aq.

The considerations of Section 4 also lead to the constraint on the imageFa(H) that it does
not contain any line ofaq, see Corollary 4.15.

In Section 5 we introduce the functionsFa,X : H → R, for X ∈ aq, defined by

Fa,X(h) = 〈X,Fa(h)〉= B(X,Fa(h)).

Geometrically, these functions test the Iwasawa projection by linear forms onaq, and give us
constraints on the image ofH underFa. For a more detailed exposition onFa,X we refer the
reader to [9]. Our own study of this function follows ideas in[4] and [9].

In Section 6 we calculate the critical setCa,X of the functionFa,X explicitly, for a∈ Areg
q and

X ∈ aq. In particular, we show that this set is the union of a finite collectionMa,X of injectively
immersed connected submanifolds ofH. If Ca,X ( H, then all submanifolds inMa,X are lower
dimensional, so thatCa,X is thin in the sense of the Baire theorem, i.e. its closure hasempty
interior. These considerations allow us to show that in caseΣ(g,aq) spansa∗q, the setCa of points
in H whereFa is not submersive, is closed and thin, see Proposition 6.7. In particular, we then
have that

Fa(Ca)( Fa(H). (9)

In Sections 7 and 8 we calculate the Hessians ofFa,X and their transversal signatures along
all manifolds fromMa,X. These calculations, which are extensive, in particular allow us to de-
termine all points where the transversal signatures are definite. This in turn gives us all points
whereFa,X attains local maxima and minima. A main result of Section 8 isLemma 8.14 which
asserts that for every local minimumm of the functionFa,X we have that〈X, · 〉 ≥ m on the set

Ω := conv(WK∩H · loga)+Γ(P). (10)

In Section 9 we prepare for the proof of the main theorem by using a limit argument to reduce
to the case of a regular elementa∈ Aq.

The proof of the main theorem is finally given in Section 10. Itproceeds by induction over
the rank of the root systemΣ(g,aq). More precisely, fora ∈ Areg

q the setCa,X depends onX ∈
aq through the centralizergX of X in g. It is shown thatCa,X ( H implies that rkΣ(gX,aq) <
rkΣ(g,aq) so that the induction hypothesis holds for the centralizerGX of X in G. This allows us
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to determine the imageFa(Ca,X) for suchX. In particular, this leads to a precise description of
the imageFa(Ca) from which it is seen that the latter image contains the boundary of the setΩ.

In the proof we use this observation, together with the earlier obtained constraint that the
imageFa(H) does not contain a line, to conclude thatFa(H) is contained inΩ. In particular, this
implies that, for eachX ∈ aq, every local minimum ofFa,X is global.

For the converse inclusion, we first show that the image ofH \Ca under the mapFa is a
union of connected components ofΩ\Fa(Ca). The established fact that every local minimum of
Fa,X is global then allows us to show that all connected components appear in the image, thereby
completing the proof.

We conclude the paper with two appendices, A and B. In Appendix A we give the proof of
Lemma 2.11 concerning the decomposition of nilpotent groups in terms of subgroups generated
by roots, and in B we discuss the convexity theorem for the case of the group viewed as a
symmetric space.

Both the linear and the nonlinear convexity theorems of Kostant, see [22], have been exten-
sively studied. Heckman proved the linear theorem in [16] bymeans of techniques as above and
obtained the non-linear theorem from the linear one by a homotopy argument. Inspired by this,
Duistermaat [8] obtained a remarkable universal homotopy containing Heckman’s homotopy for
all a∈ A at once.

Both convexity theorems of Kostant have been explained in the framework of symplectic
geometry: see [2], [13], [7], [14], [20] for the linear convexity theorem and [24], [19] for the
nonlinear one.

The convexity theorem of [4], which generalizes Kostant’s nonlinear convexity theorem, has
been given a symplectic interpretation in [11]. This leads us to suspect that such an interpretation
should be possible in the present case as well; we intend to investigate this in the future.

Finally, we wish to mention that many of our calculations have been inspired by [16] and [9].

Acknowledgements.The authors would like to thank Job Kuit for the proof of Proposition
2.14 and his useful comments. One of the authors, D.B., thanks Ioan M̌arcuţ for his interest in
this work and all his good suggestions on how to improve it.

2 Some structure theory for parabolic subgroups

In this section we will construct a (minimal) parabolic subgroup inP(A), see the text preceding
(3), which has a special position relative to the involutionσ ; it will play an important role in
Section 4. We will also discuss some structure theory of parabolic subgroups fromP(A) and
derive a useful decomposition for their unipotent radicals.

We recall that every parabolic subgroupP from P(A) has a Langlands decomposition of the
form (3). Thus, its (θ -stable) Levi componentLP is given by

LP = L = MA

and the multiplication mapL×NP → P is a diffeomorphism. The opposite parabolic subgroupP̄
is defined to be the unique parabolic subgroup fromP(A) with Σ(P̄) =−Σ(P). It equalsθ(P).
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2.1 Extremal minimal parabolic subgroups

If τ is any involution ofG which leavesA invariant, then its infinitesimal versionτ : g→ g leaves
a invariant, and we put

Σ(P,τ) := {α ∈ Σ(P) : τα ∈ Σ(P)}. (11)

Observe thatΣ(P,τ) = Σ(P)∩ τΣ(P).

Definition 2.1. A minimal parabolic subgroupQ∈ P(A) is said to beh-extreme if

Σ(Q,σ) = Σ(Q)\a∗q. (12)

Starting with any minimal parabolic subgroupP∈ P(A), we can obtain anh-extreme min-
imal parabolic subgroup by changing one simple root at a time. This process is described in
Lemma 2.6 below.

Lemma 2.2. Let P∈ P(A). Then

Σ(P) = Σ(P,σ)⊔Σ(P,σθ) (disjoint union).

Proof. Let α ∈ Σ(P). From the fact thatσθα =−σα, the result follows easily.

Lemma 2.3. Let P∈ P(A) and assume that

Σ(P,σ) Σ(P)\a∗q. (13)

Then there exists a P-simple rootα ∈ Σ(P,σθ) with α /∈ a∗q.

Remark2.4. A root α ∈ Σ(g,a) is said to beP-simple if it is simple in the positive systemΣ(P).

Proof. Assume the contrary. Then eachP-simple rootβ ∈ Σ(P,σθ) satisfiesσθβ = β . In view
of Lemma 2.2 it follows that for every simple rootβ ∈ Σ(P) we have eitherσβ ∈ Σ(P) or
σβ = θβ =−β .

The setΣ(P) is a positive system for the root systemΣ(g,a). Hence, there exists an element
X ∈ a such thatα(X)> 0 for all α ∈ Σ(P). PutXh := 1

2(X+σ(X)). Then for every simple root
β in Σ(P) we have eitherσβ = −β , in which caseβ (Xh) = 0, or σβ ∈ Σ(P), in which case
β (Xh)> 0. In any case, for each simpleβ ∈ Σ(P), the valueβ (Xh) is a nonnegative real number.
Moreover, the number is zero if and only ifσβ =−β . It follows that for allα ∈ Σ(P) the number
α(Xh) is nonnegative and furthermore, that it is zero if and only ifα ∈ a∗q. Sinceσθ(Xh) =−Xh
we now infer thatΣ(P)\a∗q∩Σ(P,σθ) = /0, henceΣ(P)\a∗q ⊆ Σ(P,σ), contradicting (13).

For a rootα ∈ Σ(g,a), the associated reflection is denoted bysα : a→ a.

Corollary 2.5. If P andα are as in Lemma 2.3, then P′ := sα(P) has the following properties:

(a) Σ(P)∩a∗q = Σ(P′)∩a∗q ,

(b) Σ(P,σ)( Σ(P′,σ).
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In the proof of the above corollary, we will follow the convention to write

R◦ := {α ∈ R : 1
2 α /∈ R}

for any possibly non-reduced root systemR. The elements ofR◦ are called the indivisible roots
in R. Furthermore, ifS⊆ R is any subset, we will writeS◦ := S∩R◦. Finally, we agree to write
Σ◦(P) for Σ(P)◦.

Proof. It suffices to prove (a) and (b) with everywhereΣ replaced byΣ◦. SinceP′ := sα(P) with
α simple inΣ(P), we have

Σ◦(P
′) = (Σ◦(P)\{α})∪{−α},

which implies (a).
Let β ∈ Σ◦(P)∩σΣ◦(P). Thenβ 6= α andσβ 6= σα and we infer thatβ andσβ both belong

to Σ◦(P′). It follows thatβ ∈ Σ◦(P′)∩σΣ◦(P′). This proves the inclusion in (b). We still need to
show that equality cannot hold. This follows from the fact thatθα =−α ∈ Σ(P′,σ)\Σ(P).

Lemma 2.6. Let P∈ P(A). Then there exists a minimal parabolic subgroup Qh ∈ P(A) such
that the following conditions hold:

(a) Σ(Qh)∩a∗q = Σ(P)∩a∗q,

(b) Σ(Qh)∩a∗h = Σ(P)∩a∗h,

(c) Σ(P,σ)⊆ Σ(Qh,σ),

(d) Qh is h-extreme, see(12).

Proof. If α ∈ Σ(P)∩a∗q, thenσα =−α /∈ Σ(P). Hence

Σ(P,σ) = Σ(P)∩σΣ(P)⊆ Σ(P)\a∗q. (14)

If the above inclusion is an equality, the result holds withQh := P. If not, then the inclusion in
(14) is proper and Lemma 2.3 guarantees the existence of a simple rootα ∈ Σ(P) \ a∗q such that
σθα ∈ Σ(P). By applying Corollary 2.5 we see that the minimal parabolicsubgroupP′ := sα(P)
satisfies the above conditions (a) and (b), and

Σ(P,σ)( Σ(P′,σ). (15)

Put P0 = P and P1 = P′. By applying the above process repeatedly, we obtain a sequence of
parabolic subgroupsP= P0,P1, . . . ,Pk satisfying

(a) Σ(Pi)∩a∗q = Σ(Pi+1)∩a∗q,

(b) Σ(Pi)∩a∗h = Σ(Pi+1)∩a∗h,

(c) Σ(Pi,σ)( Σ(Pi+1,σ),
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for 0≤ i < k. The process ends when for somek> 0 the conditionΣ(Pk)∩σΣ(Pk) = Σ(Pk)\a
∗
q

is satisfied. The parabolic subgroupQh = Pk satisfies all assertions of the lemma.

Remark2.7. In analogy with Definition 2.1, a parabolic subgroupQ ∈ P(A) is said to beq-
extreme ifΣ(Q,σθ) = Σ(Q) \ a∗h. With obvious modifications in the proof, Lemma 2.6 is valid
with everywhereσθ in place ofσ and withq-extreme in place ofh-extreme. However, we will
not need this result in the present paper.

2.2 The convexity theorem for a q-extreme parabolic subgroup

We shall now explain why the result of [4] is a special case of the Main Theorem. We keep the
notation as above and impose thatP ∈ P(A) is q-extreme, see Remark 2.7. ThenΣ(P,σθ) =
Σ(P)\a∗h, so that

∆+ := Σ(P,σθ)|aq

is a positive system forΣ(g,aq). For α ∈ Σ(g,aq), the root spacegα is σθ -invariant; we write
gα,± for the±1 eigenspaces ofσθ |gα . Put

∆+
− = {α ∈ ∆+ : gα,− 6= 0}.

Then [4, Thm 1.1] asserts that

HP,q(aH) = conv(WK∩H · loga)+ϒ(P),

whereϒ(P) is the finitely generated polyhedral cone inaq defined by

ϒ(P) = ∑
α∈∆+

−

R≥0Hα ;

hereHα denotes the element ofaq with Hα ⊥ kerα andα(Hα) = 2.
Thus, our main theorem coincides with [4, Thm. 1.1] providedthatΓ(P) = ϒ(P). The latter

is asserted by the following lemma.

Lemma 2.8. Let P∈ P(A) beq-extreme. Thenϒ(P) = Γ(P).

Proof. For a rootα ∈ Σ(g,a) we denote byH∨
α ∈ a the element determined by

〈H∨
α ,X〉= α(X) (16)

for all X ∈ a. Then it is readily verified that

H∨
α = 2Hα/〈Hα ,Hα〉. (17)

Similarly, forα ∈Σ(g,aq)we defineH∨
α to be the element ofaq determined by (16) for allX ∈ aq.

For this element we also have (17), but now as an identity of elements ofaq. If α ∈ Σ(g,a) has
non-zero restriction toaq, thenα|aq ∈ Σ(g,aq) and for natural reasons we have

prq(H
∨
α ) = H∨

α|aq
.
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From this we conclude that
prq(Hα) = cαHα|aq

, (18)

with cα = ‖Hα‖
2‖Hα|aq

‖−2 > 0.
After these preliminary remarks we will now complete the proof. Let α ∈ Σ(P,σθ). Then

α|aq is non-zero, hence a root inΣ(g,aq), and (18) is valid. Asσθ restricts to the identity on
aq, the a-rootsα andσθα have the same restriction toaq giving the rootα|aq of ∆+. If the
givena-roots are different, then the sumgα +σθ(gα) is direct and contained ingα|aq

and we

see thatgα|aq,−
6= 0, so thatα ∈ Σ(P)− andα|aq ∈ ∆+

−. On the other hand, ifα = σθα, then

gα = gα|aq
and we see thatα ∈ Σ(P)− if and only if α|aq ∈ ∆+

−. It follows from this argument

thatΣ(P)−|aq = ∆+
−. Using (18) we now see that

Γ(P) = ∑
α∈Σ(P)−

R≥0Hα|aq
= ∑

α∈∆+
−

R≥0Hα = ϒ(P).

2.3 Decompositions of nilpotent Lie groups

In this section we give a brief survey of a number of useful results on decompositions of nilpotent
Lie groups that will be needed in this paper.

We start by recalling the following standard result.

Lemma 2.9. Let N be a connected and simply connected Lie group with nilpotent Lie algebra
n. If n0 is a subalgebra ofn, then the exponential map mapsn0 diffeomorphically onto a closed
subgroup of N.

Lemma 2.10([18, Lemma IV.6.8]). Let N be a connected, simply connected nilpotent Lie group
with Lie algebran. Let(ni)0≤i≤k be a strictly decreasing sequence of ideals ofn such thatn0 = n,
nk = 0 and

[n,ni ]⊆ ni+1 for all 0≤ i < k.

Letb1 andb2 be two mutually complementary subspaces ofn such thatni = b1∩ni +b2∩ni , for
all 0≤ i ≤ k. Then the mapping

ϕ : (X,Y)→ expX expY

is an analytic diffeomorphism fromb1×b2 onto N.

Lemma 2.11. Let NP be the nilpotent radical of a minimal parabolic subgroup P∈ P(A), let
nP be its Lie algebra and letn1, . . . ,nk ⊂ nP be linearly independent subalgebras ofnP that are
direct sums ofa-root spaces. Assume thatn = n1⊕ . . .⊕nk is a subalgebra ofnP. Denote by
N := expn and by Ni := expni , i ∈ {1, . . . ,k}, the corresponding closed subgroups of NP. Then
the multiplication map

µ : N1× . . .×Nk → N

is a diffeomorphism.
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This result is stated in [9, Lemma 2.3] forn= nP, with reference to [23]. We need the present
slightly more general version withn a subalgebra ofnP. A proof of this result can be found in
Appendix A.

