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0. Introduction

Eisenstein integrals play a fundamental role in harmonic analysis on reductive sym-
metric spaces of the form X = G/H; here G is assumed to be a real reductive group of the
Harish-Chandra class, and H an (essentially connected) open subgroup of the group G°
of an involution ¢ of G. The notion of Eisenstein integral goes back to Harish-Chandra,
who used it to describe the contribution of generalized principal series to the Plancherel
decomposition of a real reductive group ‘G. In this setting an Eisenstein integral is es-
sentially a matrix coefficient of an induced representation of the form Indzg(‘w), with ‘P
a proper parabolic subgroup of ‘G and ‘w a suitable representation of ‘P.

For general symmetric spaces G/H, the notion of Eisenstein integral was introduced
in [6] for minimal o-parabolic subgroups of G, i.e., minimal parabolic subgroups of G with
the property that o(P) = P. The notion was later generalized to arbitrary o-parabolic
subgroups in [14,15] and found application in the Plancherel theorem for G/H, see [16]
and [12]. In this setting of reductive symmetric spaces, the Eisenstein integrals appear
essentially as matrix coeflicients of K-finite matrix coeflicients with H-fixed distribution
vectors.

A group ‘G of the Harish-Chandra class may be viewed as a homogeneous space for the
left times right action of G = ‘G x ‘G on ‘G, and is thus realized as the symmetric space
G/H with H the diagonal in G. The definition of Eisenstein integral for the symmetric
space G/ H yields a matrix coefficient on ‘G which is closely related to Harish-Chandra’s
Eisenstein integral, but not equal to it. The two obtained types of Eisenstein integrals
differ by a normalization which can be described in terms of intertwining operators, see [8]
for details. In the present paper we develop a notion of minimal Eisenstein integrals for
reductive symmetric spaces, which cover both the existing notion for symmetric spaces
and Harish-Chandra’s notion for the group.

An even stronger motivation for the present article lies in the application of its results
to a theory of cusp forms for symmetric spaces, initiated by M. Flensted-Jensen. In [7] we
use our results on Eisenstein integrals to generalize the results of [2] and [1] to reductive
symmetric spaces of o-split rank one (i.e., dimaq = 1).

We will now explain our results in more detail. Let 6 be a Cartan involution of G
commuting with ¢ and let K be the associated maximal compact subgroup of G. Let

g=tDp=hdq
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be the eigenspace decompositions into the +1-eigenspaces for the infinitesimal involutions
6 and o, respectively. Furthermore, let a, be a maximal abelian subspace of pMq and a
a maximal abelian subspace of p containing a,. We put A, := expaq and A :=expa.

For the description of the minimal o-principal series one needs the (finite) set of mini-
mal o-parabolic subgroups of G containing Ag; this set is denoted by &2, (Aq). In the case
of the group ‘G one may take A ='A x ‘A, with ‘a maximal abelian in ‘p. Then &, (A)
consists of all parabolic subgroups of the form ‘P x ‘P, with ‘P a minimal parabolic
subgroup from ‘G containing ‘A. To obtain Harish-Chandra’s Eisenstein integral one
would need to also consider minimal parabolic subgroups of the form ‘P x ‘P.

Our goal is then to define Eisenstein integrals by means of suitable H-fixed distribution
vectors for all minimal parabolics of G containing A. The (finite) set of these is denoted
by Z(A). For the case of the group one has Z,(Aq) € Z(A), but for general symmetric
spaces G/H, the parabolic subgroups from Z2,(A,) will in general not be minimal.

A parabolic subgroup P € #(A) is called g-extreme if it is contained in a parabolic
subgroup Py from Z2,(Ay), see Section 1 for details. For such a parabolic, each repre-
sentation IndIC;V0 (£ ® A® 1) of the o-principal series can be embedded in the represen-
tation Ind%(&x ® (A — ppy) ® 1) of the minimal principal series, through induction in
stages. Here ¢ is a finite dimensional unitary representation of the Langlands component
My := Mp,, and &y; denotes the restriction of £ to M := Mp. Furthermore, A € a:‘lC and
prh = pp — pp,- This is discussed in Section 4.

In Section 5 the H-fixed generalized vectors of the first of these induced representa-
tions are shown to allow a natural realization in the latter. To describe it, one needs to
parametrize the open H-orbits on G/P,. We will avoid this complication in the intro-
duction, and work under the simplifying assumption that H P, is the single open orbit.
This condition is always fulfilled in the case of the group; in general the open orbits are
given by PvH, for v in a finite set # ~ W(ay)/Wknu(aq).

Let C~>°(Fy : £ : A) denote the space of generalized vectors for the induced represen-
tations Indg0 (§®A®1). The H-fixed elements in this space needed for the definition of
the Eisenstein integral are parametrized by V(§) = %”EMOQH . Given 1 € V (&), one has a
family

J(Py:€:X:n) e C™®(Py:€&: N (A€ ale),

defined in [5]. In a suitable sense it depends meromorphically on A € ac. This family
has image jg (P : &y 2 A :n) in C=%°(P : &x7 0 A—ppn) ™. By definition the latter defines
a continuous conjugate linear functional on the space C™°(P : &xr @ =\ + ppn). In (5.5)
we show that for A in a suitable region 2p C af¢ this functional is given by an absolutely
convergent integral

G (P Ear = Xem). f) = / Fron (0.1)

Hp\H
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for f € C®°(P: &y : —\+ ppy). Here Hp := HN P, and fn’w is a natural interpretation
of the function (n, f)|g € C°(H) as a density on the quotient manifold Hp\H.

To extend formula (0.1) to the setting of a parabolic subgroup Q € Z(A) which is
not g-extreme, two problems need to be solved. First of all a suitable domain ¢ for the
convergence needs to be determined. Next, the resulting family j;(Q : {ar : A) needs to
be extended meromorphically in the parameter A € ajc.

In the present paper both these problems are solved by using a suitable partial or-
dering = on £(A) whose maximal elements are the g-extremal parabolic subgroups,
see Section 2 for details. Let P € #,(A) be such that P > Q. Then the definition of
the ordering guarantees that Hp C Hg and that the fiber Hp\H¢ of the natural fiber
bundle Hp\H — Hg\H is diffeomorphic to Ng N Np in a natural way, see Section 6.
We use a general Fubini type theorem for densities on fiber bundles, discussed in the
appendix of this paper, to decompose the integral (0.1) in terms of a fiber integral over
NonN Np followed by an integral over the base manifold Hg\H, see Theorem 6.7. The
first of these integrals turns out to be the integral for the standard intertwining operator

AQ: P&y =N+ ppn): C°(P:épr: =X+ ppn) = C(Q : Ear - =X+ ppn),

whereas the second integral turns out to be (0.1) with @ in place of P. According to
Theorem 7.1 this results in the formula

Ga(P:éar i Xin) = ju(Q: & Ain) o AQ: P:én i =M+ ppn), (0.2)

with convergent integrals for A € Qp. Convergence of the integral for ju(Q : {ar: A1)
is thus obtained through Fubini’s theorem, as a consequence of the known convergence of
the other two integrals. Furthermore, since the appearing standard intertwining operator
has an inverse which is meromorphic in A, formula (0.1) also allows us to conclude in
Theorem 7.8 that

A= (@ : &y A:n) (0.3)

depends meromorphically on A\ € agc-

Once the meromorphic extension of (0.3) has been established for general Q € Z(A)
we apply a recent convexity theorem [3, Thm. 10.1] to determine a large domain on which
(0.3) is holomorphic, see Corollary 7.6). The convexity theorem describes the image
of H under the projection $gq : G — a4 determined by the Iwasawa decomposition
G = K(AN H)exp(aq)Ng as a convex polyhedral cone described in terms of a subset
of the set of roots of a in ng. This description allows one to decide whether this cone
properly contains the origin or equals it. In the latter case it is shown that (0.3) is
holomorphic on all of agc see Remark 7.9.

The definition of the meromorphic family of H-fixed generalized vectors (0.3) allows
us to define Eisenstein integrals E(Q : \) essentially as matrix coeflicients with K-finite
vectors in the induced representation under consideration. In particular, the Eisenstein
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integral depends meromorphically on A. Holomorphy of (0.3) implies holomorphy of the
corresponding Eisenstein integral, see Corollary 8.5.

The relation (0.2) leads to a relation between the Eisenstein integral F(Q : A) and
the Eisenstein integral E(Pp, A), earlier defined in [6] and [10]. This relation amounts to
a different normalization of the Eisenstein integral expressed in terms of a C-function,
see Corollary 8.14.

Finally, in Section 9, we discuss the case of the group, and express the obtained
Eisenstein integrals in terms of Harish-Chandra’s Eisenstein integrals, see Corollary 9.8.
In this case, the Eisenstein integral F(Q : A) coincides with Harish-Chandra’s if and only
if Q is a =-minimal element of Z(A). The latter means that Q is of the form ‘Q x ‘Q,
with '\Q € Z(*A); see Corollary 9.6. The result on holomorphy established above, is
consistent with the holomorphic dependence of Harish-Chandra’s Eisenstein integral,
see Remark 9.7.

1. Notation and preliminaries

In this section we collect some of the notation that will be used throughout this article.

We assume that G is a reductive Lie group of the Harish-Chandra class. Let ¢ be an
involutive automorphism of G and let 6 be a Cartan involution that commutes with o, let
K := GY be the associated maximal compact subgroup. Let H be an open subgroup of
the fixed point subgroup G°?. We assume H to be essentially connected. (See [4, p. 24].)
If S is any closed subgroup of G, we agree to write

Hg:=SNH. (1.1)

A Lie group will in general be denoted by a Roman upper case letter; the associated
Lie algebra by the corresponding lower case gothic letter. We denote the infinitesimal
involutions associated with o and 6 by the same symbols, respectively. As usual, the
decompositions of g into the +1 and —1 eigenspaces for 6 and o are denoted by g =
t D p = bh @ q respectively. As the involutions ¢ and 6 commute, we have the following
decomposition of g also decomposes as a direct sum of vector spaces

g=(NhoENgD(pPNH & (pNq).

We fix a non-degenerate G-invariant bilinear form B on g, which coincides with the
Killing form on [g, g], is negative definite on ¢ and positive definite on p, and for which
the above decomposition is orthogonal. Furthermore, we equip g with the positive definite
inner product given by

We fix a maximal abelian subspace a4 of p N q and a maximal abelian subspace a of
p containing a,. Then a decomposes as
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a=ap®dag,

where a, = anf. This decomposition induces natural embeddings of the associated dual
spaces a}, and a; into a*. Let A := exp(a), Aq := exp(aq) and Ay, := exp(ay).

If P is a parabolic subgroup (not necessarily minimal), then we write Np for the
unipotent radical of P. If P contains A and b is a subalgebra of a, then we write X(P, b)
for the set of weights of b in np. Furthermore, we write X(P) for 3(P, a), unless clarity
of exposition requires otherwise. If 7 is an involution of g preserving a, we agree to write

S(P,7) = S(P) N r3(P). (1.2)

For a root a € ¥(a) N a;, we note that ofa = a, so that o leaves the root space gq
invariant. Accordingly, we define the subset £(P)_ = X(P),,— of X(P,c6) by

B(P)-:={ae€X(Pol):aca;= ol #I}. (1.3)

Let M denote the centralizer of A in K and let Z(A) denote the set of minimal
parabolic subgroups P C G with A C P. Then each subgroup P € £(A) has a Langlands
decomposition of the form P = M ANp.

Definition 1.1. A parabolic subgroup P € &(A) is said to be g-extreme if
Y(P,00) = X(P) \ a},.
The set of these parabolic subgroups is denoted by &2, (A).

We will finish this section by comparing Z2,(A) with the set Z2,(A,) of minimal
of-stable parabolic subgroups of G containing A,. We recall from [5] that the latter set
is finite and in bijective correspondence with the set of positive systems for X(g, aq).
Indeed, if II is such a positive system then the corresponding parabolic subgroup Pp
from Z,(Aq) equals Py = Zg(aq)Nm, where nyp := @qaende and Ny := exp(ng). The
Langlands decomposition of Py is given by

P = MyAgNm,

where Ay = exp(ag) and My = Zk(aq)exp(mp), with ag = Naex(g,a)nay, kera, and
mo := Zg(aq) Nag.
Conversely, if Py € &5(Aq) then the associated positive system is given by

E(PO’ aq) = {a € E(gv uq) | Ja g nPo}'
Lemma 1.2. Let P € Z(A). Then the following conditions are equivalent.

(a) P e Py(A);
(b) there exists a Py € P5(Ay) such that P C Py.
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Proof. First assume (a). Then X(P) \ a% = X(P,00) and we see that the set II of
non-zero restrictions alq , for o € X(P) \ a}, is a positive system for ¥(g,a,). Now
Np = (Np N My)Ny1 and we see that P C Py and (b) follows.

Next assume (b). We first note that

Y(Po,aq) = {afa, : @ € B(FRy), alq, # 0}

The minimality of Py implies that (P, aq) is a positive system for the root system
¥(g,aq), hence

Y(g,a)\a}, ={a € X(g,a): als, € X(g,aq)} = X(Fy) U—-%(F).
By assumption P C Py. This implies X(FPy) C X(P) and X(P) N —X(Fy) = (). Hence,
%(P)\ af, = X(Fp).

Moreover, since Py is of-stable the above equality implies X(P) \ a}, C (P, 06). As the
converse inclusion is obvious, the parabolic P is g-extreme and (a) follows. O

2. Minimal parabolic subgroups

Lemma 2.1. Let P € &(A). The set ¥(P) is the disjoint union of X(P, o) and (P, c0).

Proof. Let a € X(P). Then either car € X(P) or o8 = —oa € X(P). The two cases are
exclusive, and in the first case we have a € X(P, ), while in the second o € X(P,06). O

We define the partial ordering > on Z(A) by
Pr@Q <<= X(Q,08)CX(Po0) and X(Po)CX(Q,0). (2.1)

It is easy to see that this condition on P and @ implies that Hy, C Hy,. The latter
condition implies that we have a natural surjective H-map H/Hy, — H/Hn,.

Lemma 2.2. Let P,Q € Z(A), and assume that P = Q. Then

(a) X(P)Naj=%(Q)Nal;
(b) X(P)Naf, =X(Q) Nat.

Proof. Let a € ¥(Q) Naf. Then oo = a so that o € %(Q, 00) C X(P,00). We infer
that X(Q) Na; C X(P) N ag. Since both sets in this inclusion are positive systems for
the root system ¥ M ay, the converse inclusion follows by a counting argument.

Assertion (b) is proved in a similar fashion, using ¢ in place of 06 and referring to
the second inclusion of (2.1) instead of the first. O
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Lemma 2.3. Let P,Q € ZP(A). Then the following statements are equivalent.

(a) P=Q; )
(b) X(P)NE(Q) € (P, 08) and B(P) N(Q) € £(Q, 0);
(©) =(P)N2(Q) = S(P,08) NS(Q, o).

Proof. First assume (a). Let @ € Z(P)NE(Q). Then oa € X(P) would lead to a € X(Q),
contradiction. Hence, a € 3(P,06). The second inclusion of (b) follows in a similar
fashion.

Next, (b) is equivalent to X(P)NX(Q) C X(P,00) N X(Q, o), which is readily seen to
be equivalent to (c).

Finally, assume (c) and let o € $(P, o). Then a € %(P)\X(P, 06), hence a ¢ %(Q) by
the equality of (¢) and it follows that a € X(Q). Likewise, ca € 3(Q) and we conclude
that a € 3(Q,0). On the other hand, let a € ¥(Q, 06). Then o € ¥(Q) \ X(Q, o). The
equality in (c) is equivalent to

S(P)NE(Q) = B(P,00) N X(Q,0),

which shows that o € X(P). Likewise, c8a € X(P) and we see that a € X(P, 00). This
proves (a). O

Lemma 2.4. Let P,Q,R € #(A) be such that P = R. Then the following assertions are
equivalent:

(b) Z(P)NXE(Q) C E(P)NXE(R).

Proof. Assume (a). By Lemma 2.3, the first set in (b) equals $(P, o) N $(Q, o), which
by (2.1) is contained in (P, 06) N X(R, o). The latter set equals the second set of (b),
again by application of Lemma 2.3. Assertion (b) follows.

For the converse implication, assume (b). Then it is well known and easy to show
that

Y(P)NE(R) = (B(P)NX(Q) U (Z(Q)NX(R))  (disjoint union). (2.2)

Indeed, it is obvious that the set on the left-hand side of (2.2) is contained in the union

on the right-side. For the converse inclusion, we first note that (b) implies ©(P)N%(Q) C
Y(R). Now assume that o € %(Q) N X(R). Then a ¢ X(P) so that a € %(P) N X(R).
Hence, the second inclusion of (2.2) follows as well.

Still assuming (b), we claim that P = Q. To see this, let a € X(P) N 2(Q). Then
a € X(P)NE(R) C X(P,0) N E(R,0) by Lemma 2.3. Assume now in addition o ¢

¥(Q,0). Then cfa € X(P) N X(Q) C X(P) NX(R), hence a € (R, 06), contradicting
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the earlier conclusion that a € X(R,). Thus the assumption cannot hold, so that
a € X(P,00) NE(Q, o). In view of Lemma 2.3 this establishes the claim.

We will now infer (a) by establishing that @ = R. For this, let o € (Q)NY(R). Then
a € %(P)N%(R) by (2.2), which implies that a € %(P,00) N (R, o) by Lemma 2.3.
Assume now that a ¢ ¥(Q, ¢). Then ca € %(Q) N X(R) C B(P), so that a € (P, ),
contradicting the earlier conclusion that o € X(P,0#). Thus, the assumption cannot

hold, so that a € X(Q,06) N X(R, o). Applying Lemma 2.3 with (@, R) in place of
(P, @), we finally obtain that Q = R. O

Remark 2.5. Recall that two parabolic subgroups P,Q € Z(A) are said to be adjacent
if ¥(P)NY(Q) has a one dimensional span in a*.

