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0. Introduction

Eisenstein integrals play a fundamental role in harmonic analysis on reductive sym-
metric spaces of the form X = G/H; here G is assumed to be a real reductive group of the 
Harish-Chandra class, and H an (essentially connected) open subgroup of the group Gσ

of an involution σ of G. The notion of Eisenstein integral goes back to Harish-Chandra, 
who used it to describe the contribution of generalized principal series to the Plancherel 
decomposition of a real reductive group �G. In this setting an Eisenstein integral is es-
sentially a matrix coefficient of an induced representation of the form Ind

�G
�P (�ω), with �P

a proper parabolic subgroup of �G and �ω a suitable representation of �P .
For general symmetric spaces G/H, the notion of Eisenstein integral was introduced 

in [6] for minimal σ-parabolic subgroups of G, i.e., minimal parabolic subgroups of G with 
the property that σ(P ) = P̄ . The notion was later generalized to arbitrary σ-parabolic 
subgroups in [14,15] and found application in the Plancherel theorem for G/H, see [16]
and [12]. In this setting of reductive symmetric spaces, the Eisenstein integrals appear 
essentially as matrix coefficients of K-finite matrix coefficients with H-fixed distribution 
vectors.

A group �G of the Harish-Chandra class may be viewed as a homogeneous space for the 
left times right action of G = �G × �G on �G, and is thus realized as the symmetric space 
G/H with H the diagonal in G. The definition of Eisenstein integral for the symmetric 
space G/H yields a matrix coefficient on �G which is closely related to Harish-Chandra’s 
Eisenstein integral, but not equal to it. The two obtained types of Eisenstein integrals 
differ by a normalization which can be described in terms of intertwining operators, see [8]
for details. In the present paper we develop a notion of minimal Eisenstein integrals for 
reductive symmetric spaces, which cover both the existing notion for symmetric spaces 
and Harish-Chandra’s notion for the group.

An even stronger motivation for the present article lies in the application of its results 
to a theory of cusp forms for symmetric spaces, initiated by M. Flensted-Jensen. In [7] we 
use our results on Eisenstein integrals to generalize the results of [2] and [1] to reductive 
symmetric spaces of σ-split rank one (i.e., dim aq = 1).

We will now explain our results in more detail. Let θ be a Cartan involution of G
commuting with σ and let K be the associated maximal compact subgroup of G. Let

g = k⊕ p = h⊕ q
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be the eigenspace decompositions into the ±1-eigenspaces for the infinitesimal involutions 
θ and σ, respectively. Furthermore, let aq be a maximal abelian subspace of p ∩ q and a
a maximal abelian subspace of p containing aq. We put Aq := exp aq and A := exp a.

For the description of the minimal σ-principal series one needs the (finite) set of mini-
mal σ-parabolic subgroups of G containing Aq; this set is denoted by Pσ(Aq). In the case 
of the group �G one may take A = �A × �A, with �a maximal abelian in �p. Then Pσ(A)
consists of all parabolic subgroups of the form �P × �P̄ , with �P a minimal parabolic 
subgroup from �G containing �A. To obtain Harish-Chandra’s Eisenstein integral one 
would need to also consider minimal parabolic subgroups of the form �P × �P .

Our goal is then to define Eisenstein integrals by means of suitable H-fixed distribution 
vectors for all minimal parabolics of G containing A. The (finite) set of these is denoted 
by P(A). For the case of the group one has Pσ(Aq) � P(A), but for general symmetric 
spaces G/H, the parabolic subgroups from Pσ(Aq) will in general not be minimal.

A parabolic subgroup P ∈ P(A) is called q-extreme if it is contained in a parabolic 
subgroup P0 from Pσ(Aq), see Section 1 for details. For such a parabolic, each repre-
sentation IndG

P0
(ξ ⊗ λ ⊗ 1) of the σ-principal series can be embedded in the represen-

tation IndG
P (ξM ⊗ (λ − ρPh) ⊗ 1) of the minimal principal series, through induction in 

stages. Here ξ is a finite dimensional unitary representation of the Langlands component 
M0 := MP0 , and ξM denotes the restriction of ξ to M := MP . Furthermore, λ ∈ a∗qC and 
ρPh := ρP − ρP0 . This is discussed in Section 4.

In Section 5 the H-fixed generalized vectors of the first of these induced representa-
tions are shown to allow a natural realization in the latter. To describe it, one needs to 
parametrize the open H-orbits on G/P0. We will avoid this complication in the intro-
duction, and work under the simplifying assumption that HP0 is the single open orbit. 
This condition is always fulfilled in the case of the group; in general the open orbits are 
given by PvH, for v in a finite set W � W (aq)/WK∩H(aq).

Let C−∞(P0 : ξ : λ) denote the space of generalized vectors for the induced represen-
tations IndG

P0
(ξ⊗ λ ⊗ 1). The H-fixed elements in this space needed for the definition of 

the Eisenstein integral are parametrized by V (ξ) = H M0∩H
ξ . Given η ∈ V (ξ), one has a 

family

j(P0 : ξ : λ : η) ∈ C−∞(P0 : ξ : λ)H (λ ∈ a∗qC),

defined in [5]. In a suitable sense it depends meromorphically on λ ∈ a∗qC. This family 
has image jH(P : ξM : λ : η) in C−∞(P : ξM : λ −ρPh)H . By definition the latter defines 
a continuous conjugate linear functional on the space C∞(P : ξM : −λ̄ + ρPh). In (5.5)
we show that for λ in a suitable region ΩP ⊆ a∗qC this functional is given by an absolutely 
convergent integral

〈jH(P : ξM : λ : η) , f〉 =
∫

f̄η,ω, (0.1)

HP \H
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for f ∈ C∞(P : ξM : −λ̄+ ρPh). Here HP := H ∩P , and f̄η,ω is a natural interpretation 
of the function 〈η , f〉|H ∈ C∞(H) as a density on the quotient manifold HP \H.

To extend formula (0.1) to the setting of a parabolic subgroup Q ∈ P(A) which is 
not q-extreme, two problems need to be solved. First of all a suitable domain ΩQ for the 
convergence needs to be determined. Next, the resulting family jH(Q : ξM : λ) needs to 
be extended meromorphically in the parameter λ ∈ a∗qC.

In the present paper both these problems are solved by using a suitable partial or-
dering 
 on P(A) whose maximal elements are the q-extremal parabolic subgroups, 
see Section 2 for details. Let P ∈ Pσ(A) be such that P 
 Q. Then the definition of 
the ordering guarantees that HP ⊆ HQ and that the fiber HP \HQ of the natural fiber 
bundle HP \H → HQ\H is diffeomorphic to NQ ∩ N̄P in a natural way, see Section 6. 
We use a general Fubini type theorem for densities on fiber bundles, discussed in the 
appendix of this paper, to decompose the integral (0.1) in terms of a fiber integral over 
NQ ∩ N̄P followed by an integral over the base manifold HQ\H, see Theorem 6.7. The 
first of these integrals turns out to be the integral for the standard intertwining operator

A(Q : P : ξM : −λ̄ + ρPh) : C∞(P : ξM : −λ̄ + ρPh) → C∞(Q : ξM : −λ̄ + ρPh),

whereas the second integral turns out to be (0.1) with Q in place of P . According to 
Theorem 7.1 this results in the formula

jH(P : ξM : λ : η) = jH(Q : ξM : λ : η) ◦A(Q : P : ξM : −λ̄ + ρPh), (0.2)

with convergent integrals for λ ∈ ΩP . Convergence of the integral for jH(Q : ξM : λ : η)
is thus obtained through Fubini’s theorem, as a consequence of the known convergence of 
the other two integrals. Furthermore, since the appearing standard intertwining operator 
has an inverse which is meromorphic in λ, formula (0.1) also allows us to conclude in 
Theorem 7.8 that

λ �→ jH(Q : ξM : λ : η) (0.3)

depends meromorphically on λ ∈ a∗qC.
Once the meromorphic extension of (0.3) has been established for general Q ∈ P(A)

we apply a recent convexity theorem [3, Thm. 10.1] to determine a large domain on which 
(0.3) is holomorphic, see Corollary 7.6). The convexity theorem describes the image 
of H under the projection HQ,q : G → aq determined by the Iwasawa decomposition 
G = K(A ∩ H) exp(aq)NQ as a convex polyhedral cone described in terms of a subset 
of the set of roots of a in nQ. This description allows one to decide whether this cone 
properly contains the origin or equals it. In the latter case it is shown that (0.3) is 
holomorphic on all of a∗qC, see Remark 7.9.

The definition of the meromorphic family of H-fixed generalized vectors (0.3) allows 
us to define Eisenstein integrals E(Q : λ) essentially as matrix coefficients with K-finite 
vectors in the induced representation under consideration. In particular, the Eisenstein 
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integral depends meromorphically on λ. Holomorphy of (0.3) implies holomorphy of the 
corresponding Eisenstein integral, see Corollary 8.5.

The relation (0.2) leads to a relation between the Eisenstein integral E(Q : λ) and 
the Eisenstein integral E(P0, λ), earlier defined in [6] and [10]. This relation amounts to 
a different normalization of the Eisenstein integral expressed in terms of a C-function, 
see Corollary 8.14.

Finally, in Section 9, we discuss the case of the group, and express the obtained 
Eisenstein integrals in terms of Harish-Chandra’s Eisenstein integrals, see Corollary 9.8. 
In this case, the Eisenstein integral E(Q : λ) coincides with Harish-Chandra’s if and only 
if Q is a 
-minimal element of P(A). The latter means that Q is of the form �Q × �Q, 
with �Q ∈ P(�A); see Corollary 9.6. The result on holomorphy established above, is 
consistent with the holomorphic dependence of Harish-Chandra’s Eisenstein integral, 
see Remark 9.7.

1. Notation and preliminaries

In this section we collect some of the notation that will be used throughout this article.
We assume that G is a reductive Lie group of the Harish-Chandra class. Let σ be an 

involutive automorphism of G and let θ be a Cartan involution that commutes with σ, let 
K := Gθ be the associated maximal compact subgroup. Let H be an open subgroup of 
the fixed point subgroup Gσ. We assume H to be essentially connected. (See [4, p. 24].) 
If S is any closed subgroup of G, we agree to write

HS := S ∩H. (1.1)

A Lie group will in general be denoted by a Roman upper case letter; the associated 
Lie algebra by the corresponding lower case gothic letter. We denote the infinitesimal 
involutions associated with σ and θ by the same symbols, respectively. As usual, the 
decompositions of g into the +1 and −1 eigenspaces for θ and σ are denoted by g =
k ⊕ p = h ⊕ q respectively. As the involutions σ and θ commute, we have the following 
decomposition of g also decomposes as a direct sum of vector spaces

g = (k ∩ h) ⊕ (k ∩ q) ⊕ (p ∩ h) ⊕ (p ∩ q).

We fix a non-degenerate G-invariant bilinear form B on g, which coincides with the 
Killing form on [g, g], is negative definite on k and positive definite on p, and for which 
the above decomposition is orthogonal. Furthermore, we equip g with the positive definite 
inner product given by

〈 · , · 〉 := −B( · , θ( · )).

We fix a maximal abelian subspace aq of p ∩ q and a maximal abelian subspace a of 
p containing aq. Then a decomposes as
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a = a h ⊕ aq,

where a h = a ∩h. This decomposition induces natural embeddings of the associated dual 
spaces a∗h and a∗q into a∗. Let A := exp(a), Aq := exp(aq) and Ah := exp(a h).

If P is a parabolic subgroup (not necessarily minimal), then we write NP for the 
unipotent radical of P . If P contains A and b is a subalgebra of a, then we write Σ(P, b)
for the set of weights of b in nP . Furthermore, we write Σ(P ) for Σ(P, a), unless clarity 
of exposition requires otherwise. If τ is an involution of g preserving a, we agree to write

Σ(P, τ) := Σ(P ) ∩ τΣ(P ). (1.2)

For a root α ∈ Σ(a) ∩ a∗q, we note that σθα = α, so that σθ leaves the root space gα
invariant. Accordingly, we define the subset Σ(P )− = Σ(P )σ,− of Σ(P, σθ) by

Σ(P )− := {α ∈ Σ(P, σθ) : α ∈ a∗q ⇒ σθ|gα
�= I}. (1.3)

Let M denote the centralizer of A in K and let P(A) denote the set of minimal 
parabolic subgroups P ⊆ G with A ⊆ P . Then each subgroup P ∈ P(A) has a Langlands 
decomposition of the form P = MANP .

Definition 1.1. A parabolic subgroup P ∈ P(A) is said to be q-extreme if

Σ(P, σθ) = Σ(P ) \ a∗h.

The set of these parabolic subgroups is denoted by Pσ(A).

We will finish this section by comparing Pσ(A) with the set Pσ(Aq) of minimal 
σθ-stable parabolic subgroups of G containing Aq. We recall from [5] that the latter set 
is finite and in bijective correspondence with the set of positive systems for Σ(g, aq). 
Indeed, if Π is such a positive system then the corresponding parabolic subgroup PΠ
from Pσ(Aq) equals PΠ = ZG(aq)NΠ, where nΠ := ⊕α∈Πgα and NΠ := exp(nΠ). The 
Langlands decomposition of PΠ is given by

PΠ = M0A0NΠ,

where A0 = exp(a0) and M0 = ZK(aq) exp(m0), with a0 = ∩α∈Σ(g,a)∩a∗
h
kerα, and 

m0 := Zg(aq) ∩ a⊥0 .
Conversely, if P0 ∈ Pσ(Aq) then the associated positive system is given by

Σ(P0, aq) := {α ∈ Σ(g, aq) | gα ⊆ nP0}.

Lemma 1.2. Let P ∈ P(A). Then the following conditions are equivalent.

(a) P ∈ Pσ(A);
(b) there exists a P0 ∈ Pσ(Aq) such that P ⊆ P0.
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Proof. First assume (a). Then Σ(P ) \ a∗h = Σ(P, σθ) and we see that the set Π of 
non-zero restrictions α|aq , for α ∈ Σ(P ) \ a∗h, is a positive system for Σ(g, aq). Now 
NP = (NP ∩M0)NΠ and we see that P ⊆ PΠ and (b) follows.

Next assume (b). We first note that

Σ(P0, aq) = {α|aq : α ∈ Σ(P0), α|aq �= 0}.

The minimality of P0 implies that Σ(P0, aq) is a positive system for the root system 
Σ(g, aq), hence

Σ(g, a) \ a∗h = {α ∈ Σ(g, a) : α|aq ∈ Σ(g, aq)} = Σ(P0) ∪ −Σ(P0).

By assumption P ⊆ P0. This implies Σ(P0) ⊆ Σ(P ) and Σ(P ) ∩ −Σ(P0) = ∅. Hence,

Σ(P ) \ a∗h = Σ(P0).

Moreover, since P0 is σθ-stable the above equality implies Σ(P ) \ a∗h ⊆ Σ(P, σθ). As the 
converse inclusion is obvious, the parabolic P is q-extreme and (a) follows. �
2. Minimal parabolic subgroups

Lemma 2.1. Let P ∈ P(A). The set Σ(P ) is the disjoint union of Σ(P, σ) and Σ(P, σθ).

Proof. Let α ∈ Σ(P ). Then either σα ∈ Σ(P ) or σθα = −σα ∈ Σ(P ). The two cases are 
exclusive, and in the first case we have α ∈ Σ(P, σ), while in the second α ∈ Σ(P, σθ). �

We define the partial ordering 
 on P(A) by

P 
 Q ⇐⇒ Σ(Q, σθ) ⊆ Σ(P, σθ) and Σ(P, σ) ⊆ Σ(Q, σ). (2.1)

It is easy to see that this condition on P and Q implies that HNP
⊆ HNQ

. The latter 
condition implies that we have a natural surjective H-map H/HNP

→ H/HNQ
.

Lemma 2.2. Let P, Q ∈ P(A), and assume that P 
 Q. Then

(a) Σ(P ) ∩ a∗q = Σ(Q) ∩ a∗q;
(b) Σ(P ) ∩ a∗h = Σ(Q) ∩ a∗h.

Proof. Let α ∈ Σ(Q) ∩ a∗q. Then σθα = α so that α ∈ Σ(Q, σθ) ⊆ Σ(P, σθ). We infer 
that Σ(Q) ∩ a∗q ⊆ Σ(P ) ∩ a∗q. Since both sets in this inclusion are positive systems for 
the root system Σ ∩ a∗q, the converse inclusion follows by a counting argument.

Assertion (b) is proved in a similar fashion, using σ in place of σθ and referring to 
the second inclusion of (2.1) instead of the first. �
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Lemma 2.3. Let P, Q ∈ P(A). Then the following statements are equivalent.

(a) P 
 Q;
(b) Σ(P ) ∩ Σ(Q̄) ⊆ Σ(P, σθ) and Σ(P̄ ) ∩ Σ(Q) ⊆ Σ(Q, σ);
(c) Σ(P ) ∩ Σ(Q̄) = Σ(P, σθ) ∩ Σ(Q̄, σ).

Proof. First assume (a). Let α ∈ Σ(P ) ∩Σ(Q̄). Then σα ∈ Σ(P ) would lead to α ∈ Σ(Q), 
contradiction. Hence, α ∈ Σ(P, σθ). The second inclusion of (b) follows in a similar 
fashion.

Next, (b) is equivalent to Σ(P ) ∩Σ(Q̄) ⊆ Σ(P, σθ) ∩Σ(Q̄, σ), which is readily seen to 
be equivalent to (c).

Finally, assume (c) and let α ∈ Σ(P, σ). Then α ∈ Σ(P ) \Σ(P, σθ), hence α /∈ Σ(Q̄) by 
the equality of (c) and it follows that α ∈ Σ(Q). Likewise, σα ∈ Σ(Q) and we conclude 
that α ∈ Σ(Q, σ). On the other hand, let α ∈ Σ(Q, σθ). Then α ∈ Σ(Q) \ Σ(Q, σ). The 
equality in (c) is equivalent to

Σ(P̄ ) ∩ Σ(Q) = Σ(P̄ , σθ) ∩ Σ(Q, σ),

which shows that α ∈ Σ(P ). Likewise, σθα ∈ Σ(P ) and we see that α ∈ Σ(P, σθ). This 
proves (a). �
Lemma 2.4. Let P, Q, R ∈ P(A) be such that P 
 R. Then the following assertions are 
equivalent:

(a) P 
 Q 
 R;
(b) Σ(P ) ∩ Σ(Q̄) ⊆ Σ(P ) ∩ Σ(R̄).

Proof. Assume (a). By Lemma 2.3, the first set in (b) equals Σ(P, σθ) ∩ Σ(Q̄, σ), which 
by (2.1) is contained in Σ(P, σθ) ∩ Σ(R̄, σ). The latter set equals the second set of (b), 
again by application of Lemma 2.3. Assertion (b) follows.

For the converse implication, assume (b). Then it is well known and easy to show 
that

Σ(P ) ∩ Σ(R̄) = (Σ(P ) ∩ Σ(Q̄)) ∪ (Σ(Q) ∩ Σ(R̄)) (disjoint union). (2.2)

Indeed, it is obvious that the set on the left-hand side of (2.2) is contained in the union 
on the right-side. For the converse inclusion, we first note that (b) implies Σ(P̄ ) ∩Σ(Q) ⊆
Σ(R). Now assume that α ∈ Σ(Q) ∩ Σ(R̄). Then α /∈ Σ(P̄ ) so that α ∈ Σ(P ) ∩ Σ(R̄). 
Hence, the second inclusion of (2.2) follows as well.

Still assuming (b), we claim that P 
 Q. To see this, let α ∈ Σ(P ) ∩ Σ(Q̄). Then 
α ∈ Σ(P ) ∩ Σ(R̄) ⊆ Σ(P, σθ) ∩ Σ(R̄, σ) by Lemma 2.3. Assume now in addition α /∈
Σ(Q̄, σ). Then σθα ∈ Σ(P ) ∩ Σ(Q̄) ⊆ Σ(P ) ∩ Σ(R̄), hence α ∈ Σ(R̄, σθ), contradicting 
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the earlier conclusion that α ∈ Σ(R̄, σ). Thus the assumption cannot hold, so that 
α ∈ Σ(P, σθ) ∩ Σ(Q̄, σ). In view of Lemma 2.3 this establishes the claim.

We will now infer (a) by establishing that Q 
 R. For this, let α ∈ Σ(Q) ∩Σ(R̄). Then 
α ∈ Σ(P ) ∩ Σ(R̄) by (2.2), which implies that α ∈ Σ(P, σθ) ∩ Σ(R̄, σ) by Lemma 2.3. 
Assume now that α /∈ Σ(Q, σθ). Then σα ∈ Σ(Q) ∩ Σ(R̄) ⊆ Σ(P ), so that α ∈ Σ(P, σ), 
contradicting the earlier conclusion that α ∈ Σ(P, σθ). Thus, the assumption cannot 
hold, so that α ∈ Σ(Q, σθ) ∩ Σ(R̄, σ). Applying Lemma 2.3 with (Q, R) in place of 
(P, Q), we finally obtain that Q 
 R. �
Remark 2.5. Recall that two parabolic subgroups P, Q ∈ P(A) are said to be adjacent 
if Σ(P ) ∩ Σ(Q̄) has a one dimensional span in a∗.

If P, Q ∈ P(A) then there exists a sequence P = P0, P1, . . . , Pn = Q of parabolic 
subgroups in P(A) such that for all 0 ≤ j < n we have Σ(P ) ∩Σ(P̄j) ⊆ Σ(P ) ∩Σ(P̄j+1)
and such that Pj and Pj+1 are adjacent. If in addition P � Q, then it follows from 
repeated application of the lemma above that

P = P0 � P1 � · · · � Pn = Q.