2.4 Fixed points for the involution in minimal parabolic subgroups

Let P∈P(A). The decompositionP= LNP induces a similar decomposition for the intersection
P∩H. In the present subsection we present a proof for this fact, see the lemma below.

Lemma 2.12.P∩H ≃ (L∩H)× (NP∩H)

Proof. Let p be an element inP∩H. According to the decompositionP= LNP, we writep= ln.
Then, ln = σ(ln) = σ(l)σ(n) and we obtain thatσ(n)n−1 = σ(l)−1l ∈ L. Sinceσ(NP) is the
nilpotent radical of the parabolic subgroupσ(P) ∈ P(A), it follows from Lemma 2.11 with
k= 2 that the multiplication map

(σ(NP)∩ N̄P)× (σ(NP)∩NP)→ σ(NP)

induces a diffeomorphism. We thus see thatσ(n)n−1 ∈ N̄PNP. Now, by [21, Lemma 7.64] it
follows thatN̄PNP∩L = eand thusσ(n) = n andσ(l) = l .

2.5 Decomposition of nilpotent radicals induced by the involution

In this subsection, we assume thatP ∈ P(A). We will show that the unipotent radicalNP de-
composes as the product ofNP∩H and a suitable closed subgroupNP,+ of NP. To describe this
subgroup, we need the existence of suitable elements ofaq. As usual, an elementX ∈ aq is said
to be regular for the root systemΣ(g,aq) if no root of this system vanishes on it. The set of such
regular elements is denoted byareg

q . We observe that in terms of the systemΣ(g,a) this set may
be described as

a
reg
q = {X ∈ aq : ∀α ∈ Σ(g,a) : α(X) = 0⇒ α|aq = 0}. (19)

Lemma 2.13.

(a) There exists an element Zq ∈ a
reg
q such thatα(Zq)> 0 for all α ∈ Σ(P,σθ).

(b) There exists an element Zh ∈ ah such thatα(Zh)> 0 for all α ∈ Σ(P,σ).

Proof. The set

a′ := {X ∈ a : ∀α,β ∈ Σ(g,a) : α(X) = β (X)⇒ α = β}

is the complement of finitely many hyperplanes ina, hence open and dense. Leta+(P) denote
the positive chamber associated with the positive systemΣ(P) for Σ(g,a). Fix ZP ∈ a+(P)∩a′.
Then it is readily verified thatZq := ZP+σθ(ZP) satisfies the requirements of (a). Likewise, the
elementZh = ZP+σ(ZP) satisfies the requirements of (b).
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Given Zq ∈ a
reg
q we putΣ(P,+) := {α ∈ Σ(P) : α(Zq)> 0}. Then

nP,+ :=
⊕

α∈Σ(P,+)

gα

is a subalgebra ofnP. Let NP,+ := expn+ be the corresponding closed subgroup ofNP, see
Lemma 2.9. Define

nP,σ :=
⊕

α∈Σ(P,σ)

gα

andNP,σ as the corresponding closed subgroup.

Proposition 2.14.Let Zq ∈ a
reg
q be as in Lemma 2.13 (a) and let NP,+ be defined as above. Then

the multiplication map
NP,+× (NP∩H)→ NP

is a diffeomorphism.

The proof of this result relies on the following lemma.

Lemma 2.15.Let P∈ P(A) and let Zq ∈ a
reg
q be as in Lemma 2.13 (a). Put

Σ(P,σ ,+) := {α ∈ Σ(P,σ) : α(Zq)> 0}.

Then the following statements hold:

(a) nP,σ ,+ :=⊕α∈Σ(P,σ ,+)gα is a subalgebra ofnP,σ ,

(b) NP,σ ,+ := expnP,σ ,+ is a closed subgroup of NP,σ ,

(c) nP,σ = nP,σ ,+⊕ (nP∩h),

(d) the multiplication map
µ : NP,σ ,+× (NP∩H)→ NP,σ

is a diffeomorphism.

Proof. (a): Assume thatα,β ∈ Σ(P,σ ,+) andα +β ∈ Σ(g,a). Thenα +β ∈ Σ(P,σ) and(α +
β )(Zq)> 0 so thatα +β ∈ Σ(P,σ ,+). This implies (a).

Assertion (b) follows from (a) by application of Lemma 2.9.
Next, we prove (c). Ifα ∈ Σ(P,σ ,+) thenσα(Zq) < 0, which impliesσα /∈ Σ(P,σ ,+).

Hence,nP,σ ,+∩h= {0}. It follows that

nP,σ ,+∩ (nP∩h) = {0}.

It remains to be shown that anyX ∈ nP,σ can be written as

X = X++Xh,
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with X+ ∈ nP,σ ,+ andXh ∈ nP∩h. It suffices to prove this forX ∈ gα ⊂ nP,σ . If α(Zq)> 0, then
X ∈ nP,σ ,+ by definition. On the other hand ifα(Zq) = 0, then by regularity ofZq we have that
α ∈ a∗h and thusgα ∈ h, which implies thatX ∈ nP∩h. Finally, if α(Zq)< 0, then

X = (X+σ(X))−σ(X)

with X+σ(X) ∈ nP∩h and−σ(X) ∈ nP,σ ,+, and we are done.
For (d) fix Zh as in Lemma 2.13 (b). Then for allα ∈ Σ(P,σ) we have thatvα := α(Zh)> 0.

Let the set of positive real numbers thus obtained be orderedby vα1 < vα2 < · · ·< vαm. We define
n0 = nP,σ , nm = 0, and for 1≤ i < m,

ni :=
⊕

α∈Σ(P,σ)
α(Zh)>vαi

gα .

Thenn1, . . . ,nm is a strictly decreasing sequence of ideals innP,σ with [n,ni ]⊆ ni+1 for 0≤ i <m.
We note that eachni is invariant underσ . Hence by the same argument as used in the proof of
(c) above it follows that

ni = (ni ∩nP,σ ,+)⊕ (ni ∩ (nP∩h))

for all 0≤ i ≤ m. Thus, we may apply Lemma 2.10 to conclude that

NP,σ ≃ NP,σ ,+×exp(nP∩h).

It remains to show that exp(nP∩h) = NP∩H. This follows from

NP∩H ⊆ {n∈ NP : σ(n) = n}= {expX : X ∈ nP∩h} ⊆ NP∩H.

The proof is complete.

Proof of Prop. 2.14.Let
nP,σθ := ∑

α∈Σ(P,σθ )
gα

and letNP,σθ be the corresponding closed subgroup ofNP. ThennP = nP,σθ ⊕nP,σ and by Lemma
2.11 we obtain that

NP ≃ NP,σθ ×NP,σ . (20)

Applying Lemma 2.15 to the second component we obtain that

NP ≃ NP,σθ ×NP,σ ,+× (NP∩H).

On the other hand,nP,+ = nP,σ ,+⊕nP,σθ . From this we infer by application of Lemma 2.11 that

NP,σθ ×NP,σ ,+ ≃ NP,+

The result follows.

Remark2.16. For the case of anh-extreme parabolic subgroup, Proposition 2.14 is due to [1],
where, for this special case, a different proof of the resultis given.
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3 Auxiliary results in convex linear algebra

In this section we present a few results in convex linear algebra which will be used in Section 4.

Lemma 3.1. Let V be a finite dimensional real linear space and B⊆ V a closed subset, star-
shaped about the origin. If B is non-compact, then there exists a v∈V \{0} such thatR≥0v⊆ B.

Proof. SinceB is star-shaped, we havesB= t(s/t)B⊆ tB for all 0< s< t. Fix a positive definite
inner product onV and letS be the associated unit sphere centered at the origin. Fors> 0
we define the compact setCs := s−1B∩S. Thens< t =⇒ Cs ⊇ Ct . As B is unbounded and
starshaped, each of the setsCs is non-empty. It follows that the intersection

C := ∩s>0 Cs

is non-empty. Letv be a point in this intersection. Thenv 6= 0 and for alls> 0 we havesv∈
sCs⊆ B. Hence,R≥0v⊆ B.

Lemma 3.2. Let V and W be two finite dimensional real linear spaces, p: V →W a linear map
andΓ ⊆V a closed convex cone. Then the following assertions are equivalent.

(a) p|Γ is a proper map.

(b) kerp∩Γ = {0}.

Proof. First we prove that (a) implies (b). Assume (b) doesn’t hold,i.e. there existsv∈ kerp∩Γ,
v 6= 0. ThenR≥0v⊆ kerp∩Γ = (p|Γ)−1(0) and we obtain that(p|Γ)−1(0) is not compact and
hencep|Γ is not a proper map.

For the converse implication, assume that (a) does not hold.Then there exists a compact set
K ⊆W, such that the setp−1(K)∩Γ is not compact. As the latter set is closed, it is unbounded in
V. Let K̄ be the convex hull ofK ∪{0}. ThenK̄ is compact andp−1(K̄)∩Γ is convex, contains
0 and is unbounded inV, hence not compact. We apply Lemma 3.1 and obtain that there exists
v 6= 0 such that∀t ≥ 0 : tv∈ p−1(K̄)∩Γ. Hence,t · p(v) ∈ K̄ for everyt ≥ 0. SinceK̄ is compact,
it follows that p(v) = 0 andv∈ kerp∩Γ, which implies that (b) cannot hold.

Lemma 3.3. Let V be a finite dimensional real linear space, andΓ a closed convex cone in V
such that there exists a linear functionalξ ∈V∗ with ξ > 0 onΓ\{0}. Then the following holds.

(a) For every R> 0 the set{x∈ Γ : ξ (x)≤ R} is compact.

(b) The addition map a: (x,y) 7→ x+y, Γ×Γ →V, is proper.

Proof. Let R> 0. The setΓR := {x∈ Γ : ξ (x) ≤ R} is closed and convex and it contains the
origin. If v ∈ ΓR\ {0} then the half lineR≥0v is not contained inΓR. By Lemma 3.1 we infer
thatΓR is compact, hence (a).

We turn to (b). AssumeK ⊆ V is compact. Then there exist anR> 0 such thatξ ≤ R on
K . Let (x,y) ∈ a−1(K ). Then it follows thatξ (x+ y) ≤ R, henceξ (x) ≤ R andξ (y) ≤ R, so
that (x,y) belongs to the compact setΓR×ΓR. We conclude thata−1(K ) is a closed subset of
ΓR×ΓR, hence compact.
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If S is a subset ofΣ(g,a) then the convex cone

Γa(S) := ∑
α∈S

R≥0Hα .

is finitely generated, hence closed ina. Likewise,

Γaq(S) := prqΓa(S) = ∑
α∈S

R≥0prq(Hα)

is a closed and convex cone inaq.

Corollary 3.4. Let P∈ P(A). Then the following assertions are valid.

(a) The mapprq : Γa(Σ(P,σθ))→ aq is proper.

(b) The addition map a: Γaq(Σ(P,σθ))×Γaq(Σ(P,σθ))→ aq is proper.

Proof. We start with (a). In view of Lemma 3.2 it suffices to establishthe claim thatΓa(Σ(P,σ))∩
ah = 0. This can be done as follows. There exists aY ∈ a such thatα(Y) > 0 for all α ∈ Σ(P).
PutX :=Y+σθY = Y−σ(Y), thenX ∈ aq and〈X,Hα〉 = 〈Hα ,Hα〉α(X)/2= 〈Hα ,Hα〉(α +
σθα)(Y)/2 > 0 for all α ∈ Σ(P,σθ). It follows that the linear functionalξ = 〈X, · 〉 ∈ a∗ has
strictly positive values onΓa(Σ(P,σθ)) \ {0}. Now ξ = 0 on ah and we see that the claim is
valid. Hence, (a).

For (b) we proceed as follows. Letξ be as above, then kerprq ⊆ kerξ and we see thatξ > 0
on Γaq(Σ(P,σθ))\{0}. Now use Lemma 3.3.

4 Properness of the Iwasawa projection

Let P∈ P(A) and letHP : G→ a be the Iwasawa projection defined by (5). LetHP,q : G→ aq

be defined as in Remark 1.2. The purpose of this section is to prove that the restriction ofHP,q to
H factors through a proper mapH/H ∩P→ aq.

We start with a simple lemma.

Lemma 4.1. The mapHP,q|H : H → aq is left K∩H- and right(P∩H)-invariant.

Proof. Let h ∈ H, kH ∈ K ∩H and p ∈ P∩H. By the Iwasawa decomposition, the elementh
may be decomposed ash= kan, with k∈ K, a∈ A andn∈ NP. In view of Lemma 2.12 we may
decomposep= mbn′, with m∈ M∩H, b∈ A∩H andn′ ∈ NP∩H. SinceMA normalizesNP and
centralizesA we find

kHhp= kHkanmbn′ = (kHkm)ab((mb)−1n(mb))n′ ∈ KabNP.

From this we deduce that

HP,q(kHhp) = prq(loga+ logb) = prq loga= HP,q(h).
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It follows from the above lemma that the restriction ofHP,q to H induces a smooth map

HP,q : H/H ∩P→ aq. (21)

The following proposition is the main result of this section.

Proposition 4.2. The induced map (21) is proper.

In order to prove the proposition, we will reduce to another result, Prop. 4.7, establishing
some useful lemmas along the way.

We fix Qh in h-extreme position and related toP as in Lemma 2.6. LetZG(ah) denote the
centralizer ofah in G and define the parabolic subgroup

R := ZG(ah)NQh. (22)

Let nR be the sum of the root spacesgα for α ∈ Σ(Qh,σ) = Σ(Qh) \ a
∗
q and putNR := exp(nR).

Then NR is σ -stable. It is readily seen thatR has the Levi decompositionR= LRNR where
LR = ZG(ah) is σ -stable. Hence,R is σ -stable. LetΣ(R) denote the set ofa-roots that appear in
nR.

Lemma 4.3. Σ(P)∩Σ(R̄)⊆ Σ(P,σθ).

Proof. Let α ∈ Σ(P)∩Σ(R̄). Thenα ∈ Σ(Q̄h)\a
∗
q =−Σ(Qh,σ), henceα /∈ Σ(P,σ), see Lemma

2.6 (b). This implies thatα ∈ Σ(P,σθ).

Let R= MRARNR be the Langlands decomposition ofR. ThenLR = MRAR.

Lemma 4.4. The multiplication map

µ : (K ∩H)× (MR∩H)× (NR∩H)/(NR∩H ∩P)−→ H/H ∩P,

given by(k,m, [n]) 7→ km[n] is surjective.

Proof. The mapK×(lR∩p)×NR→ G given by(k,X,n) 7→ kexpXn is a diffeomorphism. Since
K, lR∩p andNR areσ -stable, whereasNσ

R = NR∩H, it follows that

H = (K ∩H)(LR∩H)(NR∩H). (23)

Now LR = MRAR with MR andAR bothσ -stable. SinceAR∩H normalizesNR∩H, we have that

H = (K∩H)(MR∩H)(AR∩H)(NR∩H)

= (K∩H)(MR∩H)(NR∩H)(AR∩H).