If P,Q € #(A) then there exists a sequence P = Py, Py,..., P, = @ of parabolic
subgroups in #(A) such that for all 0 < j < n we have X(P)NX(P;) C X(P)NS(Pj41)
and such that P; and P;i; are adjacent. If in addition P > @, then it follows from

repeated application of the lemma above that
P:P0>-P1>'>'Pn:Q

Our next objective in this section is to show that every parabolic subgroup from &?(A)
is dominated by a g-extreme one, see Definition 1.1.

Given Q € Z(A), we denote the positive Weyl chamber for 3(Q) in a by a™(Q).
Furthermore, we put

0 (Q) ={H € aq| a(H) >0, Va € X(Q, 00)}. (2.3)
It is readily verified that this set contains the image of a™(Q) under the projection
pry : @ = dq; in particular, it is non-empty.

Let ag® be the set of regular elements in aq, relative to the root system X(a,). The
connected components of this set are the chambers for the root system 3(aq). The
collection of these is denoted by Ilg(a}®). It is clear that al*® N alf(Q) is the disjoint
union of the chambers contained in af(Q).

We define

P5(A,Q) :={Pe P, (A)| P=Q}

Lemma 2.6. Let Q € P(A). Then the assignment P — al (P) defines a bijection from
the set Z,(A,Q) onto the set {C € Ilp(af®) | C C al(Q)}.

Proof. We abbreviate €(Q) := {C € I(ai®) | C C af(Q)}. Let P € P,(A,Q). Then
a root o € X(P) restricts to a non-zero root on a4 if and only if o € £(P) \ a}. The
latter set equals X(P) \ ¥(P,0) = X(P,00). Therefore, al (P) is a connected component
of ag’®. Furthermore, from P = Q it follows that X(P,0f) D ¥(Q,00), which in turn
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implies that af (P) C af(Q). It follows that af (P) € €(Q). It remains to be shown that
the map

P al(P), 2,(A,Q) = €(Q) (2.4)

is bijective. For injectivity, assume that P, P, € Z(A, Q) and that af (Py) = af (P2).
Let v € X(Py). If a € a}, then a € ¥(Q) Naj, € X(F). If a ¢ af, then a € af (P, 00)
and it follows that o > 0 on aar(Pl) = ajl’(Pg), which implies that o € ¥(Pz). Thus, we
see that X(P;) C X(P2) which implies P; = Ps.

For surjectivity, let C be a chamber in €(Q). Let II¢ denote the set of roots o € X(a)
that are strictly positive on C. The set II}, := 3(Q) Na¥, is a choice of positive roots for
the root system X(a) N a7},. Hence, there exists an element Y € a’ such that

I, = {a € S(a)Nal, | a(Y) > 0},

Fix X € C and put X; = X +tY for t € R. Then there exists ¢ > 0 such that for |t| < e
we have a(X;) > 0 for all « € Tl. Fix 0 < ¢t < . Then it follows that X; is regular for
Y (a) and that the associated choice of positive roots II := {a € X(a) | «(X;) > 0} is the
disjoint union of II¢ and ITy,. Let P be the parabolic subgroup in #(A) with X(P) = II.
Then ¥(P)Na}, = Iy = X(Q)Na},. Furthermore, if « € X(P)\ a}, then a € II¢. Hence,
ofa(X;) = a(—o(Xy)) = a(X_;) > 0, and we see that o € X(P,06). It readily follows
that P € Z,(A,Q). O

We finish this section by investigating these structures in the setting where H is
replaced by a conjugate vHv ™!, with v € N (a) N N, - Let such an element v be fixed.
Then v normalizes ay, as well. Let C, : G — G denote conjugation by v, and put

Oy = Cvoova_l. (25)

Then o, is an involution of G which commutes with the Cartan involution #; moreover,
since v normalizes Zk (a,), the conjugate group vHv ™! is readily seen to be an essentially
connected open subgroup of G°». The infinitesimal involution associated with o, is given
by 0, = Ad(v) o0 0 Ad(v)~!. Since Ad(v) normalizes a, and ay, it follows that

Uv|a:U|a (26)

and that a, is maximal abelian in p Nker(o, + I).
It follows from (1.2) and (2.6) that

3(Q,0,) =%2(Q,0) and X(Q,0,0) = X(Q,00). (2.7)

From this we see that the ordering on #(A) defined by (2.1) with o, in place of o
coincides with the ordering =. It is also clear that P+ v~ Puv preserves 2, (A).
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Lemma 2.7. Let @ € #(A) and v € Ng(a) N N (ay). Then
2(Q)gy,— = v8(v 1 Qu) . (2.8)

Let S, == {a € X(a) Nay | 0u0lg, # I}. Then it is readily seen that S, = vS..
From (1.3) we now deduce that

¥(Q)o,,— Nag =X(Q) NS, = v(Z(vT Q)N S.) = vE(viQu)_ N ag-

On the other hand,

5(Q)o,,— \ag = X(Q,000) \ ag = 5(Q, 00) \ ag

=v(S(v'Qu,00) \ a) = vX(v ' Qu)_ \
and we deduce (2.8).

3. Induced representations and densities

Let P = MpApNp be a parabolic subgroup with the indicated Langlands decomposi-
tion and let (£, %) be a unitary representation in a finite dimensional Hilbert space 7.
The assumption of finite dimensionality is natural for the purpose of this paper. More-
over, the following definitions, though valid in general, will merely be needed for the case
that P belongs to either &2(A) or Z,(Aq).

For p1 € ape and s € NU {oo} we denote by C*(P : £ : u) the space of C*-functions
f + G — I transforming according to the rule

f(manz) = a7 E(m) f(2),

for all z € G and (m,a,n) € Mp x Ap X Np. The right regular representation R of G in
this space is the C*-version of the normalized induced representation Ind% (¢ ® p® 1).

We put Ky, := K N Mp and denote by C*(K : §) := C*(K : Ky, : €) the space of
C*-functions f : K — J¢ transforming according to the rule

f(mk) =&m)f(k) (ke K, me Kuyp).

All function spaces introduced so far are assumed to be equipped with the usual Fréchet
topologies (Banach when s < o0). The restriction map f +— f|x gives topological linear
isomorphisms

C*(P:&:p) = C*(K : ¢), (3.1)

intertwining the K-actions from the right. Through these, the right regular actions of the
group G may be transferred to continuous representations of G on C*(K : &), denoted
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mpe,. This realization mpg ,, is called the compact picture of the C®-version of the
parabolically induced representation Ind%(¢ ® pu ® 1), see [23, p. 15]. Let dk denote
the normalized Haar measure on K, and let (-, -)¢ denote the inner product of J#.
Then it is a well known fact, see e.g. [26, Lemma 8.3.11], that the sesquilinear pairing
C(K: &) xC(K :§) — C given by

s ghe = / (F(R) . g(k)e dk, (3.2)

K

is equivariant for the representations wp¢ , and mp¢ 5. Accordingly, the above formula
gives an equivariant sesquilinear pairing

CP:&:p)xC(P:&:—p)—C. (3.3)

We will usually omit the index £ in the notation of the pairing (3.2).

We denote by C~%(P : £ : u) the continuous conjugate-linear dual of the Fréchet
space C*(P : £ : —f), equipped with the strong dual topology and with the natural dual
representation. Likewise, we denote by C'~%(K : £) the continuous conjugate-linear dual
of C*(K : ¢).

By using the pairing (3.3) we obtain equivariant continuous linear injections

CP:&:p)—=>C*(P:&:p),

for s € NU{oo}. Likewise, by using the pairing (3.2) we obtain K-equivariant continuous
linear injections C'(K : &) — C~*(K : ). Through the indicated pairings it is readily
seen that the isomorphism (3.1) for s = 0 extends to a topological linear isomorphism

C™3(P:€:p) = C3(K : €), (3.4)

for all s € NU{oo}. By transfer we obtain a continuous representation 7% , of G in the
second space in (3.4), such that the isomorphism becomes G-equivariant. It is readily
verified that this representation is dual to the representation mp¢ 5 on C*(K : &). We
will usually omit the superscript —s in the notation of this dual representation.

For s,t € N with s < ¢, the inclusion map C*(K : ) — C*(K : £) is a compact linear
map of Banach spaces which has a dense image and therefore dualizes to a compact
linear injection

C*(K:€) = CHK : €).

In view of [24, Thm. 11], the locally convex space C~*°(K : £), equipped with the strong
dual topology, coincides with the inductive limit of the Banach spaces C75(K : £).
Furthermore, by [24, Lemma 3] each bounded subset of C~>°(K : £) is a bounded subset
of C7%(K : £) for some s.
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Let now 2 be a complex manifold. Then by the above mentioned property of bounded
subsets of the inductive limit, a function ¢ : @ — C~%°(K : ) is holomorphic if for each
zop € €) there exists an open neighborhood Qg of zy in Q and a natural number s € N such
that ¢ maps g holomorphically into the Banach space C~%(K : £). A densely defined
function f from Q to C~°°(K : &) is said to be meromorphic if for each zy € Q there
exists an open neighborhood gy and a holomorphic function ¢ : Q9 — C such that ¢f
extends holomorphically from Dom(f) N Qg to Q.

For later use, we record some observations involving the contragredient M p-represen-
tation £V, whose space /v is the linear dual of .7%. The assignment v — (v, -) defines
an M p-equivariant conjugate-linear isomorphism from . onto JZv. This isomorphism
induces a K-equivariant topological conjugate-linear isomorphism from C*(K : {) onto
C>°(K : &£Y). The latter isomorphism is equivariant for the representations mp¢ _; and
Tpev,—pu, respectively, for every 1 € ape. Through this isomorphism, the pairing (3.2) is
transferred to the bilinear pairing

C®(K: &) xOC®(K:¢Y)—C (3.5)

given by
(. g) = / (k). g(k)) dk. (3.6)
K

Furthermore, this pairing is equivariant for the representations mpg¢, and mpev .
Through it, we see that C~°°(K : &) is naturally identified with the continuous lin-
ear dual of C*°(K : £V). Moreover, this identification realizes the representation W}E’V "
as the contragredient of TPev —p Accordingly, we obtain the G-equivariant topological
linear isomorphism

C P :€6:p)~C(P:¢v:—p).

In the rest of this section we assume that P € &?(A) and that (§, 7) is a (not necessarily
irreducible) unitary representation of M in a finite dimensional Hilbert space 4.

One of the goals of this paper is to study H-invariant distribution vectors of principal
series representations. A first step in the construction of these is the following. We
consider the homogeneous space Hp\H, see (1.1) for notation, and denote the associated
canonical projection by 7 : H — Hp\H. Given x € H we write [z] = m(x). Furthermore,
for h € H we use the following notation for the right multiplication map,

ry: Hp\H — Hp\H, [z] > [z]h = [zh].

We refer to the appendix, the text preceding (A.4), for the notion of a density on Hp\H
and the associated notion of the density bundle Zp,\ . The notion of the pull-back
bundle 7*Zy,\g — H is defined in the same appendix, in the text before (A.5).
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Let hp denote the Lie algebra of Hp = HN P, then dr(e) induces a linear isomorphism
h/bp =~ Ti)(Hp\H). We fix a positive density w = wy\g € Py, -

If S C X(P), we define the subspace ng C g to be the direct sum of the root spaces g,
for a € S, and we define pg € a* by

1
ps(X) = Str (ad(X)lns) (X € a).
Furthermore, we agree to abbreviate

PPh ‘= Px(P)Na% -

In the following result we will describe certain densities associated with principal series
representations.

Lemma 3.1. Let A € aj¢, f€ C(P:¢: ~\+ppn) and n € %H“l. Then
Fow o (s f(R)e drn(le]) ™ w
defines a continuous density on the homogeneous space Hp\ H .

Proof. For each h € H, put ¢(h) = f, ., (h). Then ¢(h) defines a density on the tangent
space Txy,n(Hp\H) and ¢ : H — 7 (Zy,\ i) defines continuous section of the pull-back
bundle. It suffices to show that w(hph) = ¢(h) for all hp € Hp. We note that Hp =
HNP=HyAwHy, . Accordingly, write hp = man, then

p(hph) = a=Peetee(e(m) =, f(h)) dra((elhp) ™ dru, (le]) "o
=a*™ P A(hp)p(h), 3.7)

where
Ahy) = |det Ad(hp)lyn, | = |det Ad (g, .
Since Hp, is nilpotent, whereas Hjs is compact, it follows that
A(hp) = Ala) = |det Ad(a)]y, |~
Using the decomposition hp = (hNm) @ ap @& (h Nnp) we finally see that
A(hp) = |det Ad(a)[ponp |~ = a,

where 6 = tr (ad(- )|pnnp) € a},. We now use that

hNnp = @ ga ( EB ga)a.

ac(X(P)Na%) aeX(P,o)\a%,
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For each a € (P, 0) \ a%, we have oo # «, and the direct sum go @ gy is o-invariant,
so that its intersection with b is given by

(8o @ 9oa)” ={X +0(X) | X € ga}-

The action of an element H € ay, on this space has trace dim(g,) a(H). We conclude
that

0= (2pPh + pZ(P,U)\C‘*h) |ah'

Using the decomposition

PP = PPh + Px(Po)\a%, T PE(P,00)

we see that

(pp +ppn)|,. — 0= puponl,, =0
Combining this with (3.7) we infer that ¢ is left Hp-invariant. O

Remark 3.2. Recall the definition of 3(P)_ in (1.3). In Section 5 we will show that for
all \ € a’¢, for which there exists Py € #,(A4q) with (P, 00) C ¥(F%) such that

Ya e X(P)_ : (ReA+pp, , a) <0,
the above density f, ., is integrable over Hp\H.
4. Comparison of principal series representations

In this section we will compare the principal series representations with the o-principal
series defined in [5]. The latter involve parabolic subgroups Py from Z,(A,). Each of
these has a Langlands decomposition of the form Py = MyAoNp,, see the end of Section 1
for details.

We will now investigate the structure of the group My in more detail. Our starting
point is the following lemma.

Lemma 4.1. Let « € X(g,a) Na%,. Then g, C b.

Proof. Let o be as in the assertion. Then ca = « so that o leaves the root space g,
invariant. Thus, it suffices to show that g, Nq = 0. Assume that X € g, N q. Then
(X — 6X) belongs to p N q and centralizes a,. As the latter space is maximal abelian in
p N g, it follows that X — 60X € a; N (ga +9—o) =0. O
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Let mgy be the ideal in m( generated by a N mg. Since a N my has trivial intersection
with the center of mg, the ideal mg, equals the sum of the simple ideals of non-compact
type in mg. It has a unique complementary ideal; this is contained in the centralizer of
aNmg in mgy, hence in m.

Lemma 4.2. The ideal mq, is contained in mg N h.

Proof. The algebra my admits the decomposition

my=ma® (aNmy) EB Oa- (4.1)
aeX(g,a)Na’,

Each appearing root space g, equals [a N my, go]. Hence, mg,, contains the subspace

s:=(anNmy) & @ Oa-

aeX(g,a)Na’y,

It follows that mg, contains the subalgebra s of mg generated by s. On the other hand,
since mg = m + s and m normalizes s, the algebra § is an ideal of mg,. We conclude that
mg, equals the algebra § generated by s.

Now anmg C h and each of the root spaces in (4.1) is contained in h by Lemma 4.1.
Therefore, s C h and we conclude that mg, =5 C h. O

Let My, be the connected subgroup of My with Lie algebra mgy.

Lemma 4.3.

(a) Moy is a closed normal subgroup of M.

(b) MMOn ~ M ><]\4r71\/[0n MOn

(c) The inclusion map M — My induces a group isomorphism M /M N Mo, ~ Mo/Moy.
(d) Hate = Hayr Mon.

(e) The inclusion map M — My induces a diffeomorphism M/Hyy ~ Mo/H pyp, .

(f) The group Moy, acts trivially on My/Mo, and on My/Hyy, .

Proof. The normality of My, follows since my, is an ideal of mg. Since mq is reductive,
there exists an ideal mg. complementary to mg,. The group My, is equal to the connected
component of Zyy, (mo.) and therefore My, is closed. This proves assertion (a). From
mp = m + mg, and (a) it follows that M Mjy, is an open subgroup of M. Since My is of
the Harish-Chandra class, and M = Zxnn, (a Nmg), it follows that M intersects every
connected component of My. Hence, My = M My, and (b) readily follows. Assertion (c)
follows from (b) and (a). We now turn to assertion (d). From Lemma 4.2 it follows that
Moy, C H. In view of (b) we now see that

HM'O = [MMOH] NH = HyMy,.



E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795-2864 2811

Hence (d). From (c) and (d) we obtain a natural fiber bundle M/M N My, — M/H)y,
which corresponds to factorization by the group F := Hys/(M N Myy,). Likewise, we
obtain a natural fiber bundle My/My, — My/H ), which corresponds to factorization
by group Fy := Hpy,/Mon. The isomorphism of (¢) maps F' onto Fp, hence (e) follows.

Since My, is normal in My, it acts trivially on the quotient My/Mp,. The second
assertion of (f) follows from this as My, C Hpy,. O

Given a continuous Fréchet My-module V, we denote its space of smooth vectors
by V°°. This comes equipped with the structure of a continuous Fréchet My-module in
the usual way. The continuous linear dual is denoted by V°°'.

Corollary 4.4. Let (£,V) be an irreducible continuous representation of My in a Fréchet
space V' such that

(VeoyHaro £ 0. (4.2)

Then &|p,, s trivial and &|pr is irreducible. In particular, £ is finite dimensional and
unitarizable.

Proof. Let ) be a non-zero element of the space in (4.2). Then there is a unique injective
continuous linear My-equivariant map j : V> — C°°(Mo/Hpy,) such that j*(d¢) = 7,
with dj¢) denoting the Dirac measure of Mo/ H g, at [e] := eHy,. Since Mo, acts trivially
on My/H py, it follows that Moy, acts trivially on V'*° hence on V. We conclude that |y,
is trivial. By application of Lemma 4.3 it follows that £|as is irreducible. O

The above result provides motivation for considering only finite dimensional unitary
representations of My. We note that any such representation restricts to the trivial
representation on My,, since the latter group is connected semisimple of the non-compact
type. Since My/My, is a compact group, it follows that

Mogs ~ (Mo/Moy)", (4.3)

where ]\/Zofu denote the set of equivalence classes of finite dimensional irreducible unitary
representations of M.