Our next objective in this section is to show that every parabolic subgroup from P(A)
is dominated by a q-extreme one, see Definition 1.1.

Given Q ∈ P(A), we denote the positive Weyl chamber for Σ(Q) in a by a+(Q). 
Furthermore, we put

a+
q (Q) = {H ∈ aq | α(H) > 0, ∀α ∈ Σ(Q, σθ)}. (2.3)

It is readily verified that this set contains the image of a+(Q) under the projection 
prq : a → aq; in particular, it is non-empty.

Let areg
q be the set of regular elements in aq, relative to the root system Σ(aq). The 

connected components of this set are the chambers for the root system Σ(aq). The 
collection of these is denoted by Π0(areg

q ). It is clear that areg
q ∩ a+

q (Q) is the disjoint 
union of the chambers contained in a+

q (Q).
We define

Pσ(A,Q) := {P ∈ Pσ(A) | P 
 Q}.

Lemma 2.6. Let Q ∈ P(A). Then the assignment P �→ a+
q (P ) defines a bijection from 

the set Pσ(A, Q) onto the set {C ∈ Π0(areg
q ) | C ⊆ a+

q (Q)}.

Proof. We abbreviate C (Q) := {C ∈ Π0(areg
q ) | C ⊆ a+

q (Q)}. Let P ∈ Pσ(A, Q). Then 
a root α ∈ Σ(P ) restricts to a non-zero root on aq if and only if α ∈ Σ(P ) \ a∗h. The 
latter set equals Σ(P ) \Σ(P, σ) = Σ(P, σθ). Therefore, a+

q (P ) is a connected component 
of areg

q . Furthermore, from P 
 Q it follows that Σ(P, σθ) ⊃ Σ(Q, σθ), which in turn 
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implies that a+
q (P ) ⊆ a+

q (Q). It follows that a+
q (P ) ∈ C (Q). It remains to be shown that 

the map

P �→ a+
q (P ), Pσ(A,Q) → C (Q) (2.4)

is bijective. For injectivity, assume that P1, P2 ∈ Pσ(A, Q) and that a+
q (P1) = a+

q (P2). 
Let α ∈ Σ(P1). If α ∈ a∗h, then α ∈ Σ(Q) ∩ a∗h ⊆ Σ(P2). If α /∈ a∗h, then α ∈ a+

q (P1, σθ)
and it follows that α > 0 on a+

q (P1) = a+
q (P2), which implies that α ∈ Σ(P2). Thus, we 

see that Σ(P1) ⊆ Σ(P2) which implies P1 = P2.
For surjectivity, let C be a chamber in C (Q). Let ΠC denote the set of roots α ∈ Σ(a)

that are strictly positive on C. The set Π h := Σ(Q) ∩ a∗h is a choice of positive roots for 
the root system Σ(a) ∩ a∗h. Hence, there exists an element Y ∈ a∗h such that

Π h = {α ∈ Σ(a) ∩ a∗h | α(Y ) > 0}.

Fix X ∈ C and put Xt = X + tY for t ∈ R. Then there exists ε > 0 such that for |t| < ε

we have α(Xt) > 0 for all α ∈ ΠC . Fix 0 < t < ε. Then it follows that Xt is regular for 
Σ(a) and that the associated choice of positive roots Π := {α ∈ Σ(a) | α(Xt) > 0} is the 
disjoint union of ΠC and Π h. Let P be the parabolic subgroup in P(A) with Σ(P ) = Π. 
Then Σ(P ) ∩a∗h = Π h = Σ(Q) ∩a∗h. Furthermore, if α ∈ Σ(P ) \a∗h, then α ∈ ΠC . Hence, 
σθα(Xt) = α(−σ(Xt)) = α(X−t) > 0, and we see that α ∈ Σ(P, σθ). It readily follows 
that P ∈ Pσ(A, Q). �

We finish this section by investigating these structures in the setting where H is 
replaced by a conjugate vHv−1, with v ∈ NK(a) ∩Naq . Let such an element v be fixed. 
Then v normalizes a h as well. Let Cv : G → G denote conjugation by v, and put

σv := Cv ◦σ ◦C−1
v . (2.5)

Then σv is an involution of G which commutes with the Cartan involution θ; moreover, 
since v normalizes ZK(aq), the conjugate group vHv−1 is readily seen to be an essentially 
connected open subgroup of Gσv . The infinitesimal involution associated with σv is given 
by σv = Ad(v) ◦σ ◦Ad(v)−1. Since Ad(v) normalizes aq and a h, it follows that

σv|a = σ|a (2.6)

and that aq is maximal abelian in p ∩ ker(σv + I).
It follows from (1.2) and (2.6) that

Σ(Q, σv) = Σ(Q, σ) and Σ(Q, σvθ) = Σ(Q, σθ). (2.7)

From this we see that the ordering on P(A) defined by (2.1) with σv in place of σ
coincides with the ordering 
. It is also clear that P �→ v−1Pv preserves Pσ(A).
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Lemma 2.7. Let Q ∈ P(A) and v ∈ NK(a) ∩NK(aq). Then

Σ(Q)σv,− = vΣ(v−1Qv)−. (2.8)

Let Sv := {α ∈ Σ(a) ∩ a∗q | σvθ|gα
�= I}. Then it is readily seen that Sv = vSe. 

From (1.3) we now deduce that

Σ(Q)σv,− ∩ a∗q = Σ(Q) ∩ vSe = v(Σ(v−1Qv) ∩ Se) = vΣ(v−1Qv)− ∩ a∗q.

On the other hand,

Σ(Q)σv,− \ a∗q = Σ(Q, σvθ) \ a∗q = Σ(Q, σθ) \ a∗q
= v(Σ(v−1Qv, σθ) \ a∗q) = vΣ(v−1Qv)− \ a∗q

and we deduce (2.8).

3. Induced representations and densities

Let P = MPAPNP be a parabolic subgroup with the indicated Langlands decomposi-
tion and let (ξ, Hξ) be a unitary representation in a finite dimensional Hilbert space Hξ. 
The assumption of finite dimensionality is natural for the purpose of this paper. More-
over, the following definitions, though valid in general, will merely be needed for the case 
that P belongs to either P(A) or Pσ(Aq).

For μ ∈ a∗PC
and s ∈ N ∪ {∞} we denote by Cs(P : ξ : μ) the space of Cs-functions 

f : G → Hξ transforming according to the rule

f(manx) = aμ+ρP ξ(m)f(x),

for all x ∈ G and (m, a, n) ∈ MP ×AP ×NP . The right regular representation R of G in 
this space is the Cs-version of the normalized induced representation IndG

P (ξ ⊗ μ ⊗ 1).
We put KMP

:= K ∩MP and denote by Cs(K : ξ) := Cs(K : KMP
: ξ) the space of 

Cs-functions f : K → Hξ transforming according to the rule

f(mk) = ξ(m)f(k) (k ∈ K, m ∈ KMP
).

All function spaces introduced so far are assumed to be equipped with the usual Fréchet 
topologies (Banach when s < ∞). The restriction map f �→ f |K gives topological linear 
isomorphisms

Cs(P : ξ : μ) �−→ Cs(K : ξ), (3.1)

intertwining the K-actions from the right. Through these, the right regular actions of the 
group G may be transferred to continuous representations of G on Cs(K : ξ), denoted 
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πP,ξ,μ. This realization πP,ξ,μ is called the compact picture of the Cs-version of the 
parabolically induced representation IndG

P (ξ ⊗ μ ⊗ 1), see [23, p. 15]. Let dk denote 
the normalized Haar measure on K, and let 〈 · , · 〉ξ denote the inner product of Hξ. 
Then it is a well known fact, see e.g. [26, Lemma 8.3.11], that the sesquilinear pairing 
C(K : ξ) × C(K : ξ) → C given by

〈f , g〉ξ :=
∫
K

〈f(k) , g(k)〉ξ dk, (3.2)

is equivariant for the representations πP,ξ,μ and πP,ξ,−μ̄. Accordingly, the above formula 
gives an equivariant sesquilinear pairing

C(P : ξ : μ) × C(P : ξ : −μ̄) → C. (3.3)

We will usually omit the index ξ in the notation of the pairing (3.2).
We denote by C−s(P : ξ : μ) the continuous conjugate-linear dual of the Fréchet 

space Cs(P : ξ : −μ̄), equipped with the strong dual topology and with the natural dual 
representation. Likewise, we denote by C−s(K : ξ) the continuous conjugate-linear dual 
of Cs(K : ξ).

By using the pairing (3.3) we obtain equivariant continuous linear injections

C(P : ξ : μ) ↪→ C−s(P : ξ : μ),

for s ∈ N ∪{∞}. Likewise, by using the pairing (3.2) we obtain K-equivariant continuous 
linear injections C(K : ξ) ↪→ C−s(K : ξ). Through the indicated pairings it is readily 
seen that the isomorphism (3.1) for s = 0 extends to a topological linear isomorphism

C−s(P : ξ : μ) �−→ C−s(K : ξ), (3.4)

for all s ∈ N ∪{∞}. By transfer we obtain a continuous representation π−s
P,ξ,μ of G in the 

second space in (3.4), such that the isomorphism becomes G-equivariant. It is readily 
verified that this representation is dual to the representation πP,ξ,−μ̄ on Cs(K : ξ). We 
will usually omit the superscript −s in the notation of this dual representation.

For s, t ∈ N with s < t, the inclusion map Ct(K : ξ) → Cs(K : ξ) is a compact linear 
map of Banach spaces which has a dense image and therefore dualizes to a compact 
linear injection

C−s(K : ξ) → C−t(K : ξ).

In view of [24, Thm. 11], the locally convex space C−∞(K : ξ), equipped with the strong 
dual topology, coincides with the inductive limit of the Banach spaces C−s(K : ξ). 
Furthermore, by [24, Lemma 3] each bounded subset of C−∞(K : ξ) is a bounded subset 
of C−s(K : ξ) for some s.
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Let now Ω be a complex manifold. Then by the above mentioned property of bounded 
subsets of the inductive limit, a function ϕ : Ω → C−∞(K : ξ) is holomorphic if for each 
z0 ∈ Ω there exists an open neighborhood Ω0 of z0 in Ω and a natural number s ∈ N such 
that ϕ maps Ω0 holomorphically into the Banach space C−s(K : ξ). A densely defined 
function f from Ω to C−∞(K : ξ) is said to be meromorphic if for each z0 ∈ Ω there 
exists an open neighborhood Ω0 and a holomorphic function q : Ω0 → C such that qf
extends holomorphically from Dom(f) ∩ Ω0 to Ω0.

For later use, we record some observations involving the contragredient MP -represen-
tation ξ∨, whose space Hξ∨ is the linear dual of Hξ. The assignment v �→ 〈v , · 〉 defines 
an MP -equivariant conjugate-linear isomorphism from Hξ onto Hξ∨ . This isomorphism 
induces a K-equivariant topological conjugate-linear isomorphism from C∞(K : ξ) onto 
C∞(K : ξ∨). The latter isomorphism is equivariant for the representations πP,ξ,−μ̄ and 
πP,ξ∨,−μ, respectively, for every μ ∈ a∗PC

. Through this isomorphism, the pairing (3.2) is 
transferred to the bilinear pairing

C∞(K : ξ) × C∞(K : ξ∨) → C (3.5)

given by

〈f , g〉 =
∫
K

〈f(k) , g(k)〉 dk. (3.6)

Furthermore, this pairing is equivariant for the representations πP,ξ,μ and πP,ξ∨,−μ. 
Through it, we see that C−∞(K : ξ) is naturally identified with the continuous lin-
ear dual of C∞(K : ξ∨). Moreover, this identification realizes the representation π−∞

P,ξ,νμ

as the contragredient of π∞
P,ξ∨,−μ. Accordingly, we obtain the G-equivariant topological 

linear isomorphism

C−∞(P : ξ : μ) � C∞(P : ξ∨ : −μ̄)′.

In the rest of this section we assume that P ∈ P(A) and that (ξ, Hξ) is a (not necessarily 
irreducible) unitary representation of M in a finite dimensional Hilbert space Hξ.

One of the goals of this paper is to study H-invariant distribution vectors of principal 
series representations. A first step in the construction of these is the following. We 
consider the homogeneous space HP\H, see (1.1) for notation, and denote the associated 
canonical projection by π : H → HP \H. Given x ∈ H we write [x] = π(x). Furthermore, 
for h ∈ H we use the following notation for the right multiplication map,

rh : HP \H → HP \H, [x] �→ [x]h = [xh].

We refer to the appendix, the text preceding (A.4), for the notion of a density on HP\H
and the associated notion of the density bundle DHP\H . The notion of the pull-back 
bundle π∗DHP \H → H is defined in the same appendix, in the text before (A.5).
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Let hP denote the Lie algebra of HP = H∩P , then dπ(e) induces a linear isomorphism 
h/hP � T[e](HP \H). We fix a positive density ω = ωHP \H ∈ Dh/hP

.
If S ⊆ Σ(P ), we define the subspace nS ⊆ g to be the direct sum of the root spaces gα, 

for α ∈ S, and we define ρS ∈ a∗ by

ρS(X) = 1
2tr (ad(X)|nS

) (X ∈ a).

Furthermore, we agree to abbreviate

ρPh := ρΣ(P )∩a∗
h
.

In the following result we will describe certain densities associated with principal series 
representations.

Lemma 3.1. Let λ ∈ a∗qC, f ∈ C(P : ξ : −λ̄ + ρPh) and η ∈ H HM

ξ . Then

f̄η,ω : h �→ 〈η , f(h)〉ξ drh([e])−1∗ω

defines a continuous density on the homogeneous space HP\H.

Proof. For each h ∈ H, put ϕ(h) = f̄η,ω(h). Then ϕ(h) defines a density on the tangent 
space THPh(HP \H) and ϕ : H → π∗(DHP \H) defines continuous section of the pull-back 
bundle. It suffices to show that ϕ(hPh) = ϕ(h) for all hP ∈ HP . We note that HP =
H ∩ P = HMAhHNP

. Accordingly, write hP = man, then

ϕ(hPh) = a−λ+ρPh+ρP
〈
ξ(m)−1η, f(h)

〉
drh([e]hP )−1∗drhP

([e])−1∗ω

= aρPh+ρP Δ(hP )ϕ(h), (3.7)

where

Δ(hp) = |detAd(hP )|h/hP
| = |detAd(hP )|hP

|−1.

Since HNP
is nilpotent, whereas HM is compact, it follows that

Δ(hP ) = Δ(a) = |detAd(a)|hP
|−1.

Using the decomposition hP = (h ∩m) ⊕ a h ⊕ (h ∩ nP ) we finally see that

Δ(hP ) = |detAd(a)|h∩nP
|−1 = a−δ,

where δ = tr (ad( · )|h∩nP
) ∈ a∗h. We now use that

h ∩ nP =
⊕

∗

gα ⊕
( ⊕

∗

gα

)σ

.

α∈(Σ(P )∩a h) α∈Σ(P,σ)\a h
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For each α ∈ Σ(P, σ) \ a∗h, we have σα �= α, and the direct sum gα ⊕ gσα is σ-invariant, 
so that its intersection with h is given by

(gα ⊕ gσα)σ = {X + σ(X) | X ∈ gα}.

The action of an element H ∈ a h on this space has trace dim(gα) α(H). We conclude 
that

δ =
(
2ρPh + ρΣ(P,σ)\a∗

h

)∣∣
a h

.

Using the decomposition

ρP = ρPh + ρΣ(P,σ)\a∗
h

+ ρΣ(P,σθ)

we see that

(
ρP + ρPh

)∣∣
a h

− δ = ρΣ(P,σθ)
∣∣
a h

= 0.

Combining this with (3.7) we infer that ϕ is left HP -invariant. �
Remark 3.2. Recall the definition of Σ(P )− in (1.3). In Section 5 we will show that for 
all λ ∈ a∗qC, for which there exists P0 ∈ Pσ(Aq) with Σ(P, σθ) ⊆ Σ(P0) such that

∀α ∈ Σ(P )− : 〈Reλ + ρP0 , α〉 ≤ 0,

the above density fη,ω is integrable over HP \H.

4. Comparison of principal series representations

In this section we will compare the principal series representations with the σ-principal 
series defined in [5]. The latter involve parabolic subgroups P0 from Pσ(Aq). Each of 
these has a Langlands decomposition of the form P0 = M0A0NP0 , see the end of Section 1
for details.

We will now investigate the structure of the group M0 in more detail. Our starting 
point is the following lemma.

Lemma 4.1. Let α ∈ Σ(g, a) ∩ a∗h. Then gα ⊆ h.

Proof. Let α be as in the assertion. Then σα = α so that σ leaves the root space gα
invariant. Thus, it suffices to show that gα ∩ q = 0. Assume that X ∈ gα ∩ q. Then 
(X − θX) belongs to p ∩ q and centralizes aq. As the latter space is maximal abelian in 
p ∩ q, it follows that X − θX ∈ aq ∩ (gα + g−α) = 0. �
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Let m0n be the ideal in m0 generated by a ∩m0. Since a ∩m0 has trivial intersection 
with the center of m0, the ideal m0n equals the sum of the simple ideals of non-compact 
type in m0. It has a unique complementary ideal; this is contained in the centralizer of 
a ∩m0 in m0, hence in m.

Lemma 4.2. The ideal m0n is contained in m0 ∩ h.

Proof. The algebra m0 admits the decomposition

m0 = m⊕ (a ∩m0) ⊕
⊕

α∈Σ(g,a)∩a∗
h

gα. (4.1)

Each appearing root space gα equals [a ∩m0, gα]. Hence, m0n contains the subspace

s := (a ∩m0) ⊕
⊕

α∈Σ(g,a)∩a∗
h

gα.

It follows that m0n contains the subalgebra s̃ of m0 generated by s. On the other hand, 
since m0 = m + s and m normalizes s, the algebra s̃ is an ideal of m0n. We conclude that 
m0n equals the algebra s̃ generated by s.

Now a ∩m0 ⊆ h and each of the root spaces in (4.1) is contained in h by Lemma 4.1. 
Therefore, s ⊆ h and we conclude that m0n = s̃ ⊆ h. �

Let M0n be the connected subgroup of M0 with Lie algebra m0n.

Lemma 4.3.

(a) M0n is a closed normal subgroup of M0.
(b) M0 = MM0n � M ×M∩M0n M0n.
(c) The inclusion map M → M0 induces a group isomorphism M/M ∩M0n � M0/M0n.
(d) HM0 = HMM0n.
(e) The inclusion map M → M0 induces a diffeomorphism M/HM � M0/HM0 .
(f) The group M0n acts trivially on M0/M0n and on M0/HM0 .

Proof. The normality of M0n follows since m0n is an ideal of m0. Since m0 is reductive, 
there exists an ideal m0c complementary to m0n. The group M0n is equal to the connected 
component of ZM0(m0c) and therefore M0n is closed. This proves assertion (a). From 
m0 = m + m0n and (a) it follows that MM0n is an open subgroup of M0. Since M0 is of 
the Harish-Chandra class, and M = ZK∩M0(a ∩ m0), it follows that M intersects every 
connected component of M0. Hence, M0 = MM0n and (b) readily follows. Assertion (c) 
follows from (b) and (a). We now turn to assertion (d). From Lemma 4.2 it follows that 
M0n ⊆ H. In view of (b) we now see that

HM0 = [MM0n] ∩H = HMM0n.
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Hence (d). From (c) and (d) we obtain a natural fiber bundle M/M ∩M0n → M/HM

which corresponds to factorization by the group F := HM/(M ∩ M0n). Likewise, we 
obtain a natural fiber bundle M0/M0n → M0/HM0 which corresponds to factorization 
by group F0 := HM0/M0n. The isomorphism of (c) maps F onto F0, hence (e) follows.

Since M0n is normal in M0, it acts trivially on the quotient M0/M0n. The second 
assertion of (f) follows from this as M0n ⊆ HM0 . �

Given a continuous Fréchet M0-module V , we denote its space of smooth vectors 
by V ∞. This comes equipped with the structure of a continuous Fréchet M0-module in 
the usual way. The continuous linear dual is denoted by V ∞′.

Corollary 4.4. Let (ξ, V ) be an irreducible continuous representation of M0 in a Fréchet 
space V such that

(V ∞′)HM0 �= 0. (4.2)

Then ξ|M0n is trivial and ξ|M is irreducible. In particular, ξ is finite dimensional and 
unitarizable.

Proof. Let η be a non-zero element of the space in (4.2). Then there is a unique injective 
continuous linear M0-equivariant map j : V ∞ → C∞(M0/HM0) such that j∗(δ[e]) = η, 
with δ[e] denoting the Dirac measure of M0/HM0 at [e] := eHM0 . Since M0n acts trivially 
on M0/HM0 it follows that M0n acts trivially on V ∞ hence on V . We conclude that ξ|M0n

is trivial. By application of Lemma 4.3 it follows that ξ|M is irreducible. �
The above result provides motivation for considering only finite dimensional unitary 

representations of M0. We note that any such representation restricts to the trivial 
representation on M0n, since the latter group is connected semisimple of the non-compact 
type. Since M0/M0n is a compact group, it follows that

M̂0fu � (M0/M0n)∧, (4.3)

where M̂0fu denote the set of equivalence classes of finite dimensional irreducible unitary 
representations of M0.

Lemma 4.5. The restriction map ξ �→ ξM := ξ|M induces an injection

M̂0fu ↪→ M̂. (4.4)

The image of this injection equals (M/M ∩M0n)∧.

Proof. It follows from Lemma 4.3 (c) that the restriction map induces an isomorphism

(M0/M0n)∧ � (M/M ∩M0n)∧.
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The latter set may be viewed as the subset of M̂ consisting of equivalence classes of 
irreducible unitary representations that are trivial on M ∩M0n. Now use (4.3). �

From now on we will use the map (4.4) to view M̂0fu as a subset of M̂ .

