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Examples and counter-examples of log-symplectic manifolds

Gil R. Cavalcanti

Abstract

We study topological properties of log-symplectic structures and produce examples of compact
manifolds with such structures. Notably, we show that several symplectic manifolds do not admit
bona fide log-symplectic structures and several bona fide log-symplectic manifolds do not admit
symplectic structures; for example, #mCP 2#nCP 2 has bona fide log-symplectic structures
if and only if m,n > 0, while they only have symplectic structures for m = 1. We introduce
surgeries that produce log-symplectic manifolds out of symplectic manifolds and show that any
compact oriented log-symplectic 4-manifold can be transformed into a collection of symplectic
manifolds by reversing these surgeries. Finally, we show that if a compact manifold admits an
achiral Lefschetz fibration with homologically essential fibres, then the manifold admits a log-
symplectic structure. Then, using results of Etnyre and Fuller (Int. Math. Res. Not. (2006), art.
ID 70272), we conclude that if M is a compact, simply connected 4-manifold then M#(S2 × S2)
and M#CP 2#CP

2
have log-symplectic structures.
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1. Introduction

A log-symplectic structure on a manifold M2n is a Poisson structure π ∈ X2(M) for which πn

has only nondegenerate zeros. This condition is weaker than requiring that M is outright
symplectic (in which case πn would not vanish), and yet it is only a little less so, since
it still requires that π is generically symplectic and that its failure to be so everywhere
is as well behaved as one could ask. If we want to rule out log-symplectic structures
which are in fact symplectic, we refer to them as bona fide or nonsymplectic log-symplectic
structures.

These structures have been classified on surfaces by Radko [17] and already in dimension
two; there is a marked contrast with the symplectic case, namely, every surface (orientable
or not) has a log-symplectic structure. Recently, log-symplectic structures have received
renewed attention: Guillemin, Miranda and Pires [10] proved a local form for the Pois-
son structure in a neighbourhood of the zeros of πn, and Gualtieri and Li [8] managed
to give a clear geometrical description of symplectic groupoids integrating log-symplectic
structures.
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Figure 1. Table showing the values of m and n for which mCP 2#nCP 2 has symplectic or
bona fide log-symplectic structures. In the symplectic case, we require that the orientation
determined by the symplectic structure agrees with the orientation of the manifold. In the log-
symplectic case, since these structures do not induce a preferred orientation on the manifold,
we simply assert the existence of the structure in the underlying unoriented differentiable
manifold.

Despite these recent advances in the theory, the area still lacks examples and even topological
obstructions to the existence of these structures are unknown. So, given a manifold, the question
‘does it have a log-symplectic structure?’ is a little hard to answer.

We tackle these shortcomings in this paper. Indeed, Marcut and Osorno-Torres’s paper
[14, 16] and the present one are the first to provide topological obstructions to the existence
of log-symplectic structures. While Marcut and Osorno-Torres prove that a log-symplectic
manifold whose singular locus has a compact component must have a cohomology class
a ∈ H2(M) such that an−1 �= 0, we prove a different property which is more contrastive with
symplectic geometry:

Theorem 4.2. If a compact oriented manifold M2n, with n > 1, admits a bona fide log-
symplectic structure, then there are classes a, b ∈ H2(M ; R) such that an−1b �= 0 and b2 = 0.

Different from Marcut and Osorno-Torres’s topological constraint, the existence of the class
b is not necessarily shared by symplectic manifolds and, in effect, shows that there are several
symplectic manifolds for which the only log-symplectic structures are outright symplectic,
whereas other manifolds do not admit log-symplectic structures at all.

We then move on to produce examples of manifolds admitting such structures. The first
approach consists simply of deforming a symplectic structure into a bone fide log-symplectic
one. We show:

Theorem 5.1. Let (M2n, ω) be a symplectic manifold, and k > 0 be an integer. If M has
a compact symplectic submanifold F 2n−2 ⊂ M with trivial normal bundle, then M has a log-
symplectic structure for which the zero locus of πn has k components all diffeomorphic to
F × S1.

Using symplectic blow-up, we can then construct log-symplectic structures on
#mCP 2#nCP 2 for m,n > 0. Therefore coupling the two theorems, we have a complete clas-
sification of which manifolds in the family #mCP 2#nCP 2 for m,n � 0 admit log-symplectic
structures (see Figure 1).

Further, we introduce two surgeries which produce log-symplectic manifolds out of log-
symplectic manifolds and which increase the number of components of the singular locus of the
Poisson structure; hence even if the starting manifolds are symplectic, the resulting manifolds
will only be log-symplectic.

Following the lines of Gompf’s theorem relating symplectic structures to Lefschetz fibrations,
we prove an analogous result for log-symplectic manifolds:
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Theorem 6.7. Let M4 and Σ2 be compact connected manifolds and p : M −→ Σ be an
achiral Lefschetz fibration with generic fibre F . If F is orientable and [F ] �= 0 ∈ H2(M ; R),
then M has a log-symplectic structure whose singular locus has one component and for which
the fibres are symplectic submanifolds of the symplectic leaves of the Poisson structure.

Using results of Etnyre and Fuller on such fibrations [5], we obtain a general existence result.

Theorem 6.12. Let M be a simply connected compact 4-manifold. Then both M#(S2 ×
S2) and M#CP 2#CP 2 admit bona fide log-symplectic structures.

We finish by showing that in four dimensions any compact orientable log-symplectic manifold
is obtained out of a symplectic manifold using our surgeries. Expressed in another way:

Theorem 7.1. Let (M4, π) be a compact, orientable, log-symplectic manifold with singular
locus Z. Then each unoriented component of M\Z is symplectomorphic to an open subset of
a compact symplectic manifold.

While our original motivation to study log-symplectic structures lies in the realm of Poisson
geometry, one might naturally bundle them together with folded symplectic structures: other
structures defined as degenerate symplectic structures whose degeneracy locus is defined by a
transversality condition. In particular, it is natural to compare these structures and therefore
put our results in context, especially because there are a few results similar in content to the
ones we obtain here.

The relevant result regarding topological obstructions of folded symplectic structures was
proved by Cannas da Silva in [2]: every compact oriented 4-manifold admits a folded symplectic
structure; hence, differently from log-symplectic structures, in four dimensions, there are
no topological obstructions to the existence of folded symplectic structures. The result on
symplectization of folded symplectic structures was proved in [3] by Cannas da Silva et al.
Contrary to log-symplectic structures (cf. Theorem 7.1), not all folded symplectic structures
can be ‘unfolded’ as a condition on the one-dimensional foliation of the folding must be imposed.
Finally, a relation between folded symplectic structures and achiral Lefschetz fibrations was
obtained by Baykur in [1]: achiral Lefschetz fibrations with homologically nontrivial fibres
admit folded symplectic structures compatible with the fibration. This result is analogous in
statement and proof to our Theorem 6.7, as both proofs are based on Gompf’s original result for
symplectic manifolds. Note that our result is stronger than Baykur’s because, in any dimension,
if a manifold admits a log-symplectic structure, it also admits a folded symplectic structure
whose folding is the singular locus of the log-symplectic structure [11].