This implies the result.
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We equipMR∩H with the natural right-action of the closed subgroupMR∩H ∩P. The latter
group acts onNR∩H by conjugation. Moreover, sinceMR normalizesNR andP normalizesNP,
the conjugation action leaves the closed subgroupNR∩H∩P invariant. Accordingly, we have an
induced right-action ofMR∩H ∩P on (NR∩H)/(NR∩H ∩P) given by

[n] ·m := [m−1nm], (m∈ MR∩H ∩P, n∈ NR∩H).

We equip(MR∩H) with the usual right-action byMR∩H ∩P, and(NR∩H)/(NR∩H ∩P) with
the product action. The latter action is proper and free, so that the associated quotient space
(MR∩H)×MR∩H∩P (NR∩H)/(NR∩H ∩P) is a smooth manifold.

Lemma 4.5. The multiplication map of Lemma 4.4 induces a surjective smooth map

µ̄ : (K ∩H)× (MR∩H)×MR∩H∩P (NR∩H)/(NR∩H ∩P)→ H/H ∩P.

Proof. Let k∈ K ∩H, m∈ MR∩H andn∈ NR∩H. Then forp∈ MR∩H ∩P we have

µ(k,(m, [n]) · p) = µ(k,mp, [p−1np]) = kmp(p−1np)[e] = kmn[e] = µ(k,m, [n]).

This implies thatµ induces a smooth map̄µ as described. The surjectivity of̄µ follows from the
surjectivity ofµ.

Proposition 4.2 will follow from the result that the compositionHP,q◦ µ̄ is proper. The latter
map is left-invariant under the left action ofK∩H on the first component. Thus, Proposition 4.2
will already follow from the following result.

Lemma 4.6. The map(m,n) 7→ HP,q(mn) induces a smooth map

ϕ : (MR∩H)×MR∩H∩P (NR∩H)/(NR∩H ∩P)→ aq

which is proper.

The inclusion mapNR∩H → NR induces an embedding of(NR∩H)/(NR∩H ∩P) onto a
closed submanifold ofNR/NR∩P. This embedding is equivariant for the conjugation action of
MR∩H ∩P. Accordingly, we may view

(MR∩H)×MR∩H∩P (NR∩H)/(NR∩H ∩P)

as a closed submanifold of

(MR∩H)×MR∩H∩P NR/(NR∩P).

Thus, for the proof of Lemma 4.6 it suffices to establish the following result.

Proposition 4.7. The mapψ : (m,n) 7→ HP,q(mn) induces a smooth map

ψ̄ : (MR∩H)×MR∩H∩P NR/(NR∩P)→ aq. (24)

This map is proper.
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Before we proceed with the proof of Proposition 4.7 we will first study the mapsMR∩
H/MR∩H ∩P→ aq andNR/(NR∩P)→ aq induced byHP,q.

Lemma 4.8.The mapHR
P,q :=HP,q|MR∩H induces a smooth map̄HR

P,q : (MR∩H)/(MR∩H∩P)→

aq which is proper and has image equal to the coneΓaq(ΣR
−), where

ΣR
− = {α ∈ Σ(P)∩a∗q : gα 6⊆ ker(σθ − I)}.

In particular, the image is contained in the coneΓaq(Σ(P,σθ)).

Proof. We start by noting that(MR,MR∩H) is a reductive symmetric pair of the Harish-Chandra
class, which is invariant under the Cartan involutionθ . Furthermore,∗aR :=mR∩a is a maximal
abelian subspace ofmR∩p (contained inaq) andMR∩P is a minimal parabolic subgroup ofMR

containing∗AR := exp∗aR. Accordingly, by restriction the Iwasawa projection mapHP,q : H → aq

induces the similar projection mapHR
P,q : MR∩H → aq which is the analogue ofHP,q defined

relative to the dataMR,MR∩K,P∩MR,H ∩MR, in place ofG,K,P,H.
The∗aR-roots inNP∩MR are precisely the restrictions of the roots fromΣ(P)∩a∗q. From this

we see that the minimal parabolic subgroupP∩MR of MR is σθ -stable. Hence, in view of [4,
Theorem 1.1, Lemma 3.3], the map̄HR

P,q is proper and has image equal to the coneΓaq(ΣR
−) given

above. The final assertion now follows from the observation thatΣ(P)∩a∗q ⊆ Σ(P,σθ).

The following lemma is well known. For completeness of the exposition, we provide the
proof.

Lemma 4.9. The Iwasawa mapHP|N̄P
: N̄P → a is proper. If Q∈ P(A), then

HP(NQ∩ N̄P) = Γa(Σ(P)∩Σ(Q̄)).

Proof. For the first assertion, let(n̄ j) be sequence in̄NP such thatHP(n̄ j) converges. Then
n̄ j = k ja jn j , with k j ∈K, a j = expHP(n̄ j) andn j ∈ NP. By passing to a converging subsequence,
we may arrange that in addition the sequence(k j) converges inK. It follows that n̄ jn

−1
j = k ja j

converges inG. By [15, Lemma 39], the sequence(n̄ j) converges.
For the second assertion, we may assumeΣ(Q̄)∩Σ(P) 6= /0 and use the idea due to S. Gindikin

and F. Karpelevic [12], to decomposeNQ∩ N̄P by using aP-simple root inΣ(Q̄)∩Σ(P). Let α
be such a root. Letnα = gα +g2α andNα = expnα . PutQ′ = sαQsα . Then, with the notation
of Subsection 2.1,

Σ◦(Q̄)∩Σ◦(P) = {α}⊔ (Σ◦(Q̄
′)∩Σ◦(P)),

so that
NQ∩ N̄P = N̄α(NQ′ ∩ N̄P)≃ N̄α × (NQ′ ∩ N̄P),

in view of Lemma 2.11. Let ¯n∈ NQ∩ N̄P. Then according to the above decomposition we may
write n̄= n̄α n̄′, wheren̄α ∈ N̄α andn̄′ ∈ NQ′ ∩NP. Let g(α) be the semisimple subalgebra gener-
ated bynα andn̄α , and letG(α) be the corresponding analytic subgroup ofG. By the Iwasawa
decomposition ofG(α) for the minimal parabolic subgroupP∩G(α)we may writen̄α = kαaαnα
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with kα ∈ G(α)∩K, aα ∈ exp(RHα) andnα ∈ Nα . From application of Lemma 2.11 we find
that

NQ′ ∩ N̄P ≃ NQ′/(NQ′ ∩NP)

and we see that there exists a diffeomorphismτnα from NQ′ ∩ N̄P onto itself, such that

nα n̄′ ∈ τnα (n̄
′)NP, for all n̄′ ∈ NQ′ ∩ N̄P.

This implies that
HP(n̄αn′) = HP(aατnα (n̄

′)a−1
α )+ logaα ,

and we see that
HP(N̄α(N

′
Q∩ N̄P)) = HP(N

′
Q∩ N̄P)+HP(N̄α).

NowHP(N̄α) equals the image of̄Nα under the Iwasawa projectionHα for the split rank 1 group
G(α) and the minimal parabolic subgroupP∩G(α). By [17, Thm. IX.3.8], which is based on
SU(2,1)-reduction, we see thatHα(N̄α) = R≥0Hα . It follows that

HP(N̄α(N
′
Q∩ N̄P)) = HP(N

′
Q∩ N̄P)+R≥0Hα .

The proof is completed by induction on the number of elementsin Σ◦(Q̄)∩Σ◦(P).

The following lemma is the second ingredient for the proof ofProposition 4.7.

Lemma 4.10.The Iwasawa mapHP,q|NR : NR→ aq factors through a proper map NR/NR∩NP →
aq with image equal to the cone

Γaq(Σ(P)∩Σ(R̄)). (25)

In particular, the image is contained in the coneΓaq(Σ(P,σθ)).

Proof. We denote the induced map byH. It follows by application of Lemma 2.11 that the multi-
plication map(NR∩ N̄P)× (NR∩NP)→ NR is a diffeomorphism. Letν : NR∩ N̄P → NR/NR∩NP

denote the induced diffeomorphism. ThenH ◦ ν equals prq ◦HP,R, whereHP,R denotes the re-
striction ofHP to NR∩ N̄P. This restriction is proper with imageΓa(Σ(P)∩Σ(R̄)), by Lemma 4.9
above. In particular, the image is contained in the coneΓa(Σ(P,σθ)), by Lemma 4.3. In view of
Corollary 3.4 (a) it now follows thatH ◦ν = prq◦HP,R is proper with image equal to (25). This
implies the result.

We proceed with a final lemma needed for the proof of Proposition 4.7.

Lemma 4.11.Let ψ̄ be as in (24) and let

p̄r1 : (MR∩H)×MR∩H∩P NR/(NR∩P)→ (MR∩H)/(MR∩H ∩P)

denote the map induced by projection onto the first component.
Let C⊆ aq be a compact set. Then the setp̄r1(ψ̄−1(C)) is relatively compact in(MR∩

H)/(MR∩H ∩P).
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Proof. Let m 7→ [m] denote the canonical projectionMR∩H → (MR∩H)/(MR∩H ∩P). Let
(mj) and(n j) be sequences inM ∩H andNR, respectively, such thatHP(mjn j) ∈ C for all j.
Then it suffices to show that the sequence([mj ]) in (MR∩H)/(MR∩H ∩P) has a converging
subsequence.

In accordance with the Iwasawa decompositionMR= (MR∩K)(MR∩A)(MR∩NP), we may
decomposemj = k ja jν j . Sinceah ⊆ aR = center(lR)∩p, we havemR∩a= a⊥R ∩a⊆ aq, so that
loga j = HR

P,q(mj).

The elementt j = a jν j belongs toMR, hencen′j := t jn j t
−1
j ∈ NR, for all j. From mjn j =

k jn′ja jν j it follows that

HP,q(mjn j) = HP,q(k jn
′
j)+ loga j = HP,q(n

′
j)+HR

P,q(mj).

We now note that bothHP,q(n′j) andHP,q(mj) belong toΓaq(P,σθ) by Lemmas 4.10 and 4.8.
By application of Corollary 3.4 we infer that the sequenceHP,q(mj) is contained in a relatively
compact subset ofaq. By application of Lemma 4.8 it now follows that([mj ]) is contained in a
relatively compact subset of(MR∩H)/(MR∩H ∩P), hence contains a convergent subsequence.

Completion of the proof of Proposition 4.7.Let C be a compact subset ofaq and let(mj) be
a sequence inMR∩H and(n j) a sequence inNR such thatψ̄([(mj ,n j)]) ∈ C for all j. Then it
suffices to show that the sequence of points

[(mj ,n j)] ∈ (MR∩H)×MR∩H∩P NR/(NR∩NP)

has a converging subsequence.
In view of Lemma 4.11 we may pass to a subsequence of indices and assume that the

sequence([mj ]) in D := (MR∩ H)/(MR∩ H ∩ P) converges. Since the canonical projection
MR∩H → D determines a principal fiber bundle, we may invoke a local trivialization to ob-
tain a converging sequence(8mj) in MR∩ H such that8mj ∈ mj(MR∩ H ∩ P) for all j. Let
p j ∈ MR∩H ∩P be such thatmj =

8mj p j for all j. Then

[(mj ,n j)] = [(8mj ,
8n j)],

with 8n j = p jn j p
−1
j ∈ NR.

Replacing the original sequence of points(mj ,n j) in this fashion if necessary, we may as
well assume that the original sequence(mj) converges inMR∩H. Let m∈MR∩H be the limit of
this sequence. As in the proof of Lemma 4.11 we may decomposemj = k ja jν j andm= kaν in
accordance with the Iwasawa decompositionMR = (MR∩K)(MR∩A)(MR∩NP). Thenk j → k,
a j → a andν j → ν, for j → ∞. Putt j = a jν j andn′j = t jn j t

−1
j . As in the proof of Lemma 4.11 it

follows that
ψ̄([mj ,n j ]) = loga j +HP,q(n

′
j).

Since(a j) converges, it follows that the sequenceHP,q(n′j) is contained in a compact subset
C′ ⊆ aq. By Lemma 4.10 it follows that the sequence([n′j ]) in NR/NR∩NP is contained in a
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compact subset. Passing to a suitable subsequence of indices we may as well assume that the
sequence([n′j ]) converges to a point[n], for somen∈ NR. It follows that

[n j ] = [t−1
j n′j t j ] = t−1

j · [n′j ]→ t−1 · [n] = [t−1nt], ( j → ∞),

wheret = aν. We conclude that the sequence[(mj ,n j)] converges with limit equal to[(m, t−1nt)].

We finish this section with a number of results that will be needed in Section 10.

Corollary 4.12. LetA be a compact subset of Aq. Then

(a) HP,q(ah) ∈ HP,q(A K)+HP,q(h), for all (a,h) ∈ A ×H;

(b) the map(a,h) 7→HP,q(ah) induces a proper mapA ×H/H ∩P→ aq.

Proof. We first prove (a). Leta∈ A andh∈ H. We may decomposeh= kbnwith k∈ K, b∈ A
andn∈ NP. Furthermore,ak= k′a′n′ with k′ ∈ K, n′ ∈ NP and loga′ ∈ HP(A K). Now

ah= akbn= k′a′n′bn= k′a′bn′′

with n′′ = b−1n′bn∈ NP. It follows that

HP,q(ah) = prq(loga′+ logb) ∈ HP,q(A K)+HP,q(h).

This establishes (a).
SinceHP,q(A K) is compact, (b) follows from combining (a) with Proposition4.7.

Lemma 4.13.Let P∈ P(A). ThenHP,q(H)⊆ Γaq(Σ(P,σθ)).

Proof. By (23) we have

H = (H ∩K)(H ∩NR)(H ∩LR)⊆ KNR(H ∩LR).

Fix h∈H, then we may writeh= knRhL with k∈K, nR∈NR andhL ∈ (H∩LR). The groupP∩LR

is a minimal parabolic subgroup ofLR, containingA. In accordance with the associated Iwasawa
decomposition forLR, we may writehL = kLaLnL with kL ∈ K ∩LR, aL ∈ A andnL ∈ NP∩LR.
SinceLR normalizesNR, it follows that

h= knRkLaLnL ∈ Kn′RaLnL

with n′R ∈ NR. We now observe thatn′R ∈ KbNP with b = expHP(n′R). Thus, h ∈ KbaLNP. It
follows that

HP,q(h) = prq(logb+ logaL) ∈ HP,q(NR)+HP,q(H ∩LR). (26)

SinceLR∩H = (MR∩H)(A∩H), we haveHP,q(H∩LR) =HP,q(H∩MR). The result now follows
from (26) by applying Lemmas 4.8 and 4.10.
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Lemma 4.14. Let V be a finite dimensional real vector space (or more generally a real locally
convex Hausdorff space),Γ1 a convex cone in V,Γ2 a closed convex cones in V and B⊆ V a
bounded subset. IfΓ1 ⊆ B+Γ2 thenΓ1 ⊆ Γ2.