Lemma 4.6. Let (ξ, Hξ) be a finite dimensional unitary representation of M0 (not nec-
essarily irreducible). Then

H
HM0
ξ = H HM

ξ . (4.5)

Proof. The space on the left-hand side of the equation is clearly contained in the space 
on the right-hand side. For the converse inclusion, let η ∈ Hξ be an HM -fixed vector. 
Then η is fixed under the group HMM0n, which equals HM0 by Lemma 4.3 (d). �

Let W (aq) denote the Weyl group of the root system Σ(g, aq). Then W (aq) �
NK(aq)/ZK(aq), naturally. We denote by WK∩H(aq) the image of NK∩H(aq) in W (aq). 
Let W (a) � NK(a)/ZK(a) denote the Weyl group of the root system Σ(g, a). Then re-
striction to aq induces an epimorphism from the normalizer of aq in W (a) onto W (aq). 
We may therefore select a finite subset W ⊆ NK(a) ∩NK(aq) such that e ∈ W and such 
that the map v �→ Ad(v)|aq induces a bijection

W
1−1−→ W (aq)/WK∩H(aq). (4.6)

Let ξ be a finite dimensional unitary representation of M0 (not necessarily irreducible). 
Then following [5] we define

V (ξ, v) := H M0∩vHv−1

ξ = H M∩vHv−1

ξ . (4.7)

Here we note that the second equality is valid by Lemma 4.6 applied with vHv−1 in 
place of H. We equip the space in (4.7) with the restriction of the inner product on Hξ. 
Finally we define the formal direct sum of Hilbert spaces

V (ξ) := ⊕v∈W V (ξ, v). (4.8)

For v ∈ W , let iv : V (ξ, v) → V (ξ) and prv : V (ξ) → V (ξ, v) denote the natural inclusion 
and projection map, respectively.

Our goal will be to study H-fixed distribution vectors in representations induced from 
minimal parabolic subgroups P ∈ P(A). For this it will be convenient to compare these 
representations to representations induced from minimal σθ-stable parabolic subgroups, 
by using the method of induction in stages.

Let P ∈ Pσ(A), see Definition 1.1, and let P0 ∈ Pσ(Aq) be such that P ⊆ P0. Let 
(ξ, Hξ) be a finite dimensional unitary representation of M0 and let C∞(P0 : ξ : λ) be 
defined as in the first part of Section 3 for P0 in place of P . We agree to write ξM := ξ|M . 
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Observe that P∩M0 is a minimal parabolic subgroup of M0 with split component A ∩M0. 
Moreover, since the set of roots of a ∩m0 in NP ∩M0 equals Σ(P ) ∩ a∗h, it follows that

ρP∩M0 = ρPh.

Hence, there is a natural M0-equivariant embedding

i : ξ ↪→ IndM0
M0∩P (ξM ⊗−ρPh ⊗ 1),

see [5, Lemma 4.4]. The map i from Hξ into the space C∞(M0∩P : ξM : −ρPh) of smooth 
vectors for the principal series representation on the right-hand side is explicitely given 
by

i(v)(m0) = ξ(m0)v (v ∈ Hξ, m0 ∈ M0). (4.9)

Induction now gives a G-equivariant embedding

IndG
P0

(ξ ⊗ λ⊗ 1) ↪→ IndG
P0

(
IndM0

M0∩P (ξM ⊗−ρPh ⊗ 1) ⊗ λ⊗ 1)
)
.

According to the principle of induction in stages, see [22, §7.2], the latter representation 
is naturally isomorphic with IndG

P (ξM ⊗ (λ − ρPh) ⊗ 1). The resulting G-equivariant 
embedding

i#λ : C∞(P0 : ξ : λ) → C∞(P : ξM : λ− ρPh) (4.10)

is given by (i#λ f)(x) = ev1 ◦ i ◦ f(x) for f ∈ C∞(P0 : ξ : λ) and x ∈ G. Here,

ev1 : C∞(M0 ∩ P : ξM : −ρPh) → Hξ

is given by evaluation at the identity of M0. Comparing this with (4.9) we see that i#λ is 
the inclusion map.

By C∞(K : K ∩ M0 : ξ) we denote the space of smooth functions K → Hξ trans-
forming according to the rule

f(mk) = ξ(m)f(k) (m ∈ K ∩M0, k ∈ K).

Likewise, we write C∞(K : M : ξM ) for the space of smooth functions K → Hξ trans-
forming according to the rule f(mk) = ξM (m)f(k), for all m ∈ M and k ∈ K. Note that 
restriction to the group K induces topological linear isomorphisms C∞(P0 : ξ : λ) →
C∞(K : K ∩M0 : ξ) and C∞(P : ξM : λ − ρPh) → C∞(K : M : ξM ).

In these compact pictures of the induced representations, i#λ becomes the inclusion 
map

i# : C∞(K : K ∩M0 : ξ) ↪→ C∞(K : M : ξM ). (4.11)
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We now see that we have the following commutative diagram

C∞(P0 : ξ : λ)
i#λ−→ C∞(P : ξM : λ− ρPh)

↓ ↓
C∞(K : K ∩M0 : ξ) i#−→ C∞(K : M : ξM ).

(4.12)

The vertical arrows in this diagram represent the topological linear isomorphisms induced 
by restriction to K; see [5] for details.

Lemma 4.7. The space C∞(K : K ∩M0 : ξ) coincides with the subspace consisting of left 
K ∩M0n-invariants in C∞(K : M : ξM ).

Proof. Let f ∈ C∞(K : K ∩M0 : ξ). Since ξ is finite dimensional, it follows that ξ|M0n
is trivial. Hence, for k ∈ K and m0 ∈ M0n we have that

f(m0k) = ξ(m0)f(k) = f(k).

This establishes one inclusion. For the converse, assume that f ∈ C∞(K : M : ξM ) is 
left K ∩M0n-invariant. Let m0 ∈ K ∩M0. Then we may write m0 = mmn with m ∈ M

and mn ∈ K ∩M0n. Let k ∈ K. Then

f(m0k) = f(mmnk) = ξ(m)f(mnk) = ξ(m)f(k)

= ξ(m)ξ(mn)f(k) = ξ(m0)f(k).

For the third equality we used that ξ|M0n is trivial. We thus conclude that f belongs to 
C∞(K : K ∩M0 : ξ). �

Since M normalizes K ∩ M0n, we see that for f ∈ C∞(K : M : ξM ) the function 
p(f) : K → Hξ defined by

p(f)(k) =
∫

K∩M0n

f(m0k) dm0 (k ∈ K),

belongs to C∞(K : M : ξM ) again. The associated operator

p : C∞(K : M : ξM ) → C∞(K : M : ξM ) (4.13)

is continuous linear and K-equivariant. Since K ∩ M0 = M(K ∩ M0n), the image of p
is contained in the subspace of left K ∩M0n-invariants. Furthermore, p is obviously the 
identity on this subspace, so that p is a projection operator with image equal to the 
image im(i#) of i#, see (4.11). It is readily seen that p is symmetric with respect to the 
pre-Hilbert structure 〈 · , · 〉 on C∞(K : M : ξM ) obtained by restriction of the inner 
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product from L2(K) ⊗ Hξ. Accordingly, C∞(K : M : ξM ) is the direct sum of im(i#)
and its orthocomplement with respect to the given pre-Hilbert structure, and p is the 
associated orthogonal projection onto im(i#). Let

p# : C∞(K : M : ξM ) → C∞(K : K ∩M0 : ξ) (4.14)

be the unique linear map such that p = i# ◦ p#. For later use, we note that the maps 
introduced are related by

p = i# ◦ p#, p# ◦ i# = I. (4.15)

The map p# is K-equivariant and continuous linear, and i# and p# are adjoint with 
respect to the pre-Hilbert structures 〈 · , · 〉.

Lemma 4.8. For all λ ∈ a∗qC, the following holds.

(a) The map i# given in (4.11) intertwines the representations πP0,ξ,λ and πP,ξM ,λ−ρPh .
(b) The map p# intertwines the representations πP,ξM ,λ+ρPh and πP0,ξ,λ.

Proof. Since the top horizontal map in (4.12) is intertwining, (a) follows. Using (a) we 
see that for each x ∈ G,

i# ◦πP0,ξ,λ(x) = πP,ξM ,λ−ρPh(x) ◦ i#.

Taking adjoints and using equivariance of the pairings 〈 · , · 〉 involved, we infer that

πP0,ξ,−λ̄(x−1) ◦ p# = p# ◦πP,ξM ,−λ̄+ρPh
(x−1)

for all λ ∈ a∗qC and x ∈ G. From this, (b) follows. �
For each λ ∈ a∗qC we denote the unique lift of (4.14) to a map C∞(P : ξM : λ +ρPh) →

C∞(P0 : ξ : λ) by p#
λ . Then it follows from Lemma 4.8 that the following diagram 

commutes:

C∞(P : ξM : λ + ρPh)
p#
λ−→ C∞(P0 : ξ : λ)

↓ ↓
C∞(K : M : ξM ) p#

−→ C∞(K : K ∩M0 : ξ).

(4.16)

Remark 4.9. In view of (4.15) it follows from Lemma 4.8 that p defined in (4.13) inter-
twines the representations πP :ξM :λ+ρPh and πP :ξM :λ−ρPh of G in C∞(K : M : ξM ). Thus, 
it has a unique lift to an equivariant map C∞(P : ξM : λ +ρPh) → C∞(P : ξM : λ −ρPh). 
However, we shall never use this lift.
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Proposition 4.10. Let P0 ∈ Pσ(Aq) and P ∈ P(A) be such that P ⊆ P0. Let ξ ∈ M̂0fu
and λ ∈ a∗q. Then the embedding (4.10) has a unique extension to a continuous linear 
map

i#λ : C−∞(P0 : ξ : λ) → C−∞(P : ξM : λ− ρPh). (4.17)

This extension is G-equivariant and maps homeomorphically onto a closed subspace. As 
a map from C−∞(K : K ∩M0 : ξ) to C−∞(K : M : ξM ) the extended map is the unique 
continuous extension of (4.11). In particular, it is independent of λ.

Proof. Let the map

i# : C−∞(K : K ∩M0 : ξ) → C−∞(K : M : ξM )

be defined as the transposed of p#. Then i# is a continuous linear extension of the 
bottom horizontal map of (4.12). This continuous extension is unique by density of 
C∞(K : K ∩M0 : ξ) in C−∞(K : K ∩M0 : ξ). Likewise, the adjoint i# T of the bottom 
horizontal map in (4.12) is the continuous linear extension of the projection map p#

which we denote by

p# : C−∞(K : M : ξM ) → C−∞(K : M0 ∩K : ξ)

as well. Finally, the transpose pT is the unique continuous linear extension of p to a 
continuous linear map, denoted

p : C−∞(K : M : ξM ) → C−∞(K : M : ξM ).

By transposition we see that the relations (4.15) remain valid for the extensions of these 
maps to the spaces of generalized functions involved. In particular, it follows that the 
extended map i# is a homeomorphism onto the kernel of the extended map p − I. In 
particular, it has closed image.

By transfer under the vertical isomorphisms in the diagram (4.12) we see that i#λ
has a unique continuous linear extension (4.17) with closed image. The extension is 
G-equivariant because it is so on the dense subspace of smooth functions. �
Remark 4.11. By a similar argument it follows that the map p#

λ represented by the 
top horizontal arrow in (4.16) has a unique continuous linear extension to a surjective 
equivariant map p#

λ : C−∞(P : ξM : λ + ρPh) → C−∞(P0 : ξ : λ). However, we shall not 
need this in the present paper.

5. H-fixed distribution vectors, the q-extreme case

We retain the notation of the previous section. In particular, we assume that P ∈
Pσ(A) and that P0 ∈ Pσ(Aq) contains P . We will now construct H-fixed distribution 
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vectors in P -induced representations, by comparison with the H-distribution vectors in 
P0-representations as defined in [5].

We assume that ξ is a finite dimensional unitary representation of M0 and put ξM =
ξ|M . Furthermore, we assume that η ∈ V (ξ, e), see (4.7).

Following [5, (5.4)] we define the function ε1(P0 : ξ : λ : η) for λ ∈ a∗qC by

{
ε1(P0 : ξ : λ : η) = 0 outside P0H

ε1(P0 : ξ : λ : η)(namh) = aλ+ρP0 ξ(m)η,

for m ∈ M0, a ∈ A0, n ∈ N0 and h ∈ H. Clearly, for every λ ∈ a∗qC the function 
ε1(P0 : ξ : λ : η) is continuous outside the set ∂(P0H) which has measure zero in G. 
By right-P-equivariance, the restriction of this function to K is continuous outside the 
boundary ∂(K ∩ P0H), which has measure zero in K.

Let Σ(P0, aq)− denote the space of aq-roots in nP0 such that ker(θσ + I) ∩ gα �= 0. 
In case ξ is irreducible, it follows from [5, Prop. 5.6] that the function ε1(P0 : ξ : λ : η)
is continuous on G for all λ ∈ a∗qC with 〈Reλ + ρP0 , α〉 < 0 for all α ∈ Σ(P0, aq)−. 
By decomposition into irreducibles one readily sees that this result is also valid for an 
arbitrary finite dimensional unitary representation of M0.

Lemma 5.1. Let ξ be a finite dimensional unitary representation of M0 and assume that 
λ ∈ a∗qC satisfies

∀α ∈ Σ(P0, aq)− : 〈Reλ + ρP0 , α〉 ≤ 0. (5.1)

Then the function ε1(P0 : ξ : λ : η) is measurable and locally bounded on G, and its 
restriction to K is measurable and bounded on K, uniformly for λ in the indicated subset 
of a∗qC. Finally, ε1(P0 : ξ : λ : η)|K depends continuously on λ as a function with values 
in L1(K) ⊗ Hξ.

Proof. We may as well assume that ξ is irreducible. The assertions about measurability 
have been settled above. For the assertions about boundedness, it suffices to consider the 
restriction of the function to K. From the argument in the proof of [5, Prop. 5.6], which 
in turn relies on the convexity theorem of [4], it follows that for all λ in the indicated 
region we have

sup
K

‖ε1(P0 : ξ : λ : η)‖ξ ≤ ‖η‖ξ.

We obtain the final assertion by observing that ε1(P0 : ξ : λ : η) depends pointwise 
continuously on λ and applying Lebesgue’s dominated convergence theorem. �
Proposition 5.2. Let P ∈ Pσ(A) and P0 ∈ Pσ(Aq) be such that P ⊆ P0. Let ξ be a finite 
dimensional unitary representation of M0 and η ∈ V (ξ, e). Let λ ∈ a∗qC be such that
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∀α ∈ Σ(P )− : 〈Reλ + ρP0 , α〉 ≤ 0.

Finally, let f ∈ C∞(P : ξM : −λ̄ + ρPh). Then the density f̄η,ω, defined in Lemma 3.1, 
is integrable. Moreover, ∫

HP \H

f̄η,ω = cω〈i#λ
(
ε1(P0 : ξ : λ : η)

)
, f〉, (5.2)

with cω > 0 a constant depending on the normalization of the positive density ω.

Proof. By the assumption on λ, the function ε = i#λ
(
ε1(P0 : ξ : λ : η)

)
is locally 

integrable on K. It follows that the expression on the right-hand side of (5.2) equals the 
integral ∫

K

〈ε(k) , f(k)〉ξ dk,

where dk denotes normalized Haar measure on K. The integrand is left M -invariant, so 
that the integral may also be written as the integral over k ∈ M\K, with dk replaced 
with the normalized invariant density dk̄ on M\K. This density may be viewed as the 
section of the density bundle over M\K given by

k �→ drk([e])−1∗ωM\K

with ωM\K a suitable positive density on k/m � T[e](M\K). We now obtain that

〈ε , f〉 =
∫

M\K

〈ε(k) , f(k)〉ξ drk([e])−1∗ωM\K . (5.3)

Let φ : M\K → P\G be the diffeomorphism induced by the inclusion K → G. Then we 
find that the pull-back under φ of the density in the integral in the right-hand side of 
(5.3) equals

x �→ 〈ε(x) , f(x)〉 drx([e])−1∗dφ([e])−1∗ωM\K .

Since P0H = PH, it follows that the above density is supported by PH. Writing ωP\G =
dφ([e])−1∗ωM\K , we obtain that the integral in (5.3) equals∫

P ·H

〈ε(x) , f(x)〉drx([e])−1∗ωP\G. (5.4)

Let ψ : HP \H → P\G be the natural open embedding induced by the inclusion map 
H → G. Then |dψ([e])∗ωP\G| = c−1

ω ωP\G for a positive constant cω. We now observe 
that
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ψ∗
(
Px �→ 〈ε(x) , f(x)〉ξ drx([e])−1∗ωP\G

)
= c−1

ω ·
(
HPh �→ 〈ε(h) , f(h)〉ξ drh([e])−1∗ω

)
= c−1

ω f̄η,ω.

By invariance of integration of densities under diffeomorphisms, we see that (5.4) equals

c−1
ω

∫
HP \H

f̄η,ω. �

For λ ∈ a∗qC such that the conditions of the above theorem are fulfilled, and for 
η ∈ V (ξ, e), we define the conjugate-linear functional jH(P : ξM : λ : η) on the space 
C∞(P : ξM : −λ̄ + ρPh) by

〈jH(P : ξM : λ : η) , f〉 = c−1
ω

∫
HP \H

f̄η,ω, (5.5)

for f ∈ C∞(P : ξM : −λ̄ + ρPh).
We now recall the definition of the H-fixed distribution vector j(P0, ξ, λ) from [5, 

Section 5]. For λ ∈ a∗qC such that

∀α ∈ Σ(P )− : 〈Reλ + ρP0 , α〉 ≤ 0

and for v ∈ W and η ∈ V (ξ, v) we define εv(P0 : ξ : λ : η) : G → Hξ by{
εv(P0 : ξ : λ : η) = 0 outside P0vH

εv(P0 : ξ : λ : η)(namvh) = aλ+ρP0 ξ(m)η.

We further define

j(P0 : ξ : λ)(η) =
∑
v∈W

εv(P0 : ξ : λ : ηv)
(
η ∈ V (ξ)

)
.

Then j(P0 : ξ : λ) is a map V (ξ) → C−∞(P0 : ξ : λ)H , hence defines an element in 
V (ξ)∗ ⊗ C−∞(K : K ∩M0 : ξ). The map λ �→ j(P0 : ξ : λ) extends to a meromorphic 
V (ξ)∗ ⊗ C−∞(K : K ∩ M0 : ξ)-valued function on a∗qC. See [5, Section 5] for details. 
(Strictly speaking the definition in [5] is given for ξ irreducible, but the definition works 
equally well in general.)

Proposition 5.2 now has the following corollary.

Corollary 5.3. Let ξ be a finite dimensional unitary representation of M0. The map 
λ �→ jH(P : ξM : λ) extends to a meromorphic V (ξ, e)∗ ⊗ C−∞(K : M : ξM )-valued 
function. Moreover,
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jH(P : ξM : λ) = i# ◦ j(P0 : ξ : λ) ◦ ie

as an identity of meromorphic V (ξ, e)∗ ⊗C−∞(K : M : ξM )-valued functions. In partic-
ular,

jH(P : ξM : λ) ∈ V (ξ, e)∗ ⊗ C−∞(P : ξM : λ− ρPh)H

for generic λ ∈ a∗qC.

Remark 5.4. In the above formulation we have used the notation i# rather than i#λ , 
to emphasize that j(P0 : ξ : λ) ◦ ie is viewed as a λ-dependent element of the space 
V (ξ, e)∗ ⊗ C−∞(K : M : ξM ).

Let v ∈ W . Motivated by the definition of j(P0 : ξ : λ) and the above identity, we 
define the meromorphic Hom

(
V (ξ), C−∞(K : M : ξM )

)
-valued map j(P : ξM : · ) by

j(P : ξM : λ) =
∑
v∈W

πP,ξM ,λ−ρPh(v−1)jvHv−1(P : ξM : λ) ◦prv.

Corollary 5.5. Let ξ be a finite dimensional unitary representation of M0. Then

j(P : ξM : λ) = i# ◦ j(P0 : ξ : λ) (5.6)

as an identity of meromorphic V (ξ)∗ ⊗ C−∞(K : M : ξM )-valued functions of λ ∈ a∗qC. 
In particular, for η ∈ V (ξ) and generic λ ∈ a∗qC,

j(P : ξM : λ)(η) ∈ C−∞(P : ξM : λ− ρPh)H .

We recall that the map p in the result below is exclusively used in the compact picture 
of the induced representations, see Remark 4.9.

Corollary 5.6. Let ξ ∈ M̂0fu and η ∈ V (ξ). Then for every x ∈ G,

p ◦πP,ξM ,λ−ρPh(x)j(P : ξM : λ)(η) = πP,ξM ,λ−ρPh(x)j(P : ξM : λ)(η)

as an identity of meromorphic C−∞(K : M : ξM )-valued functions of λ ∈ a∗qC.

Proof. Use (5.6) and note that πP,ξM ,λ−ρPh(x) ◦ i# = i# ◦πP0,ξ,λ(x) and p ◦ i# = i#, 
see (4.15). �
6. An important fibration

In this section we will apply Fubini’s theorem, as formulated in the appendix, The-
orem A.8, to an important fibration. The main result will be needed for the definition 
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of distribution vectors for induced representations with P ∈ P(A) not necessarily con-
tained in a parabolic subgroup from Pσ(Aq).

We assume that P, Q ∈ P(A) and that P 
 Q. There exists X ∈ aq such that

(a) α(X) �= 0 for all α ∈ Σ(P ) \ a∗h;
(b) α(X) > 0 for all α ∈ Σ(P, σθ).