This paper is organized as follows: Section 2 reviews the basics of Poisson geometry relevant
for our study, and Section 3 reviews the Guillemin–Miranda–Pires normal form theorem [10].
Section 4 introduces a simple topological invariant that allows us to show that there are
many symplectic manifolds that do not admit bona fide log-symplectic structures. Section 5
shows that under general assumptions one can deform a symplectic structure into a log-
symplectic structure, and Section 6 introduces the surgeries and gives the existence result
for log-symplectic structures on achiral Lefschetz fibrations. Finally, Section 7 shows that in
four dimensions the surgeries can be reversed and any compact, orientable, log-symplectic
4-manifold can be transformed into a symplectic manifold by surgeries.

2. Poisson structures

In this section we give a short account of the basic material on Poisson and log-symplectic
structures. For more details, we refer the reader to [8–10].
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2.1. Poisson cohomologies

A Poisson structure on a manifold Mm is a bivector π ∈ X2(M) = Γ(∧2TM) for which

[π, π] = 0,

where the bracket used is the Schouten–Nijenhuis bracket of multivector fields. Assuming that
Mm is even dimensional, say, m = 2n, a generic bivector (at a point) would give an isomorphism
π : T ∗

pM
∼=−→ TpM . In this case, πn is a nonzero element in ∧2nTpM . If a Poisson bivector π

is everywhere generic (that is, everywhere invertible) then the 2-form ω = π−1 is a symplectic
structure on M .

Definition 2.1. The locus where π : T ∗M −→ TM is an isomorphism is the symplectic
locus, and its complement is the singular locus of the Poisson structure.

Moving to a more general situation which is still modeled on a ‘generic’ case, one can require
that πn only has nondegenerate zeros.

Definition 2.2. A log-symplectic structure on M2n is a Poisson structure π for which the
zeros of πn are nondegenerate.

It follows from the definition, using Weinstein’s splitting theorem, that one can find
coordinates in a neighbourhood of any singular point that render a log-symplectic structure π
in the following form:

π = x1∂x1 ∧ ∂x2 + ∂x3 ∧ ∂x4 + · · · + ∂x2n−1 ∧ ∂x2n ,

and its inverse is given by

ω = d log |x1| ∧ dx2 + dx3 ∧ dx4 + · · · + dx2n−1 ∧ dx2n.

The fact that the ‘symplectic form’ ω acquires a logarithmic singularity along the singular
locus of π justifies the name of the structure.

Continuing with the general theory, any Poisson manifold comes equipped with two
differential operators which give rise to cohomology theories. The first is the Poisson differential
on multivector fields:

dπ : X•(M) −→ X•+1(M); dπ(ξ) = [π, ξ].

The Poisson condition and the Jacobi identity for the Schouten–Nijenhuis bracket imply that
d2
π = 0, and its cohomology is known as the Poisson cohomology of (M,π).
The second is the Koszul differential on forms:

δ : Ω•(M) −→ Ω•−1(M); δρ = {π, d}ρ,
where {π, d} = πd− dπ is the graded commutator of operators and π acts on forms by interior
product. Again the Jacobi identity for the graded commutator and the Poisson condition imply
that δ2 = 0, and its cohomology is known as the canonical cohomology of (M,π).

These operators are related:

Lemma 2.3. Let (M,π) be a Poisson manifold, ξ ∈ X•(M) and ρ ∈ Ω•(M). Then

{δ, ξ}ρ = (dπξ) · ρ,
where ξ and dπξ act on forms by inner product.
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Proof. This follows automatically from the description of the Schouten–Nijnehuis bracket
as a derived bracket:

{δ, ξ}ρ = {{π, d}, ξ}ρ = [π, ξ] · ρ = (dπξ)ρ. �

2.2. The canonical bundle and the modular vector field

Given a Poisson manifold (Mm, π), the determinant bundle K = ∧mT ∗M is also known as
the canonical bundle of M . Given any nonvanishing local section ρ ∈ Γ(K), there is a unique
vector field X such that

δρ = ιXρ.

The vector field X is called the modular vector field. Note that changing the trivialization ρ by
a nonvanishing function, say g, changes the modular vector field from X to X + π(d log |g|) =
X + dπ log |g|. In particular, changing ρ to −ρ does not change X, and a modular vector field
is determined by a section of the quotient sheaf K/Z2. If M is nonorientable, there is no global
nonvanishing section of K; yet, K/Z2, the sheaf of densities, always has a nonvanishing section,
so one can always find globally defined modular vector fields.

Note that any modular vector field X is an infinitesimal symmetry of the Poisson structure,
that is, [π,X] = 0 since for a local section ρ ∈ Γ(Kπ) we have

0 = δ2ρ = δ(X · ρ) = (dπX) · ρ−X · (X · ρ) = (dπX) · ρ,
which implies [π,X] = 0. An immediate consequence is that the rank of the Poisson structure
along the flow of a point is constant. Since a different choice of section of Kπ/Z2 changes X
to X + dπ log |g|, we see that the modular vector field gives a well-defined degree-one Poisson
cohomology class. A Poisson structure is unimodular if this class is trivial, which is therefore
equivalent to the existence of a globally defined δ-closed section of Kπ/Z2.

Definition 2.4. A representation of a Poisson structure is a vector bundle E −→ (M,π)
together with a flat Poisson connection ∇ : Γ(E) −→ Γ(TM ⊗ E), that is, for f ∈ C∞(M) and
s ∈ Γ(E),

∇(fs) = dπfs + f∇s and ∇2 = 0.

Example 2.5. The canonical bundle of a Poisson manifold is a representation. Indeed, the
operator δ : K −→ Ωm−1(M) ∼= Γ(TM ⊗K) satisfies the properties required for a connection,
and δ2 = 0 is the flatness condition. Note that if M is orientable, a Poisson structure is
unimodular if and only if its canonical bundle is the trivial representation.

2.3. Log-symplectic structures – basics

Now we can focus on the objects in which we are interested. Since in a log-symplectic manifold
the singular locus is given by the nondegenerate zero locus of a section of a line bundle, we have
that it is a smooth submanifold of codimension one. Further, as the rank of the Poisson structure
does not change along each of its symplectic leaves, we see that each connected component of
the singular locus is itself a Poisson submanifold of M , that is, a union of symplectic leaves.

The following proposition adds up the basic facts about the singular locus.

Proposition 2.6. Let M be a log-symplectic manifold, Z its singular locus, N ∗
Z the

conormal bundle of Z and KM and KZ the canonical bundles of M and Z, respectively.
Then

(1) Z is an orientable Poisson submanifold of M with symplectic leaves of codimension one;
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(2) KZ is the trivial representation and has a distinguished trivialization;
(3) KM |Z is a Poisson representation over Z;
(4) N ∗

Z
∼= KM |Z as vector bundles and hence N ∗

Z inherits the structure of a Poisson
representation.

In particular, if M is orientable, each component of Z has trivial normal bundle.