Proof. Let γ ∈ Γ1. Then for any positive integern≥ 1 we have thatnγ ∈ Γ1 ⊆ B+Γ2, hence

γ = bn/n+ γn,

with bn ∈ B andγn ∈ Γ2. As B is bounded,bn/n→ 0 and we conclude thatγn → γ, for n→ ∞.
SinceΓ2 is closed, it follows thatγ ∈ Γ2.

Corollary 4.15. Let P∈P(A). Then for each a∈ Aq, the setHP,q(aH) does not contain any line
of aq.

Proof. From Corollary 4.12 (a) combined with Lemma 4.13 we see that

HP,q(aH)⊆ HP,q(aK)+Γaq(Σ(P,σθ)). (27)

Arguing by contradiction, assume thatHP,q(aH) contains a line of the formZ+RY, with Y, Z ∈
aq, Y 6= 0. ThenRY ⊆ (−Z)+HP,q(aK)+Γ(Σ(P,σ ,θ)), and by Lemma 4.14 we conclude that
RY ∈ Γ(Σ(P,σθ)). This implies that

Y ∈ Γ(Σ(P,σθ))∩−Γ(Σ(P,σθ)) = {0},

contradiction.

5 Critical points of components of the Iwasawa map

In this section we assume thatP ∈ P(A) is a fixed minimal parabolic subgroup and thata is
a fixed element ofAq. We will investigate the critical sets of vector components of the map
h 7→ HP,q(ah), H → aq. For this, letX ∈ aq, and consider the functionFa,X : H → R defined by

Fa,X(h) = 〈X,HP(ah)〉= 〈X,HP,q(ah)〉= B(X,HP,q(ah)). (28)

The second equality is valid becauseah andaq are perpendicular with respect to the inner product
〈 · , · 〉, while the third holds becauseHP,q(ah) ∈ aq ⊂ p. We start with a result on derivatives of
the function

FX : G→ R, g 7→ 〈X,HP(g)〉. (29)

In order to formulate it, we need a bit of additional notation. If F ∈C∞(G) andU ∈ g, we define:

F(g;U) = RUF(g) :=
d
dt

∣

∣

∣

∣

t=0
F(gexp(tU)).

The following result and its proof can be found in [9, Cor. 5.2]. See also [4, Cor. 4.2].
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Lemma 5.1. Let g∈ G and U∈ g. Then

FX(g;U) = B(Ad(τ(g))U,X) = B(U,Ad(ν(g)−1)X),

where we have used the decompositions g= k(g)τ(g) and τ(g) = a(g)ν(g), according to the
Iwasawa decomposition G= KANP.

We define the set of regular elements inAq by Areg
q := exp(areg

q ), see (19). IfX ∈ aq we denote
by GX the centralizer ofX in G and put

NP,X := NP∩GX. (30)

Lemma 5.2. Let a∈ Aq and let X∈ aq. The point h∈ H is a critical point for the function Fa,X
if and only if ah= kbn for certain k∈ K, b∈ A and n∈ NP,X(NP∩H).

Proof. Let h∈ H. Thenh is a critical point for the functionFa,X if and only if

∀U ∈ h : 0= Fa,X(h;U) = B(U,Ad(ν(ah)−1)X). (31)

Sinceh andq are perpendicular with respect toB, see text above (7), the condition (31) is equiva-
lent to the assertion that Ad(ν(ah)−1)X ∈ q. Write n= ν(ah) and decomposen= n+nH accord-
ing to the decompositionNP = NP,+(NP∩H) of Proposition 2.14. Since Ad(nH) normalizesq,
the above condition is equivalent to Ad(n+)−1X ∈ q. Now apply the lemma below to see that the
latter is equivalent ton+ ∈NP,+∩NP,X. It follows that (31) is equivalent ton∈NP,X(NP∩H).

Lemma 5.3. Let n∈ NP,+ (cf. Prop. 2.14) and X∈ aq. Then

Ad(n)X ∈ q ⇐⇒ Ad(n)X = X.

Proof. The implication ‘⇐’ is obvious. Thus, assume that Ad(n)X ∈ q. We may writen =
exp(U), whereU ∈ nP,+. Then by nilpotence ofnP,+,

Ad(n)X = ead(U)X ∈ X+nP,+

By assumption, Ad(n)X−X ∈ q. Since obviouslyσ(nP,+)∩nP,+ = 0, it follows thatnP,+∩q= 0
and we infer that Ad(n)X = X.

GivenX ∈ aq we agree to denote byCa,X the set of critical points for the functionFa,X. The
remainder of this section will be dedicated to proving the following description of this set in
casea is regular. We recall the definitions of the Weyl groupsW(aq) andWK∩H from (2) and
Definition 1.3.

Remark5.4. In the following we will use the notation

aw := w−1 ·a

for a ∈ Aq andw∈ W(aq). This notation has the advantage that(av)w = avw and(aw)β = awβ ,

for v,w∈W(aq) andβ ∈ Σ(g,aq). In particular, Ad(aw) = awβ I ongβ .
We will use similar notation fora∈ A andw∈W(a).
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Lemma 5.5. Let a∈ Areg
q and X∈ aq. Then

Ca,X =
⋃

w∈WK∩H

wHX(NP∩H). (32)

Proof. Let xw be a representative ofw in NK∩H(aq), let h ∈ HX andnP ∈ NP∩H. Then, with
notation as in Lemma 5.1,

ν(axwhnP) = ν(x−1
w axwhnP) = ν(awhnP) = ν(awh)nP.

The elementawh belongs toGX, and according to [9, Eqn. (2.6)],

GX ≃ KXANP,X.

Thus,ν(awh) ∈ NP,X and it follows thatν(axwhnP) ∈ NP,X(NP∩H). This proves that the set on
the right-hand side of (32) is included in the set on the left-hand side. It remains to prove the
converse inclusion.

Let h∈ Ca,X. Then by Lemma 5.2 we may writeah= kbnXnH with k∈ K, b∈ A, nX ∈ NP,X

andnH ∈NP∩H. From this we see thatk−1ahn−1
H = bnX ∈ GX. The elementh′ := hn−1

H , belongs
to H. In view of the Cartan decompositionH = (K ∩H)×exp(p∩h), we may writeh′ = h1h2,
whereh1 ∈ K ∩H andh2 ∈ exp(p∩h). Then

k−1ah1h2 = k−1h1(h
−1
1 ah1)h2 ∈ GX. (33)

By [25], the groupG decomposes as

G≃ K×exp(p∩q)×exp(p∩h).

According to [25, Thm. 5],GX has a similar decomposition

GX ≃ KX ×exp(p∩qX)×exp(p∩hX).

By the uniqueness properties of the latter decomposition itfollows from (33) thatk−1h1 ∈ KX,
h−1

1 ah1 ∈ exp(p∩qX) andh2 ∈ exp(p∩hX).
We note thatσθ fixes X hence leaves the centralizerGX invariant. The fixed point group

GX,+ of this involution inGX admits the Cartan decomposition

GX,+ ≃ (K ∩HX)×exp(p∩qX).

Obviouslyaq is a maximal abelian subspace ofp∩ qX. Hence, every element of the latter space
is conjugate to an element ofaq under the group(K∩HX)

◦. We infer that there exists an element
l ∈ (K ∩HX)

◦ such that
l−1h−1

1 ah1l ∈ Aq. (34)

Sincea was assumed to be regular forΣ(g,aq), it follows that a is regular forΣ(g+,aq) as
well. Hence, (34) implies that the elementh1l ∈ K ∩ H normalizesaq. It follows that h1 ∈
NK∩H(aq)(K∩HX). Then,

h′ = h1h2 ∈ NK∩H(aq)(K∩HX)exp(p∩hX) = NK∩H(aq)HX

and we conclude thathn−1
H ∈ NK∩H(aq)HX. This finally implies that

h∈ NK∩H(aq)HX(NP∩H),

which concludes the proof.
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6 Properties of the set of critical points

As in the previous section, we assume thatP∈ P(A) and thata is a regular point inAq. In the
previous section we defined the functionFa,X : H → R, for X ∈ aq, by (28) and we determined
its set of critical pointsCa,X, see (32). The purpose of the present section is to study this set in
more detail.

We start with the following lemma.

Lemma 6.1. The mapϕ : HX × (NP∩H)→ H given by(h,n) 7→ hn induces an injective immer-
sion

ϕ̄ : HX ×NP∩HX
(NP∩H)→ H

with image HX(NP∩H).

Proof. The groupHX × (NP∩H) has a natural left action onH given by the formula:(h,n) ·x=
hxn−1. The setHX(NP∩H) is the orbit for this action through the identity elementeof H. Let F
be the stabilizer ofe for this action. Then it follows that the map(h,n) 7→ (h,n) ·e= hn−1 factors
through an injective immersion(HX×(NP∩H))/F → H with imageHX(NP∩H). The stabilizer
F consists of the elements(h,h) with h∈ HX ∩NP. To complete the proof of the lemma, we note
that the map(h,n) 7→ (h,n−1) induces a diffeomorphismHX ×NP∩HX (NP∩H) → (HX × (NP∩
H))/F.

Lemma 6.2. Let X∈ aq. Then the setCa,X is closed in H. Moreover, the following holds.

(a) If hX +(nP∩h) = h then Ca,X = H.

(b) If hX +(nP∩h)( h then Ca,X is a finite union of lower dimensional injectively immersed
submanifolds.

Proof. SinceCa,X is the set of critical points of the smooth functionFa,X, it is closed.
From Lemma 5.5 combined with Lemma 6.1 it follows thatCa,X is a finite union of injectively

immersed submanifolds of dimensiondX := dim(hX +(nP∩h)). From this, (b) is immediate.
For (a) we assume the hypothesis to be fulfilled, or equivalently, that dX = dim(H). Then

Ca,X is open inH. Since this set is also closed inH, and containsHX(NP∩H), it follows that
Ca,X ⊇ H◦. From Lemma 5.5 it follows thatCa,X is left NK∩H(aq)-invariant, so thatCa,X ⊇
NK∩H(aq)H◦. SinceH is essentially connected, the latter set equalsH, see (6).

Lemma 6.3. Let X∈ aq. Then the following assertions are equivalent:

(a) h= hX +(nP∩h);

(b) ∀α ∈ Σ(g,a) : α(X) = 0.

Proof. First assume (b). ThengX = g and (a) follows. We will prove the converse implication
by contraposition. Thus, assume that (b) does not hold. Thenthere exists a rootβ ∈ Σ(g,a) such
thatβ (X) 6= 0. By changing sign if necessary, we may in addition arrange that β ∈ Σ(P).
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Given a subsetO ⊆ Σ(g,a)∪{0}, we agree to write

gO =⊕α∈O gα . (35)

In particular, we see thatnP = gΣ(P). We also agree to writeOσ := O ∩ σ(O). Then using
σ(gα) = gσα we readily see that

gO ∩h= (gOσ )σ =⊕ω∈Oσ/{1,σ} (gω)
σ ; (36)

hereOσ/{1,σ} denotes the set of orbits for the action onOσ of the subgroup{1,σ} of Aut(g).
If we apply (36) to the setOX := {α ∈ Σ(g,a) : α(X) = 0}∪{0}, we find

hX =⊕ω∈OX/{1,σ} (gω)
σ .

We note thatΣ(P)σ = Σ(P,σ), so that

nP∩h= gΣ(P,σ)∩h.

We now consider the setOβ := {β ,σβ ,−β ,−σβ}. SinceOX ∩Oβ = /0, it follows from the
above that

(hX +(nP∩h))∩gOβ = nP∩h∩gOβ = (gΣ(P,σ)∩Oβ
)σ . (37)

On the other hand,
h∩gOβ = (gOβ )

σ .

From β (X) 6= 0 it follows that β /∈ a∗h. If β ∈ a∗q then Σ(P,σ)∩Oβ = /0 and if β /∈ a∗q then
Σ(P,σ)∩Oβ ⊆ {β ,σβ}. In any case,Σ(P,σ)∩Oβ is a properσ -invariant subset ofOβ . By
application of (36) it now follows that

(gΣ(P,σ)∩O)
σ ( (gO)

σ .

Using (37) we infer that (a) is not valid.

We agree to write
S:= aq\∩α∈Σ(g,aq) kerα. (38)

Remark6.4. If Σ(g,aq) spansaq then it follows thatS= aq\{0}.

Corollary 6.5. S= {X ∈ aq : Ca,X ( H}.

Proof. Let X ∈ aq. In the situation of Lemma 6.2 (b) the setCa,X is a countable union of lower
dimensional submanifolds, hence nowhere dense by the Bairecategory theorem. Thus, by appli-
cation of Lemmas 6.2 and 6.3 it follows thatCa,X ( H ⇐⇒ X ∈ S.

For eachZ ∈ aq, let Σ(Z) denote the collection of roots inΣ(g,aq) vanishing onZ. We define
the equivalence relation∼ onaq by

X ∼Y ⇐⇒ Σ(X) = Σ(Y).
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Then clearly,∼ has finitely many equivalence classes inaq and

X ∼Y ⇐⇒ GX = GY.

The class of 0 is given by[0] = ∩α∈Σ(g,aq) kerα andSis the union of the remaining finitely many
equivalence classes for∼. Furthermore, the setCa,X depends onX ∈ S through the centralizer
GX, hence through the equivalence class[X] for ∼ . Accordingly, we will also writeCa,[X] for
this set.

We define
Ca := ∪X∈S Ca,X. (39)

Lemma 6.6.

(a) There exists a finite subset S0 ⊆ S such that (39) is valid for the union over S0 in place of S.

(b) The setCa is closed and a finite union of lower dimensional injectivelyimmersed submani-
folds of H.

(c) The setCa is nowhere dense in H.

Proof. By the discussion preceding the lemma,Ca is the union of the setsCa,[X], for [X]∈ S/∼ .
Since the latter set is finite, assertion (a) follows withS0 a complete set of representatives for
S/∼ . Assertion (b) now follows by application of Corollary 6.5 and Lemma 6.2. Assertion (c)
follows from (b) by application of the Baire category theorem.

The following result illustrates the importance of the setCa.

Proposition 6.7. The set H\Ca is open and dense in H. Assume thatΣ(g,aq) spansa∗q. Then the
map Fa : h 7→ HP,q(ah), H → aq is submersive at all points of H\Ca.

Proof. The first assertion is a consequence of Lemma 6.6.
Let h0 ∈ H \Ca. Then for everyX ∈ S the pointh0 is not critical for the functionFa,X. As

S= aq\{0}, see Remark 6.4, it follows thatFa : h 7→ HP,q(ah) is submersive ath0.

Lemma 6.8. Let P∈ P(A) and a∈ Areg
q . Then the following assertions are valid.

(a) The setsHP,q(aH) andHP,q(aCa) are closed inaq.

(b) If Σ(g,aq) spansa∗q then the setHP,q(aH)\HP,q(aCa) is open and closed inaq\HP,q(aCa).

Proof. ForA ⊆ A compact, the mapA ×H/(H ∩P)→ aq,(b, [h]) 7→HP,q(bh) is proper, hence
closed; see Corollary 4.12. In particular, it follows thatHP,q(aH) is closed inaq.