Since Σ(Q, σθ) ⊆ Σ(P, σθ), it follows that (a) and (b) are also valid with Q in place of P . 
We now put

nQ,X :=
⊕

α∈Σ(Q)
α(X)>0

gα, and NQ,X := exp(nQ,X).

Lemma 6.1. The multiplication map (n1, n2) �→ n1n2 is a diffeomorphism

HNQ
×NQ,X

�−→ NQ.

This result is contained and proven in [3, Prop. 2.16].

Lemma 6.2. Let Q, P ∈ P(A) be such that P 
 Q. Let X ∈ aq be such that (a) and (b) 
are valid. Then

NQ,X ⊆ NP,X .

Proof. Let α ∈ Σ(Q) be such that α(X) > 0. Then it suffices to show that α ∈ Σ(P ). 
Assume this were not the case. Then either −α ∈ Σ(P, σ), or −α ∈ Σ(P, σθ). In the first 
case it would follow that −α ∈ Σ(Q, σ), which contradicts the assumption that α ∈ Σ(Q). 
In the second it would follow that −α(X) > 0 which contradicts the assumption that 
α(X) > 0. �
Lemma 6.3. The inclusion map HNQ

→ NQ induces a diffeomorphism

ϕ : HNP
\HNQ

�−→ (NQ ∩NP )\NQ.

Proof. It follows from Lemma 6.1 that the natural map HNQ
→ NQ,X\NQ is a diffeo-

morphism onto. By application of Lemma 6.2 it now follows that the natural map

p : HNQ
→ (NQ ∩NP )\NQ

is a surjective submersion. The map p intertwines the natural HNQ
-actions, and the 

fiber of [e] equals HNQ
∩NP = HNP

. Thus, ϕ is induced by p and is a diffeomorphism 
onto. �
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Lemma 6.4. The inclusion map NQ ∩ N̄P → NQ induces a diffeomorphism

ψ : NQ ∩ N̄P
�−→ (NQ ∩NP )\NQ.

Proof. This is well known. �
Lemma 6.5. Let φ and ψ be as in Lemma 6.4 and Lemma 6.3. The map Φ := ϕ−1 ◦ψ

is a diffeomorphism from NQ ∩ N̄P onto HNP
\HNQ

. Moreover, let ω be a positive 
HNQ

-invariant density on the image manifold. Then Φ∗(ω) is a choice of Haar mea-
sure on NQ ∩ N̄P .

Proof. Being the composition of two diffeomorphisms, Φ is a diffeomorphism. We note 
that Φ∗(ω) = ψ∗ϕ−1∗(ω). Let dn be a choice of positive NQ-invariant density on 
(NQ ∩ NP )\NQ. Since ϕ is HNQ

intertwining, it follows that ϕ∗(dn) is a positive 
HNQ

-invariant density on HNP
\HNQ

. By uniqueness of positive invariant densities up to 
positive scalars, it follows that ϕ∗(dn) = cω for some c > 0, so that also ϕ−1∗(ω) = c−1dn. 
By equivariance, it follows that ψ∗(dn) is a choice of Haar measure on NQ ∩ N̄P . Thus, 
Φ∗(ω) = c−1ψ∗(dn) is as required. �

In view of this lemma we may fix invariant measures dn̄ on NQ ∩ N̄P and dh on 
HNP

\HNQ
such that Φ∗(dh) = dn̄.

Lemma 6.6. Let f : G → C be a left NP -invariant measurable function. Then the follow-
ing statements are equivalent.

(a) f is absolutely integrable over HNP
\HNQ

.
(b) f is absolutely integrable over NQ ∩ N̄P .

If any of these statements hold, then with invariant measures normalized as above,∫
HNP

\HNQ

f(h) dh =
∫

NQ∩N̄P

f(n̄) dn̄.

Proof. As Φ∗(dh) = dn̄ it suffices to show that Φ∗(f |HNQ
) = f |NQ∩N̄P

. Since f is left 
NP -invariant, this follows from the obvious fact that for n̄ ∈ NQ ∩ N̄P the canonical 
images of n̄ and Φ(n̄) in NP \G coincide. �

Fix P, Q ∈ P(A) and assume that P 
 Q. Then HQ = H ∩Q contains HP = H ∩P . 
We note that HP � HMAhHNP

and that HQ admits a similar decomposition.
We shall now apply the results in the Appendix with H, HQ and HP in place of G, H

and L, respectively.
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Let ωHP \H ∈ Dh/hP
, ωHQ\H ∈ Dh/hQ

and ωHP \HQ
∈ DhQ/hP

be such that ωHP \H =
ωHP \HQ

⊗ωHQ\H in accordance with the identification Dh/hP
= DhQ/hP

⊗Dh/hQ
induced 

by the natural short exact sequence

0 −→ hQ/hP −→ h/hP −→ h/hQ −→ 0.

See (A.2) and Lemma A.2 for details. We observe that

HP \HQ � HNP
\HNQ

naturally. Using the associated natural isomorphism of the tangent spaces at the origins, 
we view ωHP \HQ

as a density on the quotient (h ∩ nQ)/(h ∩ nP ). By unimodularity of 
the groups HNQ

and HNP
, it follows that

dn : n �→ drn([e])−1∗ωHP \HQ

defines a choice of right HNQ
-invariant density on HNP

\HNQ
. We define the character 

ΔHP \H of HP as in Appendix, Equation (A.9) with H and HP in place of G and L, 
respectively. Likewise, the space M (H : HP : ΔHP \H) is defined as in the text subsequent 
to (A.9).

Theorem 6.7. Let f ∈ M (H : HP : ΔHP \H) and let fP := fωHP \H be the associated 
measurable density on HP \H. Then the following assertions (a) and (b) are equivalent.

(a) The density fP is absolutely integrable.
(b) There exists a left HQ-invariant set Z of measure zero in H such that

(1) for every x ∈ H \ Z , the integral

Ax(f) :=
∫

HNP
\HNQ

f(nx) dn

is absolutely convergent;
(2) the function A(f) : x �→ Ax(f) belongs to M (H : HQ : ΔHQ\H);
(3) the density A(f)Q := A(f)ωHQ\H is absolutely integrable.

If any of the conditions (a) and (b) is fulfilled, then∫
HP \H

fP =
∫

HQ\H

A(f)Q.

Proof. We will use the notation introduced in the text before the theorem. The inclusion 
map HNQ

→ HQ induces a diffeomorphism
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φ : HNP
\HNQ

→ HP \HQ.

Fix x ∈ H and let fP,x be the density on HP \HQ given by

fP,x(HPh) = ΔHQ\H(h)−1f(hx)drh([e])−1∗ωHP \HQ
.

By nilpotence, ΔHQ\H(n) = 1 for n ∈ HNQ
. It follows that

φ∗(fP,x)(HNP
· n) = f(n)drn([e])−1∗ωHP \HQ

= f(n)dn.

In accordance with the notation of Theorem A.8 we denote the integral of fP,x over 
HP \HQ by Ix(f). Then it follows by invariance of integration that the integral for Ix(f)
converges absolutely if and only if the integral Ax(f) converges absolutely, while in case 
of convergence,

Ix(f) =
∫

HNP
\HNQ

φ∗(fP,e) = Ax(f).

All assertions now follow by application of Theorem A.8. �
7. H-fixed distribution vectors, the general case

Recall the definition of Σ(P )− in (1.3).

Theorem 7.1. Let P ∈ Pσ(A), let ξ be a finite dimensional unitary representation of M0
and η ∈ V (ξ, e). Assume that λ ∈ a∗qC satisfies

〈Reλ + ρP − ρPh , α〉 ≤ 0, for all α ∈ Σ(P )−. (7.1)

Furthermore, let f ∈ C∞(P : ξM : −λ̄ + ρPh). Then

jH(P : ξM : λ : η)f =
∫

HP \H

〈η , f(h)〉 drh([e])−1∗ωHP \H ,

with absolutely convergent integral.
Let Q ∈ P(A) be a second parabolic subgroup, with P 
 Q. Then for all x ∈ G,

A(Q : P : ξM : −λ̄ + ρPh)f(x) =
∫

NQ∩N̄P

f(nx) dn

with absolutely convergent integral. Finally,
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jH(P : ξM : λ : η)f

=
∫

HQ\H

〈η , [A(Q : P : −λ̄ + ρPh)f ](h)〉 drh([e])−1∗ωHQ\H , (7.2)

with absolutely convergent integral.

Proof. Observe that f restricted to HP \H belongs to C∞(H : HP : ΔHP \H). The first 
assertion now follows from Proposition 5.2 and Equation (5.5).

We will now apply Theorem 6.7. For x ∈ H the fiber integral takes the form

Ax(f |H) =
∫

HNP
\HNQ

f(nx) dn,

which by Lemma 6.6 equals ∫
NQ∩N̄P

f(n̄x) dn̄.

The latter is just the integral for the standard intertwiner A(Q : P : ξM : −λ̄+ ρPh) (up 
to suitable normalization). This integral is known to converge absolutely in case

Re 〈−λ + ρPh , α〉 > 0, ∀α ∈ Σ(P ) ∩ Σ(Q̄). (7.3)

If α ∈ Σ(P ) ∩ Σ(Q̄), then α ∈ Σ(P ) \ Σ(Q) so that α /∈ a∗q and α /∈ Σ(P, σ) from which 
we conclude that λ ∈ Σ(P, σθ) \ a∗q ⊆ Σ(P )−. It then follows from (7.1) that

Re 〈−λ + ρPh , α〉 > Re 〈−λ + ρPh − ρP , α〉 ≥ 0

and we see that (7.3) is satisfied. This implies the second assertion. The final assertion 
now follows by application of Theorem 6.7. �

In the following we will need to use the K-fixed function in the induced representation 
IndG

Q(1 ⊗μ ⊗1), for Q ∈ P(A) and μ ∈ a∗
C
. More precisely, given such Q and μ we define 

the function 1Q,μ : G → C by

1Q,μ(nak) := aμ+ρQ (k ∈ K, a ∈ A, n ∈ NQ).

Thus, 1Q,μ is the unique function in C∞(Q : 1 : μ) satisfying 1Q,μ|K = 1.

Corollary 7.2. Let Q ∈ P(A), P ∈ Pσ(A) and assume that P 
 Q. Then

h �→ 1Q,ρP
(h) drh([e])−1∗ωHQ\H (7.4)

defines a density on HQ\H which is absolutely integrable.
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Proof. We apply Theorem 7.1 with ξ = 1, Hξ = C and η = 1. Furthermore, we take 
λ = −ρP + ρPh ∈ a∗q so that −λ̄ + ρPh = ρP , and we take f = 1P,ρP

. It follows from 
the mentioned theorem that the integral for A(Q : P : 1 : ρP )f converges absolutely. By 
equivariance, it gives a K-fixed element of C∞(Q : 1 : ρP ), so that

A(Q : P : 1 : ρP )f = A(Q : P : 1 : ρP )1P,ρP
= c(Q : P : ρP )1Q,ρP

,

for some constant c(Q : P : ρP ) ∈ C. Evaluating this identity in the unit element we find

c(Q : P : ρP ) =
∫

NQ∩N̄P

1P,ρP
(n̄) dn̄,

which of course is the integral representation of a partial c-function. As the integrand 
is everywhere positive, it follows that c(Q : P : ρP ) is a positive real number. It now 
follows from the final assertion of Theorem 7.1 that

h �→ c(Q : P : ρP ) · 1Q,ρP
(h) drh([e])−1∗ωHQ\H

defines a density on HQ\H which is absolutely integrable. By positivity of c(Q : P : ρP )
all assertions now follow. �

Let Γ(Q) denote the cone in aq spanned by the elements Hα +σθHα, for α ∈ Σ(Q)−, 
where the latter set is defined as in (1.3). The (closed) dual cone in a∗q is readily seen to 
be given by

Γ(Q)◦ := {λ ∈ a∗q | 〈λ , α〉 ≥ 0, ∀α ∈ Σ(Q)−}. (7.5)

Lemma 7.3. Let Q ∈ P(A). Let μ ∈ Γ(Q)◦. Then

0 < 1Q,μ−ρQ
(h) ≤ 1 (h ∈ H). (7.6)

Proof. It follows from [3, Thm. 10.1] that if h = nak with n ∈ NQ, a ∈ A and k ∈ K, 
then

prq log a ∈ −Γ(Q),

where prq denotes the projection a → aq. Therefore

1Q,μ−ρQ
(h) = aμ = eμ(prq log a) ≤ 1.

This establishes the upper bound. The lower bound is trivial. �
The above result will play a crucial role in the proof of a domination expressed in the 

following lemma.
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Lemma 7.4. Let Q ∈ P(A) and let ξ be a finite dimensional unitary representation of M0. 
Let P ∈ Pσ(A) and assume that P 
 Q; thus, in particular, ρPh = ρQh. Furthermore, 
assume that λ ∈ a∗qC satisfies

Re 〈λ + ρP − ρPh , α〉 ≤ 0 for all α ∈ Σ(Q)−. (7.7)

Then for every f ∈ C∞(Q : ξM : −λ̄ + ρQh), we have

‖f(h)‖ξ ≤ sup
k∈K

‖f(k)‖ξ · 1Q,ρP
(h) (h ∈ H). (7.8)

Proof. Since P 
 Q, we have ρPh = ρQh. Thus, if k ∈ K and u ∈ Q then

f(uk) = 1Q,−λ̄+ρPh
(uk) f(k).

It follows that

‖f(x)‖ξ ≤ sup
k∈K

‖f(k)‖ξ · 1Q,μ+ρP
(x) (x ∈ G), (7.9)

where μ = −Reλ − ρP + ρPh. For x ∈ G we have

1Q,μ+ρP
(x) = 1Q,μ−ρQ

(x)1Q,ρP
(x).

As μ ∈ Γ(Q)◦ by (7.7), it follows by application of Lemma 7.3 that

1Q,μ+ρP
(h) ≤ 1Q,ρP

(h) (h ∈ H). (7.10)

The required estimate (7.8) follows from combining (7.9) and (7.10). �
For the formulation of the next result, we note that the set of λ ∈ a∗qC satisfying 

condition (7.7) is given by

ΩP,Q := −(ρP − ρPh) − Γ(Q)◦ + ia∗qC. (7.11)

Corollary 7.5. Let Q ∈ P(A), ξ be a finite dimensional unitary representation of M0 and 
η ∈ V (ξ, e). Let P ∈ Pσ(A) and assume that P 
 Q; thus, in particular, ρPh = ρQh. 
Let λ ∈ ΩP,Q. Then for every f ∈ C(Q : ξM : −λ̄ + ρQh), the integral

jH(Q : ξM : λ : η)f :=
∫

HQ\H

〈η , f(h)〉 drh([e])−1∗ωHQ\H (7.12)

converges absolutely.
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Proof. It follows by application of Lemma 7.4 that

|〈η , f(h)〉| ≤ ‖η‖ξ sup
k∈K

‖f(k)‖ξ · 1Q,ρP
(h) (h ∈ H). (7.13)

The result now follows from Corollary 7.2. �
Working in the setting of the above corollary, if f ∈ C(K : M : ξM ), then for μ ∈ a∗

C

we define fμ ∈ C(Q : ξM : μ) by fμ|K = f . Furthermore, for λ ∈ ΩP,Q we define

jH(Q : ξM : λ : η)(f) := jH(Q : ξM : λ : η)(f−λ̄+ρQh
).

Accordingly, jH(Q : ξM : λ : η) is viewed as an element of C−0(K : M : ξM ), see the 
beginning of Section 3. Given f ∈ C(K : M : ξM ), we agree to write

〈jH(Q : ξM : λ : η) , f〉 = jH(Q : ξM : λ : η)(f)

and 〈f , jH(Q : ξM : λ : η)〉 for its conjugate. Then

〈f , jH(Q : ξM : λ̄ : η)〉 =
∫

HQ\H

〈f−λ+ρQh(h) , η〉 drh([e])−1∗ωHQ\H .

Corollary 7.6. Let notation be as in Corollary 7.5. Then

λ �→ jH(Q : ξM : λ : η) (7.14)

is a continuous C−0(K : M : ξM )-valued function on the closed subset ΩP,Q of a∗qC. Its 
restriction to the interior of ΩP,Q is holomorphic as a C−0(K : M : ξM )-valued function.

Proof. It is clear that λ �→ f−λ̄+ρPh
|H is a holomorphic C(H) ⊗ Hξ-valued function on 

a∗qC satisfying the uniform estimate

|〈η , f−λ̄+ρPh
〉 ≤ ‖η‖ξ sup

k∈K
‖f(k)‖ξ · 1Q,ρP

(h) (h ∈ H),

for all λ ∈ ΩP,Q, by application of (7.13). In view of Corollary 7.2 the result now follows 
by application of the dominated convergence theorem. �

The following lemma will be useful for later use. If Q ∈ P(A), we have that 
Σ(Q, σθ)|aq ⊆ Σ(aq). In accordance with (2.3) we define

a∗+q (Q) := {λ ∈ a∗q | 〈λ , α〉 > 0, ∀α ∈ Σ(Q, σθ)}.

This set is a non-empty open subset of a∗q, see the text below (2.3).



E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795–2864 2829
Lemma 7.7. Let Q ∈ P(A) and P ∈ Pσ(A, Q). Then

ΩP,Q ⊃ −(ρP − ρPh) − a∗+q (Q) + ia∗q.

Proof. In view of (7.11) it suffices to show that Γ(Q)◦ ⊃ a∗+q (Q). This is a straightforward 
consequence of the fact that Σ(Q)− ⊆ Σ(Q, σθ), by (1.3) and (2.1). �
Theorem 7.8. Let Q ∈ P(A), P ∈ Pσ(A) such that P 
 Q. Let ξ be a finite dimensional 
unitary representation of M0 and η ∈ V (ξ, e). Then the C−∞(K : M : ξM )-valued 
function

λ �→ jH(Q : ξM : λ : η), (7.15)

defined by (7.12), extends to a meromorphic C−∞(K : M : ξM )-valued function on a∗qC. 
Furthermore, up to a positive factor, depending on the normalization of the Haar measure 
on NP ∩ N̄Q,

jH(P : ξM : λ : η) = A(P : Q : ξM : λ− ρQh)jH(Q : ξM : λ : η) (7.16)

as an identity of C−∞(K : M : ξM )-valued meromorphic functions in λ ∈ a∗qC. Finally, 
the function (7.15) is continuous on the set ΩP,Q defined in (7.11) and holomorphic on 
its interior.

Remark 7.9. In particular, if Σ(Q)− = ∅, it follows that Γ(Q)◦ = a∗q so that 
jH(Q : ξM : · ) is holomorphic everywhere.

Proof. Without loss of generality, we may assume that ξ is irreducible. Then it follows 
from (7.2) combined with (7.12) that

〈jH(P : ξM : λ : η) , f〉 = 〈jH(Q : ξM : λ : η) , A(Q : P : ξM : −λ̄ + ρPh)f〉
(7.17)

for all λ ∈ ΩP,P and f ∈ C∞(P : ξM : −λ̄ + ρPh).
The standard intertwining operator A(Q : P : ξM : ν) from the induced representation 

IndG
P (ξM⊗ν⊗1) to the representation IndG

Q(ξM⊗ν⊗1) may be viewed as a meromorphic 
function of ν ∈ a∗

C
, with values in the space End(C∞(K : M : ξM )) (equipped with the 

strong topology), see [25, Thm. 1.5] and [13, Thm. 1.5]. Its singular locus is contained in a 
locally finite union of hyperplanes of the form μ +kerα, with μ ∈ a∗ and α ∈ Σ(P ) ∩Σ(Q̄), 
see [13, Rem. 1.6]. Since Σ(P ) ∩Σ(Q̄) ∩ a∗h = ∅ in view of Lemma 2.2 (b), none of these 
singular hyperplanes contain a∗qC, so that A(Q : P : ξM : · ) restricts to a meromorphic 
function on a∗qC.

The operator A(P : Q : ξM : ν) has a similar meromorphic behavior, and since the 
induced representation IndG

Q(ξM ⊗ν⊗1) is irreducible for generic ν ∈ a∗qC it follows that
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A(Q : P : ξM : ν) ◦A(P : Q : ξM : ν) = η(P : Q : ξM : ν) I (7.18)

as an identity of End(C∞(K : M : ξM ))-valued functions of the variable ν ∈ a∗
C
. Here 

η = η(P : Q : ξM : · ) is a meromorphic C-valued function on a∗
C
. By the usual product 

decomposition of intertwining operators it follows that η admits a decomposition of the 
form

η(ν) =
∏

α∈Σ(P )∩Σ(Q̄)

ηα(〈ν , α〉),

where the ηα are meromorphic functions on C. We now fix g ∈ C∞(K : M : ξM ). By 
substituting f = A(P : Q : ξM : −λ̄ + ρQh)g in (7.17) we infer that

〈jH(P : ξM : λ : η) , A(P : Q : ξM : −λ̄ + ρQh)g〉 =

= 〈jH(Q : ξM : λ : η) , η(−λ̄ + ρQh)g〉.