Proof. We have already argued most of the claim (1). The rest follows from the normal
form for a log-symplectic structure. Indeed, if

π = x1∂x1 ∧ ∂x2 + ∂x3 ∧ ∂x4 + · · · + ∂x2n−1 ∧ ∂x2n

then the induced Poisson structure on the singular locus, [x1 = 0], is

∂x3 ∧ ∂x4 + · · · + ∂x2n−1 ∧ ∂x2n ,

which has codimension-one leaves.
To prove (2), we let ω = π−1. Then ω is a 2-form with a logarithmic singularity along Z and

the desired volume form on Z is just the residue of ω2 over Z. In the coordinates used above,
we have

Re(ωn) = dx2 ∧ · · · ∧ dx2n,

hence the residue of ωn over Z is nowhere vanishing, and one can readily compute δZResω = 0,
in these coordinates.

Claim (3) follows from the fact that a Poisson representation (E,∇) over M induces a
representation on a Poisson submanifold Z if and only if for every local section ρ ∈ Γ(E), we
have ∇ρ = Xiρi, where ρi ∈ Γ(E) is a local basis for E and Xi is tangent to Z at all points
of Z. In our case, the representation is the canonical bundle, ρ is a local nonvanishing volume
form and δρ = Xρ, for X the modular vector field, which is tangent to Z as the rank of the
Poisson structure must remain constant along the integral curves of X. So claim (3) follows.

As for (4), since Z is the nondegenerate zero locus of πn ∈ Γ(∧2nTM), we have that, over
Z, dπn gives an isomorphism of vector bundles

dπn : ∧2nTM |Z ⊗N ∗
Z

∼=−→ R,

that is, KM |Z is isomorphic to N ∗
Z . �

3. Invariants and local forms

While Proposition 2.6 gives a list of simple invariants associated to a log-symplectic structure
in [10], Guillemin, Miranda and Pires showed that these are in fact all invariants associated
to a neighbourhood of the singular locus. Indeed, the following is a direct consequence of the
results in [10]:

Theorem 3.1. Let (M,π) be a log-symplectic manifold, and let Z be a compact connected
component of the singular locus. Then a neighbourhood of Z is determined by the Poisson
structure induced on Z, a distinguished flat section of KZ and its representation on the
conormal bundle of Z.

Taking the inverse of the Poisson structure, one can translate this information into differential
forms (cf. [10]):
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Theorem 3.2. Let (M,π) be a log-symplectic manifold, let Z be a connected component
of the singular locus and X a modular vector field of π. Then the pair (π,X) determines the
following structure on Z.

(1) The normal bundle of Z as a vector bundle, that is, a class w1 ∈ H1(Z,Z2).
(2) A closed 1-form θ ∈ Ω1(Z) such that θ(X) = −1.
(3) A closed 2-form σ ∈ Ω2(Z) such that ιXσ = 0 and

θ ∧ σn−1 �= 0. (3.1)

Changing the modular vector field by dπf does not change θ and changes σ to σ + df ∧ θ.
Further, if Z is compact, any log-symplectic structure inducing the data above on Z is

equivalent to a neighbourhood of the zero section of the normal bundle of Z endowed with the
following structure:

d log |x| ∧ θ + σ, (3.2)

where | · | is the distance to the zero section measured with respect to a fixed fibrewise linear
metric on NZ .

Under the conditions of the theorem, the annihilator of the form θ corresponds to the
distribution in Z determined by the Poisson structure and σ agrees with the leafwise symplectic
form on Z.

Definition 3.3. A cosymplectic structure on a manifold Z2n−1 is a pair of closed forms
θ ∈ Ω1(Z) and σ ∈ Ω2(Z) satisfying (3.1).

For special types of log-symplectic structure, one can rephrase the data 1–3 above as a more
workable set.

Definition 3.4. A connected cosymplectic manifold (Z, σ, θ) is proper if it is compact
and the distribution given by the annihilator of θ has a compact leaf. A component Z of the
singular locus of a log-symplectic manifold is proper if the cosymplectic structure induced on
Z is proper. A log-symplectic manifold is proper if all components of the singular locus are
proper.

Given a cosymplectic manifold (Z, σ, θ), if we let X be a vector field such that θ(X) = −1 and
ιXσ = 0, we have that LXθ = 0 and hence the flow of X preserves the leaves of the distribution
determined by θ, hence, if Z is proper with compact (symplectic) leaf (F, σ) ⊂ Z, the flow of
F by the vector field X will provide further leaves of π. Since X is transverse to F and Z is
compact, we see that after finite time, say λ > 0, the flow of X brings F back to itself:

ϕλ : F −→ F.

Since LXσ = 0, the flow is a symplectomorphism of F and hence Z is a symplectic fibre bundle
with fibre (F, σ) over the circle:

Z = R × F/Z,

where the quotient is taken with respect to the Z-action generated by (y, p) 
→ (y + λ, ϕλ(p)).
Further, the modular vector field is −∂y and hence θ = dy.

Different choices of nonvanishing sections of Kπ/Z2 change the modular vector field over Z
by adding Hamiltonian vector fields of F , so the symplectomorphism ϕλ is only determined up
to Hamiltonian symmetries, that is, the relevant data are only its class in Symp(F )/Ham(F ).
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Finally, the normal bundle of Z is determined by its first Stiefel–Whitney class w1 ∈
H1(Z,Z2) = H1(F ; Z2)ϕλ ×H1(S1; Z2). So, in the proper case, Theorem 3.2 becomes
(cf. [8, 10]):

Theorem 3.5. Let Z be a proper component of the singular locus of a log-symplectic
structure π and F ⊂ Z be a compact symplectic leaf of π. Then π determines the following
data:

(1) the normal bundle of Z, that is, a class w1 ∈ H1(Z,Z2) = H1(F ; Z2)ϕ ×H1(S1; Z2);
(2) the symplectic structure σ of F ;
(3) a class [ϕ] ∈ Symp(F )/Ham(F ); and
(4) a period λ > 0.

Further, any two log-symplectic structures inducing the same set of data are equivalent, and,
given a set of data 1–4 there is a proper log-symplectic structure which realizes it.

Note that given a nonorientable Poisson manifold, M , one can always pass to the oriented
double cover M̃ of M which inherits a Poisson structure from M . For the log-symplectic case,
this allows us to get a simpler local model for the singular locus as now its neighbourhood
depends on one fewer parameter, since according to Proposition 2.6, w1 = 0 in M̃ .

The following theorem, communicated to the author by Ioan Marcut (see also [16]), uses a
Tischler-type argument to show one can always deform a log-symplectic structure into a proper
one. In its cosymplectic version, it had already appeared in [13].

Theorem 3.6. If the components of the singular locus of a log-symplectic structure are
compact, then the structure can be deformed into a proper one.

Proof. Let Z be a connected component of the singular locus. The proof consists of two
steps. First, we note that one can deform the cosymplectic structure (θ, σ) of Z into (θ̃, σ)
so that the kernel of θ̃ gives a fibration structure to Z. The second step is to show that this
deformation can be realized as a deformation of the log-symplectic structure.

For the first step, let θ̃ be a closed 1-form representing a class in H1(Z,Q) which is close
enough to θ so that we still have

θ̃ ∧ σn−1 �= 0.

Since [θ̃] represents a rational class, [θ̃](H1(Z; Z)) is a lattice Λ in R. Then we define the
projection map

p : Z −→ R/Λ; p(z) =
∫ z

z0

θ̃,

where z0 ∈ Z is a fixed reference point and the value of the integral modulo Λ does not depend
on the choice of path connecting z0 to z. By construction dp = θ̃ is nowhere vanishing and
hence p : Z −→ S1 is a fibration.