It follows from Lemma 6.6 thatCa is closed inH. Moreover,Ca is a countable union of
lower dimensional submanifolds ofH. Thus, by the Baire property,Ca has empty interior inH.
In particular, it is a proper subset ofH.

Furthermore, the setCa is right H ∩ P-invariant, hence has closed image inH/H ∩ P. It
follows thatHP,q(aCa) is closed inaq. This establishes (a).
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By Proposition 6.7 the mapFa : h 7→ HP,q(ah) is submersive at the points ofH \Ca. Hence
HP,q(a(H \Ca)) is open inaq. It follows that

HP,q(aH)\HP,q(aCa) = HP,q(a(H \Ca))\HP,q(aCa) (40)

is open inaq hence inaq \HP,q(aCa). Finally, sinceHP,q(aH) is closed, the first set in (40) is
closed inaq\HP,q(aCa). We conclude that the set (40) is both open and closed inaq\HP,q(aCa).

Lemma 6.9. Assume thatΣ(g,aq) spansa∗q. ThenHP,q(aH)\HP,q(aCa) 6= /0.

Proof. Under the assumption thatΣ(g,aq) spansa∗q, the mapHP,q : aH → aq is submersive except
at points ofCa. The setH \Ca is open and non-empty. Thus,HP,q(a(H \Ca)) is open and non-
empty. By Sard’s Theorem,HP,q(aCa) has measure zero. This implies that

HP,q(a(H \Ca))\HP,q(aCa) 6= /0,

and hence
HP,q(aH)\HP,q(aCa) 6= /0.

Remark6.10. The lemma can readily be extended to the case thatΣ(g,aq) does not spana∗q.

7 The computation of Hessians

We retain the assumption thatP∈ P(A). Furthermore, we assume thata∈ Areg
q andX ∈ aq. In

this section we will compute the Hessian of the functionFa,X : H → R, defined in (28), at all
points of its critical locusCa,X.

GivenU ∈ h, we denote byRU the associated left-invariant vectorfield onH defined by

RU(h) = dlh(e)U =
∂
∂ t

(hexptU)|t=0, (h∈ H).

The associated derivation onC∞(H) is denoted by the same symbol.
If f : H → R is aC2-function with critical point ath, then its Hessian ath is the symmetric

bilinear formH( f )(h) = H( f )h onThH given by

H( f )h(RU(h),RV(h)) := RURV f (h) = ∂s∂t f (hexpsUexptV)|s=t=0,

for U,V ∈ h.

Lemma 7.1. Let a∈ Aq, X ∈ aq and h∈ H. Then for all U,V ∈ h we have:

RURVFa,X(h) = B(U,La,X,h(V)) =−〈U,θLa,X,h(V)〉,
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where La,X,h : h→ h is the linear map given by

La,X,h(V) =−Ad(h−1)◦πh ◦Ad(a−1)◦Ad(ka(h))◦ad(X)◦Ek ◦Ad(τ(ah))V. (41)

Hereπh : g→ h denotes the projection according to the decompositiong= h⊕q and Ek : g→ k

is the projection associated with the Iwasawa decomposition g = k⊕ a⊕ nP. The notation
ka(h) is used to express the K-part of the element ah with respect tothe Iwasawa decomposi-
tion G= KANP. Finally, τ(ah) denotes the(ANP)-part of ah with respect to the same Iwasawa
decomposition.

Proof. By [4, Lemma 5.1], see also [9], we obtain that forx∈ G andU,V ∈ g,

RURVFX(x) = B([Ad(τ)U, Ek ◦Ad(τ)V],X),

whereFX is the function defined in (29) and whereτ := τ(x). Therefore,

RURVFX(x) =−B(Ad(τ)U, adX ◦Ek ◦Ad(τ)V)

= −B(U, Ad(τ)−1◦adX ◦Ek ◦Ad(τ)V).

We can restrict now to the case wherex= ahandU,V ∈ h. SinceFa,X(h) = FX(ah), we obtain

RURVFa,X(h) = RURVFX(ah) = B(U,−πh ◦Ad(τ)−1◦adX ◦Ek ◦Ad(τ)V). (42)

Sinceah= ka(h)τ(ah), it follows thatτ−1 = τ(ah)−1 = h−1a−1ka(h) and by applying Ad to this
equality we obtain

Ad(τ)−1 = Ad(h−1)Ad(a−1)Ad(ka(h)).

We complete the proof by substituting this equality in (42) and observing thatπh commutes with
Ad(h−1).

8 The transversal signature of the Hessian

In this section we fixP∈ P(A), a∈ Areg
q andX ∈ aq. We will study the behavior of the Hessian

H(Fa,X)h of the functionFa,X : H → R defined in (28) at each pointh of its critical setCa,X.
This Hessian is a symmetric bilinear form onThH. Its kernel ath is by definition equal to the
following linear subspace ofThH,

ker(H(Fa,X)(h)) := {V ∈ ThH : H(Fa,X)(h)(V, ·) = 0}.

By symmetry, the Hessian induces a non-degenerate symmetric bilinear formH̄(Fa,X)(h) on
the quotient spaceThH/ker(H(Fa,X)(h)). For eachw ∈ WK∩H we select a representativexw ∈
NK∩H(aq). The set

Ca,X,w := xwHX(H ∩NP)

is an injectively immersed submanifold ofH, see Lemma 6.1. In particular this set has a well-
defined tangent space at each of its points. We will show that the Hessian ofFa,X is transversally
non-degenerate alongCa,X,w.
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Lemma 8.1. Let w∈WK∩H . Then at each point̄h∈ Ca,X,w the kernel of the Hessian H(Fa,X)(h̄)
equals the tangent space Th̄Ca,X,w.

The proof of this lemma will make use of Lemma 8.2 below. In that lemma,La,X,h ∈ End(h)
is defined as in (41). Let̄ka := π ◦ka : H → K/M, whereka : H → K is defined as in Lemma 7.1
and whereπ denotes the canonical projectionK → K/M.

Lemma 8.2. Let h∈ H◦
X and V∈ h. Then the following statements are equivalent.

(a) V ∈ kerLa,X,h,

(b) d(lka(h)−1 ◦ k̄a◦ lh)(e)(V) ∈ kX/m,

(c) V ∈ hX +(h∩nP).

Proof. First, we prove that (a)=⇒ (b). Assume (a) holds. In view of (41) this is equivalent to

Ad(a−1)◦Ad(ka(h))◦ad(X)◦Ek ◦Ad(τ(ah))V ∈ q. (43)

Observe that Ad(ka(h)) ◦ad(X) ◦Ek ◦Ad(τ(ah))V ∈ p. In view of [4, Lemma 5.7] we see that
(43) implies that

Ad(ka(h))◦ad(X)◦Ek ◦Ad(τ(ah))V ∈ aq. (44)

Sinceh∈ HX andGX = KXANP,X, see (30), it follows thatka(h) centralizesX. Thus, Ad(ka(h))
and ad(X) commute. Now Ad(ka(h)) ◦Ek ◦Ad(τ(ah))V is an element ink, which decomposes
as

k= kX +
⊕

α∈Σ(P)
α(X) 6=0

(I +θ)gα .

Furthermore, by (44), we know that ad(X) maps this element to an element ofaq. This
implies that

Ad(ka(h))◦Ek ◦Ad(τ(ah))V ∈ kX.

Sinceka(h) ∈ KX, we obtain that

Ek ◦Ad(τ(ah))V ∈ kX. (45)

By the use of [4, Lemma 5.2], we may rewrite

Ek ◦Ad(τ(ah)) = dlka(h)(e)
−1◦dka(h)◦dlh(e) = d(lka(h)−1 ◦ka◦ lh)(e).

Hence, (45) implies
d(lka(h)−1 ◦ka◦ lh)(e)(V) ∈ kX. (46)

Observe that dπ(e) : kX → kX/m is given by the canonical projection and that the mapsπ and
lka(h)−1 commute. Hence, equation (46) is equivalent to

d(lka(h)−1 ◦ k̄a◦ lh)(e)(V) ∈ kX/m (47)
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and (b) follows.
Next, we prove that (b)=⇒ (c). Assume (b) and denote byϕ the diffeomorphismϕ : K/M →

G/P arising from the Iwasawa decompositionG=KANP. The inclusionH →֒G induces the map
ψ : H → G/P. It is easy to check that the diagram given below commutes.

H
ψ

−−−−−−−→ G/P

k̄a





y





y
la

K/M
ϕ

−−−−−−−→ G/P

(48)

The mapψ commutes with the left multiplication by an elementh ∈ H, viewed either as the
map lh : H → H or as the maplh : G/P → G/P. On the other hand, the diffeomorphismϕ
introduced above, commutes with the left multiplicationlk : K/M → K/M, wherek∈ K. Hence,
the commutative diagram (48) gives rise to the following commutative diagram. We use the
notationk := ka(h).

H
ψ

−−−−−−−→ G/P

l−1
k ◦k̄a◦lh





y





y

lk−1ah

K/M
ϕ

−−−−−−−→ G/P

(49)

Note that under each of the four maps in diagram (49), the origin of the domain is mapped to
the origin of the codomain. Taking derivatives at the origins we obtain the commutative diagram
given below.

h
ψ⋆

−−−−−−−→ g/p

T





y





y

d(lk−1ah)(eP)

k/m
ϕ⋆

−−−−−−−→ g/p

(50)

Here
p=m⊕a⊕nP

denotes the Lie algebra ofP andT denotes the map d(l−1
k ◦ k̄a◦ lh)(e) : h→ k/m. Furthermore,

ϕ∗ = dϕ(eM) andψ∗ = dψ(e).
Observe thatk−1ah= τ := τ(ah). Sinceh belongs toHX, it follows thatτ andτ−1 belong to

ANP,X ⊆ P. This in turn implies that Ad(τ−1) is a bijection fromgX to gX which normalizesp.

Let Ad(τ) : g/p→ g/p be the map induced by Ad(τ) : g→ g. Then

d(lk−1ah)(eP) = Ad(τ).

We use the commutativity of diagram (50) to compute the pre-image ofkX/m under the mapT :

T−1(kX/m) = ψ−1
⋆ ◦Ad(τ−1)◦ϕ⋆(kX/m)

= ψ−1
⋆ (Ad(τ−1)(kX +p))

= ψ−1
⋆ (Ad(τ−1)(gX +p))
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= ψ−1
⋆ ((Ad(τ−1)gX)+p)

= ψ−1
⋆ (gX +p)

= {U ∈ h : U +p ∈ gX +p}

= hX +(h∩p).

Sinceh∩ p = (m⊕ a)∩ h⊕ (nP∩ h), see Subsection 2.4, and(m⊕ a)∩ h ⊆ hX, we obtain
thathX +(h∩ p) = hX +(h∩nP). Thus if (b) holds, thenT(V) ∈ kX/m and we infer thatV ∈
hX +(h∩p) hence (c).

Finally, the implication (c)=⇒ (a) is easy.

Proof of Lemma 8.1.Recall thatH is essentially connected. By [4, Prop. 2.3], the centralizer
HX is essentially connected as well (relative toGX).

Assume first that̄h= h∈ H◦
X. Then, by Lemma 8.2 above, we have that

kerLa,X,h = hX +(nP∩h).

Sincedlh(e) is a linear isomorphismg→ ThG, mappingTe[HX(NP∩H)] ontoTh[HX(NP∩H)],
we obtain that

kerH(Fa,X)(h) = dlh(e)(kerLa,X,h) = Th[HX(NP∩H)],

which establishes the assertion forh̄= h∈ H◦
X.

Let now h̄= hn, with n∈ NP∩H. Then the right-multiplicationrn : H → H is a diffeomor-
phism andFa,X ◦ rn = Fa,X, so that

kerH(Fa,X)(hn) = drn(h)[kerH(Fa,X)(h)] = drn(h)Th[HX(NP∩H)].

As the latter space equalsThn[HX(NP∩H)] this proves the assertion for̄h∈ H◦
X(NP∩H).

Finally, we discuss the general caseh̄ ∈ wHX(NP∩H). SinceH, respectivelyHX, is es-
sentially connected, see (6), we may writeh̄ = xwhn, whereh ∈ H◦

X, n ∈ NP ∩H andxw is a
representative ofw in NK∩H(aq) chosen accordingly. Sincexw normalizesAq,

Fa,X ◦ lxw = Fw−1a,X.

Furthermore, froma∈ Areg
q it follows thatw−1a∈ Areg

q . Sincelxw is a diffeomorphism fromH to
itself, it follows thatdlxw(hn) is a linear isomorphism fromThnH ontoTh̄H and that

kerH(Fa,X)(h̄) = kerH(Fa,X)(xwhn)

= dlxw(hn)[kerH(Fx−1
w a,X)(hn)]

= dlxw(hn)Thn[HX(NP∩H)]

= Th̄[xwHX(NP∩H)]

= Th̄Ca,X,w. (51)
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We will now determine the set of critical points where the Hessian is transversally positive
definite. For the description of our next result we define the following subsets ofΣ(P). If α ∈
Σ(g,a)∩a∗q, then the associated root spacegα is σθ -invariant. Hence, for such a rootα,

gα = gα,+⊕gα,− ,

where
gα,± = {U ∈ gα : σθU =±U}.

Accordingly, we define

Σ(g,aq)± := {α ∈ Σ(g,aq) : gα,± 6= 0}.

In order to formulate the first main result of this section, weneed to specify particular subsets of
Σ(P).

Definition 8.3.

(a) Σ(P)+ := {α ∈ Σ(P) : α ∈ a∗q =⇒ gα,+ 6= 0}.

(b) Σ(P)− := {α ∈ Σ(P,σθ) : α ∈ a∗q =⇒ gα,− 6= 0}.

Note that (b) in this definition is consistent with (4).

Proposition 8.4. Let w∈WK∩H . Then the Hessian H(Fa,X)(xw) is positive definite transversally
to Ca,X,w if and only if the following two conditions are fulfilled

(a) ∀α ∈ Σ(P)+ : α(X)α(w−1(loga))≤ 0;

(b) ∀α ∈ Σ(P)− : α(X)≥ 0.

Remark8.5. For the geometric meaning of these conditions we refer to Lemma 8.14, towards
the end of this section.

Proof. We will prove the proposition in a number of steps. As a first step, letlw := lxw denote left
multiplication byxw on H. Then the tangent space ofCa,X,w at xw is the image ofhX +(h∩nP)
under the tangent mapdlw(e) : h → TxwH. We will denote by Hw the pull-back of the Hessian
H(Fa,X)(xw) underdlw(e). Then, in view of (51),

kerHw = hX +(nP∩h) (52)

and the following conditions are equivalent:

(a) the HessianH(Fa,w)(xw) is positive definite transversally toCa,X,w;

(b) the bilinear form Hw is positive definite transversally tohX +(h∩nP).

Accordingly, we will concentrate on deriving necessary andsufficient conditions for (b) to
be valid.
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Lemma 8.6. The bilinear formHw onh is given by

Hw(U,V) = 〈U,LwV〉, (U,V ∈ h),

where Lw : h→ h is the linear map given by

Lw =−πh ◦ad(X)◦Ad(aw)◦Ek ◦Ad(aw).