By using that A(Q : P : ξM : λ − ρQh) is the Hermitian conjugate of the operator 
A(P : Q : ξM : −λ̄+ρQh), see [23, Prop. 7.1 (iv)], and that ρQh = ρPh, it follows that

jH(Q : ξM : λ : η) = η(−λ̄ + ρPh)
−1

A(Q : P : ξM : λ− ρQh)jH(P : ξM : λ : η), (7.19)

for generic λ ∈ ΩP,P .
Let Ω ⊆ a∗q be a relatively compact open subset. Then there exists a constant s ∈ N

such that λ �→ jH(P : ξM : λ : η) is meromorphic on Ω + ia∗q, with values in the Banach 
space C−s(K : M : ξM ), see Section 3 and [6, Thm. 9.1] for details. Furthermore, there 
exists a constant r ∈ N such that A(Q : P : ξM : λ − ρPh) depends meromorphically 
on λ ∈ Ω + ia∗q, as a function with values in the Banach space of bounded linear maps 
from C−s(K : M : ξM ) to C−s−r(K : M : ξM ). Combining these observations with 
(7.19) we see that λ �→ jH(Q : ξM : λ : η) is a meromorphic function on a∗qC with values 
in C−∞(K : M : ξM ), equipped with the strong dual topology. Its continuity on ΩP,Q

and holomorphy on the interior of this set follows from Corollary 7.6. By meromorphic 
continuation it now follows that (7.17) is valid as an identity of meromorphic functions. 
Since A(P : Q : ξM : λ − ρQh) is the Hermitian conjugate of the intertwining operator 
appearing in that identity, whereas the identity holds for all f ∈ C∞(K : M : ξM ), 
it follows that (7.16) is valid as an identity of meromorphic C−∞(K : M : ξM )-valued 
functions of λ ∈ a∗qC. �

Let Q ∈ P be fixed for the moment. Then the function (7.15) is independent of the 
choice of P 
 Q, whereas the description of the domain of holomorphy depends on it. 
This motivates the definition of the following closed subset of a∗qC,

ΩQ :=
⋃

ΩP,Q, (7.20)

P∈Pσ(A,Q)
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where the union is taken over the finite non-empty set Pσ(A, Q) of parabolic groups 
P ∈ Pσ(A) with P 
 Q, see Lemma 2.6. The function (7.15) is continuous on ΩQ and 
holomorphic on the interior of this set. We can actually improve on this result.

In fact, let Γ(Q)◦ be as in (7.5). We denote by B : aq → a∗q the linear isomorphism 
induced by the inner product on aq. Then for α ∈ Σ(aq) we have B(Hα) = α∨. Therefore, 
B(Γ(Q)) is the cone spanned by the aq-roots from prq(Σ(Q)−).

Let Ω̂Q denote the hull in a∗qC of the set ΩQ with respect to the functions Re 〈 · , α〉
with α ∈ Σ(aq) ∩B(Γ(Q)), i.e.,

Ω̂Q := {λ ∈ a∗qC | Re 〈λ , α〉 ≤ sup Re 〈ΩQ , α〉, ∀α ∈ Σ(aq) ∩B(Γ(Q))}. (7.21)

Since the roots from Σ(aq) ∩ B(Γ(Q)) satisfy 〈α , · 〉 ≤ 0 on −Γ(Q)◦ it follows that we 
can describe the given hull by means of inequalities as follows:

Ω̂Q = {λ ∈ a∗qC | Re 〈λ , α〉 ≤ max
P∈Pσ(A,Q)

〈−ρP , α〉, ∀α ∈ Σ(aq) ∩B(Γ(Q))}. (7.22)

Corollary 7.10. Let Q ∈ P(A), ξ ∈ M̂0fu and η ∈ V (ξ, e). Then λ �→ jH(Q : ξM : λ : η)
is a holomorphic C−∞(K : M : ξM )-valued function on an open neighborhood of Ω̂Q.

Proof. From (7.19) we infer that the singular locus of λ �→ jH(Q : ξM : λ : η) is the 
union of a locally finite collection H of hyperplanes of the form Hα,μ = μ + (α⊥)C with 
α ∈ Σ(aq) and μ ∈ a∗q. Indeed, the singular loci of the meromorphic ingredients on the 
right-hand side of that formula are all of this form, by [11, Lemma 3.2], [13, Rem. 1.6]
and (7.18).

Let μ be a singular point of jH(Q : ξM : · : η), i.e., a point in the union of the 
singular hyperplanes. Then there exists a root α ∈ Σ(aq) such that Hα,μ is a singular 
hyperplane. By analytic continuation it follows that Hα,μ ∩ ΩQ = ∅. From the fact that 
the cone Γ(Q)◦ has non-empty interior it follows that the set ΩQ∩a∗q is connected, hence 
is contained in one connected component of a∗q \ Hα,μ. Replacing α by −α if necessary, 
we may assume that

ΩQ ∩ a∗q ⊆ {λ ∈ a∗q : 〈α, λ〉 ≥ c}

for some c ∈ R. This in turn implies that

Γ(Q)◦ ⊆ {λ ∈ a∗q : 〈α, λ〉 ≥ 0} = {λ ∈ a∗q : λ(Hα) ≥ 0}.

Since Γ(Q)◦ has open interior, α does not vanish on Γ(Q)◦. Using that Γ(Q)◦ is a cone, 
we find

〈α,Γ(Q)◦〉 = R≥0.
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In particular this implies Hα ∈ Γ(Q)◦◦ = Γ(Q) and thus we conclude that α ∈ Σ(aq) ∩
B(Γ(Q)).

For any P ∈ Pσ(A) with P 
 Q, the singular hyperplane Hα,μ does not intersect 
−ρP + ρPh − Γ(Q)◦, hence

〈α, μ〉 /∈ −〈α, ρP 〉 − R≥0.

This implies that 〈α , μ〉 > −〈α , ρP 〉. We conclude that

〈α , μ〉 > max
P∈Pσ(A),PQ

〈α , −ρP 〉

so that μ /∈ Ω̂Q. Thus, Ω̂Q is disjoint from the singular locus. �
Let Q ∈ P(A) and ξ ∈ M̂0fu. We define the meromorphic function jH(Q : ξM : · ) on 

a∗qC with values in V (ξ, e)∗ ⊗ C−∞(K : M : ξM ) by

jH(Q : ξM : λ)(η) = jH(Q : ξM : λ : η)

for generic λ ∈ a∗qC and η ∈ V (ξ, e). Furthermore, we define the meromorphic function 
j(Q : ξM : · ) on a∗qC with values in V (ξ)∗ ⊗ C−∞(K : M : ξM ) by

j(Q : ξM : λ) =
∑
v∈W

πQ,ξM ,λ−ρQh(v−1) jvHv−1(Q : ξM : λ) ◦prv. (7.23)

Here jvHv−1 is defined for the data σv, vHv−1 in place of σ, H. This definition is allowed 
since W ⊆ NK(a) ∩NK(aq) (see text preceding (4.6)), so that A, Aq, M0 and P(A) are 
invariant under conjugation by v and aq is maximal abelian in p ∩ Ad(v)q. See also the 
discussion at the end of Section 2.

In order to formulate our next result, we define, for v ∈ W , the set Ωv,Q as ΩQ

in (7.20), with vHv−1 in place of H. Likewise, we define Ω̂v,Q to be the set Ω̂Q defined 
as in (7.21), with vHv−1 in place of H.

Lemma 7.11. Let Q ∈ P(A). Then for each v ∈ W , we have

Ωv,Q = vΩv−1Qv and Ω̂v,Q = vΩ̂v−1Qv.

Proof. In view of Lemma 2.7 the cone Γ(v, Q), defined as Γ(Q) with σv in place of σ, is 
given by Γ(v, Q) = vΓ(v−1Qv). Likewise, its dual, defined as in (7.5) is given by

Γ(v,Q)◦ = vΓ(v−1Qv)◦.

From (7.11) and (7.20), with σv in place of σ, we now find, with obvious notation, 
Ωv,P,Q = vΩv−1Pv,v−1Qv, for P ∈ Pσ(A) with P 
 Q. Taking the union over such P , we 
obtain the first asserted equality.
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The second equality follows from the first, by taking the hull of the sets Ωv,Q and 
vΩv−1Qv with respect to the functions Re 〈 · , α〉 with α ∈ Σ(aq) ∩B(Γ(v, Q)). The first 
hull equals Ω̂v,Q by definition. Using that

Σ(aq) ∩B(Γ(v,Q)) = Σ(aq) ∩B(vΓ(v−1Qv)) = v(Σ(aq) ∩B(Γ(v−1Qv)),

we see that the second hull equals vΩ̂v−1Qv. �
We define the following closed subsets of a∗qC,

ΥQ =
⋂

v∈W

vΩv−1Qv, Υ̂Q =
⋂
v∈W

vΩ̂v−1Qv. (7.24)

The following lemma guarantees in particular that the set ΥQ, and hence also the 
bigger set Υ̂Q, have non-empty interior.

Lemma 7.12. Let Q ∈ P(A). Then for every P ∈ Pσ(A, Q), we have

ΥQ ⊃ −(ρP − ρPh) − a∗+q (Q) + ia∗q.

Proof. Fix v ∈ W . Then v−1Pv belongs to Pσ(A, v−1Qv), hence it follows from (7.20)
and Lemma 7.7

Ωv−1Qv ⊃ −(ρv−1Pv − ρv−1Pv h) − a∗+q (v−1Qv) + ia∗q.

Applying v we obtain vΩv−1Qv ⊃ −(ρP − ρPh) − a∗+q (Q) + ia∗q. As this is true for each 
v ∈ W , the asserted inclusion follows. �
Lemma 7.13. Let Q ∈ P(A) and ξ ∈ M̂0fu. Let η ∈ V (ξ).

(a) For each v ∈ W the defining integral for the corresponding term in (7.23) is absolutely 
convergent for every λ ∈ ΥQ.

(b) The meromorphic C−∞(K : M : ξM )-valued function λ �→ j(Q : ξM : λ : η) is 
holomorphic on an open neighborhood of the set Υ̂Q.

Proof. It follows from (7.23) and Corollary 7.5 that for λ ∈ Ωv,Q the integral for 
jvHv−1(Q : ξM : λ : ηv) is convergent. The set Ωv,Q contains ΥQ, by (7.24) and 
Lemma 7.11, and we see that (a) follows.

It follows from Corollary 7.6 applied with σv in place of σ that the mentioned function 
is holomorphic on an open neighborhood of Ω̂v,Q. From this we readily deduce that 
j(Q : ξM · : η) is holomorphic on an open neighborhood of the intersection of the sets 
Ω̂v,Q, for v ∈ W . This intersection equals Υ̂Q, by (7.24) and Lemma 7.11. �
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We finish this section relating the constructed functions j(Q : ξM : ·), for different Q, 
by intertwining operators.

Theorem 7.14. Let Q ∈ P(A) and ξ ∈ M̂0fu. Then the following assertions are valid.

(a) For every η ∈ V (ξ) and generic λ ∈ a∗qC, the element j(Q : ξM : λ)(η) of the space 
C−∞(K : M : ξM ) is πQ,ξM ,λ−ρQh(H)-invariant.

(b) If Q, Q′ ∈ P(A) and Q′ 
 Q, then (up to normalization),

j(Q′ : ξM : λ) = A(Q′ : Q : ξM : λ− ρQh) ◦ j(Q : ξM : λ), (7.25)

as an identity of meromorphic V (ξ)∗ ⊗ C−∞(K : M : ξM )-valued functions in the 
variable λ ∈ a∗qC.

Proof. We start with (b). Let P ∈ Pσ(A) be such that P 
 Q′. Then by application of 
Lemma 2.4 it follows that Σ(P ) ∩ Σ(Q̄′) ⊆ Σ(P ) ∩ Σ(Q̄) so

A(P : Q : ξM : λ) = A(P : Q′ : ξM : λ) ◦A(Q′ : Q : ξM : λ) (7.26)

as a meromorphic identity in λ ∈ a∗qC. See [23, Cor. 7.7] for details. Using (7.16) both 
with Q and with Q′ in place of Q we find

A(P : Q′ : ξM : λ) ◦ jH(Q′ : ξM : λ) = A(P : Q : ξM : λ) ◦ jH(Q : ξM : λ)

combining this with (7.26) and using that A(P : Q′ : ξM : λ) is injective for generic λ, 
we obtain that

jH(Q′ : ξM : λ) = A(Q′ : Q : ξM : λ− ρQh)jH(Q : ξM : λ)

for generic λ ∈ a∗qC. Since the expressions on both sides of the equation are meromorphic 
V (ξ, e)∗ ⊗ C−∞(K : M : ξM )-valued functions, the identity holds as an identity of 
meromorphic functions. The identity also holds with H replaced by vHv−1, as an identity 
of V (ξ, v)∗ ⊗ C−∞(K : M : ξM )-valued meromorphic functions of λ ∈ a∗qC. If we apply 
this to each of the terms of the sum in (7.23) we obtain (7.25). This establishes (b).

We now turn to (a). Fix P ∈ Pσ(A) such that P 
 Q. Then assertion (a) holds with 
P in place of Q, in view of Corollary 5.5. To establish assertion (a) for j(Q : ξM : λ)(η) as 
well, we use (b) with Q′ = P . Then assertion (a) follows from the fact that the operator 
A(P : Q : ξM : λ − ρQh) is intertwining and injective for generic λ ∈ a∗qC. �
8. Eisenstein integrals

In this section we will extend the definition of Eisenstein integrals for minimal 
σθ-stable parabolic subgroups from Pσ(Aq) to similar integrals for minimal parabolic 
subgroups from P(A).
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First we need to carefully discuss the parameter space for the Eisenstein integral. In 
view of Lemma 4.3, it follows that the inclusion map M → M0 induces a diffeomorphism 
M/HM � M0/HM0 . This diffeomorphism induces a topological linear isomorphism 
C∞(M/HM ) � C∞(M0/HM0) via which we will identify the elements of these spaces.

Let (τ, Vτ ) be a finite dimensional unitary representation of K. Then we define τM0

to be the restriction of τ to M0. Likewise, we define τM to be the restriction of τ to M . 
Then τM0 and τM have the same representation space.

We define C∞(M0/HM0 : τM0) to be the space of smooth functions ψ : M0/HM0 → Vτ

satisfying the transformation rule

ψ(kx) = τ(k)ψ(x)
(
k ∈ K ∩M0, x ∈ M0/HM0

)
.

Similarly, we define C∞(M/HM : τM ) to be the space consisting of smooth functions 
ψ : M/HM → Vτ satisfying the transformation rule

ψ(mx) = τ(m)ψ(x)
(
m ∈ M, x ∈ M/HM

)
.

We then have the obvious inclusion

C∞(M0/HM0 : τM0) ⊆ C∞(M/HM : τM ).

In general, the first of these spaces will be strictly contained in the second. The first 
of these spaces enters the definition of the Eisenstein integral for minimal σθ-stable 
parabolic subgroup from Pσ(Aq), whereas the second is convenient in the context of 
induction from a minimal parabolic subgroup from P(A). The relation between the 
spaces can be clarified as follows. Since M normalizes M0n ∩K it follows that the space 
V 0
τ of M0n ∩ K-invariants in Vτ is invariant under τ(M), so that we may define the 

following representation τ0
M of M by restriction:

τ0
M := τM |V 0

τ
, where V 0

τ := (Vτ )M0n∩K . (8.1)

Observe that for every v ∈ W we have

V M0∩K∩vHv−1

τ = (V 0
τ )M∩vHv−1

.

Indeed, this follows from the fact that M0 ∩K = M(M0n ∩K) and that τ(M0n ∩K) = 1
on V 0

τ .

Lemma 8.1. Let (τ, Vτ ) be a finite dimensional unitary representation of K. Then

C∞(M0/HM0 : τM0) = C∞(M/HM : τ0
M ). (8.2)
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Proof. We observe that M0n acts trivially on M0/HM0 by Lemma 4.3 (f). Therefore, 
every function in the space on the left-hand side of (8.2) has values in V 0

τ and we see 
that the space on the left is indeed contained in the space on the right. For the converse 
inclusion, let f : M/HM → V 0

τ be a function in the space on the right. If k0 ∈ M0 ∩K

we may write k0 = kMkn with kM ∈ M and kn ∈ M0n∩K. Let m0 ∈ M0, then m0 = mh

for a suitable m ∈ M and h ∈ HM0 . Since M0n ⊆ H, it follows that

f(k0m0) = f(kMknmh) = τ(kM )f(m(m−1knm)h)

= τ(kM )f(m) = τ(kM )τ(kn)f(m0)

= τ(k0)f(m0).

It follows that f belongs to the space on the left. �
We are now prepared for the definition of the Eisenstein integral related to a fixed 

parabolic subgroup P ∈ P(A). Given ψ ∈ C∞(M/HM : τ0
M ) we define the function 

ψP,λ : G → Vτ by

ψP,λ(kman) = aλ−ρP−ρPh τ(k)ψ(m).

We denote by C∞(G/H : τ) the space of smooth functions φ : G/H → Vτ satisfying the 
rule

φ(kx) = τ(k)φ(x) (k ∈ K, x ∈ G/H).

Recall the definition of ΩP from (7.20) with P in place of Q.

Proposition 8.2. Let ω ∈ Dh/hP
. Let ψ ∈ C∞(M/HM : τ0

M ) and let λ ∈ ΩP . Then the 
following assertions are valid.

(a) For each x ∈ G the function

h �→ ψP,λ(xh) dlh(e)−1∗ω

defines a Vτ -valued density on H/HP .
(b) For each x ∈ G the density in (a) is integrable.
(c) The function EH(P : ψ : λ) : G → Vτ defined by

EH(P : ψ : λ)(x) :=
∫

H/HP

ψP,λ(xh) dlh(e)−1∗ ω (x ∈ G),

in accordance with (a) and (b), belongs to C∞(G/H : τ).
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Proof. Before we start with the actual proof, we note that the condition on λ implies the 
existence of parabolic subgroup P ′ ∈ Pσ(A, P ) such that λ ∈ ΩP ′,P , in view of (7.20).

Let Fτ ⊆ M̂ denote the finite set of M -types in τ∨ and let Hτ denote the subspace 
of C∞(M/HM ) consisting of the left M -finite functions of isotype contained in Fτ . Let 
L be the left regular representation of M in C∞(M/HM ) and let ξτ := L|Hτ

be its 
restriction to the subspace Hτ .

Since C∞(M/HM : τM ) consists of the M -fixed functions in C∞(M/HM ) ⊗ Vτ , it 
follows that

C∞(M/HM : τM ) ⊆ Hτ ⊗ Vτ .

We define the function ψ̃P,λ : G → Hτ ⊗Vτ by ψ̃P,λ(x)(m) := ψP,λ(xm). Then it readily 
follows that

ψ̃P,λ(xman) = aλ−ρP−ρPh(ξτ (m)−1 ⊗ 1)ψ̃P,λ(x).

We define ψ∨
P,λ(x) := ψ̃P,λ(x−1). Then

ψ∨
P,λ ∈ C∞(P : ξτ : −λ + ρPh) ⊗ Vτ . (8.3)

Let ϕ : H/HP → HP \H be the diffeomorphism induced by h �→ h−1. Then dϕ(e)∗ω = ω

and for x ∈ G we see that

ϕ∗[h �→ ψP,λ(xh) dlh(e)−1∗ω]

= [h �→ ψ∨
P,λ(hx−1)(e) drh(e)−1∗ω]. (8.4)

Let ε denote the element of H HM
τ such that 〈g , ε〉 = g(e) for all g ∈ Hτ . We may now 

apply Corollary 7.5 to the first tensor component of the space in (8.3) with (P ′, P ) in 
place of (P, Q), with (ξτ , Hτ ) in place of (ξ, Hξ), with Rx−1(ψ∨

P,λ) in place of f (where 
R denotes the right regular representation) and with ε in place of η. From applying the 
corollary in this fashion, it follows that the expression on the right-hand side of (8.4) is 
a Vτ -valued density on HP \H which is integrable. This implies (a) and (b).

Using that x �→ Rx(ψ∨
P,λ) is smooth as a function with values in the Fréchet space 

C∞(P : ξτ : −λ + ρPh) ⊗ Vτ , we find that EH(P : ψ : λ) ∈ C∞(G, Vτ ).
The right H-invariance and the τ -spherical behavior are readily checked. �

Remark 8.3. The above procedure would also work more generally for functions ψ ∈
C∞(M/HM : τM ). However, for generic λ ∈ a∗qC the map ψ �→ EH(P : ψ : λ)ψ would 
then have a (possibly λ-dependent) kernel complementary to C∞(M/HM : τ0

M ).

For v ∈ W the above procedure applies to the data K, vHv−1, A, Aq in place of 
K, H, A, Aq. We thus obtain Eisenstein integrals EvHv−1(P : ψ : λ : x) for ψ in the 
parameter space C∞(M/M ∩ vHv−1 : τ0

M ). The general Eisenstein integral is defined 
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as follows. For v ∈ W we equip L2(M/M ∩ vHv−1) with the L2-inner product for 
the normalized invariant measure, and L2(M/M ∩ vHv−1) ⊗Vτ with the tensor product 
inner product. The latter restricts to an inner product on the finite dimensional subspace 
C∞(M/M ∩ vHv−1 : τ0

M ). We define

AM,2 := ⊕v∈W C∞(M/M ∩ vHv−1 : τ0
M ). (8.5)

Equipped with the direct sum of the given inner products on the summands, this space 
becomes a finite dimensional Hilbert space.

For ψ ∈ AM,2 and λ ∈ ΩP we define the function E(P : ψ : λ) : G → Vτ by

E(P : ψ : λ)(x) =
∑
v∈W

EvHv−1(P : prvψ : λ)(xv−1) (x ∈ G). (8.6)

It is readily verified that this function belongs to C∞(G/H : τ). We will occasionally 
write E(P : ψ : λ : x) for E(P : ψ : λ)(x).

We will now relate the Eisenstein integral thus defined to matrix coefficients with 
H-fixed distribution vectors. For this we will use a suitable realization of the space 
AM,2. In analogy with (8.5) we define

AM0,2 := ⊕v∈W C∞(M0/M0 ∩ vHv−1 : τM0).

In view of Lemma 8.1 applied with vHv−1 in place of H, for v ∈ W , we see that

AM0,2 = AM,2.