Lemma 4.5. The restriction map & — &y = &|pm induces an injection

Moga — M. (4.4)
The image of this injection equals (M /M N Moy)".
Proof. It follows from Lemma 4.3 (c¢) that the restriction map induces an isomorphism

(Mo/Mon)/\ ~ (M/M n MOn)/\-
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The latter set may be viewed as the subset of M consisting of equivalence classes of
irreducible unitary representations that are trivial on M N Mp,. Now use (4.3). O

From now on we will use the map (4.4) to view ]/\Zofu as a subset of M.

Lemma 4.6. Let (§, %) be a finite dimensional unitary representation of My (not nec-
essarily irreducible). Then

%H

AR s (4.5)

Proof. The space on the left-hand side of the equation is clearly contained in the space
on the right-hand side. For the converse inclusion, let n € J7 be an Hjs-fixed vector.
Then 7 is fixed under the group Hps Moy, which equals Hyz, by Lemma 4.3 (d). O

Let W(a,) denote the Weyl group of the root system 3(g,ay). Then W(a,) =~
Nik(aq)/Zk(ay), naturally. We denote by Wik (aq) the image of Nxnpg(aq) in Way).
Let W(a) ~ Nk(a)/Zk(a) denote the Weyl group of the root system X (g, a). Then re-
striction to aq induces an epimorphism from the normalizer of aq in W (a) onto W (ay).
We may therefore select a finite subset #° C Nk (a) N Nk (aq) such that e € # and such
that the map v — Ad(v)q, induces a bijection

W 3 W (ag) /Wi (ag)- (4.6)

Let & be a finite dimensional unitary representation of My (not necessarily irreducible).
Then following [5] we define

1

V(fﬂ)) — %MoﬂvHv’l :%EMWJHU’ ' (4.7)

Here we note that the second equality is valid by Lemma 4.6 applied with vHv™! in
place of H. We equip the space in (4.7) with the restriction of the inner product on J.
Finally we define the formal direct sum of Hilbert spaces

V() = @uen V(6 ). (4.8)

Forve # , leti,: V(Ev) = V(€) and pr, : V(§) — V(& v) denote the natural inclusion
and projection map, respectively.

Our goal will be to study H-fixed distribution vectors in representations induced from
minimal parabolic subgroups P € #(A). For this it will be convenient to compare these
representations to representations induced from minimal of-stable parabolic subgroups,
by using the method of induction in stages.

Let P € &,(A), see Definition 1.1, and let Py € &,(A,) be such that P C P,. Let
(&, %) be a finite dimensional unitary representation of My and let C*>°(Py : £ : A) be
defined as in the first part of Section 3 for P, in place of P. We agree to write s 1= &|ps.
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Observe that PN M is a minimal parabolic subgroup of My with split component ANMj.
Moreover, since the set of roots of a Nmg in Np N My equals X(P) N a?, it follows that

PPNMy = PPh-

Hence, there is a natural My-equivariant embedding

i: & Ind)Pnp(€y ® —ppy @ 1),

see [5, Lemma 4.4]. The map ¢ from 4% into the space C*°(MoNP : {ar : —ppn) of smooth
vectors for the principal series representation on the right-hand side is explicitely given
by

i(v)(mg) = E(mo)v (v e Jt, my € My). (4.9)
Induction now gives a G-equivariant embedding
Ind% (€@ A® 1) = Indf, (Ind}P - p (€ ® —ppr ® 1) ®A® 1)).

According to the principle of induction in stages, see [22, §7.2], the latter representation
is naturally isomorphic with Ind%(&y; ® (A — ppn) ® 1). The resulting G-equivariant
embedding

i O (Py:€:0) = CF(P: €y A — ppn) (4.10)
is given by (zf\#f)(ac) =evioiof(x) for f € C®(Py:&:\) and z € G. Here,

evy : C®(MoNP: &y —ppn) = Hi
is given by evaluation at the identity of My. Comparing this with (4.9) we see that zf is
the inclusion map.
By C>®(K : KN M, : &) we denote the space of smooth functions K — J# trans-
forming according to the rule

Jmk) = €m)f(k)  (m € KMo, k€ K).

Likewise, we write C>°(K : M : &) for the space of smooth functions K — % trans-
forming according to the rule f(mk) = {p(m) f(k), for all m € M and k € K. Note that
restriction to the group K induces topological linear isomorphisms C°(Py : £ : A) —
C®(K:KNMy:&) and C®°(P: &y A—ppn) = C°(K : M : &yp).

In these compact pictures of the induced representations, zfé becomes the inclusion
map

i C®(K: KN My: €)= C®°(K: M:&y). (4.11)
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We now see that we have the following commutative diagram

OOO(P()E)\) iCM(PIé-MZ)\—pPh)
! ! (4.12)
Co(K KN M:€) 5 C®(K : M : &)

The vertical arrows in this diagram represent the topological linear isomorphisms induced
by restriction to K; see [5] for details.

Lemma 4.7. The space C*(K : KN My : §) coincides with the subspace consisting of left
K N Moy -invariants in C°(K : M : ).

Proof. Let f € C°(K : KN My : §). Since ¢ is finite dimensional, it follows that &|azn
is trivial. Hence, for k € K and mg € My, we have that

f(mok) = &(mo) f(k) = f(k).

This establishes one inclusion. For the converse, assume that f € C®°(K : M : &) is
left K N Myy-invariant. Let my € K N My. Then we may write mg = mm,, with m € M
and my, € K N My,. Let k € K. Then

f(mok) = f(mmyk) = £(m) f(mnk) = £(m) f (k)
= &(m)&(mn) f (k) = E(mo) £ (F).

For the third equality we used that £|ps,, is trivial. We thus conclude that f belongs to
C*(K:KNMy:¢). O

Since M normalizes K N My,, we see that for f € C®(K : M : &) the function
p(f) : K — % defined by

p(f)(k) = / F(mok) dmo  (k € K),
KNMoy

belongs to C*°(K : M : &) again. The associated operator
p:C®(K:M:&y) = CC(K : M : &) (4.13)

is continuous linear and K-equivariant. Since K N My = M (K N My,), the image of p
is contained in the subspace of left K N Myy-invariants. Furthermore, p is obviously the
identity on this subspace, so that p is a projection operator with image equal to the
image im (i) of i#, see (4.11). It is readily seen that p is symmetric with respect to the
pre-Hilbert structure (-, -) on C®°(K : M : &ys) obtained by restriction of the inner
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product from L?(K) ® . Accordingly, C*™(K : M : £y) is the direct sum of im(i#)
and its orthocomplement with respect to the given pre-Hilbert structure, and p is the
associated orthogonal projection onto im(i#). Let

p?  C®(K : M :&y) — C®°(K : KN M :€) (4.14)

be the unique linear map such that p = i# o p#. For later use, we note that the maps
introduced are related by

p=i"op”,  proi* =1 (4.15)

The map p# is K-equivariant and continuous linear, and i# and p# are adjoint with
respect to the pre-Hilbert structures (-, -).

Lemma 4.8. For all A € aic, the following holds.

(a) The map i# given in (4.11) intertwines the representations wpy ¢ x and Tp.ey A—ppn-
(b) The map p* intertwines the representations Tpg,, r4+ppn AN TPy £ -

Proof. Since the top horizontal map in (4.12) is intertwining, (a) follows. Using (a) we
see that for each = € G,

7’-# ° 7TP0,§,)\(5(3) = TP&y A—ppn (l‘) ° i#'

Taking adjoints and using equivariance of the pairings (-, -) involved, we infer that

,]TPO,Q*S\(‘(E_1> op# = p# °TP ¢ar,—A+pprn (x_l)
for all A € aic and z € G. From this, (b) follows. O

For each A € a;c we denote the unique lift of (4.14) to a map C*°(P : {x 2 A+ppn) —
C®(Py : £: )N by pf. Then it follows from Lemma 4.8 that the following diagram
commutes:

C®(P:&y: A+ ppn) ﬁ> C®(Py:&:N)
! ! (4.16)
C>®(K : M :&y) i)COO(K:KﬂMO:g).

Remark 4.9. In view of (4.15) it follows from Lemma 4.8 that p defined in (4.13) inter-
twines the representations 7p.¢,,:a+ppy a0 Tpigy A= pp, Of G in C°(K : M : &pr). Thus,
it has a unique lift to an equivariant map C®°(P : &y : A+ ppn) = C°(P : &ar 2 A—ppn)-
However, we shall never use this lift.
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Proposition 4.10. Let Py € #,(Aq) and P € Z(A) be such that P C Py. Let { € ]/\Z()fu
and A € a;. Then the embedding (4.10) has a unique extension to a continuous linear
map

i CT(Py€:0) = C™(P: €1 A — ppn). (4.17)

This extension is G-equivariant and maps homeomorphically onto a closed subspace. As
a map from C~°(K : KN My : &) to C~°(K : M : {pp) the extended map is the unique
continuous extension of (4.11). In particular, it is independent of \.

Proof. Let the map
i* CT®(K KN My : &) — C (K : M : &)

be defined as the transposed of p#. Then i# is a continuous linear extension of the
bottom horizontal map of (4.12). This continuous extension is unique by density of
C®(K:KNMp:€) in C~°(K : KN M, :¢). Likewise, the adjoint i# T of the bottom
horizontal map in (4.12) is the continuous linear extension of the projection map p*
which we denote by

p?  CT®(K : M : &py) — C (K : MyNK =€)

as well. Finally, the transpose pT is the unique continuous linear extension of p to a
continuous linear map, denoted

p:C™ (K :M:&y) = C (K : M :&y).

By transposition we see that the relations (4.15) remain valid for the extensions of these
maps to the spaces of generalized functions involved. In particular, it follows that the
extended map i# is a homeomorphism onto the kernel of the extended map p — I. In
particular, it has closed image.

By transfer under the vertical isomorphisms in the diagram (4.12) we see that zf
has a unique continuous linear extension (4.17) with closed image. The extension is

G-equivariant because it is so on the dense subspace of smooth functions. O

Remark 4.11. By a similar argument it follows that the map pf represented by the
top horizontal arrow in (4.16) has a unique continuous linear extension to a surjective
equivariant map pf C7°(P &y A+ ppn) = C°(FPy : £ A). However, we shall not
need this in the present paper.

5. H-fixed distribution vectors, the g-extreme case

We retain the notation of the previous section. In particular, we assume that P €
Z,(A) and that Py € &,(A) contains P. We will now construct H-fixed distribution
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vectors in P-induced representations, by comparison with the H-distribution vectors in
Py-representations as defined in [5].

We assume that ¢ is a finite dimensional unitary representation of My and put &y =
&| - Furthermore, we assume that n € V(£ e), see (4.7).

Following [5, (5.4)] we define the function e1(Fy : § : A : 1) for A € a’¢ by

e1(Pp:€:A:m) =0 outside PyH
e1(Po : € : X m)(namh) = a*Prog(m),

for m € Mo, a € Ag, n € Ny and h € H. Clearly, for every A € ajc the function
e1(Py : &€+ X :n) is continuous outside the set O(PpH) which has measure zero in G.
By right-P-equivariance, the restriction of this function to K is continuous outside the
boundary (K N PyH), which has measure zero in K.

Let 3(Py, aq)— denote the space of aq-roots in np, such that ker(fo + I) N go # 0.
In case £ is irreducible, it follows from [5, Prop. 5.6] that the function e1(Py : £ : A : 1)
is continuous on G for all A € ajc with (ReA + pp,, @) < 0 for all o € E(F,aq)-.
By decomposition into irreducibles one readily sees that this result is also valid for an
arbitrary finite dimensional unitary representation of M.

Lemma 5.1. Let & be a finite dimensional unitary representation of My and assume that
A € ajc satisfies

Va € 2(Py, aq)— : (Re A+ pp, , a) <0. (5.1)

Then the function e1(Py : € : A : 1) is measurable and locally bounded on G, and its
restriction to K is measurable and bounded on K, uniformly for X in the indicated subset

of agc. Finally, e1(Po: &€: A :n)|k depends continuously on \ as a function with values
in LNK) ® /.

Proof. We may as well assume that £ is irreducible. The assertions about measurability
have been settled above. For the assertions about boundedness, it suffices to consider the
restriction of the function to K. From the argument in the proof of [5, Prop. 5.6], which
in turn relies on the convexity theorem of [4], it follows that for all A in the indicated
region we have

sup [1(Po = €2 A= m)lle < [nlle-

We obtain the final assertion by observing that e1(FPy : £ : A : 1) depends pointwise
continuously on A and applying Lebesgue’s dominated convergence theorem. 0O

Proposition 5.2. Let P € Z,(A) and Py € P,(Aq) be such that P C Py. Let & be a finite
dimensional unitary representation of My and n € V(€,e). Let A € ajc be such that
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Vo€ B(P)_ : (Re X+ pp, , a) <0.

Finally, let f € C®(P : &y @ =\ + ppn). Then the density f, ., defined in Lemma 3.1,
is integrable. Moreover,

/ fn,w:Cw@f(sl(PO:g:A:n))af>a (52)

Hp\H
with ¢, > 0 a constant depending on the normalization of the positive density w.

Proof. By the assumption on A, the function ¢ = zf (sl(Po . 77)) is locally

integrable on K. It follows that the expression on the right-hand side of (5.2) equals the
integral

/ k), F(R))e d,

K

where dk denotes normalized Haar measure on K. The integrand is left M-invariant, so
that the integral may also be written as the integral over k € M\ K, with dk replaced
with the normalized invariant density dk on M\K. This density may be viewed as the
section of the density bundle over M\ K given by

k— drk([e})_l*wM\K

with wyp x a suitable positive density on €/m ~ Tj,;(M\K). We now obtain that

€, f) = / k), F()e drule]) ™ wan k. (5.3)

M\K

Let ¢ : M\K — P\G be the diffeomorphism induced by the inclusion K — G. Then we
find that the pull-back under ¢ of the density in the integral in the right-hand side of
(5.3) equals

@z (e(z), f(2)) dra([e)) T do([e]) ™ wan k-

Since PoH = PH, it follows that the above density is supported by PH. Writing wp\g =
do([e]) " wan i, we obtain that the integral in (5.3) equals

[ e, s@hirae) e (5.4

P-H

Let ¢ : Hp\H — P\G be the natural open embedding induced by the inclusion map
H — G. Then |dy([e])*wp\q| = ¢, 'wp\¢ for a positive constant ¢,. We now observe
that
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v (Po s (e@), f@)e dra(le) ™ wr)
=it (Hph v (e(), f(0)e dra(le])™w)
= cglfn,w.

By invariance of integration of densities under diffeomorphisms, we see that (5.4) equals

For A € ai¢ such that the conditions of the above theorem are fulfilled, and for
n € V(§,e), we define the conjugate-linear functional jy (P : &y : A : 1) on the space
C®(P : &y - —A+ ppn) by

(P Ear = Ae), f) = 5! / Fre (5.5)

Hp\H

for f € C®°(P : &y —5\—|-pph).
We now recall the definition of the H-fixed distribution vector j(FPp,&,\) from [5,
Section 5. For A € af¢ such that

VYo € X(P)_ : (ReA+ pp,, ) <0
and for v € # and n € V(§,v) we define €,(Py : £: A : 1) : G — I by

e(Po:&:A:m)=0 outside PyvH
eo(Po 1 €1 X 1 n)(namuh) = aPro&(m)n.

We further define

JP &M =Y (P& him)  (ne V().

veW

Then j(Py : £ : \) is a map V(§) — C~°(Py : £ : M), hence defines an element in
V(E)*@C~ (K : KN My :&). The map A — j(Py : £ : \) extends to a meromorphic
V()* @ C7(K : KN My : §)-valued function on a}c. See [5, Section 5] for details.
(Strictly speaking the definition in [5] is given for £ irreducible, but the definition works
equally well in general.)

Proposition 5.2 now has the following corollary.

Corollary 5.3. Let & be a finite dimensional unitary representation of My. The map
A= ja(P &y 2 ) extends to a meromorphic V(§,e)* @ C~(K : M : &j1)-valued
function. Moreover,
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Ja(P:ép:A) =i% 0 j(Po: €M) o,

as an identity of meromorphic V(&,e)* @ C~°(K : M : &pr)-valued functions. In partic-
ular,

ja(P:év:A) €V(E,e)* @C™(P:én: A= ppn)T
for generic A € agc.

Remark 5.4. In the above formulation we have used the notation i# rather than if,

to emphasize that j(Py : £ : \)oi. is viewed as a A-dependent element of the space

V(€ e)" @ CT(K : M : &ur).

Let v € #. Motivated by the definition of j(FPp : £ : A) and the above identity, we
define the meromorphic Hom(V({), C (K :M: fM))—valued map j(P: &y : -) by

J(P & s N) =Y Teewnpen (0 jore 1 (P éar i A)opr,.
veEW

Corollary 5.5. Let £ be a finite dimensional unitary representation of My. Then
GP &y N) =i 0j(Py:€:N) (5.6)

as an identity of meromorphic V(§)* @ C™°°(K : M : &nr)-valued functions of A € agc.
In particular, for n € V(§) and generic A € agc,

J(P:én: A)(n) € CT(P = &ar s A— ppn)™.

We recall that the map p in the result below is exclusively used in the compact picture
of the induced representations, see Remark 4.9.

Corollary 5.6. Let £ € Moga and n € V(). Then for every z € G,
PomPenA—ppn(T)I (P €01 2 A)(0) = TPer A—pp ()5 (P 2 €01 = A)(n)
as an identity of meromorphic C~°°(K : M : {yr)-valued functions of A € ajc.