Proof. Let U,V ∈ h. Then in view of Lemma 7.1 we have

Hw(U,V) = RURVFa,X(xw) = B(U,La,X,hV) =−〈U,θLa,X,hV〉

with h = xw andLa,X,h defined as in Lemma 7.1. Nowah= axw = xwaw and we see thatτ =
τ(ah) = aw andka(h) = xw. Hence,

−θ ◦La,X,h(V) = θ ◦Ad(x−1
w )◦πh ◦Ad(a−1)◦Ad(xw)◦ad(X)◦Ek ◦Ad(aw)V

= θ ◦πh ◦Ad(x−1
w )◦Ad(a−1)◦Ad(xw)◦ad(X)◦Ek ◦Ad(aw)V

= θ ◦πh ◦Ad(aw)−1◦ad(X)◦Ek ◦Ad(aw)V

= −πh ◦Ad(aw)◦ad(X)◦Ek ◦Ad(aw)V.

The result now follows since Ad(aw) and ad(X) commute.

In the sequel it will be useful to consider the finite subgroup

F = {1,σ ,θ ,σθ} ⊆ Aut(g).

The natural left action ofF ong leavesa invariant, and induces natural left actions ona∗ and on
Σ(g,a). Accordingly, if τ ∈ F andα ∈ Σ(g,a), then

τ(gα) = gτα

If O is an orbit for theF-action onΣ(g,a), we write, in accordance with (35),

gO =
⊕

α∈O

gα .

Then obviously,
g= g0⊕

⊕

O∈Σ(g,a)/F

gO , (53)

with mutually orthogonal summands. Each of the summands isF-invariant, henceσ -invariant.
In particular, if we writeh0 = h∩g0 andhO = h∩gO , then

h= h0⊕
⊕

O∈Σ(g,a)/F

hO , (54)

with F-stable orthogonal summands.
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Lemma 8.7.

(a) The decomposition(54) is orthogonal for〈 · , · 〉.

(b) The decomposition(54) is preserved by Lw.

(c) The decomposition(54) is orthogonal forHw.

Proof. The validity of (a) follows immediately from the fact that relative to the given inner
product, the root spaces are mutually orthogonal, as well asorthogonal tog0.

For (b) we note that the decomposition (53) is preserved by Ad(A), ad(a), Ek andπh. Finally,
in view of Lemma 8.6, the validity of (c) follows from (a) and (b).

It follows from the above lemma that the kernel of Hw decomposes in accordance with (54).
Let vP,X := (kerHw)

⊥∩h. Then in view of (52) we have

vP,X = h⊥X ∩ (h∩nP)
⊥∩h=

⊕

O∈Σ(g,a)/F

vO , (55)

with
vO := h⊥X ∩ (h∩nP)

⊥∩hO (56)

From these definitions it follows that Hw is non-degenerate on each of the spacesvO . Moreover,
Hw is positive definite if and only if the restriction of Hw to vO is positive definite for every
O ∈ Σ(g,a)/F. This in turn is equivalent to the condition that the symmetric mapLw : h→ h has
a positive definite restriction to each of the spacesvO (if vO is zero, we agree that the latter is
automatic). We will now systematically discuss the types oforbitsO for whichvO is non-trivial.

First of all, we note thatα ∈ O =⇒ −α = θα ∈ O . Therefore, we see thatO ∩Σ(P) 6= /0
for all O ∈ Σ(g,a)/F. Let∼ denote the equivalence relation onΣ(P) defined by

α ∼ β ⇐⇒ Fα = Fβ ,

then the mapα 7→ Fα induces a bijection fromΣ(P)/∼ ontoΣ(g,a)/F. The following lemma
summarizes all possibilities for the spacesvO , asO ∈ Σ(g,a)/F.

Lemma 8.8. Let α ∈ Σ(P), and putO = Fα.

(a) If α(X) = 0 thenvO = 0.

(b) If α(X) 6= 0 then we are in one of the following two cases(b.1)and(b.2).

(b.1) α ∈ Σ(P,σ); in this casevO = {V +σ(V) : V ∈ g−α}.

(b.2) α ∈ Σ(P,σθ); in this casevO = hO .

Proof. (a) If α(X) = 0 thenhO ⊆ gX, so thatvO = {0}.
(b) Assume thatα(X) 6= 0. Then it follows thatα /∈ a∗h, so thatα 6= σα. By Lemma 2.2 we

are in one of the cases (b.1) and (b.2).
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We first discuss case (b.1). Thenσα ∈ Σ(P) so thatσα 6= −α andO = Fα consists of the
four distinct elementsα,θα = −α,σα andσθα = −σα. We see thathO consists of sums of
elements of the formU+σ(U) andV+σ(V) with U ∈ gα andV ∈ g−α . The elementsU+σ(U)
belong toh∩nP, whereas the elementsV +σ(V) belong toh⊥X ∩ (h∩nP)

⊥. In view of (56) this
implies the assertion of (b.1).

Next, we discuss case (b.2). ThenO∩Σ(P) = {α,−σα} so thatnP∩h= 0. Since obviously
hO ⊥ hX, we infer the assertion of (b.2).

We will now proceed by explicitly calculating the restrictionsLw|vO
for all these cases. The

following lemma will be instrumental in our calculations.

Lemma 8.9. Let Tw : g→ g be defined by

Tw = ad(X)◦Ad(aw)◦Ek ◦Ad(aw).

Let β ∈ Σ(g,a) and Uβ ∈ gβ .

(a) If β ∈ Σ(P) then Tw(Uβ ) = 0.

(b) If β ∈ −Σ(P) then Tw(Uβ ) = β (X)(a2wβUβ −θUβ ).

Proof. Assumeβ ∈ Σ(P). Thengβ ⊆ nP ⊆ kerEk. Since Ad(aw) preservesgβ , (a) follows.
For (b), assume thatβ ∈ −Σ(P). ThenUβ equalsUβ + θUβ modulonP, so thatEk(Uβ ) =

Uβ +θUβ . Hence,

Tw(Uβ ) = ad(X)◦Ad(aw)[awβ (Uβ +θUβ )]

= ad(X)(a2wβUβ +θUβ )

= β (X)(a2wβUβ −θUβ ).

In our calculations ofLw|vO
, we will distinguish between the cases described in Lemma 8.8.

Case (a) is trivial.

Lemma 8.10(Case b.1). LetO = Fα with α ∈ Σ(P,σ) andα(X) 6= 0. Then

Lw|vO
=

α(X)

2
(a−2wα −a2wα)I .

In particular, this restriction is positive definite if and only if α(X)α(w−1 loga)< 0.

Proof. Let V ∈ g−α and putZ :=V +σ(V). Since−α,−σα ∈ −Σ(P), it follows from Lemma
8.9 that

Tw(Z) = −α(X)(a−2wαV −θV)−α(σX)(a2wασV −θσV)

= α(X)[−a−2wαV +a2wασV +θV −θσV]
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so that

Lw(Z) =−πh ◦Tw(Z) =
α(X)

2
(a−2wα −a2wα)Z.

It follows thatLw restricts to multiplication by a scalar onvO . The sign of this scalar equals the
sign of−α(X)α(w−1 loga). The result follows.

We now turn to the calculation ofLw|vO
in case (b.2), whereO = Fα, with α ∈ Σ(P,σθ) and

α(X) 6= 0. There are two possibilities between which we will distinguish:

(b.2.1) α ∈ Σ(P,σθ)\a∗q,

(b.2.2) α ∈ Σ(P)∩a∗q.

In each of these cases,vO = hO by Lemma 8.10. We will use the notation

v(U) = h(U) = h∩span(F ·U),

for U ∈ gα . In case (b.2.1), the orbitO = Fα consists of the four distinct rootsα,σα,θα and
σθα, and

v(U) = R(U +σ(U))⊕R(σθ(U)+θ(U)).

In case (b.2.2),O = Fα = {α,−α}, and we see that

v(U) = R(U +σ(U)).

In all of these cases, we see that ifU1, . . . ,Um is an orthonormal basis ofgα , then

vO =
m
⊕

j=1

v(U j), (57)

with mutually orthogonal summands.

Lemma 8.11(Case (b.2.1)). Let O = Fα, with α ∈ Σ(P,σθ)\a∗q andα(X) 6= 0. Then Lw|vO
is

positive definite if and only ifα(X)> 0 andα(X)α(w−1 loga)< 0.

Proof. Fix an elementU ∈ gα and putZ1 = U + σ(U) and Z2 = θZ1 = θU + σθU. Then
Tw(U) = 0 by Lemma 8.9, hence

Tw(Z1) = Tw(σU)

= σα(X)(a2wσασ(U)−θσ(U))

= α(X)(θσ(U)−a−2wασ(U)),

from which we see that

Lw(Z1) =−πhTw(Z1) =
α(X)

2
(a−2wαZ1−Z2).
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Likewise,

Lw(Z2) =
α(X)

2
(a−2wαZ2−Z1).

It follows thatLw preserves the subspacev(U) of vO spanned by the orthogonal vectorsZ1,Z2

and that the restrictionLw|v(U) has the following matrix with respect to this basis:

mat(Lw|v(U)) =
α(X)

2

(

a−2wα −1
−1 a−2wα

)

This matrix is positive definite if and only if both its trace and determinant are positive. This is
equivalent to

α(X)> 0 and α(X)(a−4wα −1)> 0.

It follows thatLw is positive definite on the subspacev(U) if and only if the inequalitiesα(X)> 0
andα(X)α(w−1 loga)< 0 are valid.

Let U1, . . . ,Um be an orthonormal basis forgα . Then by (57) we see that mapLw is positive
definite if and only if all restrictionsLw|v(U j ) are positive definite. This is true if and only if

α(X)> 0 andα(X)α(w−1 loga)< 0.

Lemma 8.12 (Case (b.2.2)). Let O = Fα with α ∈ Σ(P)∩ a∗q and α(X) 6= 0. Then Lw|vO
is

positive definite if and only if the following two conditionsare fulfilled.

(a) α ∈ Σ(P)+∩a∗q =⇒ α(X)α(w−1 loga))< 0.

(b) α ∈ Σ(P)−∩a∗q =⇒ α(X)> 0.

Proof. We recall thatvO = hO in this case and writevO,+ = vO ∩ k andvO,− = vO ∩p. Then

vO = vO,+⊕vO,−,

with orthogonal summands. We will show thatLw preserves this decomposition, and determine
when both restrictionsLw|vO ,±

are positive definite.
Let U± ∈ gα,± and putZ± =U±+σ(U±). ThenZ± ∈ vO,±, and every element ofvO,± can

be expressed in this way.
By a straightforward computation, involving Lemma 8.9, we find

Lw(Z±) =
1
2

α(X)(a−2wα ∓1)Z±.

This shows thatLw acts by a real scalarC± on vO,±. The restriction ofLw to vO± is positive
definite if and only if the restrictions ofLw to both subspacesvO,± are positive definite. The
latter condition is equivalent to

vO,+ 6= 0 =⇒ C+ > 0 and vO,− 6= 0 =⇒ C− > 0.

The spacevO,± is non-trivial if and only ifgα,± 6= 0, which in turn is equivalent toα ∈ Σ(P)±∩
a∗q. On the other hand, the sign ofC+ equals that of−α(X)α(w−1 loga) whereas the sign ofC−

equals that ofα(X). From this the desired result follows.

37



Completion of the proof of Proposition 8.4.First assume that Hw is positive definite. Then
Lw restricts to a positive definite symmetric map on each of the spacesvO for O = Fα, α ∈ Σ(P).
First assume thatα ∈ Σ(P)+. If α(X) = 0, then

α(X)α(w−1 loga)≤ 0 (58)

holds. Ifα(X) 6= 0, we are in one of the cases (b.1) or (b.2) of Lemma 8.8. In the latter case, we
are either in the subcase (b.2.1) or in (b.2.2) withα ∈ Σ(P)+∩a∗q. In all of these cases, inequality
(58) is valid. We conclude that assertion (a) of the proposition is valid.

For the validity of assertion (b), assume thatα ∈ Σ(P)−. If α(X) = 0, then

α(X)≥ 0. (59)

If α(X) 6= 0, then we must be in case (b.2) of Lemma 8.8, sinceΣ(P)−∩Σ(P,σ) = /0. We are
either in subcase (b.2.1) or in subcase (b.2.2) withα ∈ Σ(P)+∩a∗q. In both subcases, (59) holds.
This establishes condition (b) of the proposition, and the implication in one direction.

For the converse implication, assume that conditions (a) and (b) of the proposition hold. Let
α ∈ Σ(P) and putO = Fα. Then it suffices to show that Hw is positive definite onvO .

If α(X) = 0, thenvO = 0 by Lemma 8.8 and it follows that Hw is positive definite onvO .
Thus, assume thatα(X) 6= 0. Then by regularity of loga, the expressionα(X)α(w−1 loga) is
different from zero. Hence if any of the inequalities (58) or(59) holds, it holds as a strict in-
equality.

In case (b.1),α ∈ Σ(P,σ)⊆ Σ(P)+ so that (58) is valid. Therefore, Hw|vO
is positive definite

by Lemma 8.10. In case (b.2.1),α ∈ Σ(P,σθ) \ a∗q ⊆ Σ(P)+∩Σ(P)− so that (58) and (59) are
both valid. Hence, Hw|vO

is positive definite by Lemma 8.11.
Finally, assume we are in case (b.2.2). Thenα ∈ a∗q, hence it follows from hypotheses (a)

and (b) of the proposition that conditions (a) and (b) of Lemma 8.12 are fulfilled. Hence, Hw|vO

is positive definite.

Corollary 8.13. Let w∈ WK∩H . Then the function Fa,X as well as the signature and rank of its
Hessian are constant on the immersed submanifold wHX(NP∩H).

Proof. As the groupH is essentially connected,HX = ZK∩H(aq)H◦
X. Let xw be a representative

of w in NK∩H . SinceZK∩H(aq) is normal inNK∩H(aq), it follows that

wHX(NP∩H) = xwZK∩H(aq)H
◦
X(NP∩H) = ZK∩H(aq)xwH◦

X(NP∩H).

The functionFa,X : H → R is left ZK∩H(aq)- and right(NP∩H)-invariant. Hence, it suffices
to prove the assertions for the setxwH◦

X of critical points. This set is connected, so thatFa,X is
constant on it. From Lemma 8.1 it follows that rank and signature of its Hessian remain constant
along this set as well.

As in (10) we define
Ω := conv(WK∩H · loga)+Γ(P).
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Lemma 8.14.Let a∈ Areg
q and X∈ aq. Assume that the function Fa,X has a local minimum at the

critical point h∈ Ca,X. Then for every U∈ Ω

〈X,U〉 ≥ 〈X,HP,q(ah)〉.

In particular, Ω lies on one side of the hyperplaneHP,q(ah)+X⊥.

Proof. The critical pointh belongs to a connected immersed submanifold of the formxwH◦
X(H∩

NP). All points of this submanifold are critical forFa,X, so thatFa,X is constant along it. We see
that

Fa,X(h) = Fa,X(xw) = 〈X,HP,q(x
−1
w axw)〉= 〈X,w−1 loga〉.