For the second step, according to Theorem 3.2 there is δ > 0 such that the log-symplectic
structure in a neighbourhood of Z is equivalent to (3.2) for |x| < δ. If we let ψ be a smooth
function such that

ψ : [0, 1] −→ [0, 1];

{
ψ(x) = 1 if x < δ/3,
ψ(x) = 0 if x > 2δ/3,

then the log-symplectic form

d log |x| ∧ ((1 − ψ(|x|)θ + ψ(|x|)θ̃) + σ
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induces the cosymplectic structure (θ̃, σ) on Z and agrees with the original log-symplectic
structure if |x| > 2δ/3, hence can be extended to the rest of M by the original log-symplectic
structure. �

4. A simple topological invariant

One of the simplest and yet restrictive topological properties of compact symplectic manifolds
is the existence of a class a ∈ H2(M) whose top power is nonzero. Of course, this does not hold
on all log-symplectic manifolds, yet log-symplectic manifolds are just a little shy of satisfying
this property as shown by Marcut and Osorno-Torres.

Theorem 4.1 (Marcut–Osorno-Torres [14, 16]). Let M2n be a log-symplectic manifold
whose singular locus has a compact component. Then there is a cohomology class a ∈ H2(M ; R)
such that an−1 �= 0. Further, if Z ⊂ M is a proper component of the singular locus and has
(F, σ) as a symplectic leaf, a can be chosen so that [a]|F = [σ].

Here we use a little more of the log-symplectic structure in the orientable case to find another
topological property of these manifolds.

Theorem 4.2. If a compact oriented manifold M2n, with n > 1, admits a bona fide log-
symplectic structure then there are classes a, b ∈ H2(M ; R) such that an−1b �= 0 and b2 = 0.

Proof. Assume that M has a log-symplectic structure with singular locus Z �= ∅. Then, due
to Theorem 3.6, we may assume that the structure is proper, hence Z is a symplectic fibration
over the circle with fibre a symplectic manifold F . On the one hand, due to the Marcut–
Osorno-Torres theorem, there is a globally defined closed 2-form ω̃ ∈ Ω2(M) which restricts to
the symplectic form on F , that is, the homology class of F pairs nonzero with an−1, so we have
that [F ] �= 0 ∈ H2n−2(M ; R). On the other hand, since, even within Z, F appears as a fibre of
a fibration, we conclude that the Poincaré dual of F , b ∈ H2(M ; R), must satisfy b2 = 0 and,
by definition of the Poincaré dual,

〈an−1b, [M ]〉 = 〈an−1, F 〉 �= 0. �

We state a few immediate corollaries as follows.

Corollary 4.3. An orientable, compact, bona fide log-symplectic manifold M of dimension
2n has b2i(M) � 2 for 0 < i < n.

Proof. It follows directly from the relations an−1b �= 0 and b2 = 0 that the classes ai and
ai−1b are linearly independent for 0 < i < n. �

Corollary 4.4. For n > 1, CPn has no bona fide log-symplectic structure and, for n > 2,
the blow-up of CPn along a symplectic submanifold of real codimension greater than four also
does not carry bona fide log-symplectic structures.

Corollary 4.5. A smooth orientable compact 4-manifold with definite intersection form
does not admit bona fide log-symplectic structures. In particular, for n > 0, #nCP 2 and
#nCP 2 do not admit bona fide log-symplectic structures.

Proof. Indeed, under the hypothesis of both corollaries, there is no element in second
cohomology whose square is zero. �
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Figure 2. Graph of a possible scaling function that can be used to create
a singular locus with an odd number of components.

Note that due to the Taubes result on Seiberg–Witten invariants of symplectic manifolds
[18], #nCP 2 does not admit symplectic structures for n > 1, that is, #nCP 2 simply does not
admit log-symplectic structures bona fide or not.

5. Birth of singular loci

In this section, we show that under mild assumptions one can transform a symplectic structure
into a log-symplectic structure with nonempty singular locus. As a consequence of this
seemingly inoffensive fact, we conclude that #mCP 2#nCP 2 has a log-symplectic structure
with nonempty singular locus as long as m > 0 and n > 0.

Theorem 5.1. Let (M2n, ω) be a symplectic manifold and k > 0 be an integer. If M has
a compact symplectic submanifold F 2n−2 ⊂ M with trivial normal bundle, then M has a
log-symplectic structure for which the zero locus of πn has k components all diffeomorphic to
F × S1.

Proof. Due to the symplectic neighbourhood theorem, F has a tubular neighbourhood
diffeomorphic to D2 × F endowed with the product symplectic structure, where D2 is the
2-disc of radius ε > 0. To prove the theorem, it is enough to endow D2 with a log-symplectic
structure whose singular locus has k components and which agrees with the standard symplectic
structure near the boundary of the disc. Indeed, in this case we can consider D2 × F with the
product of the log-symplectic structure on D2 and the symplectic structure on F . Since this
new structure agrees with the original symplectic structure on the boundary of the disc, we
can extend it to M using the original symplectic structure.

To produce the desired log-symplectic structure on D2, we observe that in two dimensions
every bivector is automatically Poisson; hence all we need to do is find a bivector in D2 with
the desired number of nondegenerate zeros. To achieve this, we let π ∈ Γ(∧2TD) be the inverse
of the standard symplectic structure on D2 and consider the bivector f(|x|)π(x), where f is a
smooth real function defined on the closed interval [0, ε] which is locally constant and equal to
1 in a neighbourhood of ε, locally constant and nonvanishing in a neighbourhood of 0 and has
precisely k transverse zeros (see Figure 2). Then fπ is a log-symplectic structure of the desired
type on D2. �

Corollary 5.2. For any positive integers m,n, the manifolds #mCP 2#nCP 2 have a
log-symplectic structure whose singular locus is diffeomorphic to S1 × S2.

Proof. The blow-up of CP 2 at a point, that is, CP 2#CP 2, has the structure of a symplectic
CP 1 fibration over CP 1. In particular, the fibres satisfy the properties of Theorem 5.1 and hence
we can endow CP 2#CP 2 with a log-symplectic structure with nonempty singular locus, say,
with one component diffeomorphic to S1 × S2. Therefore, the top power of the log-symplectic
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form on the symplectic locus agrees with the orientation of CP 2#CP 2 at some points and
disagrees at other points. By the symplectic blow-up theorem [15], we can blow up points in
the symplectic locus and the result still has a log-symplectic structure. If we blow up points in
the symplectic locus where the orientation of the log-symplectic form agrees with the orientation
of CP 2#CP 2, we are performing a connected sum with CP 2, whereas if we blow up points
in the symplectic locus where the log-symplectic form gives the opposite orientation we are
performing a connected sum with CP 2. �

Note that the manifolds obtained in Corollary 5.2 have vanishing Seiberg–Witten invariants
and, for m and n even, those manifolds do not admit almost complex structures for either
choice of orientation. These are contrasts between log-symplectic and symplectic geometries
since symplectic manifolds have nonzero Seiberg–Witten invariants [18] and admit almost
complex structures.