Proof. Use (5.6) and note that mpe,, x—ppy (2) 0i? = i# omp, ¢ A (x) and poi# = i#,
see (4.15). O

6. An important fibration

In this section we will apply Fubini’s theorem, as formulated in the appendix, The-
orem A.8, to an important fibration. The main result will be needed for the definition
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of distribution vectors for induced representations with P € #(A) not necessarily con-
tained in a parabolic subgroup from Z2,(A,).
We assume that P,Q € &(A) and that P = Q). There exists X € a4 such that

(a) a(X) # 0 for all a € 2(P) \ a%;
(b) a(X) > 0 for all « € (P, 00).

Since X(Q, 06) C 3(P, o6), it follows that (a) and (b) are also valid with @ in place of P.
We now put

IlQ7X = @ Ja, and NQ7X = exp(an).

a€X(Q)
a(X)>0

Lemma 6.1. The multiplication map (ny,ms) — ning is a diffeomorphism

HNQ X NQ7X i} NQ.

This result is contained and proven in [3, Prop. 2.16].

Lemma 6.2. Let Q, P € P(A) be such that P = Q. Let X € aq be such that (a) and (b)
are valid. Then

No x € Npx.

Proof. Let a € X(Q) be such that «(X) > 0. Then it suffices to show that « € X(P).
Assume this were not the case. Then either —a € X(P,0), or —a € X(P, 06). In the first
case it would follow that —a € (@, o), which contradicts the assumption that a € X(Q).
In the second it would follow that —a(X) > 0 which contradicts the assumption that
a(X)>0. O

Lemma 6.3. The inclusion map Hy, — Ngq induces a diffeomorphism
p: HNP\HNQ i} (NQ N Np)\NQ.

Proof. It follows from Lemma 6.1 that the natural map Hy, — Ng x\Ng is a diffeo-
morphism onto. By application of Lemma 6.2 it now follows that the natural map

p:HNQ — (NQ ﬂNp)\NQ

is a surjective submersion. The map p intertwines the natural Hpy,-actions, and the
fiber of [e] equals Hy, N Np = Hy,. Thus, ¢ is induced by p and is a diffeomorphism
onto. O
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Lemma 6.4. The inclusion map Ng N Np — Nq induces a diffeomorphism
P NQ ﬂNp =, (NQ ﬂNp)\NQ.
Proof. This is well known. O

Lemma 6.5. Let ¢ and ¢ be as in Lemma 6. and Lemma 6.5. The map ® := ¢~ toq)
is a diffeomorphism from Ng N Np onto Hyn,\Hn,. Moreover, let w be a positive
Hy,,-invariant density on the image manifold. Then ®*(w) is a choice of Haar mea-
sure on Ng N Np.

Proof. Being the composition of two diffeomorphisms, ¢ is a diffeomorphism. We note
that ®*(w) = ¢*¢ ' (w). Let dn be a choice of positive Ng-invariant density on
(Ng N Np)\Ngq. Since ¢ is Hy, intertwining, it follows that ¢*(dn) is a positive
Hpy,-invariant density on Hy,\Hp,. By uniqueness of positive invariant densities up to

positive scalars, it follows that ¢*(dn) = cw for some ¢ > 0, so that also p~1*(w) = ¢~ Ldn.
By equivariance, it follows that 1*(dn) is a choice of Haar measure on Ng N Np. Thus,

®*(w) = ¢ 1*(dn) is as required. O

In view of this lemma we may fix invariant measures din on Ng N Np and dh on
Hy,\Hn, such that ®*(dh) = dn.

Lemma 6.6. Let f : G — C be a left Np-invariant measurable function. Then the follow-
ing statements are equivalent.

(a) f is absolutely integrable over Hy,\Hn,, .
(b) f is absolutely integrable over Ng N Np.

If any of these statements hold, then with invariant measures normalized as above,

/ F(h)dh = / (i) din.

HNP\HNQ NQHNP

Proof. As ®*(dh) = dn it suffices to show that <I>*(f|HNQ) = fIngnny- Since f is left
Np-invariant, this follows from the obvious fact that for n € Ng N Np the canonical
images of 7 and ®(n) in Np\G coincide. O

Fix P,Q € Z(A) and assume that P = Q. Then Hy = HNQ contains Hp = HN P.
We note that Hp ~ HyApHy, and that Hg admits a similar decomposition.

We shall now apply the results in the Appendix with H, Hy and Hp in place of G, H
and L, respectively.
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Let WHp\H € _@h/bp, WH\H S 9’7/‘)@ and WHp\Hg S ‘@hQ/hP be such that WHp\H =
WHp\Ho ®WH,\ 1 in accordance with the identification %y, = Py, /p, © Dy /p,, induced
by the natural short exact sequence

0— bo/bp — b/bp — b/bg — 0.

See (A.2) and Lemma A.2 for details. We observe that
HP\HQ ~ HNP\HNQ

naturally. Using the associated natural isomorphism of the tangent spaces at the origins,
we view wp,\f,, as a density on the quotient (h Nng)/(h N np). By unimodularity of
the groups Hy,, and Hy,, it follows that

dn :n— drn([e])_l*wHP\HQ

defines a choice of right Hy,-invariant density on Hy, \H No- We define the character
Apgp\u of Hp as in Appendix, Equation (A.9) with H and Hp in place of G and L,
respectively. Likewise, the space .# (H : Hp : A\ ) is defined as in the text subsequent
to (A.9).

Theorem 6.7. Let f € .#(H : Hp : Ap,\n) and let fp := fo, ., be the associated
measurable density on Hp\H. Then the following assertions (a) and (b) are equivalent.

(a) The density fp is absolutely integrable.
(b) There exists a left Hg-invariant set Z of measure zero in H such that
(1) for every x € H\ %, the integral

Au(f) = / f(nz)dn

Hnp\Hng

s absolutely convergent;
(2) the function A(f):x v~ Ax(f) belongs to A (H : Hq : Ap,\nu);
(3) the density A(f)q = A(f)

wig\n 18 absolutely integrable.

If any of the conditions (a) and (b) is fulfilled, then
| te= | awe
Hp\H Ho\H

Proof. We will use the notation introduced in the text before the theorem. The inclusion
map Hy, — Hg induces a diffeomorphism
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¢: Hy,\Hn, — Hp\Hg.
Fix z € H and let fp, be the density on Hp\Hg given by
fra(Hph) = Ay (h) ™" f(ha)dry([e]) ™ wp i mg -
By nilpotence, Ay, \g(n) =1 for n € Hy,. It follows that
¢* (fpa)(Hnp - n) = f(n)dra([e) ™ wirp\ g = f(n)dn.
In accordance with the notation of Theorem A.8 we denote the integral of fp, over
Hp\Hg by I,(f). Then it follows by invariance of integration that the integral for I,(f)

converges absolutely if and only if the integral A, (f) converges absolutely, while in case
of convergence,

Iw(f): / ¢*(fP,e> :Az(f)

Hnp\Hny,

All assertions now follow by application of Theorem A.8. 0O
7. H-fixed distribution vectors, the general case

Recall the definition of X(P)_ in (1.3).

Theorem 7.1. Let P € &,(A), let £ be a finite dimensional unitary representation of My
and n € V(§,e). Assume that X € a’c satisfies

(ReA+ pp — ppn, ) <0, for all a € ¥(P)_. (7.1)
Furthermore, let f € C®°(P : €y : —A+ ppn). Then
Ja(P & s A i) f = / (n, f(R)) dra(le]) ™ wh .
Hp\H

with absolutely convergent integral.
Let Q € P(A) be a second parabolic subgroup, with P = Q. Then for all x € G,

AQ: P& At pm)f0) = [ flna) dn

NQﬁNp

with absolutely convergent integral. Finally,
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Ju(P &y A:n)f

— / (1, [AQ: P2 —A+ ppu) FI(0)) dra((el) wig i (7.2)
Ho\H

with absolutely convergent integral.

Proof. Observe that f restricted to Hp\H belongs to C*(H : Hp : Ag,\g). The first
assertion now follows from Proposition 5.2 and Equation (5.5).
We will now apply Theorem 6.7. For x € H the fiber integral takes the form

Au(flar) = / f(nz) dn,

Hnp\Hng

/ f(nz) da.

NQQNP

which by Lemma 6.6 equals

The latter is just the integral for the standard intertwiner A(Q : P : &ar @ —A+ ppn) (up
to suitable normalization). This integral is known to converge absolutely in case

Re (A + ppn, @) >0, Va € 2(P)NX(Q). (7.3)

If a € X(P)NX(Q), then a € X(P) \ X(Q) so that o ¢ af and o ¢ ¥(P, o) from which
we conclude that A € (P, 00) \ a; € ¥(P)_. It then follows from (7.1) that

Re (=X + ppn, a) > Re(=A+ppn —pp,a) >0

and we see that (7.3) is satisfied. This implies the second assertion. The final assertion
now follows by application of Theorem 6.7. O

In the following we will need to use the K-fixed function in the induced representation
Indg( 1op®l), for Q € Z(A) and p € af. More precisely, given such @ and p we define
the function 1g,, : G — C by

1g,u(nak) == a#tre (ke K,ae A, ne Ng).
Thus, 1¢,, is the unique function in C*°(Q : 1 : u) satisfying 1g .|k = 1.
Corollary 7.2. Let Q € #(A), P € Z,(A) and assume that P > Q. Then
h 1., (h) dri([e) ™ wag\n (7.4)

defines a density on Ho\H which is absolutely integrable.
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Proof. We apply Theorem 7.1 with { = 1, 5 = C and = 1. Furthermore, we take
A = —pp + pprn € ag so that ' pph = pp, and we take f = 1p,,. It follows from
the mentioned theorem that the integral for A(Q : P:1: pp)f converges absolutely. By
equivariance, it gives a K-fixed element of C*°(Q : 1: pp), so that

AQ:P:1:pp)f=AQ:P:1:pp)lpp, =c(Q:P:pp)lg,pp,
for some constant ¢(Q : P : pp) € C. Evaluating this identity in the unit element we find
(Q:P:pp)= / 1ppp(n) dn,
NQﬁNp

which of course is the integral representation of a partial c-function. As the integrand
is everywhere positive, it follows that ¢(Q : P : pp) is a positive real number. It now
follows from the final assertion of Theorem 7.1 that

h—c(@Q:P:pp) -1g,.(h) drh([e])_l*wHQ\H

defines a density on Hg\ H which is absolutely integrable. By positivity of ¢(Q : P : pp)
all assertions now follow. O

Let I'(Q) denote the cone in a, spanned by the elements H,, + c0H,, for o € (Q)_,
where the latter set is defined as in (1.3). The (closed) dual cone in @} is readily seen to
be given by

L) :=={ €aj| (A, a) >0, VaeX(Q)-}. (7.5)
Lemma 7.3. Let Q € P(A). Let p € T(Q)°. Then
0<1Qu—po(h)<1 (h € H). (7.6)

Proof. It follows from [3, Thm. 10.1] that if h = nak withn € Ng, a € Aand k € K,
then

pryloga € —T'(Q),
where pr, denotes the projection a — a4. Therefore
1Q,u-pg(h) = a* = erPraloga) < 1,
This establishes the upper bound. The lower bound is trivial. O

The above result will play a crucial role in the proof of a domination expressed in the
following lemma.
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Lemma 7.4. Let Q € Z(A) and let € be a finite dimensional unitary representation of M.
Let P € #,(A) and assume that P = Q; thus, in particular, ppn = pgn. Furthermore,
assume that X € aj¢ satisfies

Re(A+pp — ppn, ) <0 for all a € £(Q) . (7.7)
Then for every f € C®°(Q : Ear 2 —A + pon), we have
IF(A)lle < Sup [f(B)lle - 1@pp(R) (B € H). (7.8)
Proof. Since P > @, we have ppn = pgn. Thus, if k£ € K and u € Q then

f(uk) =1g _54pp, (uk) f(K).

It follows that
1 (@)le < Sup IF(B)le - L@ utor () (z€G), (7.9)
where t = —Re A — pp + ppyn. For € G we have
1Q utpp (2) = 1Qu—pg (2)1q,pp (2)-
As p e T(Q)° by (7.7), it follows by application of Lemma 7.3 that
1Qu+pp(h) < 1gpp(h) (k€ H). (7.10)
The required estimate (7.8) follows from combining (7.9) and (7.10). O

For the formulation of the next result, we note that the set of A € ajc satisfying
condition (7.7) is given by

Qpq = —(pp — prn) —T(Q)° + tagc. (7.11)

Corollary 7.5. Let Q € Z(A), € be a finite dimensional unitary representation of My and
neV(e). Let P e P;(A) and assume that P = Q; thus, in particular, ppn = pon-
Let A € Qpq. Then for every f € C(Q : &u A+ pon), the integral

Ja(Q :{pm A :n)f = / (n, f(h)) dri([e]) ™ who\u (7.12)

Ho\H

converges absolutely.
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Proof. It follows by application of Lemma 7.4 that
[, F(R)] < [Inlle Sup If(B)lle - 1qop(h) (k€ H). (7.13)

The result now follows from Corollary 7.2. O

Working in the setting of the above corollary, if f € C(K : M : &yr), then for p € af
we define f, € C(Q : & = i) by fulx = f. Furthermore, for A € Qp o we define

Ja(Q & A ) (f) = Ju(Q : &ar s M) (fox4pon)-

Accordingly, jg(Q : & 2 A ) is viewed as an element of C~O(K : M : £yy), see the
beginning of Section 3. Given f € C(K : M : £y), we agree to write

U@ & A:m), f)=ju(Q:&m = A:n)(f)
and (f, j(Q : €ar : A: 7)) for its conjugate. Then
Foan@i s3] = [ v () 1) dralle) o
n
Corollary 7.6. Let notation be as in Corollary 7.5. Then
N G (Q: Ear i A i) (7.14)

is a continuous C~°(K : M : &yr)-valued function on the closed subset Qpg of age- Its
restriction to the interior of Qp.g is holomorphic as a C~°(K : M : &pr)-valued function.

Proof. It is clear that A+ f_5.  [# is a holomorphic C(H) ® J#-valued function on
a’c satisfying the uniform estimate

[0 fxipp) < lnlle sup [[f(R)le - Lgpp(h) (b€ H),
keK

for all A € Qp g, by application of (7.13). In view of Corollary 7.2 the result now follows
by application of the dominated convergence theorem. 0O

The following lemma will be useful for later use. If @ € Z(A), we have that
%(Q,00)|a, € X(aq). In accordance with (2.3) we define

a; Q) :={Aea)| (X, a) >0, Vo € (Q,00)}.

q

This set is a non-empty open subset of af, see the text below (2.3).
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Lemma 7.7. Let Q € Z(A) and P € Z,(A,Q). Then
Qpq D —(pp — ppn) — ;7 (Q) + ia}.

Proof. In view of (7.11) it suffices to show that I'(Q)° D a’*(Q). This is a straightforward
consequence of the fact that £(Q)_ C X(Q,00), by (1.3) and (2.1). O

Theorem 7.8. Let Q € Z(A), P € &,(A) such that P = Q. Let € be a finite dimensional
unitary representation of My and n € V(& e). Then the C~°(K : M : &p)-valued
function

A= ga(Q 1 €m A ), (7.15)

defined by (7.12), extends to a meromorphic C~°°(K : M : &pr)-valued function on agc-
Furthermore, up to a positive factor, depending on the normalization of the Haar measure
on Np N Ng,

JaP & A ) =AP :Q : &u : A—pon)ju(Q 1 Em 2 A m) (7.16)

as an identity of C~°(K : M : {pr)-valued meromorphic functions in A € ajc- Finally,
the function (7.15) is continuous on the set Qp o defined in (7.11) and holomorphic on
its interior.

Remark 7.9. In particular, if ¥(Q)- = 0, it follows that T'(Q)° = a so that

Ju(Q : &nr ¢ +) is holomorphic everywhere.

Proof. Without loss of generality, we may assume that ¢ is irreducible. Then it follows
from (7.2) combined with (7.12) that

GaP e A0, H=0rQ ém:XA:n), AQ: P: & —X+ppn)f)
(7.17)

forall A\ € Qppand f € C°(P: &y : Y + pph)-

The standard intertwining operator A(Q : P : s : v) from the induced representation
Ind% (&3 @v®1) to the representation Indg (€ ®r®1) may be viewed as a meromorphic
function of v € af, with values in the space End(C*°(K : M : &yr)) (equipped with the
strong topology), see [25, Thm. 1.5] and [13, Thm. 1.5]. Its singular locus is contained in a

locally finite union of hyperplanes of the form p+ker ar, with p € a* and « € Z(P)N3(Q),
see [13, Rem. 1.6]. Since X(P) N X(Q) Na} = 0 in view of Lemma 2.2 (b), none of these
singular hyperplanes contain agc, SO that A(Q : P : &y ¢ ) restricts to a meromorphic
function on ac.

The operator A(P : Q : &y : v) has a similar meromorphic behavior, and since the

induced representation Indg (€m ®v®@1) is irreducible for generic v € ajc it follows that
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AQ:P:&y:v)o AP:Q &y :v)=n(P:Q: &y v)] (7.18)

as an identity of End(C*°(K : M : &ur))-valued functions of the variable v € af. Here
n=n(P:Q:&u: ) is a meromorphic C-valued function on af. By the usual product
decomposition of intertwining operators it follows that n admits a decomposition of the
form

nw)y= I  nlv, o),

a€L(P)NX(Q)

where the 7, are meromorphic functions on C. We now fix g € C®(K : M : {pr). By
substituting f = A(P: Q : &y i —A + pgn)g in (7.17) we infer that

GuP &t An), AP Q& =X+ pon)g) =
= (u(Q : & A m), n(=A+ pon)g)-

By using that A(Q : P : & @ A — pon) is the Hermitian conjugate of the operator
AP : Q : &m : —A+pon), see [23, Prop. 7.1 (iv)], and that pon = ppn, it follows that

(@ €ar i A i) =X+ pen) AQ: P Ear i A= pan)iu(P: ar s Asn), (7.19)

for generic A € Qp p.