The Hessian ofFa,X at the critical pointh must be positive semidefinite. It now follows from
Proposition 8.4 that

(a) ∀α ∈ Σ(P)+ : α(X)α(w−1(loga))≤ 0;

(b) ∀α ∈ Σ(P)− : α(X)≥ 0.

By (a) and Lemma 8.17 below (applied to−X), it follows that

〈X,U1〉 ≥ 〈X,w−1 loga〉= Fa,X(h),

for all U1 ∈ conv(WK∩H ·w−1 loga). From (b) it follows that〈X,Hα〉= 〈Hα ,Hα〉α(X)/2≥ 0 for
all α ∈ Σ(P)−, so that

〈X,U2〉 ≥ 0 (∀U2 ∈ Γ(P)).

Since every elementU ∈ Ω may be decomposed asU = U1+U2 with U1 andU2 as above, the
assertion follows.

Remark8.15. It can be readily shown that the converse implication also holds. Indeed if for
everyU ∈ Ω

〈X,U〉 ≥ 〈X,w−1(loga))〉,

then the two conditions of Proposition 8.4 hold.

Lemma 8.16.The setΣ(P)+ consists of all rootsα ∈ Σ(P) with α ∈ a∗h or α|aq ∈ Σ(g,aq)+.

Proof. In view of Definition 8.3 it suffices to show that forα ∈ Σ(g,a) \ (a∗h ∪ a∗q) we have
α|aq ∈ Σ(g,aq)+. Assumeα /∈ a∗h∪ a∗q. Thenα andσθα are distinct roots that restrict to the
same root̄α of Σ(g,aq). Thus, the sumgα +σθgα is direct and contained ingᾱ and we see that
gᾱ ,+ 6= 0.

Lemma 8.17.Let P∈ P(A). Let X,Y ∈ aq and assume thatα(X)α(Y)≥ 0 for all α ∈ Σ(P)+.
Then

〈X,U〉 ≤ 〈X,Y〉, for all U ∈ conv(WK∩H ·Y).
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Proof. In view of Lemma 8.16, the hypothesis is equivalent to

α(X)α(Y)≥ 0

for all rootsα ∈ Σ(g,aq)+. We may now fix a Weyl chambera+q for the root systemΣ(g,aq)+
such thatX andY belong to the closure ofa+q . Then it is well known that〈X,wY〉 ≤ 〈X,Y〉 for
all w in the reflection groupW(Σ(g,aq)+) generated byΣ(g,aq)+. Since this reflection group is
equal toWK∩H , by Proposition 2.2 in [4], the result follows.

9 Reduction by a limit argument

Before turning to the proof of our main theorem, Theorem 10.1, we will first prove a lemma
that reduces the validity of the theorem to its validity under the additional assumption that the
elementa be regular inAq. We assume thatP ∈ P(A) and recall the definition of the closed
convex polyhedral coneΓ(P) given in Definition 1.4.

Lemma 9.1. Assume that the assertion

prq◦HP(aH) = conv(WK∩H · loga)+Γ(P) (60)

is valid for all a∈ Areg
q . Then assertion (60) holds for all a∈ Aq.

Proof. Assume the assertion is valid for alla∈ Areg
q , and leta∈ Aq be an arbitrary fixed element.

Fix a sequence(a j) j≥1 in Areg
q with limit a. We will establish the equality (60) fora.

First we will show that the set on the left-hand side of the equality is contained in the set on
the right-hand side. For this, assume thath∈ H. By the validity of (60) fora j in place ofa, there
exist, for eachj ≥ 1, elementsλw, j ∈ [0,1] with ∑w∈WK∩H

λw, j = 1 and elementsγ j ∈ Γ(P) such
that

HP,q(a jh) = ∑
w∈WK∩H

λw, jw(loga j)+ γ j .

By passing to a subsequence of indices we may arrange that thesequence(λw, j) j converges with
limit λw ∈ [0,1] for eachw∈ WK∩H . It follows that the sequence(γ j) must have a limitγ ∈ aq

such that
HP,q(ah) = lim

j→∞
HP,q(a jh) = ∑

w∈WK∩H

λww(loga)+ γ.

By taking the limit we see that∑wλw = 1 and sinceΓ(P) is closed,γ ∈ Γ(P). Hence,HP,q(ah) ∈
conv(WK∩H · loga)+Γ(P), and we obtain the desired first inclusion.

For the converse inclusion, assume thatY ∈ conv(WK∩H · loga)+Γ(P). Then there exist
γ ∈ Γ(P) andλw ∈ [0,1] with ∑w∈WK∩H

λw = 1 such that

Y = ∑
w∈WK∩H

λww(loga)+ γ.

Put
Yj = ∑

w∈WK∩H

λww(loga j)+ γ.
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Then for everyj there existsh j ∈ H such thatHP,q(a jh j) =Yj . The sequence(Yj) is convergent,
hence contained in a compact set ofaq. Likewise, the sequence(a j) is contained in a compact
subsetA ⊆ Aq. By Corollary 4.12 (b) there exists a compact subsetK of H/H ∩P such that
h j(H∩P) ∈ K for all j. By passing to a subsequence we may arrange thath j(H∩P) converges
in H/H ∩P. By continuity of the induced mapHP,q : H/H ∩P → aq, see (21), it now follows
that

Y = lim
j→∞

Yj = lim
j→∞

HP,q(a jh j) = HP,q(ah) ∈ HP,q(aH).

10 Proof of the main theorem

In this section we will prove our main result. ForP∈P(A) we recall the definition of the closed
convex polyhedral coneΓ(P) given in Definition 1.4.

Theorem 10.1.Let P be a minimal parabolic subgroup of G containing A and leta∈ Aq. Then

prq◦HP(aH) = HP,q(aH) = conv(WK∩H · loga)+Γ(P). (61)

The proof of our main theorem proceeds by induction, for whose induction step the following
lemma is a key ingredient.

If X ∈ aq, we denote byGX the centralizer ofX in G. This group belongs to the Harish-
Chandra class and isσ -stable. Moreover, by [4, Prop. 2.3], the centralizerHX := H ∩GX is an
essentially connected open subgroup of(GX)

σ . From

P∩GX = (ZK(a)ANP)∩ (KXANP,X) = ZK(a)ANP,X,

see (30) for notation, we see thatPX := P∩GX is a minimal parabolic subgroup ofGX.
We agree to writeΓ(PX) for the cone inaq spanned by prqHα , for α ∈ Σ(P)− with α(X) = 0.

Furthermore, for a givena∈ Aq, we defineΩa,X = ΩX by

ΩX :=
⋃

w∈WK∩H

ΩX,w, where (62)

ΩX,w := conv(WK∩HX ·w
−1 loga)+Γ(PX). (63)

We writeΩ := Ω0 and note that this set equals conv(WK∩H · loga)+Γ(P) hence containsΩX

for everyX ∈ aq.

Remark10.2. It is clear from the definition that the setΩX,w, for w∈WK∩H , is a closed convex
polyhedral set, contained in the affine subsetw−1 loga+ span{Hα : α ∈ Σ(gX,aq)} of aq. In
particular,

ΩX,w ⊆ w−1 loga+X⊥.
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Lemma 10.3. Let X∈ S, a∈ Areg
q and letCa,X ⊆ H be the set of critical points of the function

Fa,X : H → R; cf. Lemma 5.5 and(38). If the analogue of the assertion of Theorem 10.1 holds
for the data GX, HX, KX and PX in place of G,H,K and P then

HP,q(aCa,X) = ΩX. (64)

Proof. Using the characterization ofCa,X given in Lemma 5.5, we obtain

HP,q(aCa,X) =
⋃

w∈WK∩H

HP,q(awHX(NP∩H))

=
⋃

w∈WK∩H

HP,q(a
wHX), (65)

whereaw = w−1aw is regular inAq, for eachw∈WK∩H .
By the compatibility of the Iwasawa decompositions for the two groupsG andGX we see

that the restriction ofHP,q : G→ aq to GX equals the similar projectionGX → aq associated with
PX; we denote the latter byHPX,q. Hence,

HP,q(a
wHX) = HPX,q(a

wHX).

In view of the hypothesis that the convexity theorem holds for the dataGX,HX,PX, we infer that

HP,q(a
wHX) = conv(WK∩HX · logaw)+Γ(PX) = ΩX,w.

In view of (65) and (62) we now obtain (64).

Proof of Theorem 10.1.The proof relies on an inductive procedure, with induction over the rank
of the root systemΣ(g,aq). The legitimacy of this procedure has been discussed at length in [4,
Sect. 2].

We start the induction with rkΣ(g,aq) = 0. In this case,

∀α ∈ Σ(g,a) : α|aq = 0. (66)

This implies thataq is central ing. As G is of the Harish-Chandra class, Ad(G) ⊂ Int(gC) so
that G centralizesaq. HenceAq is central inG. Furthermore, (66) also implies that every root
α ∈ Σ(g,a) is fixed byσ , so thatgα is σ -invariant. This implies that the Iwasawa decomposition
G= KANP is σ -stable, so thatH = (H ∩K)(H ∩A)(H ∩NP). We conclude that

HP,q(aH) = HP,q(Ha) = HP,q(H ∩A)+ loga= loga. (67)

On the other hand, it follows from (66) thatΣ(P)− = /0, so thatΓ(P) = {0}. Furthermore, since
G centralizesaq, we see thatWK∩H = {e}, so that

conv(WK∩H · loga)+Γ(P) = loga. (68)

From (67) and (68) we see that the equality (61) holds in case rkΣ(g,aq) = 0.
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Now assume thatm is a positive integer, that rkΣ(g,aq) = m and that the assertion of the
theorem has already been established for the case that rkΣ(g,aq)< m.

By Lemma 9.1 it suffices to prove the validity of (61) under theassumption thata ∈ Areg
q .

We will first do so under the additional assumption thatΣ(g,aq) spansa∗q. In the end, the general
case will be reduced to this.

Our assumption thatΣ(g,aq) is spanning guarantees that for each non-zeroX ∈ aq not all
roots of Σ(g,aq) vanish onX. Therefore, the rank ofΣ(gX,aq) is strictly smaller thanm=
rkΣ(g,aq).By the induction hypothesis, the convexity theorem holds for (GX,HX,KX,PX). Hence,
by Lemma 10.3 we have that

HP,q(aCa,X) = ΩX. (69)

By Remark 10.2 the complementaq\ΩX is open and dense inaq.
Let S0 ⊆ Sbe a finite subset as in Lemma 6.6. Then it follows by application of Lemma 10.3

that
HP,q(aCa) = ∪X∈S0ΩX. (70)

In particular, the complement of this set inaq is dense. Moreover, it follows from (70) and the
text below (63) that

HP,q(aCa)⊆ Ω = conv(WK∩H · loga)+Γ(P). (71)

From Lemma 6.8 we see thatHP,q(aH) andHP,q(aCa) are closed subsets ofaq and thatHP,q(aH)\
HP,q(aCa) is an open and closed subset of the (open and dense) subsetaq \HP,q(aCa), hence a
union of connected components of the latter set. Lemma 6.9 ensures that at least one connected
component ofaq\HP,q(aCa) must belong toHP,q(aH)\HP,q(aCa).

From (71) it follows that
aq\Ω ⊆ aq\HP,q(aCa).

Now aq\Ω is connected hence must be contained in a connected component Λ of aq\HP,q(aCa).
There are two possibilities:

(a) Λ ⊆ HP,q(aH)\HP,q(aCa);

(b) Λ∩ (HP,q(aH)\HP,q(aCa)) = /0.

From its definition, one sees thatΩ is strictly contained in a half-space, which implies thataq\Ω,
and thereforeΛ, must contain a line ofaq. From Corollary 4.15 we know thatHP,q(aH) does not
contain such a line, so that we may exclude case (a) above. From (b) it follows that

(aq\Ω)∩HP,q(aH)\HP,q(aCa) = /0,

which implies thatHP,q(aH)\HP,q(aCa)⊆ Ω. Combining this with (71) we conclude that

HP,q(aH)⊆ Ω. (72)

We now turn to the proof of the converse inclusion.
In the above we concluded that the setHP,q(aH)\HP,q(aCa) is open and closed as a subset of

aq\HP,q(aCa). In view of (72) the set is also open and closed as a subset ofΩ\HP,q(aCa). Thus,
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HP,q(aH) \HP,q(aCa) is a union of connected components ofΩ \HP,q(aCa). We will establish
the converse of (72) by showing that all connected components of Ω \HP,q(aCa) are contained
in HP,q(aH).

Again by the use of Lemma 6.9 we infer that at least one connected componentΛ1 of Ω \
HP,q(aCa) is contained inHP,q(aCa). Arguing by contradiction, assume this were not the case
for all components. Then there exists a second connected componentΛ2 of Ω \HP,q(aCa) =
Ω\∪X∈S0ΩX such that

Λ2∩HP,q(aH) = /0. (73)

In view of Remark 10.2, we may apply Lemma 10.4 below to the setΩ and the finite collection
of subsetsΩX,w, whereX ∈ S0 andw ∈ WK∩H , and obtain a line segment with the properties
of Lemma 10.4, connectingΛ1 andΛ2. By following intersections along this line segment, we
see that we may assume that the connected componentsΛ1 and Λ2 exist with the additional
property that they are adjacent, i.e., there exists a codimension 1 subsetΩX,w ⊆ Ω together with
a pointY ∈ ΩX,w and a positive numberε > 0 such thatB(Y;ε)\ΩX,w consists of two connected
componentsΛ′

1 andΛ′
2 such thatΛ′

j ⊆ Λ j for j = 1,2. In particular, this implies thatΛ′
1 and

Λ′
2 are on different sides of the hyperplane aff(ΩX,w) = Y+X⊥. We may replaceX by −X if

necessary, to arrange thatY+ tX ∈ Λ1 for t ↓ 0. Then

〈X, · 〉 ≥ 〈X,Y〉 on cl(Λ′
1). (74)

By (69) there exists a pointh∈Ca,X such thatHP,q(ah)=Y. For a sufficiently small neighborhood
U of h in H we haveHP,q(aU)⊆B(Y;ε). Combined with (73) this impliesHP,q(aU)⊆ cl(Λ′

1). In
view of (74) we now infer thatFa,X ≥ 〈X,Y〉= Fa,X(h) onU. Hence,Fa,X has a local minimum
at h. By what we established in Lemma 8.14 this implies thatΩ should be on one side of the
hyperplaneY+X⊥, contradicting the observation thatΛ′

1 andΛ′
2 are non-empty open subsets on

different sides of this hyperplane, but both contained inΩ.
In view of this contradiction we conclude that all components ofΩ\HP,q(aCa) are contained

in HP,q(aH).
This finishes the proof in caseΣ(g,aq) has rankmand spansa∗q. We finally consider the case

with rkΣ(g,aq) = m in general.
Let c be the intersection of the root hyperplanes kerα ⊆ aq for α ∈ Σ(g,aq). Thenc is con-

tained inaq and central ing. SinceG is of the Harish-Chandra class, Ad(G) is contained in
Int(gC), hence centralizesc. Therefore, the subgroupC := exp(c) is central inG.