As for higher dimensions, Donaldson proved that every symplectic manifold admits a
Lefschetz pencil [4] and hence is related to a Lefschetz fibration via the blow-up of the base
locus of the pencil. Due to Theorem 5.1 any such fibration has log-symplectic structures.

6. Surgeries for log-symplectic manifolds

In this section, we introduce surgeries that produce new log-symplectic structures out of old
ones. A main feature is that in these surgeries we create new components of the singular locus;
hence even if the starting manifolds are symplectic the results will be only log-symplectic.

6.1. Construction 1

This first construction produces (possibly) orientable log-symplectic manifolds out of pairs with
matching data.

Building block. Using the language of Theorem 3.2, the local model that gives rise to the
construction corresponds to the case when Z has trivial normal bundle. Given a cosymplectic
manifold (Z, σ, θ), we let

N = (−2, 2) × Z

and endow N with a log-symplectic structure for which {0} × Z is the singular locus, namely,
we consider the 2-form

Ω = dlog|x| ∧ θ + σ, (6.1)

where |x| denotes the absolute value of the real number x.

Ingredients. To perform this surgery, we will need a (not necessarily connected) log-symplectic
manifold (M2n, π) together with two embeddings of a compact, connected, cosymplectic
manifold (Z, σ, θ), ιi : Z2n−1 ↪→ M , such that

(1) each ιi(Z) lies in the symplectic locus of π, and ι1(Z) ∩ ι2(Z) = ∅;
(2) there is f ∈ C∞(Z) such that ι∗1ω = ι∗2ω − df ∧ θ = σ, where ω is the symplectic form

on the symplectic locus of M .

The surgery. Since each ιi(Z) is in the symplectic locus of π, the log-symplectic structure on M
gives rise to an orientation of a neighbourhood of ιi(Z). Since Z is cosymplectic, it has a natural
orientation as defined by the volume form θ ∧ σn−1. Together the orientation on Z and the
(semi-local) orientation on M allow us to orient the normal bundle of Z and define an interior
and an exterior region within the normal bundle: a vector N ∈ Tιi(p)M is outward pointing if
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for any positive basis {v1, . . . , v2n−1} ∈ TpZ the set {N, ιi∗v1, . . . , ιi∗v2n+1} is a positive basis
for TpM . Let M̂ be the real oriented blow-up of M along ι1(Z) and ι2(Z), that is, M̂ is
diffeomorphic to the manifold obtained from M by removing an open tubular neighbourhood
of both copies of Z and M̂ has four copies of Z as boundary. At each boundary copy of Z,
M̂ lies either in the interior or the exterior side of the boundary according to the semi-local
orientation. We let M̃ be the manifold obtained from M̂ by identifying with each other the
boundary components for which M̂ lies in the interior and similarly for the components for
which M̂ lies in the exterior.

Theorem 6.1. Let (M,π), (Z, θ, σ) and ι1, ι2 : Z −→ M be the ingredients for the surgery,
and let M̂ be the real oriented blow-up of M along the two copies of Z. Then the manifold

M̃ = M̂/ ∼
obtained by identifying the boundary components of M̂ for which M̂ lies in the interior
(respectively, exterior) of the boundary via the map ι2 ◦ ι−1

1 has a log-symplectic structure
which agrees with the original structure on M outside a neighbourhood of two copies of
Z = ∂M̂/ ∼ and for which Z is part of the singular locus.

Proof. We have an embedding j1 : Z ↪→ N , p 
→ (−1, p). For this embedding, Z lies in the
symplectic locus of the log-symplectic structure and the restriction of the symplectic form
(6.1) to Z is just σ. Similarly, given a real function f : Z → R, for any ε > 0 small enough,
we have an embedding j2 : Z ↪→ N , x 
→ (εef (p), p) and the restriction of the log-symplectic
form to this embedding is df ∧ θ + σ. For both embeddings, j1 and j2, the vector field x∂x is
outward pointing with respect to the orientations induced by the symplectic and cosymplectic
structures in a neighbourhood of the embeddings, that is, the cylinder

C = {(x, p) ∈ N : 1− � x � εef (p)}
contains interior points for both boundaries with respect to the semi-local orientations.

Hence, by Weinstein’s coisotropic neighbourhood theorem, a neighbourhood of j1(Z) is sym-
plectomorphic to a neighbourhood of ι1(Z) and a neighbourhood of j2(Z) is symplectomorphic
to a neighbourhood of ι2(Z). Using these symplectomorphisms, we can glue the exterior regions
of ιi(Z) in M̂ to C along the boundaries and the resulting manifold has a log-symplectic
structure.

We can repeat the same argument to glue the interior regions, but now using the log-
symplectic structure −d log |x| ∧ θ + σ on N , therefore obtaining a log-symplectic structure
on M̃ . �

Remarks. (i) Even if M is a symplectic manifold, and hence has a preferred orientation, the
diffeomorphism used to glue the two boundaries together does not respect these orientations;
hence M̃ does not have a preferred orientation.

(ii) A common use of the theorem is when M has two connected components, the maps ιi
map Z to different components, and their images are separating submanifolds. In this case, M̃
also has two components and we will often focus our attention in one of the two, say, the one
obtained by gluing the exterior regions.

(iii) Additive properties of the Euler characteristic imply that

χM = χ
˜M
.

Theorem 6.1 leaves us with the question of how to find suitable submanifolds Z to which it
can be applied. Next, we identify two situations in which manifolds with the desired structure
appear naturally. We start with the simplest setting.
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Figure 3. A possible surgery on two null homologous circles lying on 2-tori. The first torus is
oriented by the outward vector, whereas the second is oriented by the inward normal vector.
Interior (Int) and exterior (Ext) determined by the circles are marked in the figure with the
letters inverted for different orientations. The result of the surgery is a genus-two surface and a
sphere.

Figure 4. A possible surgery on two oppositely oriented circles
on a sphere yields a sphere and a Klein bottle.

Corollary 6.2. Let (M2n, ω) be a log-symplectic manifold and ιi : (F 2n−2, σ) −→ (M,ω),
i = 1, 2, be embeddings of a compact symplectic manifold F in the symplectic locus of M for
which the images have trivial normal bundle. Let

M̃ = M\(N 1 ∪N 2)/ ∼,

where ∼ indicates the natural identification of the boundaries ∂N 1
∼= ∂N 2. Then M̃ has a log-

symplectic structure which agrees with the original structure outside a tubular neighbourhood
of ∂N i ⊂ M̃ . The Euler characteristic of M̃ is

χ
˜M

= χM − 2χF .

Proof. Weinstein’s symplectic neighbourhood theorem implies that ιi(F ) have neighbour-
hoods symplectomorphic to D2 × F with the product symplectic structure. In particular,
the boundary of such neighbourhoods is diffeomorphic to Z = S1 × F with the cosymplectic
structure given by the volume from of S1, θ, and σ = ω|F and the restriction of the symplectic
form to Z is simply the symplectic form of F pulled back to the product. Hence we can use
the theorem to conclude that M̃ , obtained by gluing the exterior regions of M with respect to
the embeddings two embeddings of Z, has a log-symplectic structure.