Let 2 C af be a relatively compact open subset. Then there exists a constant s € N
such that A = jg (P : &y 2 A ) is meromorphic on (2 + day, with values in the Banach
space C~°(K : M : &pr), see Section 3 and [6, Thm. 9.1] for details. Furthermore, there
exists a constant r € N such that A(Q : P : &y : A — ppn) depends meromorphically
on A € {2+ ia, as a function with values in the Banach space of bounded linear maps
from C7%(K : M : &y) to C7*7"(K : M : &y). Combining these observations with
(7.19) we see that A — jr(Q : & : A : m) is a meromorphic function on agc with values
in C~°(K : M : &), equipped with the strong dual topology. Its continuity on Qp g
and holomorphy on the interior of this set follows from Corollary 7.6. By meromorphic
continuation it now follows that (7.17) is valid as an identity of meromorphic functions.
Since A(P : Q : & : A — pon) is the Hermitian conjugate of the intertwining operator
appearing in that identity, whereas the identity holds for all f € C*®(K : M : &y),
it follows that (7.16) is valid as an identity of meromorphic C~*°(K : M : &ys)-valued
functions of A € afc. O

Let Q € & be fixed for the moment. Then the function (7.15) is independent of the
choice of P = @, whereas the description of the domain of holomorphy depends on it.
This motivates the definition of the following closed subset of ac,

QQ = U QP,Q, (720)
PeZ,(A,Q)
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where the union is taken over the finite non-empty set (A, Q) of parabolic groups
P e Z,(A) with P > @, see Lemma 2.6. The function (7.15) is continuous on Qg and
holomorphic on the interior of this set. We can actually improve on this result.

In fact, let I'(Q)° be as in (7.5). We denote by B : aq — a;; the linear isomorphism
induced by the inner product on a,. Then for o € ¥(ay) we have B(H,) = a". Therefore,
B(I'(Q)) is the cone spanned by the aq-roots from pr, (3(Q)-).

Let (AZQ denote the hull in a’¢ of the set {2 with respect to the functions Re (-, @)
with a € X(aq) N B(I'(Q)), i-e.,

SAIQ ={N€ajc|Re(\, @) <sup Re(Qq, ), Va € X(aq) N B(I'(Q))}- (7.21)

Since the roots from X (aq) N B(I'(Q)) satisty («, -) <0 on —I'(Q)° it follows that we
can describe the given hull by means of inequalities as follows:

Qo ={cac|Re(\, a) <
Q { Gaq(C| e< ’OL>_P€£§B€.§4,Q)

(~pp, ), Ya € D(ag) N B@Q)}.  (7.22)
Corollary 7.10. Let Q € #(A), € € Mot andn e V(& e). Then A — jg(Q : &y : A : 1)
is a holomorphic C~>°(K : M : &nr)-valued function on an open neighborhood of Qg.

Proof. From (7.19) we infer that the singular locus of A — ju(Q : &y : A : m) is the
union of a locally finite collection . of hyperplanes of the form H, , = pu+ (a®)c with
a € ¥(aq) and p € aj. Indeed, the singular loci of the meromorphic ingredients on the
right-hand side of that formula are all of this form, by [11, Lemma 3.2], [13, Rem. 1.6]
and (7.18).

Let p be a singular point of jy(Q : &y @ - @ m), ie., a point in the union of the
singular hyperplanes. Then there exists a root o € ¥(aq) such that H, , is a singular
hyperplane. By analytic continuation it follows that H, , N Qg = 0. From the fact that
the cone I'(Q)° has non-empty interior it follows that the set Qg N a; is connected, hence
is contained in one connected component of a; \ H,,,. Replacing a by —a if necessary,
we may assume that

QgNnag C{real:(a,\) >c}
for some ¢ € R. This in turn implies that
Q) C{reag:(a,\) >0} ={A€ag: AN(Ha) >0}

Since I'(Q)° has open interior, a does not vanish on I'(Q))°. Using that I'(Q)° is a cone,
we find

<Oé7 F(Q)O> = Rzo.



2832 E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795-2864

In particular this implies H, € I'(Q)°° = I'(Q) and thus we conclude that a € X(aq) N
BI(Q)).

For any P € #,(A) with P = @, the singular hyperplane H, , does not intersect
—pp + ppn — I'(Q)°, hence

(o, ) ¢ —{@, pp) = Rxo.

This implies that (o, ) > —{a, pp). We conclude that

<O[, M> PE‘@H%A))(P>Q< ) _PP>

so that p ¢ QQ. Thus, QQ is disjoint from the singular locus. O

Let Q € #(A) and € € Moga. We define the meromorphic function Ju(Q &y : ) on
a;c with values in V/(§,e)* @ C7°(K : M : {ur) by

7(Q: & N)(n) =jr(Q: & Ain)

for generic A € ajc and n € V(& e). Furthermore, we define the meromorphic function
J(Q:&wm : +) on aic with values in V/(§)* @ CT°(K : M : &u) by

JQ:Ear: N) =) TQen pon () Juru-1(Q € 2 ) o1, (7.23)

veEW

Here j,7,—1 is defined for the data o, vHv ™! in place of o, H. This definition is allowed
since # C Ng(a) N Nk (aq) (see text preceding (4.6)), so that A, Ay, My and F(A) are
invariant under conjugation by v and a4 is maximal abelian in p N Ad(v)q. See also the
discussion at the end of Section 2.
In order to formulate our next result, we define, for v € #', the set QU Q as Qg
n (7.20), with vHv™" in place of H. Likewise, we define 0, .Q to be the set QQ defined
as in (7.21), with vHv™" in place of H.

Lemma 7.11. Let Q € P(A). Then for each v € ¥, we have
Q’UvQ = UQU—le and Q’U,Q = Uﬁ’U*lQU'

Proof. In view of Lemma 2.7 the cone I'(v, @), defined as I'(Q) with o, in place of o, is
given by I'(v, Q) = vI'(v"1Qu). Likewise, its dual, defined as in (7.5) is given by

I'(v,Q)° = vI'(v™*Qu)°.

From (7.11) and (7.20), with o, in place of o, we now find, with obvious notation,
D, p.g = VQy-1pyu-1Qu, for P € P;(A) with P = Q. Taking the union over such P, we
obtain the first asserted equality.
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The second equality follows from the first, by taking the hull of the sets €2, ¢ and
0§, -1¢, with respect to the functions Re (- , o) with o € X(aq) N B(I'(v,Q)). The first
hull equals €, o by definition. Using that

S(aq) N BI(v, Q)) = (aq) N BEL (v~ Qv)) = v((ag) N B (v~ Qu)),
we see that the second hull equals vﬁqfl@v. O

We define the following closed subsets of ajc,

TQ = ﬂ va—le, YQ = m Uﬁv—lQU. (7.24)
veEW veEW

The following lemma guarantees in particular that the set T, and hence also the
bigger set T, have non-empty interior.

Lemma 7.12. Let Q € P(A). Then for every P € Z,(A,Q), we have
To O —(pp —ppn) — a7 (Q) +iag.

Proof. Fix v € #. Then v~!Pv belongs to Z,(A,v~1Qu), hence it follows from (7.20)
and Lemma 7.7

Qvlev D) _(pvfva — Pv—1py h) - Cl:;+(’l}71QrU) + ’LC(:;

Applying v we obtain vQ,-1g, D —(pp — ppn) — 65T (Q) + iaj. As this is true for each
v € W, the asserted inclusion follows. O

Lemma 7.13. Let Q € #(A) and £ € Moga. Let ne V().

(a) Foreachv € # the defining integral for the corresponding term in (7.23) is absolutely
convergent for every A € Y.

(b) The meromorphic C~°(K : M : &pr)-valued function A — §(Q : &pr 2 A = m) is
holomorphic on an open neighborhood of the set ?Q.

Proof. It follows from (7.23) and Corollary 7.5 that for A € Q, ¢ the integral for
Jorv-1(Q : &v + A : my) is convergent. The set Q, o contains T, by (7.24) and
Lemma 7.11, and we see that (a) follows.

It follows from Corollary 7.6 applied with o, in place of o that the mentioned function
is holomorphic on an open neighborhood of ﬁv,Q. From this we readily deduce that
J(Q : &ur- 2 m) is holomorphic on an open neighborhood of the intersection of the sets

o~

Qy.q, for v € #. This intersection equals Y‘Q, by (7.24) and Lemma 7.11. O



2834 E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795-2864

We finish this section relating the constructed functions j(Q : &as : +), for different @Q,
by intertwining operators.

Theorem 7.14. Let Q € Z(A) and £ € ]\/4\0fu. Then the following assertions are valid.

(a) For everyn € V(&) and generic X € aic, the element j(Q : {ar 2 A)(n) of the space
C™(K : M : &nr) 05 TQ 0 A —pon (H ) -invariant.
(b) If Q,Q" € Z(A) and Q' = Q, then (up to normalization),

JQ & N) =AQ 1 Q& t X —pan) o (Q : &ar + N, (7.25)

as an identity of meromorphic V(£)* @ C~°°(K : M : &pr)-valued functions in the
variable A € agc.

Proof. We start with (b). Let P € #,(A) be such that P = Q. Then by application of

Lemma 2.4 it follows that X(P) N X(Q") C X(P) N X(Q) so
AP:Q : & N)=AP:Q :&p: N0 A(Q - Q : Epr i M) (7.26)

as a meromorphic identity in A € af¢c. See [23, Cor. 7.7] for details. Using (7.16) both
with @ and with @’ in place of ) we find

AP:Q & i N)oju(Q 6 N)=AP:Q :En: N)ojm(Q: i N)

combining this with (7.26) and using that A(P : Q' : {ur ¢ A) is injective for generic A,
we obtain that

Jr(Q & t A) = A(Q": Q : & = A — pan)in(Q : €ar A

for generic A € e Since the expressions on both sides of the equation are meromorphic
V(i e)* ® C°(K : M : &y)-valued functions, the identity holds as an identity of
meromorphic functions. The identity also holds with H replaced by vHv ™!, as an identity
of V(§,v)* ® C™*°(K : M : {ur)-valued meromorphic functions of A € a’¢. If we apply
this to each of the terms of the sum in (7.23) we obtain (7.25). This establishes (b).
We now turn to (a). Fix P € #,(A) such that P = Q). Then assertion (a) holds with
P in place of @, in view of Corollary 5.5. To establish assertion (a) for j(Q : a2 N)(n) as
well, we use (b) with Q" = P. Then assertion (a) follows from the fact that the operator
A(P:Q:&nm A — pgn) is intertwining and injective for generic A € alc. O

8. Eisenstein integrals
In this section we will extend the definition of Eisenstein integrals for minimal

ob-stable parabolic subgroups from ,(A,) to similar integrals for minimal parabolic
subgroups from Z(A).
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First we need to carefully discuss the parameter space for the Eisenstein integral. In
view of Lemma 4.3, it follows that the inclusion map M — My induces a diffeomorphism
M/Hy ~ My/Hyy,. This diffeomorphism induces a topological linear isomorphism
C>(M/Hyp) ~ C*(My/Hpy,) via which we will identify the elements of these spaces.

Let (7,V;) be a finite dimensional unitary representation of K. Then we define 7y,
to be the restriction of 7 to M. Likewise, we define 75; to be the restriction of 7 to M.
Then 7y, and 7ps have the same representation space.

We define C*°(My/Hy, : Tas,) to be the space of smooth functions ¢ : Mo/ Hy, — Vi
satisfying the transformation rule

G(kx) = 7(k)p(x) (k€ KN Mo, x € My/Hp).

Similarly, we define C°°(M/Hp; : Tar) to be the space consisting of smooth functions
¥ M/Hy — V; satisfying the transformation rule

Y(ma) = 7(m)y(x) (m eEM, x € M/HM)
We then have the obvious inclusion
COO(Mo/HMotTMO) Q COO(M/HMTM)

In general, the first of these spaces will be strictly contained in the second. The first
of these spaces enters the definition of the Eisenstein integral for minimal of-stable
parabolic subgroup from #,(Ay), whereas the second is convenient in the context of
induction from a minimal parabolic subgroup from Z?(A). The relation between the
spaces can be clarified as follows. Since M normalizes My, N K it follows that the space
VO of Mg, N K-invariants in V, is invariant under 7(M), so that we may define the
following representation 79, of M by restriction:

T = Tulvo, where V0 = (V,)MoanK, (8.1)
Observe that for every v € # we have

MonKnvHv™ ' _ 0\MnvHv ™!
VT - (VT ) .

Indeed, this follows from the fact that My N K = M (Mo, N K) and that 7(My, N K) =1
on V.

Lemma 8.1. Let (7,V;) be a finite dimensional unitary representation of K. Then

COO(M()/HMO :TJVIO) = COO(M/HMT](\)/[) (82)
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Proof. We observe that My, acts trivially on My/Hpz, by Lemma 4.3 (f). Therefore,
every function in the space on the left-hand side of (8.2) has values in V? and we see
that the space on the left is indeed contained in the space on the right. For the converse
inclusion, let f: M/Hy — V2 be a function in the space on the right. If kg € My N K
we may write kg = kask, with kpy € M and k, € Mo,N K. Let mg € My, then mg = mh
for a suitable m € M and h € Hyy,. Since My, C H, it follows that

f(komo) = f(karknmh) = 7(kar) f (m(m™ " kp,m)h)
7(kar) f(m) = 7(kar) 7 (kn) f (mo)
(ko) f(mo).

It follows that f belongs to the space on the left. O
We are now prepared for the definition of the Eisenstein integral related to a fixed
parabolic subgroup P € £ (A). Given ¢ € C*(M/Hy : 73;) we define the function
’lbp’)\ G — V- by
Ypa(kman) = a*=PP PPy (k)b (m).

We denote by C*°(G/H : 7) the space of smooth functions ¢ : G/H — V; satisfying the
rule

p(kx) = 7(k)p(z) (ke K, x € G/H).
Recall the definition of Qp from (7.20) with P in place of Q.

Proposition 8.2. Let w € Py p,. Let v € C°(M/Hy : 73;) and let X € Qp. Then the
following assertions are valid.

(a) For each x € G the function
h = Ppa(zh) din(e) Fw
defines a V-valued density on H/Hp.

(b) For each x € G the density in (a) is integrable.
(¢) The function Eg(P : ¢ : \) : G — V; defined by

Eu(P ¢ : \(z) = / Vpa(h)din(e) " w (z € Q)
H/Hp

in accordance with (a) and (b), belongs to C*°(G/H : T).
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Proof. Before we start with the actual proof, we note that the condition on X implies the
existence of parabolic subgroup P’ € Z,(A, P) such that A € Qp/ p, in view of (7.20).

Let F. C M denote the finite set of M -types in 7V and let .7 denote the subspace
of C*°(M/H);) consisting of the left M-finite functions of isotype contained in F.. Let
L be the left regular representation of M in C*°(M/Hys) and let & := L|, be its
restriction to the subspace 7.

Since C*°(M/Hy : Tar) consists of the M-fixed functions in C°(M/Hpy) ® V., it
follows that

C®(M/Hy : 1) C A @V,

We define the function @p)\ :G = ARV, by gl;pA(ac)(m) :=1px(xm). Then it readily
follows that

bpa(@man) = a* PP (¢ (m) T @ 1)ihpa(2).
We define 9}, , (z) := tpr(z™"). Then
Vpr €CX(P : & + =N+ ppn) @ Vr. (8.3)

Let ¢ : H/Hp — Hp\H be the diffeomorphism induced by h + h~1. Then dy(e)*w = w
and for z € G we see that

©*[h — Ypr(zh) dlh(e)_l*w]
=[h— 1/)1\47)\(hx71)(e) dry(e) ™ w]. (8.4)

Let € denote the element of 74 such that (g, €) = g(e) for all g € 5. We may now
apply Corollary 7.5 to the first tensor component of the space in (8.3) with (P’, P) in
place of (P,Q), with (&, .7 ) in place of (£, #), with R,-1(¢) ) in place of f (where
R denotes the right regular representation) and with € in place of 1. From applying the
corollary in this fashion, it follows that the expression on the right-hand side of (8.4) is
a V-valued density on Hp\H which is integrable. This implies (a) and (b).

Using that = — R, (¢} ) is smooth as a function with values in the Fréchet space
C®(P:& + =X+ ppn) @ V7, we find that Eg(P : ¢ : \) € C°(G, V;).

The right H-invariance and the 7-spherical behavior are readily checked. 0O

Remark 8.3. The above procedure would also work more generally for functions ¢ €
C*(M/Hp : v). However, for generic A € ajc the map ¢ — Ey(P : ¢ : A\)y would
then have a (possibly A-dependent) kernel complementary to C*°(M/Hy; : 7Y;).

For v € # the above procedure applies to the data K,vHv™ ', A, A, in place of
K,H, A, A,. We thus obtain Eisenstein integrals E,g,-:(P : ¢ : XA : x) for ¢ in the
parameter space C°(M/M NvHv™! : 7). The general Eisenstein integral is defined
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as follows. For v € # we equip L*(M/M NvHv™!) with the L?inner product for
the normalized invariant measure, and L?(M/M NvHv~!) ® V, with the tensor product

inner product. The latter restricts to an inner product on the finite dimensional subspace
C>®(M/M nvHv™! : 73,). We define

ra = Boeyw C°(M/M NvH™ 7). (8.5)

Equipped with the direct sum of the given inner products on the summands, this space
becomes a finite dimensional Hilbert space.
For ¢ € /12 and A € Qp we define the function E(P: ¢ : A): G — V; by

E(P: 9 : N(@) =Y By (P:prg: M@  (z€Q). (8.6)
vEW

It is readily verified that this function belongs to C*°(G/H : 7). We will occasionally
write E(P : ¢ : X : x) for E(P : ¢ : A\)(z).