For ξ ∈ M̂0fu and v ∈ W , we denote by C∞
ξ (M0/M0 ∩ vHv−1) the space of left M0-finite 

functions in C∞(M0/M0 ∩ vHv−1) of isotopy type ξ. Furthermore, we denote by

C∞
ξ (M0/M0 ∩ vHv−1 : τM0) (8.7)

the intersection of C∞(M0/M0 ∩ vHv−1 : τM0) with C∞
ξ (M0/M0 ∩ vHv−1) ⊗ Vτ . The 

direct sum of the spaces (8.7) for v ∈ W is denoted by AM0,2,ξ. Then it follows that

AM0,2 = ⊕
ξ∈M̂0fu

AM0,2,ξ, (8.8)

as an orthogonal direct sum with finitely many non-zero terms.
Similar definitions, with M in place of M0, lead to spaces

C∞
ξ (M/M ∩ vHv−1 : τ0

M ), (8.9)

equal to (8.7) in view of (8.2), for v ∈ W . The orthogonal direct sum of (8.9) over v ∈ W

is denoted by AM,2,ξ. Then obviously

AM0,2,ξ = AM,2,ξ. (8.10)
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For ξ ∈ M̂0fu we define C(K : ξ : τ) to be the space of functions f : K → Hξ ⊗ Vτ

transforming according to the rule:

f(mk0k) = [ξ(m) ⊗ τ(k)−1]f(k0) (k, k0 ∈ K,m ∈ M0 ∩K).

We recall from [10, Lemma 3, p. 528] that there exists a natural linear isomorphism

T �→ ψT , C(K : ξ : τ) ⊗ V̄ (ξ) �−→ AM0,2,ξ = AM,2,ξ, (8.11)

given by

(ψT )v(m) = 〈f(e) , ξ(m)prv(η)〉 (v ∈ W ), (8.12)

for T = f ⊗ η ∈ C(K : ξ : τ) ⊗ V̄ (ξ) and m ∈ M . Moreover, T �→
√

dim ξ ψT is an 
isometry.

The map i# introduced in (4.11) is an isometric embedding C(K : K ∩ M0 : ξ) →
C(K : M : ξM ). Through tensoring with the identity map on Vτ it induces an isometric 
embedding C(K : ξ : τ) → C(K : ξM : τM ) which we denote by i# again.

Theorem 8.4. Let ξ ∈ M̂0fu and let T = f ⊗ η ∈ C(K : ξ : τ) ⊗ V̄ (ξ). Then for x ∈ G

and λ ∈ ΥP ,

E(P : ψT : λ : x) = 〈i#f , πP,ξM ,λ̄−ρPh
(x)j(P : ξM : λ̄)(η)〉,

where j(P : ξM : λ̄)(η) should be viewed as an element of C−∞(K : M : ξM ). Moreover, 
the indicated sesquilinear pairing is taken on the first tensor components of i#f .

Proof. The set ΥP is the intersection of the sets Ωv,P , for v ∈ W , by (7.24) and 
Lemma 7.11. In view of (8.6) and (7.23) it therefore suffices to restrict to the case 
that η ∈ V (ξ, e) and prove the result under the (weaker) assumption that λ ∈ ΩP .

Write ψ = preψT . Then it follows from the proof of Proposition 8.2 that, for x and λ
as specified,

EH(P : ψT : λ : x) =
∫

HP \H

ϕ∗[h �→ ψP,λ(xh) dlh(e)−1∗ω]

=
∫

HP \H

ψ∨
P,λ(hx−1)(e) drh(e)−1∗ω.

We now calculate the function ψ∨
P,λ in this particular case. As it belongs to the space 

C∞(P : ξM : −λ + ρPh) ⊗ Vτ it is sufficient to calculate its restriction to K. Since 
ψ = ψT , it follows from (8.12) that ψ(m) = ψT (m) = 〈f(e) , ξ(m)η〉. This implies that



2840 E.P. van den Ban, J.J. Kuit / Journal of Functional Analysis 272 (2017) 2795–2864
ψP,λ(k) = τ(k)〈f(e) , ξ(e)η〉 = 〈f(k−1) , η〉.

In turn, this implies that

ψ∨
P,λ(k)(e) = 〈f(k) , η〉.

We write [i#f ]P,−λ+ρPh for the extension of the function i#f ∈ C(K : ξM : τM ) to a 
function in C∞(P : ξM : −λ + ρPh) ⊗ Vτ . Then

ψ∨
P,λ(x)(e) = 〈[i#f ]P,−λ+ρPh(x) , η〉.

Thus, in view of (7.12) we find that

EH(P : ψT : λ : x) =
∫

HP \H

〈
[R(x−1)[i#f ]P,−λ+ρPh(h), η

〉
drh(e)−1∗ ω

=
〈
[R(x−1)[i#f ]P,−λ+ρPh , jH(P : ξM : λ̄)(η)

〉
=

〈
πP,ξM ,−λ+ρPh(x−1)i#f, jH(P : ξM : λ̄)(η)

〉
=

〈
i#f, πP,ξM ,λ̄−ρPh

(x)jH(P : ξM : λ̄)(η)
〉
.

The proof is complete. �
Corollary 8.5. Let P ∈ P(A) and let ψ ∈ AM,2. Then the Eisenstein integral E(P : ψ : λ)
depends meromorphically on λ ∈ a∗qC as a function with values in C∞(G/H : τ). As such, 
it is holomorphic on an open neighborhood of the set Υ̂P .

Proof. The assertion about meromorphy follows from the previous result in view of (8.8)
and the linear dependence of the Eisenstein integral on ψ. The statement about holo-
morphy now follows from Lemma 7.13 (b). �

It will sometimes be convenient to write E(P : λ : x)ψ = E(P : ψ : λ : x) and to adopt 
the viewpoint that E(P : λ) is a meromorphic Hom(AM,2, C∞(G : τ))-valued function 
of λ ∈ a∗qC.

We proceed by relating the Eisenstein integrals defined above to the Eisenstein inte-
grals introduced earlier in [6] and [10] for minimal σθ-stable parabolic subgroups.

Corollary 8.6. Let P ∈ Pσ(A) and let P0 be the unique parabolic subgroup from Pσ(Aq)
containing P . Then

E(P : λ) = E(P0 : λ) (8.13)

as Hom
(
AM0,2, C

∞(G/H : τ)
)
-valued meromorphic functions of λ ∈ a∗qC.
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Proof. Let ξ ∈ M̂0fu. Then it follows from Corollary 5.5 that

j(P : ξM : λ) = i# ◦ j(P0 : ξ : λ).

Let T = f ⊗η ∈ C(K : ξ : τ) ⊗ V̄ (ξ). Then it follows by [6, Lemma 4.2] and (4.11) that

E(P0 : λ : x)ψT = 〈f , πP0,ξ,λ̄
(x)j(P0 : ξ : λ̄)(η)〉

= 〈i#f , i#πP0,ξ,λ̄
(x)j(P0 : ξ : λ̄)(η)〉

= 〈i#f , πP,ξM ,λ̄−ρPh
(x)j(P : ξM : λ̄)(η)〉

= E(P : λ : x)ψT . �
The Eisenstein integrals for parabolic subgroups from P(A) can be related to each 

other as follows.

Proposition 8.7. Let Q ∈ P(A), P ∈ Pσ(A) and P 
 Q. Then for all ξ ∈ M̂0fu, all 
T ∈ C(K : ξ : τ) ⊗ V̄ (ξ) and generic λ ∈ a∗qC, we have

E(Q : λ)ψT = E(P : λ)ψ[p# ◦A(Q:P :ξM :−λ+ρPh)−1 ◦ i#⊗I]T . (8.14)

Here, p# is shorthand for the restriction of p# ⊗ IVτ
to the subspace C(K : ξM : τM ) of 

C∞(K : M : ξM ) ⊗ Vτ , see also (4.14). Likewise, the intertwining operator acts on the 
first tensor component in C(K : M : ξM ) ⊗ Vτ .

Proof. By linearity it suffices to prove this for T = f ⊗ η, with f ∈ C(K : ξ : τ) and 
η ∈ V̄ (ξ). It follows from Theorem 8.4 and (7.25) that for generic λ ∈ a∗qC we have

j(Q : ξM : λ̄)(η) = A(P : Q : ξM : λ̄− ρPh)−1j(P : ξM : λ̄)(η).

For x ∈ G we now obtain (with the pairing taken on first tensor components)

E(Q : λ : x)ψT =

= 〈i#f , πQ,ξM ,λ̄−ρQh
(x)j(Q : ξM : λ̄)(η)〉

= 〈i#f , A(P : Q : ξM : λ̄− ρPh)−1πP,ξM ,λ̄−ρPh
(x)j(P : ξM : λ̄)(η)〉

= 〈A(Q : P : ξM : −λ + ρPh)−1i#f , πP,ξM ,λ̄−ρPh
(x)j(P : ξM : λ̄)(η)〉

= 〈p ◦A(Q : P : ξM : −λ + ρPh)−1i#f , πP,ξM ,λ̄−ρPh
(x)j(P : ξM : λ̄)(η)〉. (8.15)

The last identity follows by application of Corollary 5.6. Finally, since p = i# ◦ p#, the 
expression in (8.15) equals the expression on the right-hand side of (8.14), in view of 
Theorem 8.4. �
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Let Q, P ∈ P(A) be as in Proposition 8.7. Then motivated by the proposition, we 
define the C-function C(Q : P : λ) to be the unique End(AM,2)-valued meromorphic 
function of λ ∈ a∗qC such that

C(Q : P : λ)ψT = ψ[p# ◦A(Q:P :ξM :−λ+ρPh)−1 ◦ i#⊗I]T

for all ξ ∈ M̂0fu, all T ∈ C(K : ξ : τ) ⊗ V̄ (ξ) and generic λ ∈ a∗qC. Then (8.14) may be 
abbreviated as

E(Q : λ) = E(P : λ)C(P : Q : λ). (8.16)

The following result is a variation of a result of Harish-Chandra, see [19, Lemma 3, 
p. 47]. The proof given below follows a different strategy, which also works in the setting 
of [19].

Proposition 8.8. Let Q ∈ P(A) and P ∈ Pσ(A) such that P 
 Q. Then the meromorphic 
function a∗qC � λ �→ det C(Q : P : λ) is not identically zero.

Before proceeding with the proof of this proposition, we first list a corollary.

Corollary 8.9. Let Q ∈ P(A) and P ∈ Pσ(A) such that P 
 Q. Then the endomorphism 
C(Q : P : λ) ∈ End(AM,2) is invertible for generic λ ∈ a∗qC and λ �→ C(Q : P : λ)−1 is 
a meromorphic End(AM,2)-valued meromorphic function on aq.

Proof. This follows from Proposition 8.8 by application of Cramer’s rule for the inversion 
of a matrix. �

The following lemma will play an important role in the proof of Proposition 8.8.

Lemma 8.10. Let P ∈ Pσ(A) and let P0 be the unique parabolic subgroup from Pσ(Aq)
containing P . Then the following diagram commutes:

C(K : K ∩M0 : ξ) A(P̄0:P0:ξ:λ)−−−−−−−−−−−−−−→ C(K : K ∩M0 : ξ)
p# ↑ ↑ p#

C(K : M : ξM ) A(σ(P ):P :ξM :λ+ρPh)−−−−−−−−−−−−−−→ C(K : M : ξM )

for generic λ ∈ a∗qC.

Proof. Let PM0 = P ∩ M0. Then it follows that P = PM0NP and σP = PM0NσP . 
Furthermore, by the assertion at the end of the proof of Theorem 4.2 in [5, p. 373], with 
P1 = P̄0, P2 = P0, (P1)p = σ(P ) and (P2)p = P , it follows that the following diagram 
commutes for generic λ ∈ a∗qC,
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C(K : K ∩M0 : ξ) A(P0:P̄0:ξ:−λ̄)←−−−−−−−−−−−−−− C(K : K ∩M0 : ξ)
i# ↓ ↓ i#

C(K : M : ξM ) A(P :σ(P ):ξM :−λ̄−ρPh)←−−−−−−−−−−−−−− C(K : M : ξM ).

The desired result now follows by taking adjoints with respect to the given equivariant 
sesquilinear pairings on the spaces involved. �
Proof of Proposition 8.8. Let ξ ∈ M̂0fu and let ϑ ⊆ K̂ be a finite set of K-types. Then 
it suffices to show that the restricted operator

p# ◦A(Q : P : ξM : −λ + ρPh)−1 ◦ i#|C(K:K∩M0:ξ)ϑ (8.17)

has determinant not identically zero. For this it suffices to show that the composition 
of A(P̄0 : P0 : ξ : −λ) with (8.17) has determinant not-identically zero. By Lemma 8.10
this composition may be rewritten as

p# ◦A(σ(P ) : P : ξ : −λ + ρPh) ◦A(Q : P : ξM : −λ + ρPh)−1 ◦ i#|C(K:K∩M0:ξ)ϑ . (8.18)

Since Σ(σ(P ) ∩ Σ(P ) = Σ(P ) ∩ a∗h ⊆ Σ(Q) ∩ Σ(P ), it follows by the usual product 
decomposition of the standard intertwining operators, see [23, Cor. 7.7], that (8.18)
equals

p# ◦A(σP : Q : ξM : −λ + ρPh) ◦ i#|C(K:K∩M0:ξ)ϑ . (8.19)

Thus it suffices to show that the determinant of the linear endomorphism of the space 
C(K : K ∩M0 : ξ)ϑ given in (8.19) is not identically zero as a meromorphic function of 
λ. Now this is an immediate consequence of the following result. �
Lemma 8.11. Let Q, R ∈ P(A) be such that Σ(R̄) ∩Σ(Q) ⊆ Σ(Q, σθ). Then there exists 
an element η ∈ a∗q such that 〈η , α〉 > 0 for all α ∈ Σ(R̄) ∩ Σ(Q). Let η be such an 
element and d := dim(NR ∩ N̄Q). Then there exists a constant c > 0 such that for every 
μ ∈ a∗

C
and all f ∈ C(K : M : ξM )

lim
t→∞

td/2A(R : Q : ξM : μ + tη)f = cf,

in C(K : M : ξM ).

Proof. Since Σ(Q) is a positive system for Σ(g, a), there exists ξ ∈ a∗ such that 〈ξ , α〉 > 0
for α ∈ Σ(Q). Let η = ξ + σθξ, then 〈η , α〉 > 0 for α ∈ Σ(Q, αθ). Thus, η satisfies the 
requirements. Let η be any such element.

Replacing μ by μ + t0η for a suitable t0 > 0 we see that we may as well assume 
that Re 〈μ , α〉 > 0 for all α ∈ Σ(R̄) ∩ Σ(Q). In this case, we see that for all t ≥ 0 the 
intertwining operator is given by the absolutely convergent integral
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[A(R : Q : ξM : μ + tη)f ](k) =
∫

NR∩N̄Q

ft(n̄−1k)dn̄

=
∫

NR∩N̄Q

e−tηHQ(n̄)e(−μ−ρQ)HQ(n̄)f(κQ(n̄)−1k) dn̄.

Here ft denotes the extension of f to an element of C∞(Q : ξM : μ + tη). Moreover, the 
analytic maps HQ : G → a and κQ : G → K are defined by

x ∈ κQ(x) exp HQ(x)NQ (x ∈ G),

in accordance with the Iwasawa decomposition G = KANQ.
By using the properties of the function h = ηHQ|NR∩N̄Q

stated in Lemma 8.12 below 
we will be able to determine the asymptotic behavior for t → ∞ by using the real version 
of the method of stationary phase.

It follows from Lemma 8.12 (a) that h ≥ 0. Hence, the intertwining operator is a 
continuous linear endomorphism of C(K : M : ξM ), with operator norm bounded by

‖A(R : Q : ξM : μ + tη)‖ ≤
∫

NR∩N̄Q

e(−Re μ−ρQ)HQ(n̄) dn̄.

It follows from Lemma 8.12 (b) that there exists an open neighborhood V of 0 in Rd

and an open embedding ϕ : Rd → NR ∩ N̄Q, sending 0 to e such that

h(ϕ(x)) = 〈Sx , x〉

with S a positive definite matrix. Let U be an open neighborhood of e in NR ∩ N̄Q with 
closure contained in ϕ(V ), and let r > 0 be as in condition (c) of the mentioned lemma. 
Fix χ ∈ C∞

c (ϕ(V )) such that χ = 1 on a neighborhood of the closure of U . Then

A(R : Q : ξM : μ + tη)f = It(f) + Rt(f)

with

It(f) =
∫

NR∩N̄Q

e−th(n̄)e(−μ−ρQ)HQ(n̄)f(κ(n̄)−1k)χ(n̄) dn̄.

The remainder term Rt(f) is given by the same integral but with χ(n̄) replaced by 
1 − χ(n̄). As the latter function is zero on U , it follows from the estimate in (b) that

‖Rt(f)‖ ≤ C1e
−tr‖f‖,
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with C1 a positive constant independent of f and t. Accordingly, we may ignore this 
term and concentrate on It(f). By substituting ϕ(x) for n̄ we obtain

It(f) =
∫
Rn

e−t〈Sx , x〉e(−μ−ρQ)HQ(ϕ(x))f(κ(ϕ(x))−1k)χ(ϕ(x))J(x) dx,

where J(x) is a Jacobian. Substituting t−1/2x for x and taking the limit for t → ∞, we 
see that

td/2It(f) →
∫
Rd

e−〈Sx , x〉f(k) J(0) dx,

uniformly in k. This establishes the result with

c = J(0)
∫
Rd

e−〈Sx , x〉 dx. �

Lemma 8.12. Let Q, R ∈ P(A) and let η ∈ a∗ be such that 〈η , α〉 > 0 for all α ∈
Σ(R̄) ∩Σ(Q). Let HQ : G → a be the Iwasawa map determined by x ∈ K exp HQ(x)NQ, 
for x ∈ G. Then the function h = ηHQ|NR∩N̄Q

has the following properties,

(a) h ≥ 0;
(b) h has an isolated critical point at e with positive definite Hessian;
(c) for each open neighborhood U of e in NR ∩ N̄Q there exists a constant r > 0 such 

that

n̄ ∈ (NR ∩ N̄Q) \ U =⇒ h(n̄) > r.

Proof. For each indivisible root α ∈ Σ(g, a) we write nα = gα+g2α, Nα = exp(nα), n̄α =
θnα and N̄α := exp(n̄α). Furthermore, we write g(α) for the split rank one subalgebra 
generated by nα + n̄α and G(α) for the associated analytic subgroup of G. Let Hα :
G(α) → a ∩ g(α) = (kerα)⊥ be the Iwasawa projection associated with the Iwasawa 
decomposition G(α) = K ∩G(α))(A ∩G(α))Nα. Then Hα = HQ|G(α).

Let α1, . . . , αk be the indivisible positive roots in Σ(R̄) ∩Σ(Q). Then by the method of 
S.G. Gindikin and F.I. Karpelevic [17] (see [23, Thm. 7.6] for the version for intertwining 
operators), there exists a diffeomorphism ψ : N̄α1 × · · · N̄αk

→ NR ∩ N̄Q such that

h(ψ(n̄1, . . . , n̄k)) =
k∑

j=1
ηHαj

(n̄j).

To show that h has properties (a), (b) and (c), it suffices to show that each of the 
functions hj = η ◦Hαj

|N̄ has these properties, with N̄αj
in place of NR ∩ N̄Q.
αj
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Let α ∈ Σ(g, a) be any indivisible root such that 〈η , α〉 > 0. Then it suffices to 
show that hα : N̄α → R, ̄n �→ ηHα(n̄) has properties (a) and (b) with N̄α in place of 
NR∩N̄Q. The function hα can be explicitly computed through SU(2, 1)-reduction, see [21, 
Thm. IX.3.8]. From the explicit expression given in [21], properties (a), (b) and (c) are 
readily verified. �

We will now describe the asymptotic behavior of the various Eisenstein integrals, using 
the established relations (8.13) and (8.16) between them.

For a parabolic subgroup R ∈ Pσ(Aq) and for v ∈ W we define the functions

ΦR,v(λ : ·) : A+
q (R) → End(V M0∩K∩vHv−1

τ )

as in [9, Lemma 10.3]. These functions are smooth on the chamber A+
q (R) and as such 

depend meromorphically on the parameter λ ∈ a∗qC. Moreover, for generic λ ∈ a∗qC they 
have an absolutely converging series expansion of the form

ΦR,v(λ : a) = a−ρR

∑
μ∈NΣ+(R)

a−μΓR,μ(λ),

where the ΓR,μ are meromorphic End(V M0∩K∩vHv−1

τ )-valued functions and ΓR,0 = I.
Let P0 ∈ Pσ(Aq) then by [9, Thm. 11.1] and (8.10), there exist unique End(AM,2)-val-

ued meromorphic functions CR|P0(s : · ) on a∗qC such that for all ψ ∈ AM,2 and each 
v ∈ W and generic λ ∈ a∗qC we have

E(P0 : λ : av)ψ =
∑

s∈W (aq)

ΦR,v(sλ : a)[CR|P0(s : λ)ψ]v(e) (a ∈ A+
q (R)).

Here W (aq) denotes the Weyl group of the root system Σ(g, aq).

Theorem 8.13. Let Q ∈ P(A) and R ∈ Pσ(Aq). Then there exist unique meromorphic 
End(AM,2)-valued meromorphic functions CR|Q(s : · ) on a∗qC, for s ∈ W (aq), such that 
for all ψ ∈ AM,2, each v ∈ W and generic λ ∈ a∗qC we have

E(Q : λ : av)ψ =
∑

s∈W (aq)

ΦR,v(sλ : a)[CR|Q(s : λ)ψ]v(e) (a ∈ A+
q (R)).