The last claim follows from the additive properties of the Euler characteristic or by observing
that the manifold obtained by gluing the interior regions (the other component of the surgery)
is just S2 × F which has Euler characteristic 2χF . �

Figures 3 and 4 illustrate the surgery described in Corollary 6.2 applied to null homologous
circles on surfaces. Note that even if the original surfaces are orientable, the result of the
surgery may not be. Next, we present a setting which is a little more elaborate.

Corollary 6.3. Let pi : Mi −→ Σi, i = 1, 2, be symplectic Lefschetz fibrations with
the same generic fibre (F, σ). Let γi : R/λZ −→ Σi be separating loops which avoid the
critical values of pi, let M+

i be the exterior region of p−1
i (γi) and let ϕi : F −→ F be the

symplectomorphism of F = p−1
i (γi(0)) obtained from symplectic parallel transport along γi.
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Figure 5. Graphic representation of the base of E(2), showing the singular values of the projection
map, a regular value of the map for reference and paths connecting the regular value to the
singular values to determine the homology class of the vanishing cycles. In this case, a and b are
the vanishing cycles which form an integral basis for H1(F ; Z).

If there is a symplectomorphism ϑ : F −→ F such that ϕ2 = ϑ ◦ ϕ1 ◦ ϑ−1, that is, these loops
have the same monodromy, then

M+
1 ∪M+

2 / ∼

has a log-symplectic structure with singular locus ∂M+
1

∼= ∂M+
2 .

Proof. Under the hypothesis, Z1 = p−1
1 (γ1) is given by the quotient of R × F by the Z-action

generated by

(x, z) ∼= (x + λ, ϕ1(z)).

The form θ = dx together with the symplectic form σ ∈ Ω2(F ) makes Z1 into a cosymplectic
manifold.

Similarly, Z2 = p−1
2 (γ2) is a cosymplectic manifold and the map

Z1 −→ Z2, (x, z) = (z, ϑ(z))

is an isomorphism of cosymplectic structures as long as ϕ2 = ϑ ◦ ϕ1 ◦ ϑ−1. The result now
follows from Theorem 6.1. �

Example 6.4 (Log-symplectic structures on #nS2 × S2). Next, we provide an explicit
log-symplectic structure on #nS2 × S2. Our starting point is the elliptic surface E(2k): the fibre
sum of 2k copies of CP 2#9CP 2. This is a Lefschetz fibration p : E(2k) −→ CP 1 which, after
appropriate identifications, has 24k singular fibres for which the vanishing cycles correspond to
two basis elements {a, b} ∈ H1(F ) appearing in an alternating fashion, as depicted, for E(2),
in Figure 5 (cf. [7, Example 8.2.11]).

In order to use Construction 1, we consider two copies of E(2k) and in both of them
consider the same path, namely one whose exterior contains n + 1 consecutive singular fibres
(see Figure 6).

Since we are starting with two copies of the same data, we can use Corollary 6.3 to introduce
a log-symplectic structure

M̃ = M+ ∪∂ M+,
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Figure 6. Graphic representation of the base of E(2k) and a path whose exterior
contains four consecutive singular values of the projection map.

where M+ = p−1(Σ+) is the inverse image of the closure of the exterior points of γ. Hence we
see that Construction 1 consists of taking two identical copies of M+ ⊂ E(2k) and then gluing
them along the boundaries using the identity map. The resulting manifold is also known as the
double of M+. To precisely determine M+, we observe two simple facts.

First, M+ admits a handlebody decomposition which contains a 0-handle, n 2-handles and no
handles of other indices (that is, M is a 2-handlebody). Indeed, according to [7, Example 8.2.8],
a Kirby diagram for M has n + 2 2-handles, two 1-handles and one 0-handle, but we can cancel
two 2-handles against the two 1-handles to obtain the desired handlebody decomposition.

Second, since the interior of M+ is an open subset of E(2k) and E(2k) is spin, the intersection
form on M+ is even.

These facts, together with the following proposition, determine the result of the surgery.

Proposition 6.5 [7, Corollary 5.1.6]. Let M4 be a 2-handlebody with n 2-handles. Then
the double of M is diffeomorphic to #nS2 × S2 if the intersection form of M is even and to
#nCP 2#nCP 2 if the intersection form of M is odd.

In our case, we conclude that M̃ is diffeomorphic to #nS2 × S2.

6.2. Achiral Lefschetz fibrations

Related to the construction of Corollary 6.3 is the notion of an achiral Lefschetz fibration.

Definition 6.6. Let M2n be a manifold. An achiral Lefschetz fibration on M is a proper,
smooth map p : M −→ Σ2 such that the pre-image of any critical value has only one critical
point and for any such pair of critical value, y, and critical point, x, there are complex coordinate
systems centred at x and y for which p takes the following form:

p(z1, . . . , zn) = z2
1 + · · · + z2

n.

Note that in this definition we do not require M or Σ to be orientable. If they are,
one can assign a sign to each critical point x: we demand that the complex structure on
Σ is compatible with the orientation, and then we say that x is positive if the complex
structure on M used in the definition is compatible with the orientation of M and negative
otherwise.

Given the construction of Corollary 6.3 and the ensuing example, one might expect that
achiral Lefschetz fibrations are related to log-symplectic structures in the same way that
Lefschetz fibrations are related to symplectic structures. This is indeed the case, as we show
next:
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Theorem 6.7. Let M4 and Σ2 be compact connected manifolds and p : M −→ Σ be an
achiral Lefschetz fibration with generic fibre F . If F is orientable and [F ] �= 0 ∈ H2(M ; R),
then M has a log-symplectic structure whose singular locus has one component and
for which the fibres are symplectic submanifolds of the symplectic leaves of the Poisson
structure.

Proof. The proof follows closely that of Gompf’s theorem relating Lefschetz fibrations and
symplectic structures [7, Theorem 10.2.18]. Before we delve into the proof we will fix some
notation. We let

• Fy = p−1(y) for y ∈ Σ;
• Δ be the set of singular points of p;
• Δ′ be the set of the singular values of p;
• Σ0 = Σ\Δ′ and M0 = p−1(Σ\Δ′), so that p : M0 −→ Σ0 is a proper fibration.

First, we observe that we can assume that p has connected fibres. Indeed, for achiral Lefschetz
fibrations we have a short exact sequence of homotopy groups:

π1(F ) −→ π1(M)
p∗−→ π1(Σ) −→ π0(F ) −→ {0}. (6.2)

Since M is compact, π0(F ) is finite and hence (6.2) implies that p∗(π1(M)) has finite index
in π1(Σ). Let Σ̃ be the cover of Σ corresponding to the subgroup p∗(π1(M)) ⊂ π1(Σ). Then
Σ̃ is compact and the map p : M −→ Σ lifts to a map p̃ : M −→ Σ̃. The projection p̃ is still
an achiral Lefschetz fibration and, by construction, p̃∗(π1(M)) = π1(Σ̃); hence (6.2) implies
that the fibres of p̃ are connected. From now on we assume that the fibres of p : M −→ Σ are
connected.