We will now relate the Eisenstein integral thus defined to matrix coefficients with
H-fixed distribution vectors. For this we will use a suitable realization of the space
2. In analogy with (8.5) we define

Dty 2 = Suew CF(Mo/Mo NvHU ™" 1 Ty).
In view of Lemma 8.1 applied with vHv ™! in place of H, for v € #, we see that
Dniy.2 = D2

For £ € M\Ofu and v € #, we denote by CEO(MO/MO NvHv~!) the space of left My-finite
functions in C°°(My/MyNvHv™!) of isotopy type &. Furthermore, we denote by

Ce(Mo/Mo NoHv ™" 1 7ay,) (8.7)

the intersection of C°°(Mo/Mo NvHv™! : 75y,) with Ce°(Mo/Mo N vHv™1) ® V;. The
direct sum of the spaces (8.7) for v € # is denoted by @, 2,¢. Then it follows that

Dto,2 = DB i PMo 2.6 (88)

as an orthogonal direct sum with finitely many non-zero terms.
Similar definitions, with M in place of My, lead to spaces

Ceo(M/M N vHv ™' 2 1)), (8.9)

equal to (8.7) in view of (8.2), for v € #'. The orthogonal direct sum of (8.9) over v € #
is denoted by #7js,2,¢. Then obviously

Dy 2,6 = D2 (8.10)



E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795-2864 2839

For ¢ € .Z/\Z()fu we define C(K : £ : 7) to be the space of functions f : K — J% ® V;
transforming according to the rule:

f(mkok) = [¢(m) @ 7(k) "] f (ko) (k,ko € K,m € Mo N K).
We recall from [10, Lemma 3, p. 528| that there exists a natural linear isomorphism
T pp, C(K:&:7)@V(E) = Sty = Frae, (8.11)
given by

(¥r)o(m) = (f(e), E(m)pr,(n)) (ve W), (8.12)

for T =fonecCK:€&: 1)@ V() and m € M. Moreover, T + /dim¢ ¢r is an
isometry.

The map i# introduced in (4.11) is an isometric embedding C(K : K N My : &) —
C(K : M : &pr). Through tensoring with the identity map on V; it induces an isometric
embedding C(K : € : 7) — C(K : £y : Tar) which we denote by i# again.

Theorem 8.4. Let £ € Mot and let T = feoneCK : & : 1)@ V(). Then forxz € G
and A € Tp,

B(P :gr 2 Xt @)= (i"f, Tpe, 5_pp, (@)i(P : &+ N)(n),

where j(P : &y 2 A)(n) should be viewed as an element of C~°(K : M : xr). Moreover,
the indicated sesquilinear pairing is taken on the first tensor components of i f.

Proof. The set YTp is the intersection of the sets Q, p, for v € #, by (7.24) and
Lemma 7.11. In view of (8.6) and (7.23) it therefore suffices to restrict to the case
that n € V(£ e) and prove the result under the (weaker) assumption that A € Qp.

Write ¢ = pr.¢r. Then it follows from the proof of Proposition 8.2 that, for 2 and A
as specified,

Ea(P e i) = [ @b vpalah) din(e)
Hp\H

= [ vt dne) .

Hp\H

We now calculate the function 1/)1\5’ y in this particular case. As it belongs to the space
C®(P : &y @ —A+ ppn) ® V5 it is sufficient to calculate its restriction to K. Since
1 =, it follows from (8.12) that ¢(m) = ¢r(m) = (f(e), {(m)n). This implies that
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dpalk) = T(k)(f(e), Ele)n) = (fF(k7T), n).

In turn, this implies that

bpa(R)(e) = (f(k), ).

We write [i#f]p,—x+pp, for the extension of the function i#f € C(K : &y @ Ta) to a
function in C*°(P : &y : — A+ ppn) ® V. Then

Vo) (e) = ([iFf]p—rtppn (@), 1)-

Thus, in view of (7.12) we find that

Ey(P:yr: A x)= / ([R& N patppn () m) dra(e) ™ w

Hp\H
= ([R(x"[i*flp—rtppns Ju (P Ear = A)(n))
= <WP,5M,7A+pPh(x— Vit f,im (P A1)
= (i*f, Tp et Aeppn (D) JH (P 1 &0 N ().

The proof is complete. O

Corollary 8.5. Let P € Z(A) and let ) € o/p; 2. Then the Eisenstein integral E(P : ) : \)
depends meromorphically on A € a’c as a function with values in C>(G/H : 7). As such,

it is holomorphic on an open neighborhood of the set Tp.

Proof. The assertion about meromorphy follows from the previous result in view of (8.8)
and the linear dependence of the Eisenstein integral on . The statement about holo-
morphy now follows from Lemma 7.13 (b). O

It will sometimes be convenient to write E(P : A: x)y = E(P : 4 : A: x) and to adopt
the viewpoint that E(P : ) is a meromorphic Hom(/)s 2, C*°(G : 7))-valued function
of A € ajc.

We proceed by relating the Eisenstein integrals defined above to the Eisenstein inte-
grals introduced earlier in [6] and [10] for minimal o6-stable parabolic subgroups.

Corollary 8.6. Let P € &,(A) and let Py be the unique parabolic subgroup from P,(Aq)
containing P. Then

E(P:AN)=E(Py:\) (8.13)

as Hom (,,2, C*°(G/H : 7))-valued meromorphic functions of X € alc
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Proof. Let £ € .Z/\Zofu. Then it follows from Corollary 5.5 that
JP:&a N =i oj(Py:€:N).
Let T=f@neC(K : ¢ : 1)@V (€). Then it follows by [6, Lemma 4.2] and (4.11) that

E(Py: A:x)yr =(f, Wpo,g,x(x)j(Po 3 5\)(77»
<i#f, i#ﬂpo,g,x(w)j(Po & 5\)(77»

(G F T r 5mppn (@)3 (P 2 €01 2 A) (1)
E(P:)X:x)yr. O

The Eisenstein integrals for parabolic subgroups from Z?(A) can be related to each
other as follows.

Proposition 8.7. Let Q € P(A), P € P,(A) and P = Q. Then for all § € Z/W\ofu, all
TeCOK:¢:7)@V(E) and generic \ € a5, we have

E(Q: \yr =E(P: /\)T/)[p# 0 A(Q:P:épri—A+ppn)~t 0 i#QIT- (8.14)

Here, p* is shorthand for the restriction of p* @ Iy. to the subspace C(K : £y : Tag) of
C®(K : M :&y)®V,, see also (4.1/). Likewise, the intertwining operator acts on the
first tensor component in C(K : M : &y) @ V.

Proof. By linearity it suffices to prove this for T = f ®n, with f € C(K : £ : 7) and
n € V(€). Tt follows from Theorem 8.4 and (7.25) that for generic \ € a;c we have

J@Q & N() =AP:Q: & : A—ppn) (P &ar : A) ().

For x € G we now obtain (with the pairing taken on first tensor components)

B(Q:\:a)r =
= (I" [ TQ 0 5pon (@) (Q = Ear = A)(1))
= (7 f AP Q& A= ppn) T Ty ampp, (0)I(P: Ear 2 A)()
= (A@Q: P&y =N+ ppn) [ Tpy 3, ()3(P 2 6012 N)(0)
= (peA(Q: Prén:=A+ppn) i f L Tpe 5y, (0)F(P: Ear : A1), (8.15)
The last identity follows by application of Corollary 5.6. Finally, since p = i# o p#, the

expression in (8.15) equals the expression on the right-hand side of (8.14), in view of
Theorem 8.4. O
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Let Q,P € Z(A) be as in Proposition 8.7. Then motivated by the proposition, we
define the C-function C(Q : P : ) to be the unique End(e#y 2)-valued meromorphic
function of A € a such that

C(Q: P: NUT = Yp# 0 A(Q:Piéar:—A4ppn) ! 0 i# Q1T

for all £ € Mog, all T € C(K :¢: 1)@ V(€) and generic A € aic. Then (8.14) may be
abbreviated as

EQ:N)=EP:NC(P:Q:\). (8.16)

The following result is a variation of a result of Harish-Chandra, see [19, Lemma 3,
p. 47]. The proof given below follows a different strategy, which also works in the setting
of [19].

Proposition 8.8. Let Q € Z(A) and P € P,(A) such that P = Q. Then the meromorphic
function a’c 3 A det C(Q : P : ) is not identically zero.

Before proceeding with the proof of this proposition, we first list a corollary.

Corollary 8.9. Let Q € #(A) and P € &,(A) such that P = Q. Then the endomorphism
C(Q: P: )) € End(r2) is invertible for generic A € alc and A= C(Q : P: X\)™! is
a meromorphic End(/y 2)-valued meromorphic function on aq.

Proof. This follows from Proposition 8.8 by application of Cramer’s rule for the inversion
of a matrix. O

The following lemma will play an important role in the proof of Proposition 8.8.

Lemma 8.10. Let P € &,(A) and let Py be the unique parabolic subgroup from P,(Aq)
containing P. Then the following diagram commutes:

C(K: KN My: &) — 2N g fon My - ¢)
p# T T p#
OK : M :€yy) ABIPErdtorn) e prsgy)

for generic A € agc.

Proof. Let Py, = P N My. Then it follows that P = Py, Np and 0P = Py, Nyp.
Furthermore, by the assertion at the end of the proof of Theorem 4.2 in [5, p. 373], with
Py = Py, P> = Py, (P1), = o(P) and (P»), = P, it follows that the following diagram
commutes for generic A € age,
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A(Po:ﬁozf:—x)

C(K:KnNM:¢) C(K:KNM:§)
i* ] 1i*
C’(K M é_M) A(P:0(P):{m:—A—pph) C(K M - é_M)

The desired result now follows by taking adjoints with respect to the given equivariant
sesquilinear pairings on the spaces involved. O

Proof of Proposition 8.8. Let £ € Z/W\ofu and let ¥ C K be a finite set of K-types. Then
it suffices to show that the restricted operator

PP oA(Q P by =N+ ppn) toi |cirknMoe)y (8.17)

has determinant not identically zero. For this it suffices to show that the composition
of A(Py: Py:&: —\) with (8.17) has determinant not-identically zero. By Lemma 8.10
this composition may be rewritten as

PP oA(0(P): P:&: =M+ ppn) o AQ: P:éar i =M+ ppn) " oi® |o(knnye), - (8:18)

Since X(o(P) N X(P) = L(P)na% C X(Q) N X(P), it follows by the usual product
decomposition of the standard intertwining operators, see [23, Cor. 7.7], that (8.18)
equals

P o A(0P :Q: En i =N+ ppn) o i |c(rKNMyE) - (8.19)

Thus it suffices to show that the determinant of the linear endomorphism of the space
C(K : KNM:¢&)y given in (8.19) is not identically zero as a meromorphic function of
A. Now this is an immediate consequence of the following result. O

Lemma 8.11. Let Q, R € 2(A) be such that ©(R) N 2(Q) C X(Q, 06). Then there exists
an element n € ay such that (n, a) > 0 for all a € Y(R) N X(Q). Let n be such an
element and d := dim(Ng N Ng). Then there exists a constant ¢ > 0 such that for every

peag and all f e C(K : M : &)
Jlim tY2A(R:Q : &ur  pttn)f = cf,
in C(K : M : &n).

Proof. Since X(Q) is a positive system for X(g, a), there exists £ € a* such that (£, o) > 0
for @ € 3(Q). Let n = £ 4+ g6¢, then (, a) > 0 for a € X(Q, af). Thus, 7 satisfies the
requirements. Let n be any such element.

Replacing p by p + ton for a suitable ty > 0 we see that we may as well assume

that Re (u, a) > 0 for all & € 3(R) N X(Q). In this case, we see that for all ¢ > 0 the
intertwining operator is given by the absolutely convergent integral
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AR Q¢+l = [ )i
NRQNQ
_ / eI o (~1=0Q) Ha () f (1, ()~ k) d.
NrNNg

Here f; denotes the extension of f to an element of C*°(Q : £pr : 1+ tn). Moreover, the
analytic maps 3 : G — a and kg : G — K are defined by

z € k() exp Ay (x)Ng (x € G),

in accordance with the Iwasawa decomposition G = K ANg,.

By using the properties of the function h = n#g| N, n,, stated in Lemma 8.12 below
we will be able to determine the asymptotic behavior for ¢ — oo by using the real version
of the method of stationary phase.

It follows from Lemma 8.12 (a) that h > 0. Hence, the intertwining operator is a
continuous linear endomorphism of C(K : M : £,r), with operator norm bounded by

JAR: Q: € pu+tn)|| < / e(TRen=pQ) #a(R) g,
NRQNQ

It follows from Lemma 8.12 (b) that there exists an open neighborhood V' of 0 in R?
and an open embedding ¢ : R? — Nz N Ng, sending 0 to e such that

hp(x)) = (Sz, )

with S a positive definite matrix. Let U be an open neighborhood of e in Nz N NQ with
closure contained in ¢(V'), and let r > 0 be as in condition (c) of the mentioned lemma.
Fix x € C(¢(V)) such that x =1 on a neighborhood of the closure of U. Then

AR:Q: & p+tn)f = L(f) + Re(f)

with

I(f) = / e MMelmrmp) @) f(1(n) " k) x(7) di.

NRﬂNQ

The remainder term R;(f) is given by the same integral but with x(n) replaced by
1 — x(n). As the latter function is zero on U, it follows from the estimate in (b) that

IR(H)IF < Cre I £1],
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with C7 a positive constant independent of f and t. Accordingly, we may ignore this
term and concentrate on I;(f). By substituting ¢(x) for n we obtain

L(f) = / ¢S 3) (~nmp@) 0 (P f(5(p(x)) k) x(p(2)) T (x) di,

R™

where J(x) is a Jacobian. Substituting ¢~*/2

see that

x for x and taking the limit for ¢ — oo, we

H21,(F) > / (57 ) (1) 7(0) da,
Rd

uniformly in k. This establishes the result with

c= J(O)/e_w””’””> dx. O
Rd
Lemma 8.12. Let Q,R € Z(A) and let n € a* be such that (n, a) > 0 for all a €
Y(R)NX(Q). Let 55 : G — a be the Twasawa map determined by x € K exp #4(x)Ng,
for x € G. Then the function h = 77%Q|NRmNQ has the following properties,

(a) h>0;
(b) h has an isolated critical point at e with positive definite Hessian;
¢) for each open neighborhood U of e in Ng N Ng there exists a constant r > 0 such
Q
that

’ﬁ,E(NRﬂNQ)\U =  h(n)>r.

Proof. For each indivisible root a € ¥(g, a) we write ng, = go + 820, No = exp(ny), Mo =
On, and N, := exp(,). Furthermore, we write g(c) for the split rank one subalgebra
generated by n, + n, and G(«) for the associated analytic subgroup of G. Let J#, :
G(a) = ang(a) = (kera)t be the Iwasawa projection associated with the Iwasawa
decomposition G(a) = K NG(a))(ANG(a))Na. Then 7, = 75| c(a)-

Let v, ..., a be the indivisible positive roots in ©(R)NYX(Q). Then by the method of
S.G. Gindikin and F.I. Karpelevic [17] (see [23, Thm. 7.6] for the version for intertwining

operators), there exists a diffeomorphism 1 : N,, x -+ N,, — Ng N Ng such that

k
h((ny, ... ) = ZU%J- (1)

To show that h has properties (a), (b) and (c), it suffices to show that each of the
functions h; = no |J\7a_ has these properties, with N, in place of Ng N Ng.
J
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Let o € ¥(g,a) be any indivisible root such that (n, ) > 0. Then it suffices to
show that h, : N, — R, 7 + 1%, (71) has properties (a) and (b) with N, in place of
NgNNg. The function h,, can be explicitly computed through SU(2, 1)-reduction, see [21,
Thm. IX.3.8]. From the explicit expression given in [21], properties (a), (b) and (c) are
readily verified. 0O

We will now describe the asymptotic behavior of the various Eisenstein integrals, using
the established relations (8.13) and (8.16) between them.
For a parabolic subgroup R € Z,(Aq) and for v € # we define the functions
Bpo(X: ) AF(R) — End(VMonKnvHv

a

as in [9, Lemma 10.3]. These functions are smooth on the chamber AT (R) and as such
depend meromorphically on the parameter A € ajc. Moreover, for generic A € aj¢ they
have an absolutely converging series expansion of the form

Pro(Aia)=a"" D aFTru(N),
peENT+(R)

where the I' , are meromorphic End(VTMomKﬂ”H”_l)—valued functions and I'p g = 1.

Let Py € Z,(Aq) then by [9, Thm. 11.1] and (8.10), there exist unique End (e 2)-val-
ued meromorphic functions Cpjp,(s : -) on ac such that for all ¢ € @/ and each
v € W and generic A € ajc we have

E(Py: A:av)p= Y Pru(sh:a)[Crip(s: Nlu(e)  (a€ AT(R)).
seEW (aq)

Here W (a4) denotes the Weyl group of the root system X(g, aq).

Theorem 8.13. Let Q € Z(A) and R € P,(A,). Then there exist unique meromorphic
End (& ,2)-valued meromorphic functions Crig(s: +) on alc, for s € W(ag), such that
for all ) € 2, each v € W and generic A € a’c we have

E(@Q:X:av)p= > ®ru(sh:a)[Crqls: Nlu(e)  (a€ Af(R)).

seEW (aq)

These meromorphic C-functions are generically pointwise invertible, with meromorphic
inuverses.

Proof. Uniqueness follows by uniqueness of asymptotics, see, e.g., [18, p. 305, Cor.] for
details.

For the remaining statements on existence and invertibility, we first consider the
case that @ is g-extreme, i.e., @ € Z,(A). Then there exists a unique Qp € F,(Ay)
containing ). By applying Corollary 8.6 and the preceding discussion we find that
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CR\Q(S . )\) = CR|Q0(S . )\)

satisfies the asymptotic requirements. Invertibility follows from [6, Cor. 15.11].

We now assume that @ € Z(A) is general. Then there exists a P € #,(A) such that
P Q.

By Proposition 8.7 and (8.14) we have

EP:A:x)=EQ:X:2)oC(Q:P:\).