These meromorphic C-functions are generically pointwise invertible, with meromorphic 
inverses.

Proof. Uniqueness follows by uniqueness of asymptotics, see, e.g., [18, p. 305, Cor.] for 
details.

For the remaining statements on existence and invertibility, we first consider the 
case that Q is q-extreme, i.e., Q ∈ Pσ(A). Then there exists a unique Q0 ∈ Pσ(Aq)
containing Q. By applying Corollary 8.6 and the preceding discussion we find that
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CR|Q(s : λ) = CR|Q0(s : λ)

satisfies the asymptotic requirements. Invertibility follows from [6, Cor. 15.11].
We now assume that Q ∈ P(A) is general. Then there exists a P ∈ Pσ(A) such that 

P 
 Q.
By Proposition 8.7 and (8.14) we have

E(P : λ : x) = E(Q : λ : x) ◦C(Q : P : λ).

In view of Proposition 8.8 we see that

CR|Q(s : λ) = CR|P (s : λ) ◦C(Q : P : λ)−1

satisfies the asymptotic requirements. The invertibility requirements now follow from the 
invertibility of CR|P (s : λ), established earlier in this proof. �
Corollary 8.14. Let P, Q ∈ P(A). Then there exists a unique meromorphic End(AM,2)-
valued function C(P : Q : · ) on a∗qC such that

E(P : λ : x) = E(Q : λ : x) ◦C(Q : P : λ) (8.20)

for all x ∈ G/H and generic λ ∈ a∗qC. Furthermore, the following identities are valid as 
identities of meromorphic End(AM,2)-valued functions in λ ∈ a∗qC.

(a) C(Q : P : λ) = CR|Q(s : λ)−1CR|P (s : λ) (s ∈ W (aq), R ∈ Pσ(Aq));
(b) C(P1 : P2 : λ) C(P2 : P3 : λ) = C(P1 : P3 : λ) (P1, P2, P3 ∈ P(A));
(c) C(P : Q : λ)C(Q : P : λ) = C(Q : P : λ)C(P : Q : λ) = I.

Proof. Uniqueness follows from Theorem 8.13 combined with uniqueness of asymptotics. 
We will first establish the existence for P, Q ∈ Pσ(A). Let P0, Q0 be the unique minimal 
σθ-stable parabolic subgroups in Pσ(Aq) with P0 ⊃ P and Q0 ⊃ Q. Then by [10, (42) 
& (70)] there exists a meromorphic function a : a∗qC → End(AM,2) such that the identity 
E(P0 : λ) = E(Q0 : λ)a(λ) holds. In view of Corollary 8.6 it follows that (8.20) is valid 
with C(Q : P : λ) = a(λ).

By using Proposition 8.7, (8.14) and Corollary 8.9 the existence of C(Q : P : λ) can 
now be inferred for arbitrary P, Q ∈ P(A).

Now that the existence has been established, (a) follows from Theorem 8.13 com-
bined with uniqueness of asymptotics. Finally, (b) and (c) follow from the established 
uniqueness of the C-functions involved. �
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9. The case of the group

In this section we will consider the case of the group, viewed as a symmetric space, 
and compare our definition of the Eisenstein integral for a minimal parabolic subgroup 
with the one given by Harish-Chandra [20].

Let �G be a group of the Harish-Chandra class, and let G = �G × �G and H the 
diagonal in G. Then H equals the fix point group of the involution σ : G → G given 
by σ(x, y) = (y, x). The map m : (x, y) �→ xy−1 induces a diffeomorphism G/H → �G
which is equivariant for the action of G on G/H by left translation and the action on 
�G by left times right translation. Accordingly, pull-back by m induces a G-equivariant 
topological linear isomorphism m∗ : C∞(�G) → C∞(G/H).

We fix a Cartan involution �θ for �G. Let �g = �k ⊕ �p be the associated infinitesimal 
Cartan decomposition and let �a be a fixed choice of a maximal abelian subspace of �p. 
Then θ = �θ × �θ is a Cartan involution for G which commutes with σ. The associated 
Cartan decomposition is given by g = k ⊕p, where k = �k ×�k and p = �p ×�p. Furthermore, 
a = �a × �a is a maximal abelian subspace of p.

The infinitesimal involution σ on g = �g × �g is given by (X, Y ) �→ (Y, X), so that its 
+1 eigenspace h equals the diagonal of g, whereas the −1-eigenspace q consists of the 
elements (X, −X), X ∈ �g. It follows that p ∩ q = {(X, −X) | X ∈ �p}, and that the 
subspace

aq := {(X,−X) | X ∈ �a}

is maximal abelian in p ∩ q. Furthermore, a = a h ⊕ aq, where a h = {(X, X) | X ∈ �a} =
a ∩ h. At the level of groups we accordingly have A = AhAq, where Ah = A ∩ H =
{(a, a) | a ∈ �A} and Aq = {(a, a−1) | a ∈ �A}. The root system Σ of a in g equals 
(�Σ ×{0}) ∪ ({0} × �Σ), where �Σ denotes the root system of �a in �g. The associated root 
spaces are given by

g(α,0) = gα × {0}, and g(0,β) = {0} × gβ (α, β ∈ �Σ).

The positive systems for Σ are the sets of the form (Π1 ×{0}) ∪ ({0} ×Π2 where Π1, Π2
are positive systems for �Σ. Accordingly,

P(A) = {�P × �Q | �P, �Q ∈ P(�A)}.

Let �M denote the centralizer of �A in �K. Then the centralizer of A in K is given by 
M = �M × �M and we see that the θ-stable Levi component of any parabolic in P(A)
is equal to MA.

Our first objective is to give a suitable description of the H-fixed distribution vector 
j(R : ξ : λ)(η), for R = �P × �Q a minimal parabolic subgroup from P(A), for λ ∈ a∗qC, 
and for ξ ∈ M̂ such that the space V (ξ), defined as in (4.8), is non-trivial.
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We observe that NK(aq) and NK∩H(aq) have the same image in GL(aq), so that W , 
defined as in (4.6), consists of the identity element e = (�e, �e). It follows that V (ξ) =
V (ξ, e) as in (4.8), so that

V (ξ) = H HM

ξ . (9.1)

Thus, V (ξ) �= 0 if and only if ξ has a non-trivial HM -fixed vector. The set of such (classes 
of) irreducible representations of M is denoted by M̂HM

.
If ξ ∈ M̂HM

, then

ξ � �ξ ⊗̂ �ξ∨, (9.2)

for an irreducible unitary representation �ξ of �M in a finite dimensional Hilbert 
space H�ξ. Using the canonical identification

H�ξ ⊗ H ∗
�ξ � End(H�ξ) (9.3)

we shall model ξ as the representation in Hξ := End(H�ξ) given by

ξ(m1,m2)T = �ξ(m1) ◦T ◦ �ξ(m2)−1,

for T ∈ End(H�ξ) and m1, m2 ∈ �M . In particular, we see that with this convention,

V (ξ) = CI�ξ.

The space a∗qC is identified with the subspace of a∗
C

consisting of linear functionals on a∗
C

of the form (�λ, −�λ) : (X, Y ) �→ �λ(X) − �λ(Y ). We agree to write

λ = (�λ,−�λ) (�λ ∈ �a∗C).

As in Section 3, we write C±∞(K : ξ) for C±∞(K : M : ξ) and C±∞(�K : �ξ) for 
C±∞(�K : �M : �ξ). Then as indicated in Section 3, we have topological linear isomor-
phisms

C−∞(K : ξ) � C∞(K : ξ)′ and C−∞(�K : �ξ) � C∞(�K : �ξ)′,

which restricted to the subspaces of smooth functions are induced by the pairings (3.6)
for (K, ξ) and (�K, �ξ).

We now consider the topological linear isomorphism

Φ : C−∞(K : ξ) �−→ Hom(C∞(�K : �ξ), C−∞(�K : �ξ))

determined by the Schwartz kernel theorem. It is given by
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〈Φ(h)(f) , g〉 = 〈h , g ⊗ f〉,

for h ∈ C−∞(K : ξ), f ∈ C∞(�K : �ξ) and g ∈ C∞(�K : �ξ∨), with g ⊗ f viewed as an 
element of C∞(K : ξ∨).

According to the compact picture explained in Section 3, we may identify Φ with a 
uniquely determined topological linear isomorphism

Φλ : C−∞(R : ξ : λ) �−→ Hom(C∞(�Q, �ξ, �λ), C−∞(�P, �ξ, �λ)).

The isomorphism Φλ is readily seen to be G-equivariant, by G-equivariance of the pair-
ings involved in the definition of Φ, for the appropriate principal series representations. 
It maps the H-invariants in the space on the left to the subspace of �G-intertwining 
operators on the right.

We write 〈 · , · 〉ξ for the K-equivariant pre-Hilbert structure on C∞(K : ξ) given by 
(3.2) and 〈 · , · 〉�ξ for the similar �K-equivariant pre-Hilbert structure on C∞(�K : �ξ). 
The latter extends to continuous sesquilinear pairings C±∞(�K : �ξ) ×C∓∞(�K : �ξ) → C, 
also denoted by 〈 · , · 〉�ξ. As C∞(�K : �ξ) is a Montel space, it is reflexive, and we 
may take adjoints with respect to these pairings. Accordingly, given a continuous linear 
operator T : C∞(�K : �ξ) → C−∞(�K : �ξ) we define the continuous linear operator 
T ∗ : C∞(�K : �ξ) → C−∞(�K : �ξ) by

〈T ∗f , g〉�ξ = 〈f , Tg〉�ξ (f, g ∈ C∞(�K : �ξ)).

Lemma 9.1. Let F ∈ C∞(K : ξ) and let T : C∞(�K : �ξ) → C∞(�K : �ξ) be a continuous 
linear operator. Then

〈F , Φ−1(T ∗)〉ξ =
∫
�K

tr �ξ[(T ⊗ I)F (�k, �k)] d�k. (9.4)

Proof. We first consider the isomorphism ϕ : C−∞(K) → Hom(C∞(�K), C−∞(�K))
given by the Schwartz kernel isomorphism. Let fj denote an L2(�K)-orthonormal basis 
subordinate to the decomposition into the finite dimensional �K-isotypical components 
with respect to the left regular representation. Then for each smooth function f ∈
C∞(�K) we have f =

∑
j〈f , fj〉2fj =

∑
j〈f , f̄j〉fj with convergence in L2(�K). Here 

index 2 indicates that the pairing corresponds to the sesquilinear L2-inner product. It 
follows that for each K-finite function F ∈ C∞(K) we have

〈F , ϕ−1(I)〉2 = 〈F ,
∑
j

fj ⊗ f̄j〉2.

For F = fk ⊗ fl this gives 〈F , ϕ−1(I)〉2 = 〈fl , fk〉 =
∫
K
fk(k)fl(k) dk. By continuous 

linearity and density this implies that
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〈F , ϕ−1(I)〉2 =
∫
K

F (k, k) dk (F ∈ C∞(�K × �K)).

We next consider the natural isomorphism ψ from Hξ = H�ξ ⊗ H ∨
�ξ onto End(H�ξ). 

Then it is readily verified that

〈U , ψ−1(I�ξ)〉ξ = tr ξ(ψ(U)) (U ∈ Hξ).

Here the index ξ indicates that the natural sesquilinear inner product induced by the 
inner product on Hξ is taken. We now consider the Schwartz kernel isomorphism Φ̃ from 
C−∞(K, Hξ) onto Hom(C∞(�K, H�ξ), C−∞(�K, H�ξ)). Then Φ̃ is identified with ϕ ⊗ ψ

in a natural way. Thus, for F ∈ C∞(K, Hξ)) we have

〈F , Φ̃−1(I)〉ξ =
∫
�K

tr ξ(ψ(F (�k, �k)) d�k. (9.5)

Identifying Hξ with End(H�ξ) via ψ we agree to rewrite the above expression without 
the ψ. We view C∞(K : ξ) as the space of M = �M × �M -invariants in C∞(K, Hξ). 
Likewise we view C±∞(�K : �ξ) as the space of �M -invariants in C±∞(�K, H�ξ) (for the 
right action of �M on C±∞(�K)). The �M -equivariant inclusion maps and projection 
maps will be denoted by i and P respectively. Then Φ = Φ̃ ◦ i = P ◦ Φ̃ ◦ i, and we find 
that for F ∈ C∞(K : ξ)

〈F , Φ−1(I)〉2 = 〈F , Φ̃−1(I)〉. (9.6)

This implies (9.4) with T = I. To obtain the general formula, we note that for a con-
tinuous linear operator T ∈ End(C∞(�K : �ξ)) the Hermitian adjoint T ∗ is a continuous 
linear operator in End(C−∞(�K : �ξ)) and

Φ
(
(T ∗ ⊗ I)u

)
= T ∗ ◦Φ(u)

(
u ∈ C−∞(K : ξ)

)
.

For u = Φ−1(I) this yields

(T ∗ ⊗ I)Φ−1(I) = Φ(T ∗).

It follows that

〈F , Φ−1(T ∗)〉 = 〈F , (T ∗ ⊗ I)Φ−1(I)〉 = 〈(T ⊗ I)(F ) , Φ−1(I)〉.

Hence, (9.4) follows by application of (9.5) and (9.6). �
Lemma 9.2. Let �P, �Q ∈ P(�A). Then for generic �λ ∈ �a∗

C
,

j(�P × �Q : ξ : λ)(I�ξ) = Φ−1
λ (A(�P : �Q : �ξ : �λ)). (9.7)
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Proof. Put R = �P × �Q as before. Then in the present case of the group, ρRh = 0, so 
that the distribution vector on the left-hand side of (9.7) belongs to C−∞(R : ξ : λ).

It follows from (7.25) applied with Q′ = �P × �P̄ and Q = �P × �Q that

j(�P × �P̄ : ξ : λ) = [I ⊗A(�P̄ : �Q : �ξ∨ : −�λ)] ◦ j(�P × �Q : ξ : λ).

Since A(�P̄ : �Q : �ξ∨ : −�λ) has transpose A(�Q : �P̄ : �ξ : �λ) relative to the bilinear 
pairing C∞(�K : �ξ) ⊗ C∞(�K : �ξ∨) → C, it follows that

Φλ

(
j(�P × �P̄ : ξ : λ)(I�ξ)

)
= Φλ

(
j(�P × �Q : ξ : λ)(I�ξ)

)
◦A(�Q : �P̄ : �ξ : �λ). (9.8)

For �Q = �P̄ the equality (9.7) has been established in [8, Lemma 1]. Combining this 
with (9.8) we find that

A(�P : �P̄ : �ξ : �λ) = Φλ(j(�P × �Q : ξ : λ)(I�ξ)) ◦A(�Q : �P̄ : �ξ : �λ). (9.9)

The intertwining operator on the left-hand side of (9.9) decomposes as the composition

A(�P : �Q : �ξ : �λ) ◦A(�Q : �P̄ : �ξ : �λ),

as an End(C∞(K : ξ))-valued meromorphic function of �λ ∈ �a∗
C
. Using the invertibility 

of the second intertwining operator for generic λ ∈ �a∗
C

we obtain (9.7). �
Corollary 9.3. Let f ∈ C∞(K : ξ). Then for generic �λ ∈ �a∗

C
,

〈f , j(�P × �Q : ξ : −λ̄)(I�ξ)〉 =
∫
�K

tr �ξ
(
[A(�Q : �P : �ξ : �λ) ⊗ I)f ](�k, �k)

)
d �k. (9.10)

Proof. For generic �λ ∈ �a∗
C
, the continuous linear endomorphism T := A(�Q : �P : �ξ : �λ)

of C∞(�K : �ξ) has Hermitian adjoint T ∗ = A(�P : �Q : �ξ : −�λ̄). The result now follows 
by combining Lemma 9.2, with −�λ̄ in place of �λ, and Lemma 9.1. �

The expression on the left-hand side of (9.10) is very closely related to an Eisenstein 
integral for the parabolic subgroup R = �P × �Q, defined as in Definition 8.4. This will 
allow us to express the Eisenstein integral in terms of the group structure of �G.

To be more precise, let ξ be as in (9.2) and let (τ, Vτ ) be a finite dimensional unitary 
representation of K. We recall the definition of the space C(K : ξ : τ) and the definition 
of the linear isomorphism T �→ ψT from C(K : ξ : τ) ⊗ V (ξ) onto A2,M,ξ from (8.11)
and the surrounding text (note that M0 = M).

Since W = {e}, we have

A2,M,ξ = C∞
ξ (M/HM : τM ).

Since V (ξ) = CI�ξ, it follows that the following map is a linear isomorphism;
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f �→ ψf⊗I�ξ , C(K : ξ : τ) �−→ C∞
ξ (M/HM : τM ). (9.11)

It follows from (8.12) that

ψf⊗I�ξ(m
−1) = 〈f(m) , I�ξ〉HS = tr �ξ(f(m)) (m ∈ M),

where the subscript HS means that the Hilbert–Schmidt inner product is taken.

Corollary 9.4. With notation as in Corollary 9.3, let f ∈ C∞(K : ξ : τ). Then

E(�P × �Q : ψf⊗I�ξ : λ)(�x, e) = (9.12)

=
∫
�K

tr �ξ

([(
A(�Q : �P : �ξ : −�λ) ⊗ π�Q,�ξ∨,�λ(�x)

)
f
]
(�k, �k)

)
d�k,

for �x ∈ �G and generic λ ∈ a∗qC.

Proof. We note that M0 = M , so that K∩M0 = M , ξM = ξ and the map i# introduced 
in (4.11) is just the identity map in the present setting. By application of Theorem 8.4
with R = �P × �Q in place of P , we now find, taking into account that ρRh = 0, that the 
Eisenstein integral on the left-hand side of (9.12) equals

〈f , πR,ξ,λ̄(�x, e)j(R : ξ : λ̄)(I�ξ)〉 = 〈f , πR,ξ,λ̄(e, �x−1)j(R : ξ : λ̄)(I�ξ)〉, (9.13)

by H-invariance of j. Here 〈 · , · 〉 stands for the sesquilinear map C∞(K : ξ : τ) ×
C−∞(K : ξ) → Vτ induced by the sesquilinear pairing C∞(K : ξ) × C−∞(K : ξ) → C. 
By equivariance of the pairing, (9.13) equals

〈πR,ξ,−λ(e, �x)f , j(R : ξ : λ̄)(I�ξ)〉 = 〈[I ⊗ π�Q,�ξ∨,�λ(�x)]f , j(R : ξ : λ̄)(I�ξ)〉.

By application of (9.10) we infer that the last displayed expression equals the integral 
on the right-hand side of (9.12). �

We shall now relate the Eisenstein integral in (9.12) to Harish-Chandra’s Eisenstein 
integral for the group. We agree to write

τ1(k)v = τ(k, e)v, and vτ2(k) := τ(e, k−1)v (v ∈ Vτ , k ∈ �K).

Then (τ1, τ2) is a unitary bi-representation of �K in Vτ in the sense that τ1 is a unitary 
left representation and τ2 a unitary right representation of �K in Vτ and these two 
representations commute. Clearly any such bi-representation (τ1, τ2) of �K comes from 
a unique unitary representation τ as above, and τ(k1, k2)v = τ(k1)vτ(k−1

2 ), for v ∈ Vτ

and (k1, k2) ∈ K. Given τ as above, we agree to write τM for the restriction of τ to M . 
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Furthermore, we agree to write τj�M for the restriction of τj to �M , for j = 1, 2. Then 
τM corresponds to the bi-representation (τ1�M , τ2�M ) of �M .

Let C∞(�M : τM ) denote the space of smooth functions ϕ := �M → Vτ transforming 
according to the rule

ϕ(m1mm2) = τ1(m1)ϕ(m)τ2(m2) (m,m1,m2 ∈ �M).

Then it is readily verified that pull-back under the map m : (x, y) �→ xy−1 induces a 
linear isomorphism

m∗ : C∞(�M : τM ) �−→ C∞(M/HM : τM ). (9.14)

The inverse of this isomorphism will be denoted by

ψ �→ �ψ, C∞(M/HM : τM ) �−→ C∞(�M : τM ). (9.15)

By �M × �M -equivariance, it follows that the isomorphism (9.15) restricts to an isomor-
phism

C∞
ξ (M/HM : τM ) � C∞

ξ (�M : τM ). (9.16)

Here the space on the right-hand side is defined as the intersection of C∞(�M : τM ) with 
the space Cξ(�M) ⊗ Vτ , where Cξ(�M) denotes the isotypical component of type ξ for 
the representation L × R of M in C(�M). Furthermore, the space on the left-hand side 
of (9.16) is defined similarly.

Since (9.11) is an isomorphism, it now follows that the following map is a linear 
isomorphism as well,

f �→ �ψf⊗I�ξ , C(K : ξ : τ) �−→ C∞
ξ (�M : τM ).

We now recall the definition of Harish-Chandra’s Eisenstein integral associated with a 
parabolic subgroup �Q ∈ P(�A). Given �ψ ∈ C∞(�M : τ�M ) and �λ ∈ �a∗

C
, we define the 

function �ψ�λ : �M → Vτ by

�ψ�λ(�n�a�m�k) = �a
�λ+ρ�Q �ψ(�m)τ2(�k), (9.17)

for �k ∈ �K, �m ∈ �M , �a ∈ �A and �n ∈ N�Q. The Harish-Chandra Eisenstein integral for 
the group �G is now defined by

EHC(�Q : �ψ : �λ)(�x) =
∫
�K

τ1(�k)−1�ψ�λ(�k�x) d�k, (9.18)

for �λ ∈ �a∗
C

and �x ∈ �G. We will derive a formula for the present type of Eisenstein 
integral, which will allow comparison with (9.12). In the formulation of the following 
lemma, we will use the natural identifications (9.3) and
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C(K : ξ : τ) = (C∞(K : ξ) ⊗ Vτ )K �
(
C∞(�K : �ξ) ⊗ C∞(�K : �ξ∨) ⊗ Vτ

)K
.