Next, we deal with the general lack of orientation of the manifolds involved. First, since
F is orientable, we fix an orientation for F for the remainder of this proof. If p : M0 −→ Σ0

were a nonorientable fibration, there would be a loop α : (I, ∂I) −→ M0 based at some point
y ∈ Σ, where I is the unit interval, for which parallel transport (after a choice of connection)
provided an orientation-reversing diffeomorphism of Fy. In this case p−1(α(I)) would provide
a chain whose boundary is 2[Fy], contradicting the condition [F ] �= 0 ∈ H2(M ; R). Therefore,
p : M0 −→ Σ0 is an orientable fibration. Further, this orientation induces orientations on the
singular fibres of p and hence we can also integrate forms over the (components of the singular)
fibres. It also follows that M is orientable if and only if Σ is.

If Σ and M are orientable, after choosing orientations, we can split the critical points of
p into positive and negative ones. If there are no positive or no negative points, Gompf’s
theorem [7, Theorem 10.2.18] implies that M admits a symplectic structure and due to
Theorem 5.1 it admits a log-symplectic structure with the desired properties. If there are
positive and negative critical points, we can choose a separating loop Γ ⊂ Σ0 whose interior
locus contains all the negative points and whose exterior locus contains all the positive
points.

If Σ is nonorientable, we can choose a loop Γ ⊂ Σ0 such that Σ\Γ is orientable and hence so is
M\p−1(Γ). After choosing orientations on both Σ\Γ and M\p−1(Γ), we may homotope the loop
Γ through the negative critical values of p so that all singular points of p : M\p−1(Γ) −→ Σ\Γ
are positive. In either case, M\p−1(Γ) is an oriented manifold and p : M\p−1(Γ) −→ Σ\Γ is
a proper Lefschetz fibration possibly after changing the orientation of one of the components
of M\Γ and Σ\Γ. From now on, we orient both M\p−1(Γ) and Σ\Γ so that p is a Lefschetz
fibration there.

The next steps aim to construct a closed 2-form σ on M which restricts to a symplectic form
in every fibre.
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Lemma 6.8. Under the hypothesis of Theorem 6.7, there is a closed 2-form ζ ∈ Ω2(M) such
that

(1)
∫
S
ζ = 1 over any fibre and

(2) if a singular fibre Fy is a plumbing of two surfaces S1 and S2, and we are given sy ∈ (0, 1),
then ζ can be chosen so that

∫
S1

ζ = sy.

Proof. Since [F ] �= 0 ∈ H2(M ; R), there is a closed form ξ ∈ Ω2(M) which integrates to
1 over the generic fibres and hence over all fibres. Next, we need to argue that one can
change ξ so that property 2 holds. In this case, with the orientations chosen before on
M\p−1(Γ), the intersection number of S1 and S2 is 1. Since S1 ∪ S2 is homologous to a
regular fibre,

∫
S1

ξ +
∫
S2

ξ = 1. If
∫
S1

ξ = r, let ψ be a form with support in a neighbourhood of
S2 ⊂ M\p−1(Γ), which represents the Poincaré dual of S2, and consider ξ′ = ξ + (−r + sy)ψ.
Then for any closed surface S′ inside another fibre Fy′ ,

∫
Fy′ ψ = 0 as Fy′ does not intersect S2,

hence
∫
S′ ξ

′ =
∫
S′ ξ. On the other hand,∫

S1

ξ′ =
∫
S1

ξ ± (−r + sy)
∫
S1

ψ = sy.

That is, after a change in ξ, we have found another closed form for which the claim holds at a
specific singular fibre. Since there are only finitely many such fibres, we can repeat the process
for each of them to obtain the desired ζ. �

Lemma 6.9. Under the hypothesis of Theorem 6.7, there is a finite good open cover U of
Σ such that for each Uα ∈ U , there is a closed form ηα ∈ Ω2(p−1(Uα)) which is symplectic on
the fibres of p.

Proof. Since p : M\p−1(Γ) −→ Σ\Γ is a proper Lefschetz fibration for which [F ] �= 0, it
follows from Gompf’s theorem [7, Theorem 10.2.18] that each component of M\p−1(Γ) has a
symplectic form for which the fibres are symplectic of area 1. Letting N be a small tubular
neighbourhood of Γ without singular values of p, it follows that p : p−1(N ) −→ N is a proper
Lefschetz fibration for which [F ] �= 0, hence we can also apply Gompf’s result here to conclude
that there is a symplectic form ω0 on p−1(N ) for which the fibres are symplectic of area 1.
Finally, let U be a finite good refinement of the cover {Σ\Γ,N} and for each Uα ∈ U let ηα be
the restriction of one of the symplectic forms above to p−1(Uα). �

Lemma 6.10. Under the hypothesis of Theorem 6.7, there is a closed 2-form σ ∈ Ω2(M)
such that σ|Fy

is a symplectic form for every fibre Fy.

Proof. The forms ηα and ζ are cohomologous on p−1(Uα) (in the case of singular fibres, one
must choose the value sy so that the integrals of these forms over each cycle agree). Therefore,
there are θi ∈ Ω1(p−1(Ui)) such that ηi = ζ + dθi. Let {κα} be a partition of unity subordinate
to the cover U and consider the form

σ = ζ + d
∑
i

p∗(κi)θi.

Since p∗κ|Fy
is a constant, we have that

σ|Fy
= ζ|Fy

+
∑
i

p∗(κi)dθi|Fy
=

∑
i

p∗(κi)(ζ|Fy
+ dθi|Fy

) =
∑
i

p∗(κi)ηi|Fy
.

Since each ηi|Fy
is a symplectic form and all of them determine the same orientation,∑

i p
∗(κi)ηi|Fy

is a symplectic form on Fy. �
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End of Proof of Theorem 6.7. Finally, to obtain the log-symplectic structure on M , observe
that since Σ\Γ is oriented, Γ is a real divisor on Σ representing ∧2TΣ, that is, there is a section
π ∈ Γ(∧2(TΣ)) which has Γ as its (transverse) zero locus. Since Σ is two dimensional, π is a
log-symplectic structure whose singular locus is Γ. We further choose π so that it agrees with
the orientation of Σ\Γ. Inverting π, we obtain ωΣ ∈ Ω2(Σ) with a log-singularity at Γ. Then the
standard argument shows that ω = p∗ωΣ + εσ is a log-symplectic structure for ε small enough.
Indeed, away from critical points of p, ωΣ dominates σ and hence determines a log-symplectic
structure on the complement of a small neighbourhood of Δ. In particular, ω determines an
orientation on its symplectic locus. With respect to this orientation on M\p−1(Γ) and the
orientation determined by π on Σ\Γ, all singular points are positive and the argument from
[7, Exercise 10.2.21] shows that ω is symplectic on M\p−1(Γ). �

Remarks (the condition [F ] �= 0).

• If the genus of the fibre is different from 1, then ker(p) defines a line bundle over M\Δ
and this line bundle extends to the singular locus. Letting c1 be the first Chern class of this
bundle, naturality implies that c1|F is just the Euler class of the fibre and hence, if the genus
of the fibre is not 1, c1 is nonzero on [F ], showing that [F ] �= 0.
• If an achiral Lefschetz fibration over an oriented surface has a section, then any fibre

represents a nontrivial class since it has nontrivial intersection with the section.
• S4 admits an achiral Lefschetz fibration. Since H2(S4) = {0}, the fibres are homologically

trivial and hence are tori and there is no section. Further, S4 also does not admit log-symplectic
structures due to Theorem 4.1. Therefore, the condition [F ] �= 0 cannot be removed from
Theorem 6.7.