In view of Proposition 8.8 we see that

CR|Q(3 : )\) = CR‘p(S : )\)OC(Q P )\)_1

satisfies the asymptotic requirements. The invertibility requirements now follow from the
invertibility of Crp(s: )), established earlier in this proof. O

Corollary 8.14. Let P, € &(A). Then there exists a unique meromorphic End(#/s2)-
valued function C(P:@Q: -) on ajc such that

EP:X:2)=EQ:X:2)oC(Q:P:)) (8.20)

for all x € G/H and generic A € agc- Furthermore, the following identities are valid as
identities of meromorphic End(e/,2)-valued functions in A € a(’;(c.

(a) C(Q P A) = Crig(s: \) " "Cprp(s: A) (s € W(ag), R€ Z,(Aq));
(b) C( )\)C(PQPg)\):C(Plpg)\) (P1,132,133€<@(14))7
(c) C(P: Q )\) (Q:P:N)=C(Q:P:NC(P:Q:\ =1

Proof. Uniqueness follows from Theorem 8.13 combined with uniqueness of asymptotics.
We will first establish the existence for P,Q € £,(A). Let Py, Qo be the unique minimal
of-stable parabolic subgroups in &,(A,) with Py D P and Q9 D Q. Then by [10, (42)
& (70)] there exists a meromorphic function a : a’c — End(&/y 2) such that the identity
E(Py: A) = E(Qo : M)a(X) holds. In view of Corollary 8.6 it follows that (8.20) is valid
with C'(Q : P : A) = a()N).

By using Proposition 8.7, (8.14) and Corollary 8.9 the existence of C'(Q : P : \) can
now be inferred for arbitrary P,Q € Z(A).

Now that the existence has been established, (a) follows from Theorem 8.13 com-
bined with uniqueness of asymptotics. Finally, (b) and (c) follow from the established
uniqueness of the C-functions involved. O
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9. The case of the group

In this section we will consider the case of the group, viewed as a symmetric space,
and compare our definition of the Eisenstein integral for a minimal parabolic subgroup
with the one given by Harish-Chandra [20].

Let ‘G be a group of the Harish-Chandra class, and let G = ‘G x ‘G and H the
diagonal in G. Then H equals the fix point group of the involution o : G — G given
by o(x,y) = (y,x). The map m : (x,y) — zy~ ' induces a diffeomorphism G/H — ‘G
which is equivariant for the action of G on G/H by left translation and the action on
‘G by left times right translation. Accordingly, pull-back by m induces a G-equivariant
topological linear isomorphism m* : C*°(‘\G) — C*°(G/H).

We fix a Cartan involution ‘6 for ‘G. Let ‘g = £ & ‘p be the associated infinitesimal
Cartan decomposition and let ‘a be a fixed choice of a maximal abelian subspace of ‘p.
Then 0 = ‘0 x 0 is a Cartan involution for G which commutes with o. The associated
Cartan decomposition is given by g = @ p, where € = ‘tx ‘'t and p = ‘p x‘p. Furthermore,
a ="'a X ‘a is a maximal abelian subspace of p.

The infinitesimal involution ¢ on g = ‘g x ‘g is given by (X,Y) — (Y, X), so that its
+1 eigenspace b equals the diagonal of g, whereas the —1-eigenspace q consists of the
elements (X,—X), X € ‘g. It follows that pngq = {(X,-X) | X € ‘p}, and that the
subspace

aq = {(X,-X) | X €'a}

is maximal abelian in p N q. Furthermore, a = ay, ® aq, where a, = {(X, X) | X € ‘a} =
anb. At the level of groups we accordingly have A = A, Ay, where A, = ANH =
{(a,a) | a € *‘A} and Ay = {(a,a™!) | a € ‘A}. The root system ¥ of a in g equals
(‘2 x{0})U ({0} x ‘%), where ‘X denotes the root system of ‘a in ‘g. The associated root
spaces are given by

9(a,0) = 8a X {0}, and g,z = {0} x gp (o, B €'X).

The positive systems for ¥ are the sets of the form (II; x {0}) U ({0} x IIs where II;, II,
are positive systems for ‘X. Accordingly,

2(A) ={Px'Q|'P'Qe 2(A)}.

Let ‘M denote the centralizer of ‘A in ‘K. Then the centralizer of A in K is given by
M =*M x ‘M and we see that the 6-stable Levi component of any parabolic in Z(A)
is equal to M A.

Our first objective is to give a suitable description of the H-fixed distribution vector
J(R:&:A)(n), for R ="P x'Q a minimal parabolic subgroup from #(A), for A € a¢,
and for £ € M such that the space V(€), defined as in (4.8), is non-trivial.
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We observe that N (aq) and Nxnp(aq) have the same image in GL(aq), so that #/,
defined as in (4.6), consists of the identity element e = (‘e,‘e). It follows that V(§) =
V(& e) as in (4.8), so that

V(e) = . (9.1)
Thus, V(&) # 0 if and only if £ has a non-trivial Hjs-fixed vector. The set of such (classes
of) irreducible representations of M is denoted by My,,.
If £ € My,,, then

£x'e®'eY, 9:2)

for an irreducible unitary representation ‘¢ of ‘M in a finite dimensional Hilbert
space JK¢. Using the canonical identification

He @ A ~ End(He) (9.3)
we shall model { as the representation in J¢ := End(J&;) given by
&(mr,ma)T ="€(m1) o T o E(mg) ™",
for T € End(#£¢) and my, mgo € ‘M. In particular, we see that with this convention,
V(§) =Cl..

The space ag¢ is identified with the subspace of ag consisting of linear functionals on ag,
of the form (\A, —'A) : (X,Y) — ‘A(X) —'‘A(Y). We agree to write

A= (A=) (‘A € 'af).
As in Section 3, we write C*>(K : £) for CT°(K : M : ) and CT*('K : ¢) for
CT®(K : ‘M :*¢). Then as indicated in Section 3, we have topological linear isomor-
phisms
C (K : &) ~C®K:&)" and C (K :€¢)~C*(K:¢),
which restricted to the subspaces of smooth functions are induced by the pairings (3.6)
for (K,¢) and (‘K ‘¢).
We now consider the topological linear isomorphism

O :C (K : £) — Hom(C®('K :'€),C~ ('K : '¢))

determined by the Schwartz kernel theorem. It is given by



2850 E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795-2864

(@(h)(f), 9) = (h, 9@ f),

forhe C7°(K : ), f € C*(K :'¢) and g € C*°('K :'¢Y), with g ® f viewed as an
element of C*°(K : ¢Y).

According to the compact picture explained in Section 3, we may identify ® with a
uniquely determined topological linear isomorphism

Dy : C™®(R:€:\) — Hom(C™®('Q,"¢,'\), C~=(‘P,¢,"\)).

The isomorphism @, is readily seen to be G-equivariant, by G-equivariance of the pair-
ings involved in the definition of ®, for the appropriate principal series representations.
It maps the H-invariants in the space on the left to the subspace of ‘G-intertwining
operators on the right.

We write (-, -)¢ for the K-equivariant pre-Hilbert structure on C*°(K : §) given by
(3.2) and (-, -)\¢ for the similar ‘K-equivariant pre-Hilbert structure on C*°(*K : ‘¢).
The latter extends to continuous sesquilinear pairings CT® (‘K : %¢)x CF* (‘K :¢) — C,
also denoted by (-, -)he. As C®('K : ‘¢) is a Montel space, it is reflexive, and we
may take adjoints with respect to these pairings. Accordingly, given a continuous linear
operator T : C*(K : %) — C ('K : ¢) we define the continuous linear operator
T*: C*°(CK : %) - C~(K :%¢) by

(T*f, g)e=(f,Tgre (f,g€CT(K:)).

Lemma 9.1. Let F € C®°(K :£) and let T : C*('K : ') —» C*(\K :¢) be a continuous
linear operator. Then

(F, &Y (T*))e = /trxg[(T@)I)F(‘k,‘k)] d'k. (9.4)

‘K

Proof. We first consider the isomorphism ¢ : C~*°(K) — Hom(C*(‘K),C~*(‘K))
given by the Schwartz kernel isomorphism. Let f; denote an L?(*K)-orthonormal basis
subordinate to the decomposition into the finite dimensional ‘K-isotypical components
with respect to the left regular representation. Then for each smooth function f €
C*(K) we have f = > .(f, fi)2f; = >2;(f, fi)f; with convergence in L?(‘K). Here
index 2 indicates that the pairing corresponds to the sesquilinear L?-inner product. It
follows that for each K-finite function F' € C*°(K) we have

<F’ 90_1(1»2 = <F? Zf] ®j_:7>2

For F = fi ® f; this gives (F', " (I))2 = (f1, fr) = [ fx(k)fi(k) dk. By continuous
linearity and density this implies that
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(F, o7 () = /F(k,k;) dk  (FeC®(K x K)).

We next consider the natural isomorphism ¢ from % = & @ ¢ onto End(#¢).
Then it is readily verified that

(U, v~ (he))e =tre(u(U)) (U € ).

Here the index ¢ indicates that the natural sesquilinear inner product induced by the
inner product on % is taken. We now consider the Schwartz kernel isomorphism ® from
C~*°(K, /) onto Hom(C* ('K, 7¢),C~>* ('K, #¢)). Then ® is identified with ¢ @ 1
in a natural way. Thus, for F' € C*°(K, #%)) we have

(F, ®1(I))e = /trg(l/}(F(\k,‘k)) d'k. (9.5)

‘K

Identifying ¢ with End(J%¢) via ¢ we agree to rewrite the above expression without
the 1. We view C®(K : &) as the space of M = ‘M x ‘M-invariants in C(K, 7).
Likewise we view C°°(\K : '¢) as the space of ‘M-invariants in C**°(\K, J&;) (for the
right action of ‘M on C**(‘K)). The ‘M-equivariant inclusion maps and projection
maps will be denoted by i and P respectively. Then & = Poi=Pod oi, and we find
that for F € C*®(K : §)

(F, @71 (I))2 = (F, @71 (I)). (9.6)

This implies (9.4) with T' = I. To obtain the general formula, we note that for a con-
tinuous linear operator T' € End(C* (‘K : '¢)) the Hermitian adjoint T* is a continuous
linear operator in End(C~*°(*K : '¢)) and

O(T* @ Nu) =T d(u)  (ueC (K :£)).
For u = ®~1(I) this yields
(T* @ )@~ 1(I) = ®(T).
It follows that
(P, 7T = (F, (1" @ D&~ (1)) = (T & )(F), &~ (1)),
Hence, (9.4) follows by application of (9.5) and (9.6). O
Lemma 9.2. Let ‘\P,'Q € Z(*A). Then for generic ‘X € ‘ag,

JOP x'Q: € N) (L) = B AP Q¢ ). (9.7)
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Proof. Put R = ‘P x ‘Q as before. Then in the present case of the group, prr = 0, so
that the distribution vector on the left-hand side of (9.7) belongs to C™°(R: & : \).
It follows from (7.25) applied with Q' =P x ‘P and Q =P x ‘Q that

GOPX'P:6:N) =T AP :'Q: "¢V : ="\N)]oj(‘P x'Q: £: \).

Since AP :'Q : ¢V : —')) has transpose A('Q : ‘P : ‘¢ : ‘) relative to the bilinear
pairing C* (‘K : %) @ C*° ('K :¢V) — C, it follows that

PA(J(P X 'P:E N L)) = @a((P x'Q:E: N (L)) 0 ACQ P 6" N). (9.8)

For ‘Q = ‘P the equality (9.7) has been established in [8, Lemma 1]. Combining this
with (9.8) we find that

ACP P N) = 0\(('P x'Q: € : N) (L)) o A(Q : P ¢ N). (9.9)
The intertwining operator on the left-hand side of (9.9) decomposes as the composition
ACP Q¢ \N) o A(Q P ¢ '),

as an End(C*°(K : &))-valued meromorphic function of ‘A € ‘af. Using the invertibility
of the second intertwining operator for generic A € ‘af we obtain (9.7). O

Corollary 9.3. Let f € C™(K : ). Then for generic ‘A € ‘af,

(f.J(Px'Q:&: =N (Le)) = /tr\g ([ACQ:"P ¢\ N) @ 1)1k, k) d'k.  (9.10)

‘K

Proof. For generic ‘A € ‘af., the continuous linear endomorphism 7" := A('Q : ‘P : ' : '))
of C*(*K :'¢) has Hermitian adjoint 7% = A(\P : '@ : ‘¢ : —*A). The result now follows
by combining Lemma 9.2, with — X in place of ‘), and Lemma 9.1. O

The expression on the left-hand side of (9.10) is very closely related to an Eisenstein
integral for the parabolic subgroup R ='P x ‘Q, defined as in Definition 8.4. This will
allow us to express the Eisenstein integral in terms of the group structure of ‘G.

To be more precise, let € be as in (9.2) and let (7, V;) be a finite dimensional unitary
representation of K. We recall the definition of the space C'(K : £ : 7) and the definition
of the linear isomorphism T — ¢ from C(K : £ : 7) ® V(§) onto o pe from (8.11)
and the surrounding text (note that My = M).

Since # = {e}, we have

%,M,E :CEO(M/HMTM)

Since V (§) = Cl., it follows that the following map is a linear isomorphism;
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f=Yrarn, C(KISZT)i)CgO(M/HMZTM). (9.11)
It follows from (8.12) that
Vron (m™1) = (f(m), Leyus = trie(f(m))  (me M),
where the subscript HS means that the Hilbert—Schmidt inner product is taken.

Corollary 9.4. With notation as in Corollary 9.3, let f € C®°(K : £ : 7). Then

E(Px'Q: VYron, N('z,e) = (9.12)
- /trxg ([(40Q:"P e : =N @ mauera () 1] (kW) %,
K

for'z € G and generic \ € ac.

Proof. We note that My = M, so that KN My = M, &y = € and the map i# introduced
in (4.11) is just the identity map in the present setting. By application of Theorem 8.4
with R =‘P x '@ in place of P, we now find, taking into account that pgp = 0, that the
Eisenstein integral on the left-hand side of (9.12) equals

<f’ WR,&,X(\x’e)j(R 1§ 5‘)(1\5» = <f’ ﬂ-R,g,j\(ev\x_l)j(R 1€ /_\)(I‘ﬁ»’ (913)

by H-invariance of j. Here (-, -) stands for the sesquilinear map C®(K : & : 1) X
C~®°(K : &) — V; induced by the sesquilinear pairing C>®°(K : §) x C~*(K : ) — C.
By equivariance of the pairing, (9.13) equals

(TRe-a(e,'2)f, (R € N)(he)) = ([T @ maueva(@)lf, G(R: €2 N (L))

By application of (9.10) we infer that the last displayed expression equals the integral
on the right-hand side of (9.12). O

We shall now relate the Eisenstein integral in (9.12) to Harish-Chandra’s Eisenstein
integral for the group. We agree to write

i(k)v =7(k,e)v, and wvre(k):=T1(e,k v (veVyke'K).

Then (11, 72) is a unitary bi-representation of ‘K in V. in the sense that 7 is a unitary
left representation and 72 a unitary right representation of ‘K in V, and these two
representations commute. Clearly any such bi-representation (71, 72) of ‘K comes from
a unique unitary representation 7 as above, and 7(k1, k2)v = 7(k1)vr(ky ), for v € V;
and (ki,k2) € K. Given 7 as above, we agree to write 7, for the restriction of 7 to M.
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Furthermore, we agree to write 7j.5s for the restriction of 7; to ‘M, for j = 1,2. Then
Ty corresponds to the bi-representation (71 a7, T2var) of *M.

Let C*°("M : 75s) denote the space of smooth functions ¢ :=‘*M — V, transforming
according to the rule

p(mimmg) = 11(m1)e(m)r2(ms) (m,my,mg € 'M).
Then it is readily verified that pull-back under the map m : (z,y) — zy~' induces a
linear isomorphism
m*: C®(M : 1ar) — C(M/Hpy : Tar). (9.14)
The inverse of this isomorphism will be denoted by
Y=, C°(M/Hpp: Tar) — C¥(M : 1py). (9.15)

By ‘M x *M-equivariance, it follows that the isomorphism (9.15) restricts to an isomor-
phism

Ce*(M/Hyy = Tar) ~ G ("M = 7). (9.16)

Here the space on the right-hand side is defined as the intersection of C*°(*M : 75s) with
the space C¢(*M) ® V,, where C¢(*M) denotes the isotypical component of type & for
the representation L x R of M in C(*M). Furthermore, the space on the left-hand side
of (9.16) is defined similarly.

Since (9.11) is an isomorphism, it now follows that the following map is a linear
isomorphism as well,

[ rang, CK:€:7) = C&('M : ma).

We now recall the definition of Harish-Chandra’s Eisenstein integral associated with a
parabolic subgroup ‘Q € Z(*A). Given ‘¢ € C*(*M : 1) and ‘X € ‘af, we define the
function ‘“¢ry : ‘M — V. by

‘Yo ('n'a'm'k) ="a PR p(\m) k), (9.17)

for ‘k € ‘K, 'm € ‘M, ‘a € ‘A and ‘n € Ng. The Harish-Chandra Eisenstein integral for
the group ‘G is now defined by

EHC(\Q : \'L/) : \)\)(\I') = /Tl(\k)il\’l/)“(\k\x) d\k, (918)
‘K
for ‘A € ‘af and ‘z € ‘G. We will derive a formula for the present type of Eisenstein

integral, which will allow comparison with (9.12). In the formulation of the following
lemma, we will use the natural identifications (9.3) and
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C(K £:7) = (C®(K : ) @ Vo) ~ (CX(K ') @ CF(K ') o ;)"
Furthermore, we will write tr\¢ as shorthand for the map
tr ® Iy, : End(J&:) @ V, — V.
Lemma 9.5. Let ‘£ € ‘M and put & =6 QY. Furthermore, let f € C°(K : £:7) and
put ‘p ="Yser, . Then for all ‘X € ‘ag,
Euc('Q : Yren, '\ N)('x) = /trxg ([(I @ mgoev a(2) 10k, k) d'k. (9.19)
K

Proof. We agree to write f\ for the unique function in C°(G : '‘Q x'Q : £ : M) @ V;
whose restriction to K equals f.
The function ‘¢ := “Yren, € CZ('M : 7p;) is completely determined by

‘Y(e) = (f(e,e), Le)us = tr¢[f(e, €)].