Furthermore, we will write tr �ξ as shorthand for the map

tr �ξ ⊗ IVτ
: End(H�ξ) ⊗ Vτ → Vτ .

Lemma 9.5. Let �ξ ∈ �M̂ and put ξ = �ξ ⊗ �ξ∨. Furthermore, let f ∈ C∞(K : ξ : τ) and 
put �ψ = �ψf⊗I�ξ . Then for all �λ ∈ �a∗

C
,

EHC(�Q : �ψf⊗I�ξ : �λ)(�x) =
∫
�K

tr �ξ
(
[ (I ⊗ π�Q,�ξ∨,�λ(�x))f ](�k, �k)

)
d �k. (9.19)

Proof. We agree to write fλ for the unique function in C∞(G : �Q × �Q : ξ : λ) ⊗ Vτ

whose restriction to K equals f .
The function �ψ := �ψf⊗I�ξ ∈ C∞

ξ (�M : τ0
M ) is completely determined by

�ψ(e) = 〈f(e, e) , I�ξ〉HS = tr �ξ[f(e, e)].

In the second expression, we have used the bilinear map (Hξ ⊗ Vτ ) × H̄ξ → Vτ induced 
by the Hilbert–Schmidt inner product on Hξ = End(H�ξ).

We now observe that the function �ψλ defined by (9.17) can be expressed in terms of 
f−λ in the following fashion;

�ψλ(�x) = tr �ξ[f−λ(e, �x)] (�x ∈ �G). (9.20)

It follows from the sphericality of f that

tr �ξ[f−λ(�x�k1,
�y�k2)] = τ1(�k1)−1tr �ξ[f−λ(�x, �y)]τ2(�k2),

for �x, �y ∈ �G and �k1, �k2 ∈ �K. We thus obtain from (9.20) that

τ1(�k)−1�ψ�λ(�k�x) = tr �ξ[f−λ(�k, �k�x)] = tr �ξ
([

(I ⊗ π�Q,�ξ∨,�λ(�x))f
]
(�k, �k)

)
.

Equation (9.19) now follows from (9.18). �
The h-extreme parabolic subgroups in P(A) are the parabolic subgroups of the form 

�P × �P with �P ∈ P(�A). For these parabolic subgroups our Eisenstein integrals es-
sentially coincide with the unnormalized Eisenstein integrals of Harish-Chandra. More 
precisely, the following result is valid.

Corollary 9.6. Let �P ∈ P(�A) and ψ ∈ C∞(M/HM : τ0
M ). Then for all �x, �y ∈ �G we 

have

E(�P × �P : ψ : λ)(�x, �y) = EHC(�P : �ψ : �λ)(�x �y−1), (9.21)

with λ = (�λ, −�λ), as an identity of meromorphic Vτ -valued functions of �λ ∈ �a∗
C
.
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Proof. The space C∞(M/HM : τ0
M ) is spanned by the functions of the form ψf⊗I�ξ , 

where �ξ ∈ �M∧, ξ = �ξ ⊗ �ξ∨ and f ∈ C(K : ξ : τ). By linearity it therefore suffices 
to establish (9.21) for ψ = ψf⊗I�ξ , with �ξ and f as mentioned. Moreover, by right 
H-invariance of the Eisenstein integral on the left-hand side, it suffices to prove the 
result for �y = e. The claim now follows by comparison of (9.12) and (9.19). �
Remark 9.7. In particular, we see that the Eisenstein integral on the left is holomorphic 
as a function of λ ∈ a∗qC. As Σ(�P × �P )− = ∅, this can also be derived by combining 
Theorem 8.4 with Remark 7.9.

Corollary 9.8. With notation as in Corollary 9.3, let f ∈ C∞(K : ξ : τ). Let ψf⊗I�ξ ∈
C∞

ξ (M/HM ; τM ) be defined as in (9.11). Then

E(�P × �Q : ψf⊗I�ξ : λ)(�x, �y) = (9.22)

= EHC(�Q : �ψ[(A(�Q:�P :�ξ:−�λ)⊗I)f ]⊗I�ξ : �λ)(�x �y−1),

for generic �λ ∈ �a∗
C
, λ = (�λ, −�λ) and all �x, �y ∈ �G.

Proof. By right H-invariance of the Eisenstein integral on the left-hand side, it suffices 
to prove the result for �y = e. It follows from (9.12) that

E(�P × �Q : ψf⊗I�ξ : λ)(�x, e) = E(�Q× �Q : ψ[(A(�Q:�P :�ξ:−�λ)⊗I)f ]⊗I�ξ : λ)(�x, e).

The identity now follows from (9.21). �
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Appendix A. Fubini’s theorem for densities

In this appendix our purpose is to establish a Fubini type theorem for repeated inte-
gration in the setting of a Lie group G with two closed subgroups H and L such that 
H ⊆ L. The Fubini theorem concerns repeated integration for densities on the total 
space of the natural fiber bundle

π : L\G → H\G, (A.1)
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with fibers diffeomorphic to H\L. It expresses the integral over the total space as an 
iterated integration, first over the fibers and then over the base space. In case of unimod-
ular groups there is a well known version of such a Fubini theorem involving invariant 
densities on the quotient spaces. In the case of non-unimodular groups such densities do 
not exist. Nevertheless, in this setting an appropriate formulation of iterated integration 
can be given as well.

To describe it, we will first formulate and establish a Fubini theorem for general fiber 
bundles, and then specialize to the above situation.

If V is real linear space of finite dimension n, then by DV we denote the space of 
complex-valued densities on V , i.e., the (complex linear) space of functions λ : ∧n(V ) →
C transforming according to the rule λ(tξ) = |t|λ(ξ), for all t ∈ R and ξ ∈ ∧nV . A density 
λ is said to be positive if λ(ξ) > 0 for all non-zero ξ ∈ ∧nV . By pull-back under the 
natural map V n → ∧nV we see that a density may also be viewed as a map V n → C

transforming according to the rule λ ◦Tn = | detT |λ, for all T ∈ End(V ). This will be 
our viewpoint from now on. Note that DV has dimension 1 over C. If W is a second real 
linear space of the same dimension n and A : V → W a linear map, then pull-back under 
A is the map A∗ : DW → DV defined by

A∗μ = μ ◦An (μ ∈ DW ).

Lemma A.1. Let E, F be finite dimensional real linear spaces. Then DE⊕F � DE ⊗ DF

naturally.

Proof. Let p and q be the dimensions of E and F respectively and put n = p + q. We 
consider the natural isomorphism μ : ∧pE ⊗ ∧qF → ∧n(E ⊕ F ). Given α ∈ DE and 
β ∈ DF , we define α�β : ∧pE⊗∧qF → C by α�β(ξ×η) = λ(ξ)μ(η). We note that this 
definition is unambiguous, and that (α�β) ◦ (t · ) = |t|(α�β), so that (α, β) �→ α�β ◦μ−1

defines a bilinear map from DE ×DF to DE⊕F . The induced map DE ⊗DF → DE⊕F is 
a non-trivial linear map between one dimensional complex linear spaces, hence a linear 
isomorphism. �

From now on we shall identify DE⊕F with DE ⊗DF via the isomorphism given in the 
proof of the above lemma.

The lemma can be generalized to the setting of short exact sequences as follows. Let

0 → E′ i−→ E
p−→ E′′ → 0 (A.2)

be a short exact sequence of finite dimensional real linear spaces of dimensions k, n and 
n − k. We recall that a linear map f : E′′ → E is said to be splitting if p ◦ f = idE′′ . 
Associated with f is an isomorphism i ⊕ f : E ⊕E′′ → E, which by pull-back induces a 
natural isomorphism

(i⊕ f)∗ : DE′ ⊗ DE′′ = DE′⊕E′′
�−→ DE . (A.3)
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Lemma A.2. The isomorphism (A.3) is independent of the splitting map f .

Proof. Let g be a second splitting map. Then (i ⊕ f)∗ − (i ⊕ g)∗ = (i ⊕ (f − g))∗. Now 
f − g maps E′′ into ker p = i(E′) so that i ⊕ (f − g) maps E′ ⊕ E′′ into the subspace 
i(E′) of E. It follows that (i ⊕ (f − g))∗ = 0 so that (i ⊕ f)∗ = (i ⊕ g)∗. �

From now on, given a short exact sequence of the form (A.2) we shall identify elements 
of the spaces DE′ ⊗DE′′ and DE via the isomorphism (i ⊕ f)∗, which is independent of 
the choice of f .

We now turn to manifolds. Let M, N be smooth manifolds and ϕ : M → N a smooth 
map. Then by Tϕ : TM → TN we denote the induced map between the tangent bundles. 
For a given x ∈ M , this map restricts to the tangent map Txϕ : TxM → Tϕ(x)N , which 
will also be denoted by dϕ(x).

By DM we denote the complex line bundle of densities on M . The fiber of this bundle 
at a point x ∈ M is equal to DTxM . The space of continuous densities is denoted by 
Γ(DM ). If dimM = dimN then the smooth map ϕ : M → N induces a pull-back map 
ϕ∗ : Γ(DN ) → Γ(DM ), given by

ϕ∗(μ)x = dϕ(x)∗μϕ(x) (μ ∈ Γ(DN ), x ∈ M).

There is notion of integration of compactly supported continuous densities on manifolds 
for which the substitution of variables theorem is valid. More precisely, if ϕ : M → N is 
a diffeomorphism of smooth manifolds, then

∫
N

μ =
∫
M

ϕ∗(μ) (μ ∈ Γ(N)). (A.4)

Let π : F → B be a smooth fiber bundle. Let DF denote the density bundle on F . 
We may introduce a bundle of fiber densities on F as follows. The map π induces the 
homomorphism Tπ : TF → TB of vector bundles. The kernel K = kerTπ of this bundle 
is a subbundle of TF . Obviously, the fiber of K at p ∈ F may be viewed as the tangent 
space of the fiber Fπ(p) at the point p. The associated bundle p �→ DKp

is a smooth 
complex line bundle on F , which we shall call the bundle of fiber densities on F . We 
shall denote this bundle by DB

F .
On the other hand, the fiber product or pull-back bundle π∗(DB) := F ×π DB of DB

under π is a complex line bundle on F . We shall denote the associated canonical line 
bundle homomorphism π∗(DB) → DB by π̃.

The short exact sequence 0 → K → TF → π∗(TB) → 0 of vector bundles on F
naturally induces a line bundle isomorphism

DB
F ⊗ π∗(DB) � DF , (A.5)
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via which we shall identify elements of these spaces. Here naturality means that for a 
fiber bundle morphism ϕ from π to a bundle π′ : F ′ → B′ with dimF ′ = dimF and 
dimB′ = dimB the following diagram commutes:

DB
F ⊗ π∗(DB) �−→ DF

(Tϕ)∗⊗(Tϕ)∗ ↓ ↓ (Tϕ)∗

DB′

F ′ ⊗ (π′)∗(DB′) �−→ DF ′ .

(A.6)

Let now b ∈ B and let Fb the fiber π−1(b) of F above b. Obviously, the restriction of DB
F

to this fiber is naturally isomorphic to DFb
, the density bundle of the fiber. On the other 

hand, via π̃ the restriction of the bundle π∗(DB) to Fb may be identified with the trivial 
bundle Fb × DTbB . Accordingly, we obtain natural isomorphisms DFb

⊗ DTbB � DF |Fb
, 

and

Γ(DF |Fb
) � Γ(DFb

) ⊗C DTbB .

Integration over the fiber gives a natural linear map

Ib : Γc(DFb
) → C, μ �→

∫
Fb

μ.

By transfer we obtain a natural map Ib ⊗ id : Γc(DF |Fb
) → DTbB . We now define the 

push-forward map π∗ : Γc(DF ) → sect(DB), by

π∗(μ)(b) := (Ib ⊗ id)(μ|Fb
). (A.7)

Here sect(DB) denotes the space of all (not-necessarily continuous) sections of DB .
By the naturality of the constructions and the invariance of integration as formulated 

in (A.4), one readily checks that the notion of push-forward of compactly supported 
densities is invariant under isomorphisms of bundles.

Lemma A.3. Let ϕ be an isomorphism from the fiber bundle π : F → B to a second fiber 
bundle π′ : F ′ → B′ and let ϕ◦ denote the induced diffeomorphism B → B′. Then the 
following diagram commutes:

Γc(DF ′) ϕ∗

−→ Γc(DF )
π′
∗ ↓ ↓ π∗

Γc(DB′) ϕ∗
◦−→ Γc(DB).

We can now establish the following Fubini type theorem for the integration of densities 
over fiber bundles.
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Lemma A.4. The map π∗ maps Γc(DF ) (respectively Γ∞
c (DF )) continuous linearly to 

Γc(DB) (respectively Γ∞
c (DB)). Moreover, for all μ ∈ Γc(DF ),∫

F

μ =
∫
B

π∗(μ). (A.8)

Proof. By using partitions of unity, and invoking invariance of integration, cf. (A.4), 
and Lemma A.3, we may reduce the proof to the case that B is open in Rn and that 
F = B × V , with V an open subset of Euclidean space Rk. In that case the result 
comes to down to continuous and smooth parameter dependence and Fubini’s theorem 
for Riemann integrals of continuous functions. �
Corollary A.5. Let μ be a measurable section of DF . Then the following statements are 
equivalent.

(a) The density μ is absolutely integrable.
(b) For almost every b ∈ B the integral for π∗(μ)b is absolutely convergent and the 

resulting density π∗(μ) is absolutely integrable over B.

If any of these conditions is fulfilled, then (A.8) is valid.

Proof. This follows by reduction to Fubini’s theorem through the use of partitions of 
unity, as in the proof of Lemma A.4. �

We will now apply the above result to the particular setting of a Lie group G with 
closed subgroups H and L such that H ⊆ L. As said at the start of this appendix, this 
setting gives rise to the natural fiber bundle (A.1) with fiber diffeomorphic to L\H.

Let ΔL\G : L → R+ be the positive character given by

ΔL\G(l) = | detAdG(l)g/l|−1 (l ∈ L), (A.9)

where AdG(l)g/l ∈ GL(g/l) denotes the map induced by the adjoint map AdG(l) ∈ GL(g). 
Given a character ξ of L we denote by C(G : L : ξ) the space of continuous functions 
f : G → C transforming according to the rule

f(lx) = ξ(l)f(x),

for x ∈ G and l ∈ L. We denote by M (G) the space of measurable functions G → C and 
by M (G : L : ξ) the space of f ∈ M (G) transforming according to the same rule.

Given f ∈ M (G) and ω ∈ Dg/l, we denote by fω the function G → DL\G defined by

fω(x) = f(x) drx(e)−1∗ω.
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Lemma A.6. Let ω ∈ Dg/l \ {0}. Then the map f �→ fω defines a continuous linear 
isomorphism from C(G : L : ΔL\G) onto Γ(DL\G).

Proof. Write Δ = ΔL\G. In the proof we will use the notation [e] for the image of e
in L\G. Moreover, we will use the canonical identification T[e](L\G) � g/l. Let ω be as 
stated, and let f ∈ C(G : L : Δ). Then for x ∈ G we have fω(x) ∈ DT[x](L\G). Let l ∈ L, 
then

fω(lx) = Δ(l)f(x) drlx([e])−1∗ω

= Δ(l)f(x)drx([e])−1∗ drl([e])−1∗ω

= Δ(l)f(x) drx([e])−1∗Ad(l)∗ω

= fω(x).

It follows that fω factors through a smooth map L\G → DL\G, with fω(x) a density on 
T[x](L\G). Accordingly, fω defines a section of DL\G, which clearly is continuous. The 
bijectivity of the map f �→ fω from C(G : L : Δ) onto Γ(DL\G) is obvious. �

Our next goal is to calculate the push-forward π∗(fω), for f ∈ C(G : L : ΔL\G) and 
ω ∈ Dg/l, and π : L\G → H\G the canonical projection.

We note that π is a fiber bundle with total space F = L\G, base space B = H\G and 
fiber diffeomorphic to L\H. Thus, we have the natural isomorphism (A.5).

If x ∈ G, then the diffeomorphism rFx : F → F, z �→ zx defines an isomorphism of 
fiber bundles over the diffeomorphism rBx defined by right multiplication on B, i.e., the 
following diagram commutes,

F
rFx−→ F

↓ ↓
B

rBx−→ B.

In the sequel we shall use the commutativity of the diagram (A.6) with F = F ′, B = B′

and ϕ = rFx .
In particular, it follows that (drFx )∗ ⊗ (drFx )∗ ∈ End(DB

F ⊗ π∗DB) corresponds to the 
naturally induced automorphism (drFx )∗ of DF .

We fix non-zero elements ωL\G ∈ Dg/l, ωL\H ∈ Dh/l and ωH\G ∈ Dg/h such that

ωL\H ⊗ ωH\G = ωL\G (A.10)

with respect to the identification determined by the short exact sequence 0 → h/l →
g/l → g/h → 0. This short exact sequence may be identified with the short exact 
sequence of tangent spaces
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0 → T[e](L\H) di([e])−→ T[e](L\G) dπ([e])−→ T[e](H\G) → 0,

where i : L\H ↪→ L\G denotes the natural embedding of L\H onto the fiber π−1([e]). 
Accordingly, formula (A.10) may be viewed as an identity of elements associated with 
the decomposition

(DB
F )[e] ⊗ (DB)[e] = (DF )[e].

Lemma A.7. Let ωL\H , ωH\G and ωL\H satisfy (A.10). Then for all h ∈ H and x ∈ G,

drhx([e])−1∗ωL\H = ΔH\G(h)−1 (drhx([e])−1∗ωL\H ⊗ drx([e])−1∗ωH\G
)
, (A.11)

in accordance with the decomposition (DB
F )[hx] ⊗ (DB)[x] = (DF )[hx], corresponding 

to (A.5).

Proof. Let h ∈ H, then drh(e)−1∗(ωH\G) = Ad(h)∗ωH\G = ΔH\G(h)−1ωH\G and we 
see that

drh([e])−1∗ωL\G = ΔH\G(h)−1 (drh([e])−1∗ωL\H ⊗ ωH\G
)
. (A.12)

Let now x ∈ G, then in view of the G-equivariance of the fiber bundle F → B for-
mula (A.11) follows by application of drx([h])−1∗ to both sides of the identity (A.12). �
Theorem A.8. Let ωL\G, ωH\G and ωL\H satisfy (A.10). Let ϕ ∈ M (G : L : ΔL\G) and 
let ϕωL\G be the associated measurable density on L\G. Then the following assertions 
(a) and (b) are equivalent.

(a) The density ϕωL\G is absolutely integrable.
(b) There exists a left H-invariant subset Z of measure zero in G such that

(1) for every x ∈ G \ Z , the integral

Ix(ϕ) =
∫

L\H�[h]

ΔH\G(h)−1ϕ(hx) drh([e])−1∗ωL\H (A.13)

is absolutely convergent;
(2) the function I(ϕ) : x �→ Ix(ϕ) belongs to M (G : H : ΔH\G);
(3) the associated density I(ϕ)ωH\G is absolutely integrable.

Furthermore, if any of the conditions (a) and (b) are fulfilled, then∫
L\G

ϕωL\G =
∫

H\G

I(ϕ)ωH\G . (A.14)
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Proof. We retain the notation introduced before the statement of the theorem. Then for 
x ∈ G and h ∈ H the associated density at Lhx is given by

ϕωL\G(hx) = ΔL\H(h)−1ϕ(hx)
(
drhx([e])−1∗ωL\H ⊗ drx([e])−1∗ωH\G

)
, (A.15)

in accordance with the decomposition corresponding to (A.5).
We will deduce the result from applying Corollary A.5 to the fiber bundle given by 

the canonical projection π : F := L\G → B := H\G and to the measurable density 
μ := ϕωL\G on F .

The crucial step is to prove the claim that for x ∈ G, the integral for the push-forward 
π∗(ϕωL\G)(Hx) converges absolutely if and only if the integral for Ix(ϕ) converges abso-
lutely. We will first establish this claim.

It follows from (A.7) that the push-forward of ϕωL\G under π is the density on H\G
given by the following fiber integral

π∗(ϕωL\G)(Hx) =

⎛⎜⎝ ∫
π−1(Hx)

νx

⎞⎟⎠⊗ drx([e])−1∗ωH\G, (A.16)

where π−1(Hx) = rx(L\H), and where νx is the density on rx(L\H) given by

νx(Lhx) = ΔL\H(h)−1ϕ(hx) drhx([e])−1∗ωL\H .

The convergence and value of this integral depends on x through its class Hx. We now 
observe that rx defines a diffeomorphism from the fiber π−1(He) onto the fiber π−1(Hx). 
Moreover,

[r∗xνx](Lh) = drx([h])−1∗νx(Lhx) = ΔL\H(h)−1ϕ(hx) drh([e])−1∗ωL\H .

Thus, Ix(ϕ) equals the integral of r∗xνx over L\H, and by invariance of integration we 
see that it converges absolutely if and only if the integral for π∗(ϕωL\G)(Hx) converges 
absolutely. Moreover, in case of convergence we have

Ix(ϕ) =
∫

L\H

r∗x(νx) =
∫

π−1(Hx)

νx,

so that

π∗(ϕωL\G)(Hx) = Ix(ϕ) drx([e])−1∗ωH\G = I(ϕ)ωH\G(Hx). (A.17)

This establishes the claim.
The equivalence of (a) and (b) now readily follows from the similar equivalence in 

Corollary A.5. Finally, if any of these conditions is fulfilled, both are, and in view 
of (A.17), the identity (A.14) follows from the final assertion of Corollary A.5. �
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