Remark. The proof above is also very similar to the one given by Baykur [1] relating
achiral Lefschetz fibrations to folded symplectic structures, as both ours and Baykur’s proof
follow Gompf’s original proof closely [7, Theorem 10.2.18]. The main differences between the
proofs concern the treatment of the singular locus, as folded and log-symplectic structures,
with different types of singular behaviour, and Gompf did not have to deal with either of them.
Further, since log-symplectic structures can always be deformed into folded ones, our proof is
a little more general than Baykur’s proof.

Achiral Lefschetz fibrations have been studied by Etnyre and Fuller [5] and are present in
several 4-manifolds.

Theorem 6.11 (Etnyre and Fuller [5]). Let X be a smooth, closed, oriented 4-manifold.
Then there exists a framed circle in X such that the manifold obtained by surgery along that
circle admits an achiral Lefschetz fibration with section and whose base is S2. Further, if M
is simply connected then we can arrange so that both M#(S2 × S2) and M#CP 2#CP 2 arise
as such surgery and hence both M#(S2 × S2) and M#CP 2#CP 2 admit achiral Lefschetz
fibrations with a section over S2.

Combining Theorem 6.7 with Etnyre–Fuller’s theorem we get the following theorem.

Theorem 6.12. Let M be a simply connected compact 4-manifold. Then both M#(S2 ×
S2) and M#CP 2#CP 2 admit bona fide log-symplectic structures.

6.3. Construction 2

The second construction is a nonorientable version of the first which produces proper
log-symplectic manifolds.
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Building block. Given a symplectic manifold (F, σ), a symplectomorphism ϕ : F −→ F and
λ > 0, we form the quotient of the log-symplectic manifold

N = (−2, 2) × R × F ; Ω|(x,y,p) = d log |x| ∧ dy + σ

by the Z-action generated by (x, y, p) ∼ (−x, y + λ, ϕ(p)):

Nϕ = N/Z.

Then Nϕ is a log-symplectic manifold with singular locus Z = {0} × R × F/Z. Note that Nϕ\Z
is a fibre bundle over R+, with projection map induced by the invariant map π1(x, y, p) = |x|
defined on (−2, 2) × R × F . Then Z ′ = π−1

1 (1) is a coisotropic submanifold of the symplectic
locus given by

Z ′ = R × F/Z; (y, p) ∼ (y + 2λ, ϕ2(p)). (6.3)

Ingredients. We will need a proper cosymplectic manifold (Z ′, θ, σ) with symplectic fibre F for
which the monodromy map is the square of a symplectomorphism ϕ : F −→ F , that is, Z ′ is
given by (6.3). We will also need a log-symplectic manifold (M,π) and a separating embedding
ι : Z ′ ↪→ M in the symplectic locus of M such that ι∗ω = σ, where ω is the induced symplectic
structure on M .

The surgery. The surgery follows the same lines of Construction 1. Since ι(Z) is separating, it
defines an exterior and an interior region of M . Let M+ be the closure of the exterior. Then
there is a Z2-action on Z ′ = ∂M+, namely, in terms of (6.3), the action is generated by the
map

(y, p) 
→ (y + λ, ϕ(p)),

and the orbits of this action form an equivalence relation on ∂M+ which allows us to form the
space

M̃ = M+/ ∼
obtained by taking the quotient of ∂M+ by this equivalence relation.

Theorem 6.13. Let (M,π), (Z ′, θ, σ) and ι : Z ′ −→ M be the ingredients for the surgery,
and let M+ be the closure of the exterior region defined by ι(Z ′). Then the manifold

M̃ = M+/ ∼
obtained by taking the quotient of ∂M+ by the Z2-action has a log-symplectic structure which
agrees with the original structure on M+ outside a neighbourhood of Z = ∂M+/ ∼ and for
which Z is part of the singular locus.

The proof of this theorem is completely analogous to that of Theorem 6.1. A particular case
of this surgery has a geometric interpretation.

Corollary 6.14 (Real blow-up). Let (M2n, ω) be a log-symplectic manifold, and let
F 2n−2 ⊂ M be a symplectic submanifold which does not intersect the singular locus and has
trivial normal bundle. Then the real blow-up of M along F has a log-symplectic structure for
which the exceptional divisor is a component of the singular locus.

Proof. Just as in Corollary 6.2, the requirement that F has trivial normal bundle implies
that a neighbourhood of F is symplectomorphic to D2 × F , and hence we obtain an embedding
of the proper cosymplectic manifold S1 × F into M . The monodromy of this cosymplectic
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manifold is the identity map which is obviously the square of a symplectomorphism. Now, the
local model is based on using ϕ = Id, that is, NF = M × F , where M is the Möbius band and
the effect of the surgery is that we remove a neighbourhood of F (which is diffeomorphic to
D2 × F ) and glue back M × F . This is precisely the underlying surgery of the real blow-up
of F . �

7. Reversing the surgeries

In the previous section, we managed to produce several examples of log-symplectic manifolds
out of symplectic manifolds. One might rightfully expect that there are more examples of
such structures: for one thing, the Stiefel–Whitney class either vanished (first construction)
or corresponded to the generator of H1(S1; Z2) (second construction), therefore leaving out
a number of possibilities. On the other hand, if we assume that M is orientable or, in the
nonorientable case, take the orientable double cover, then any singular locus automatically is
associated to the zero Stiefel–Whitney class and hence it has neighbourhood diffeomorphic, as
a Poisson, manifold to the building blocks used in Construction 1. Next, we show that in four
dimensions any log-symplectic structure is created out of our surgeries and hence can be cut
and filled into a collection of compact symplectic manifolds.

Theorem 7.1. Let (M4, π) be a compact, orientable, log-symplectic manifold with singular
locus Z. Then each unoriented component of M\Z can be compactified as a symplectic
manifold.

Proof. According to Theorem 3.2, a neighbourhood of each connected component of Z
is equivalent to the building block of Construction 1 and hence we have two copies of Z in
such neighbourhood (one on either side of the singular locus) as a coisotropic submanifold. To
reverse the surgery, one would need to prove that such coisotropic submanifold appears as the
boundary of the (interior of) a symplectic manifold. But in four dimensions any cosymplectic
manifold is automatically a taut foliation and hence the conclusion follows from the following
theorem:

Theorem 7.2 [12, Theorem 41.3.1]. Let Z be a closed 3-manifold and F ⊂ TZ be a smooth
taut foliation. Let σ ∈ Ω2(Z) be the closed form which is positive on the leaves of F . Then
there is a closed symplectic manifold (X,ω) containing Z as a separating submanifold such
that ω|Z = σ.
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While carrying out this research, the author was made aware that Frejlich, Martinez-Torres
and Miranda were carrying out a project [6], which overlaps with the results in this paper.
Notably, they had independently produced our ‘Construction 1’ and our Theorem 7.1.
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