In the second expression, we have used the bilinear map (% ® V;) x 1%25 — V; induced
by the Hilbert-Schmidt inner product on % = End(J%¢).

We now observe that the function ‘¢) defined by (9.17) can be expressed in terms of
f—» in the following fashion;

‘Un(‘z) = tre[foa(e, 'z)] (‘z €'Q). (9.20)
It follows from the sphericality of f that
trae[fox(2'k, y'he)] = 71 (k) T e [foa (e, )] (Cka),
for ‘z,'y € ‘G and ‘kq, ‘ko € ‘K. We thus obtain from (9.20) that
T1CR) TN (k') =t [foa (R, E'2)] = tre ([(T @ mgoev () £k, K)).
Equation (9.19) now follows from (9.18). O

The h-extreme parabolic subgroups in & (A) are the parabolic subgroups of the form
‘P x ‘P with ‘P € Z(*A). For these parabolic subgroups our Eisenstein integrals es-
sentially coincide with the unnormalized Eisenstein integrals of Harish-Chandra. More
precisely, the following result is valid.

Corollary 9.6. Let ‘\P € Z(*A) and ¢p € C°(M/Hyps : 7%;). Then for all ‘z,'y € ‘G we
have

E(CPx'P:¢:N)(z,"y) = Euc(‘P: "¢ :"\N)(z'y™ ), (9.21)

with A = ‘A, —'X), as an identity of meromorphic V-valued functions of ‘\ € ‘ag.
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Proof. The space C°(M/Hy; : 79;) is spanned by the functions of the form Vel
where ‘6 € ‘M", £ = ®'€Y and f € C(K : £ : 7). By linearity it therefore suffices
to establish (9.21) for ¢ = t¥¢gr,, with ' and f as mentioned. Moreover, by right
H-invariance of the Eisenstein integral on the left-hand side, it suffices to prove the
result for ‘y = e. The claim now follows by comparison of (9.12) and (9.19). O

Remark 9.7. In particular, we see that the Eisenstein integral on the left is holomorphic
as a function of A € a’c. As X('P x 'P)_ = 0, this can also be derived by combining
Theorem 8.4 with Remark 7.9.

Corollary 9.8. With notation as in Corollary 9.3, let f € C(K : § : 7). Let ¢ren, €
Ce°(M/Hu;mv) be defined as in (9.11). Then

E(Px'Q: Viorn, : Nz, y) = (9.22)
= Enc('Q : "Yyacgeprre—nanfen, - N(z'y™h),
for generic ‘A € ‘af, A= (‘\, ='\) and all‘z,'y € 'G.

Proof. By right H-invariance of the Eisenstein integral on the left-hand side, it suffices
to prove the result for ‘y = e. It follows from (9.12) that

E(\P X \Q : pr@[\s : )\)(\{E7€) = E(\Q X \Q : QZJ[(A(\Q:‘P:‘E:—‘A)@I)f]@]\g : )\)(\1'76).
The identity now follows from (9.21). O
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Appendix A. Fubini’s theorem for densities

In this appendix our purpose is to establish a Fubini type theorem for repeated inte-
gration in the setting of a Lie group G with two closed subgroups H and L such that
H C L. The Fubini theorem concerns repeated integration for densities on the total
space of the natural fiber bundle

7 : L\G — H\G, (A1)
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with fibers diffeomorphic to H\L. It expresses the integral over the total space as an
iterated integration, first over the fibers and then over the base space. In case of unimod-
ular groups there is a well known version of such a Fubini theorem involving invariant
densities on the quotient spaces. In the case of non-unimodular groups such densities do
not exist. Nevertheless, in this setting an appropriate formulation of iterated integration
can be given as well.

To describe it, we will first formulate and establish a Fubini theorem for general fiber
bundles, and then specialize to the above situation.

If V is real linear space of finite dimension n, then by %y, we denote the space of
complex-valued densities on V|, i.e., the (complex linear) space of functions A : A*(V) —
C transforming according to the rule A(¢£) = [t|A(€), for allt € Rand £ € A™V. A density
A is said to be positive if A(§) > 0 for all non-zero £ € A"V. By pull-back under the
natural map V" — A™V we see that a density may also be viewed as a map V" — C
transforming according to the rule Ao 7™ = |det T|A, for all T' € End(V'). This will be
our viewpoint from now on. Note that 2y has dimension 1 over C. If W is a second real
linear space of the same dimension n and A : V' — W a linear map, then pull-back under
A is the map A* : Iy — Dy defined by

A= o A” (1 € Dw).

Lemma A.l. Let E, F be finite dimensional real linear spaces. Then Ppgr ~ Y5 @ Dr
naturally.

Proof. Let p and ¢ be the dimensions of E and F' respectively and put n = p + q. We
consider the natural isomorphism p : APE @ AIF — A"(E @ F). Given a € P and
B € Pr, we define a5 : APEQAIF — C by a®B(€ xn) = A(§)u(n). We note that this
definition is unambiguous, and that (aXf3) o (t-) = [t|(aX}), so that (a, 8) — aRBo =t
defines a bilinear map from Zg X Zr to Pggr. The induced map P @ Pr — Prgr is
a non-trivial linear map between one dimensional complex linear spaces, hence a linear
isomorphism. O

From now on we shall identify Zgqr with Zr ® ZF via the isomorphism given in the
proof of the above lemma.
The lemma can be generalized to the setting of short exact sequences as follows. Let

0—-FE S E-2E"50 (A.2)
be a short exact sequence of finite dimensional real linear spaces of dimensions k,n and
n — k. We recall that a linear map f : E” — E is said to be splitting if po f = idg~.
Associated with f is an isomorphism i @ f : E® E"” — E, which by pull-back induces a
natural isomorphism

GO Do @ Dpn = Dpapr — D (A.3)
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Lemma A.2. The isomorphism (A.3) is independent of the splitting map f.

Proof. Let g be a second splitting map. Then (1 @ f)* — (i@ g)* = i ® (f — g))*. Now
f — g maps E” into kerp = i(E’) so that i ® (f — g) maps E’ & E” into the subspace
i(E') of E. It follows that (i ® (f —g))* =0sothat i ® f)*=(i®g)*. O

From now on, given a short exact sequence of the form (A.2) we shall identify elements
of the spaces P ® P+ and Py via the isomorphism (i @ f)*, which is independent of
the choice of f.

We now turn to manifolds. Let M, N be smooth manifolds and ¢ : M — N a smooth
map. Then by T : TM — T'N we denote the induced map between the tangent bundles.
For a given x € M, this map restricts to the tangent map T, : T, M — T, N, which
will also be denoted by dy(z).

By 2 we denote the complex line bundle of densities on M. The fiber of this bundle
at a point x € M is equal to Zr, . The space of continuous densities is denoted by
T'(Za). If dim M = dim N then the smooth map ¢ : M — N induces a pull-back map
©* : T(9Dn) = T'(Dum), given by

O (W) =dp(2) pp@)  (LET(DN), €M),

There is notion of integration of compactly supported continuous densities on manifolds
for which the substitution of variables theorem is valid. More precisely, if ¢ : M — N is
a diffeomorphism of smooth manifolds, then

Ju=[ew  wera. (A.4)
N M

Let m : FF — B be a smooth fiber bundle. Let Zr denote the density bundle on F'.
We may introduce a bundle of fiber densities on F' as follows. The map 7 induces the
homomorphism T : TF — T B of vector bundles. The kernel K = ker T'r of this bundle
is a subbundle of T'F. Obviously, the fiber of K at p € F may be viewed as the tangent
space of the fiber Fy(,) at the point p. The associated bundle p — Pk, is a smooth
complex line bundle on F', which we shall call the bundle of fiber densities on F. We
shall denote this bundle by 2E.

On the other hand, the fiber product or pull-back bundle 7*(Zg) := F X 95 of 25
under 7 is a complex line bundle on F. We shall denote the associated canonical line
bundle homomorphism 7*(25) — Zg by 7.

The short exact sequence 0 — K — TF — 7*(TB) — 0 of vector bundles on F
naturally induces a line bundle isomorphism

I8 @7 (Z8) ~ Dr, (A.5)
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via which we shall identify elements of these spaces. Here naturality means that for a
fiber bundle morphism ¢ from 7 to a bundle 7’ : F/ — B’ with dim F’ = dim F' and
dim B’ = dim B the following diagram commutes:

28 @ 7 (Z8) = Dr
(Te)"®(Te)" | L (1) (A.6)
28 @ () (Z25) = D

Let now b € B and let F}, the fiber 771(b) of F' above b. Obviously, the restriction of 22
to this fiber is naturally isomorphic to Zr,, the density bundle of the fiber. On the other
hand, via 7 the restriction of the bundle 7*(Zg) to F, may be identified with the trivial
bundle F} x 27, p. Accordingly, we obtain natural isomorphisms Zr, ® Y1, ~ Zr|r,,
and

[(Zr|r,) =~ T(ZF,) ®c Y1,B-

Integration over the fiber gives a natural linear map

Ib : Fc(-@Fb) — (C, o= /p,
Fy

By transfer we obtain a natural map I ® id : T'e(Z2r|r,) — Zr1,5. We now define the
push-forward map m, : I'.(Zr) — sect(Zg), by

T () (b) = (I ®1d)(pl p, )- (A7)

Here sect(Zg) denotes the space of all (not-necessarily continuous) sections of 5.

By the naturality of the constructions and the invariance of integration as formulated
in (A.4), one readily checks that the notion of push-forward of compactly supported
densities is invariant under isomorphisms of bundles.

Lemma A.3. Let ¢ be an isomorphism from the fiber bundle w : F — B to a second fiber
bundle @ : F' — B’ and let @, denote the induced diffeomorphism B — B’. Then the
following diagram commutes:

L) £ To( D)
AN 4.
To(Z5/) =22 To(Z5).

We can now establish the following Fubini type theorem for the integration of densities
over fiber bundles.
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Lemma A.4. The map m. maps T'o(Dr) (respectively T'2°(Pr)) continuous linearly to
L'(ZB) (respectively T'2°(Zg)). Moreover, for all p € T'o(ZF),

Ju= [t (A.8)
F B

Proof. By using partitions of unity, and invoking invariance of integration, cf. (A.4),
and Lemma A.3, we may reduce the proof to the case that B is open in R™ and that
F = B x V, with V an open subset of Euclidean space R*. In that case the result
comes to down to continuous and smooth parameter dependence and Fubini’s theorem
for Riemann integrals of continuous functions. 0O

Corollary A.5. Let p be a measurable section of Pr. Then the following statements are
equivalent.

(a) The density p is absolutely integrable.
(b) For almost every b € B the integral for m.(u)y is absolutely convergent and the
resulting density m.(u) is absolutely integrable over B.

If any of these conditions is fulfilled, then (A.8) is valid.

Proof. This follows by reduction to Fubini’s theorem through the use of partitions of
unity, as in the proof of Lemma A.4. 0O

We will now apply the above result to the particular setting of a Lie group G with
closed subgroups H and L such that H C L. As said at the start of this appendix, this
setting gives rise to the natural fiber bundle (A.1) with fiber diffeomorphic to L\H.

Let Ap\g : L — Ry be the positive character given by

Apa(l) = | det Ad(;(l)g/[|*1 (lel), (A.9)

where Adg(1)y/1 € GL(g/!) denotes the map induced by the adjoint map Adg (/) € GL(g).
Given a character & of L we denote by C(G : L : ) the space of continuous functions
f : G — C transforming according to the rule

fllz) = &) f (),

for x € G and | € L. We denote by .# (G) the space of measurable functions G — C and
by (G : L : &) the space of f € .#(G) transforming according to the same rule.
Given f € .#(G) and w € P, we denote by f,, the function G — Zp\¢ defined by

fo(z) = f(z) dra(e) ™ w.



E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795-2864 2861

Lemma A.6. Let w € Z, \ {0}. Then the map f — fo, defines a continuous linear
isomorphism from C(G : L : Ap\g) onto I'(Zp\q)-

Proof. Write A = Ap\¢. In the proof we will use the notation [e] for the image of e
in L\G. Moreover, we will use the canonical identification Tj¢(L\G) ~ g/I. Let w be as
stated, and let f € C(G : L: A). Then for x € G we have f,(2) € 1, (1\c)- Let | € L,
then

Jollz) = AW f (x) drig([e]) ™ w

() f (@)dra([e]) ™ dri([e) ™ w
() f (x) dra([e]) " Ad (1) "w
fuo ().

A
A

It follows that f,, factors through a smooth map L\G — Zp\¢, with f,(z) a density on
T12)(L\G). Accordingly, f,, defines a section of Z;, ¢, which clearly is continuous. The
bijectivity of the map f ~ f, from C(G : L : A) onto I'(Z;\ ) is obvious. O

Our next goal is to calculate the push-forward m.(f,), for f € C(G : L : Ap\¢) and
W € Dy1, and 7 : L\G — H\G the canonical projection.

We note that 7 is a fiber bundle with total space F' = L\G, base space B = H\G and
fiber diffeomorphic to L\ H. Thus, we have the natural isomorphism (A.5).

If + € G, then the diffeomorphism rf" : F — F,z + zx defines an isomorphism of
fiber bundles over the diffeomorphism 72 defined by right multiplication on B, i.e., the
following diagram commutes,

TF
F - F
+ +
TB
B - B.

In the sequel we shall use the commutativity of the diagram (A.6) with F = F', B = B’
and o =rk.

In particular, it follows that (drl)* @ (drf)* € End(28 ® n*%p) corresponds to the
naturally induced automorphism (drf)* of Zp.

We fix non-zero elements wi\g € Y1, wp\g € Py and wiy\g € Y,y such that

WIANH @ WH\G = WL\@ (A.10)

with respect to the identification determined by the short exact sequence 0 — b/l —
g/l — g/bh — 0. This short exact sequence may be identified with the short exact
sequence of tangent spaces
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0 = Tig(L\H) M 11, 0\6) ™8 11 (11\G) > 0,

where i : L\H < L\G denotes the natural embedding of L\ H onto the fiber 7=1([¢]).
Accordingly, formula (A.10) may be viewed as an identity of elements associated with
the decomposition

(28)1e] © (28) 1) = (ZF)q)-

Lemma A.7. Let wp\g,wm\g and wp\g satisfy (A.10). Then for allh € H and x € G,

drhx([e})fl*wL\H = AH\G(h)fl (dr;w([e])fl*wL\H ® drx([e])fl*wH\G) , (A.11)

in accordance with the decomposition (@g)[hz] ® (ZB)iw) = (ZF)ha), corresponding
to (A.5).

Proof. Let h € H, then dry(e) " (wp\g) = Ad(h)*wme = Ama(h) 'wme and we
see that

drh([e])_l*wL\G = AH\G(h)_l (drh([e])_l*wL\H & WH\G) . (A12)

Let now x € G, then in view of the G-equivariance of the fiber bundle F — B for-
mula (A.11) follows by application of dr,([h]) ~1* to both sides of the identity (A.12). O

Theorem A.8. Let wi\g,wm\g and wr\g satisfy (A.10). Let o € A (G : L : Ap\q) and
let o, be the associated measurable density on L\G. Then the following assertions
(a) and (b) are equivalent.

(a) The density Pup\ g s absolutely integrable.
(b) There exists a left H-invariant subset % of measure zero in G such that
(1) for every x € G\ &, the integral

L(g) = / Ama ()~ () dra([e])wpu (A.13)
L\H>3[h]

is absolutely convergent;
(2) the function I(p) : x = I.(p) belongs to A (G : H : Ag\q);

(3) the associated density I(p) is absolutely integrable.

WH\G

Furthermore, if any of the conditions (a) and (b) are fulfilled, then

/wL\G= /I(w)wH\G- (A.14)

ING H\G
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Proof. We retain the notation introduced before the statement of the theorem. Then for
x € G and h € H the associated density at Lhz is given by

Purne (he) = Apyg (h) ™ o(ha) (drie([e]) ™ wpyg @ dro(le]) M wme) . (A15)

in accordance with the decomposition corresponding to (A.5).

We will deduce the result from applying Corollary A.5 to the fiber bundle given by
the canonical projection 7 : F := L\G — B := H\G and to the measurable density
K= Yoy on F.

The crucial step is to prove the claim that for x € G, the integral for the push-forward
T (Puwp ) (Hx) converges absolutely if and only if the integral for /() converges abso-
lutely. We will first establish this claim.

It follows from (A.7) that the push-forward of ¢, under 7 is the density on H\G
given by the following fiber integral

72 (o) (H) = / ve | @ dro(fe]) M wme (A.16)
w1 (Hz)

where 77} (Hz) = r,(L\H), and where v, is the density on r,(L\H) given by

v (Lha) = Apy g (h) " o(hz) drig(le]) ™ wry o

The convergence and value of this integral depends on x through its class Hx. We now
observe that 7, defines a diffeomorphism from the fiber 7=!(He) onto the fiber 7~ (Hz).
Moreover,

[rava)(Lh) = dro([h]) ™ ve(Lha) = Apya(h) " o(ha) dry((e]) ™ wrym.

Thus, I,(¢) equals the integral of r%v, over L\H, and by invariance of integration we
see that it converges absolutely if and only if the integral for 7.(pu, . )(H®) converges
absolutely. Moreover, in case of convergence we have

L= [re)= [
L\H n—1(Hz)

so that

T (Pur o) (H) = Lo () dro([e]) ™ wme = 1(9)wp o (Ha). (A.17)

This establishes the claim.

The equivalence of (a) and (b) now readily follows from the similar equivalence in
Corollary A.5. Finally, if any of these conditions is fulfilled, both are, and in view
of (A.17), the identity (A.14) follows from the final assertion of Corollary A.5. O
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