Let 8p be the orthocomplement ofc in p. Then 8g = k⊕ 8p is an ideal ofg which is comple-
mentary toc.

By the Cartan decomposition and the fact thatc is central, it follows that the mapK× 8p×c→
G, (k,X,Z) 7→ kexpX expZ is a diffeomorphism onto. It readily follows that8G = K exp8p is
a group of the Harish-Chandra class, with the indicated Cartan decomposition for the Cartan
involution 8θ = θ |8G. The restricted map8σ := σ |8G is an involution of8G which commutes
with 8θ . The group8H := H is an open subgroup of(8G)

8σ , which is essentially connected.
Furthermore,8aq := 8p∩aq is maximal abelian in8p∩q and8a= 8p∩a is maximal abelian in8p.
The root systemΣ(8g, 8aq) consists of the restrictions of the roots fromΣ(g,aq), hence spans the
dual of 8aq.
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The group8P = 8G∩P is a minimal parabolic subgroup of8G containing8A. We note that
8P= M8ANP.

We note thatAreg
q ≃ 8Areg

q ×C. Let a∈ Areg
q . Then we may writea= 8a ·c, with 8a∈ 8Areg

q and
c∈C. By the convexity theorem for8G and sincec is central inG, it now follows that

HP,q(aH) = HP,q(
8aHc)

= H8P,q(
8aH)+ logc

= conv(WK∩H · log8a)+Γ(8P)+ logc

= conv(WK∩H · loga)+Γ(P).

We recall that the relative interior of a convex subsetS of a finite dimensional real linear
space is defined to be the interior ofS in its affine span aff(S).

Lemma 10.4.Let V be a finite dimensional real linear space and C⊆V a closed convex polyhe-
dral subset with non-empty interior. Let Ci (i ∈ {1, . . . ,n}) be closed convex polyhedral subsets
of C, of positive codimension. Then the following statements are true.

(a) The complement C′ :=C\∪n
i=1Ci is dense in C.

(b) Let A and B be open subsets of V contained in C′. Then for each a∈ A there exists b∈ B
such that for each i with Ci ∩ [a,b] 6= /0 the following assertions are valid,

(1) codim(Ci) = 1;

(2) [a,b]∩Ci consists of a single point p which belongs to the relative interior of Ci .
Furthermore, if p∈Cj for some1≤ j ≤ n, thenaff(Cj) = aff(Ci).

Proof. Standard, and left to the reader.

A Proof of Lemma 2.11

Finally, we prove Lemma 2.11.
We begin by showing that the result holds forG a complex semi-simple Lie group, connected

with trivial center. That proof will be based on the following general lemma, inspired by [23,
Prop. 1].

Let h be a complex abelian Lie algebra and letN be the class of complex finite dimen-
sional nilpotent Lie algebrasn, equipped with a representation ofh by derivations, such that the
following conditions are fulfilled

(a) the representation ofh in n is semi-simple;

(b) all weight spaces ofh in n have complex dimension one.

If n belongs to the classN , we writeΛ(n) for the set ofh-weights inn. If λ ∈ Λ(n), then the
associated weight space is denoted bynλ .
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Lemma A.1. Let n ∈ N and let N be the connected, simply-connected Lie group with Lie
algebran. Letλ1, . . . ,λm be the distinct weights ofh in n. Then the map

ψ : (X1, . . . ,Xm) 7→ expX1 · · · · ·expXm

defines a diffeomorphism
nλ1

× . . .×nλm

≃
−→ N.

Proof. We will use induction on dimC(n). If dimC n = 1 thenn is abelian and the result holds
trivially.

Next, assume thatm> 1 and assume that the result has been established forn with dimCn<
m. Assume thatn ∈ N has dimensionm.

Denote byn1 the center ofn, which is non-trivial. Ifn1 = n thenn is abelian and the result is
trivially true. Thus, we may as well assume that 0( n1 ( n. In particular, this implies that both
n1 andn/n1 have dimensions at mostm−1. Put l := dimn1.

The idealn1 is stable under the action ofh and it is readily verified thatn1 andn/n2 with the
naturalh-representations belong toN . Furthermore, since all weight spaces are 1-dimensional,
we see that

Λ(n) = Λ(n1)⊔Λ(n/n1).

We will first prove thatψ is a diffeomorphism under the assumption that theh-weights inn are
numbered in such a way that

Λ(n1) = {λ1, . . . ,λl} and Λ(n/n1) = {λl+1, . . . ,λm}.

SinceN is simply-connected, the map exp :n→ N is a diffeomorphism; hence,N1 := exp(n1)
is the connected subgroup ofN with Lie algebran1. In particular,N1 is simply connected as
well. Sincen1 is an ideal,N/N1 has a unique structure of Lie group for which the natural map
N → N/N1 is a Lie group homomorphism. We now observe thatN → N/N1 is a principal fiber
bundle with fiberN1. By standard homotopy theory we have a natural exact sequence

π1(N)→ π1(N/N1)→ π0(N1).

SinceN is simply-connected, andN1 connected, we conclude thatN/N1 is the simply connected
group with Lie algebran/n1.

By the induction hypothesis, the maps

ψn1 : nλ1
× . . .×nλl

→ N1

ψn/n1
: (n/n1)λl+1

× . . .× (n/n1)λm
→ N/N1

are diffeomorphisms. For everyj ∈ {l +1, . . . ,m} the canonical projectionn→ n/n1 induces the
isomorphisms of weight spacesnλ j

→ (n/n1)λ j
. Let ψ̄ : nλl+1

× . . .×nλm
→ N/N1 be defined by

ψ̄(Xl+1, . . . ,Xm) = expXl+1 · . . . ·expXm ·N1. Then the following diagram commutes:

nλl+1
× . . .×nλm

ψ̄
−−−−−−−→ N/N1

≃





y

∥

∥

∥

(n/n1)λl+1
× . . .× (n/n1)λm

ψ
n/n1−−−−−−−→ N/N1
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From this we infer thatψ̄ is a diffeomorphism. We now obtain that the mapψ̃ : nλl+1
× . . .×

nλm
×N1 → N,

(Xl+1, . . . ,Xm,n1) 7→ (expXl+1 · . . . ·expXm)n1,

is a diffeomorphism ontoN. Since

ψ(X1, . . . ,Xl ,Xl+1, . . . ,Xm) = ψ̃(Xl+1, . . . ,Xm,ψn1(X1, . . . ,Xl))

it follows thatψ is a diffeomorphism as well. Clearly, the above proof works for every enumer-
ation of the weights inΛ(n/n1). Since the weight spaces(n1)λ for λ ∈ Λ(n1) are all central in
n, we conclude that the result holds for any enumeration of the weights inΛ(n).

Corollary A.2. Let G be a connected complex semi-simple Lie group andnB the nilpotent radical
of a Borel subalgebrab of g. Let h be a Cartan subalgebra contained inb. Let n1, . . . ,nk be
linearly independent subalgebras ofnB, each of which is a direct sum ofh-root spaces, and
assume that their direct sumn := n1 ⊕ . . .⊕ nk is again a subalgebra. Put N:= expn and
Nj := exp(n j), for 1≤ j ≤ k.

Then the multiplication map
µ : N1× . . .×Nk → N

is a diffeomorphism.

Proof. This is an immediate consequence of Lemma A.1.

Proof of Lemma 2.11.We assume thatG is a real reductive Lie group of the Harish-Chandra
class. Define

g1 := [g,g],

the semi-simple part of the Lie algebra ofG. Let G1 be the analytic subgroup ofG with Lie
algebrag1. Since the nilpotent radicalNP of P is completely contained inG1, we may assume
from the start thatG= G1, i.e. G is connected semi-simple with finite center.

Since Ad is a finite covering homomorphism fromG onto Aut(g)◦, mappingN diffeomor-
phically onto Ad(N), whereas Aut(g)◦ is a connected real form of Int(gC), we may assume that
G is a connected real form of a connected complex semi-simple Lie groupGC with trivial center.
Let τ be the conjugation onGC, such that

G= (Gτ
C)

◦.

Let gC denote the Lie algebra ofGC, thengC = g⊕ ig. Note that the complexificationnPC of nP

equalsnP⊕ inP and that
NP = (NPC)

τ .

Take a Cartan subalgebra ofgC, containingaC = a⊕ ia. It is of the form

hC = tC⊕aC,
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wheret is a maximal abelian subspace ofm := Zk(a). Sincet centralizesa, all a-root spaces are
invariant under ad(t). This implies that the subalgebrasn jC := n j ⊕ in j ( j ∈ {1, . . . ,k}) of nPC

are direct sums ofhC-root spaces. Furthermore, their direct sum equalsnC = n⊕ in, hence is a
subalgebra. Finally, there exists a Borel subalgebra containing hC+nC. By Corollary A.2, the
multiplication map

µC : N1C× . . .×NkC → NC

is a diffeomorphism. It readily follows thatµC restricts to a bijection from(N1C)
τ ×·· ·×(NkC)

τ

onto(NC)τ . Since

(NC)
τ = N and (NjC)

τ = Nj for all 1≤ j ≤ k,

it follows thatµ is a bijective embedding fromN1×·· ·×Nk ontoN, hence a diffeomorphism.

B The case of the group

Every semisimple Lie groupG can be viewed as a semi-simple symmetric space for the group
G×G. In this section we investigate what our convexity theorem means for this particular exam-
ple. An independent proof for this case is presented in [3, Section 3.2.2].

More generally, letG be real reductive group of the Harish-Chandra class,θ a Cartan invo-
lution, K := Gθ the associated maximal compact subgroup andg = k⊕p the associated Cartan
decomposition as in Section 1. Leta be a maximal abelian subspace ofp, A= expa andΣ(g,a)
the associated root system.

Let
G′ := G×G.

Thenθ ′ := θ × θ is a Cartan decomposition ofG′ with associated maximal compact subgroup
K′ := K ×K. The involution

σ ′ : G′ → G′, (x,y) 7→ (y,x),

commutes withθ ′. Its fixed point groupH ′ equals the diagonal inG× G and is essentially
connected inG′, see [3, Example 2.3.7].

The associated spacep′∩q′ equals{(X,−X) : X ∈ p} and has

a′q := {(X,−X) : X ∈ a}

as a maximal abelian subspace. Its root system is given by

Σ(g′,a′q) = Σ(g,a)×{0}∪{0}×Σ(g,a).

Finally,a′q is contained in the maximal abelian subspacea′ := a×a of p′. We putA′ := exp(a′) =
A×A. Note that the projection map prq : a′ → a′q is given by

prq(U,V) = (1
2(U −V), 1

2(V −U)). (75)
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Let P andQ be minimal parabolic subgroups ofG containingA, i.e. P,Q ∈ P(A). Then
P×Q is a minimal parabolic subgroup ofG′ containingA′. Moreover, any minimal parabolic
subgroup ofG′ containingA′ is of this form. The positive system ofa′-roots associated with
P×Q is given by

Σ(P×Q) := Σ(P)×{0}∪{0}×Σ(Q),

whereΣ(P) andΣ(Q) are positive systems forΣ(g,a) corresponding to the minimal parabolic
subgroupsP andQ.

In the present setting, our main result, Theorem 10.1, tellsus that fora∈ A′
q we have

prq◦HP×Q(aH′) = conv(WK′∩H ′ · loga)+Γ(P×Q).

In order to determine the coneΓ(P×Q), we need to determine the setΣ(P×Q,σ ′θ ′) of roots
γ ∈ Σ(P×Q) for which σ ′θ ′γ ∈ Σ(P×Q). Let γ = (α,0) be such a root. Thenα ∈ Σ(P) and
σ ′θ ′γ = (0,−α) must be an element of{0}×Σ(Q) so thatα ∈ Σ(P)∩Σ(Q̄). Likewise, if (0,β )
belongs to this set thenβ ∈ Σ(Q)∩Σ(P̄). We thus see that

Σ(P×Q,σθ ′) = (Σ(P)∩Σ(Q̄))×{0}∪{0}× (Σ(P̄)∩Σ(Q)).

Notice that there are no rootsγ ∈ Σ(P×Q) for which σ ′θ ′γ = γ. Thus,Σ(P×Q)− = Σ(P×
Q,σ ′θ ′) and we conclude that

Γ(P×Q) = Γa′q
(Σ(P×Q,σ ′θ ′)) = ∑

γ∈Σ(P×Q,σ ′θ ′)

R≥0prqH ′
γ .

If γ is of the form(α,0) thenH ′
γ = (Hα ,0) and if γ = (0,α), thenH ′

γ = (0,Hα). In view of (75)
we now obtain

Γ(P×Q) =

= ∑
α∈Σ(P)∩Σ(Q̄)

R≥0(
1
2Hα ,−

1
2Hα)+ ∑

α∈Σ(P̄)∩Σ(Q)

R≥0(−
1
2Hα ,

1
2Hα)

= ∑
α∈Σ(P)∩Σ(Q̄)

R≥0(Hα ,−Hα)+ ∑
α∈Σ(P̄)∩Σ(Q)

R≥0(H−α ,−H−α)

= ∑
α∈Σ(P)∩Σ(Q̄)

R≥0(Hα ,−Hα)+ ∑
α∈Σ(P)∩Σ(Q̄)

R≥0(Hα ,−Hα)

= ∑
α∈Σ(P)∩Σ(Q̄)

R≥0(Hα ,−Hα).

We will identify a′q with a via the map(X,−X) 7→ X. Thus,

Γa′q
(Σ(P×Q)) = Γa(Σ(P)∩Σ(Q̄)).

For Q = P, the resulting cone is the zero one, and we retrieve the non-linear convexity the-
orem of Kostant [22] for the groupG. At the other extreme, forQ = P̄, the resulting cone is
maximal, and we retrieve the convexity theorem of [4] for thepair (G′,H ′).
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Takinga= ewe obtain, with the same identificationa′q ≃ a,

prq◦HP×Q(H
′) = Γa(Σ(P)∩Σ(Q̄)) (76)

On the other hand,

prq◦HP×Q(H
′) = prq◦HP×Q(diag(G×G))

= prq({(HP(g),HQ(g)) : g∈ G})

= prq({(HP(kanp),HQ(kanp)) : k∈ K,a∈ A,np ∈ NP})

= prq({(loga,HQ(anpa−1)+ loga) : a∈ A,np ∈ NP})

= prq({(loga,HQ(np)+ loga) : a∈ A,np ∈ NP})

= {(−1
2HQ(np),

1
2HQ(np)) : np ∈ NP}.

Using the same identificationa′q ≃ a as above, we conclude that

prq◦HP×Q(H
′) = −

1
2
HQ(NP)

= −1
2HQ((NP∩ N̄Q)(NP∩NQ))

= −1
2HQ(NP∩ N̄Q).

Thus, by equation (76), we obtain that

−
1
2
HQ(NP∩ N̄Q) = Γa(Σ(P)∩Σ(Q̄)),

which is equivalent to
HQ(NP∩ N̄Q) = Γa(Σ(P̄)∩Σ(Q)).

Thus we retrieve the identity of Lemma 4.9, which, of course,was used in the proof of our main
theorem.
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