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Abstract We introduce and study the vanishing homology of singular projective
hypersurfaces. We prove its concentration in two levels in case of 1-dimensional sin-
gular locus �, and moreover determine the ranks of the nontrivial homology groups.
These two groups depend on the monodromy at special points of � and on the effect
of the monodromy of the local system over its complement.
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1 Introduction and results

The homology of a projective hypersurface V ⊂ P
n+1 is known for smooth V whereas

only few results are available in the singular setting. The classical Lefschetz Hyper-
plane Theorem (LHT) yields that the inclusion of spaces induces an isomorphism
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566 D. Siersma, M. Tibăr

Hk(V, Z) ∼−−→ Hk(P
n+1, Z)

for k < n and an epimorphism for k = n, independently on the singular locus Sing V .
Since V is a CW-complex of dimension 2n, the remaining task is to find the homology
groups Hk(V, Z) for k � n.

In case of a smooth hypersurface Vn,d all homology groups appear to be free and
by Poincaré and Lefschetz duality1: Hk(Vn,d , Z) ∼= Hk(P

n, Z) if k �= n and the
rank of Hn(Vn,d , Z) follows from the Euler characteristic computation χ(Vn,d) =
n + 2− [1+ (−1)n+1(d − 1)n+2]/d. Smooth projective complete intersections have
been studied by Libgober and Wood [11].

In the 1980s Dimca studied the case of isolated singularities [2,4]; we shall discuss
his main result [4, Theorem 4.3] in Sect. 2.

Our paper focuses on the first unknown case, dim Sing V = 1. We approach the
singular hypersurface V by comparing its integer homology to that of a smooth hyper-
surface of the same degree, as an intermediate step towards computing the homology
of singular hypersurfaces. A different viewpoint, based on Griffiths cohomological
techniques, has been taken by Hulek and Kloosterman in the study of elliptic three-
folds [7].

We therefore introduce and study the “vanishing homology” of V , as follows.

Definition 1.1 Let f = 0 be the defining equation of V ⊂ P
n+1 as a reduced hyper-

surface, where d = deg f . Consider the following one-parameter smoothing of degree
d, Vε = { fε = f + εhd = 0}, where hd denotes a general homogeneous polynomial
of degree d. Let

V� = {(x, ε) ∈ P
n+1×� : f + εhd = 0}

denote the total space of the pencil, where V0 = V ⊂ P
n+1×{0} and � is a small

enough disk centered at 0 ∈ C such that Vε is non-singular for all ε ∈ �∗. Let
A = { f = hd = 0} be the axis of the pencil and let π : V� → � denote the
projection. We define

H�∗ (V ) = H∗(V�, Vε; Z)

and call it the vanishing homology of V .

The genericity of hd ensures the existence of small enough disks � as in the above
definition, see e.g. [18, Proposition 2.2]. Note thatV� retracts to V , thus the vanishing
homology compares V to the smooth hypersurface Vε of the same degree. Since all
smooth hypersurfaces of fixed degree are homeomorphic, the vanishing homology
does not depend on the particular smoothing of degree d, it is thus an invariant of V .

With the vanishing homologywe recoverDimca’s result for isolated singularities [4,
Theorem 4.3], see Propositions 2.2 and 7.7.

Our first result, Theorem 4.1, is that the vanishing homology H�∗ (V ), in case
dim Sing V = 1, is concentrated in dimensions n + 1 and n + 2 only.

1 See [2] for details.
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By the exact sequence of the pair (V�, Vε), the concentration of the vanishing
homology implies the following isomorphisms:

Hk(V, Z) � Hk(Vn,d , Z) � Hk(P
n, Z) for k �= n, n + 1, n + 2.

In the second part of the paper we investigate the relations among the remaining
homology groups Hk(V, Z) (i.e. k = n, n + 1, n + 2) and the vanishing homology,
and we single out remarkable particular cases.

Our main results in Sect. 6 are formulas for the (ranks of the) possibly non-trivial
groups H�

n+1(V ) and H�
n+2(V ). They depend on the information about local isolated

or special non-isolated singularities, the properties of the curve part of Sing V , the
transversal singularity types and the monodromies along loops in the transversal local
systems. The singular locus Sing V has a finite set R of isolated points and finitely
many curve branches. Each such branch �i of Sing V has a generic transversal type
(of transversal Milnor fibre F�

i and Milnor number denoted by μ�
i ) and the axis A

cuts it at a finite set of general points Pi . It also contains a finite set Qi of points
with non-generic transversal type, which we call special points, and we denote by
Aq the local Milnor fibre at q ∈ Q. At each point q ∈ Qi there are finitely many
locally irreducible branches of the germ (�i , q), we denote by γi,q their number and
let γi = ∑

i∈Qi
γi,q (see Sect. 4.1 for the notations).

Our Theorem 6.1 determines H�
n+2(V ) as an intersection of local and global con-

tributions in a reference space consisting of the direct sum of the homology of the
transversal fibres. As a consequence it tells that the (n +2)th vanishing Betti number
is bounded by the sum of all Milnor numbers of transversal singularities, taken over
all irreducible 1-dimensional components of Sing V , and each special singular point
on Sing V with non-trivial transversal monodromy decreases this Betti-number.

Corollary 6.5 (see also Example 7.3) tells that if for each irreducible 1-dimensional
component �i of Sing V we have at least one local special singularity with rank zero
(n −1)th homology group, then the vanishing homology of V is free, concentrated in
dimension n + 1 only, and the corresponding Betti number is given by the following
formula:

bn+1(V�, Vε) =
∑

i

(νi + γi + 2gi − 2)μ�
i + (−1)n

∑

q∈Q

(χ(Aq) − 1) +
∑

r∈R

μr ,

where Q = ⋃
i Qi , νi = # Pi , μr is the Milnor number of the isolated singularity

germ (V, r), and gi is the genus of �i (see Sect. 4.5 for the meaning of the genus in
case of singular �i ).

In our proofs we use in particular the detailed construction of a CW-complex model
of the pair (V�, Vε)which is done in Sects. 4.4 and 4.5.We also use the full strength of
the results on local 1-dimensional singularities found by Siersma [14–17], cf. also [8,
20], which involve the study of the local system of transversal Milnor fibres.

We provide several examples in Sect. 7. In certain cases we can prove the freeness
of the (n +1)th vanishing homology group. We also show an example where the
homology of V overQmay be computed via our formulas for the vanishing homology.
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Let us finally mention a couple of recent applications. The 1-dimensional locus
case appeared recently in work of Frühbis-Krüger and Zach [6,21]. They have stud-
ied, following work by Damon and Pike [1], the vanishing cycles of a certain class of
smoothable isolated Cohen–Macaulay codimension 2 singularities. As Tjurina trans-
forms yield non-isolated singularities which can be studied with the methods of our
paper, they could obtain in this way more detailed insight over the vanishing topology
of a certain class of isolated determinantal singularities. Also recently we have com-
puted the homology of a local Milnor fibre via admissible deformations [19] by using
the approach of this paper.

2 Vanishing homology in case of isolated singularities

Throughout this paper we use homology over Z unless otherwise stated. Let V =
{ f = 0} ⊂ P

n+1 be a hypersurface of degree d with singular locus consisting of a
finite set of points R. Since V has only isolated singularities, the genericity of the axis
A = { f = hd = 0} of the pencil π : V� → � just means that A avoids R. It turns
out (see also [18, Section 5]) that V� is non-singular and that the projection π has
isolated singularities precisely at the points of R. Given some ball B ⊂ P

n+1×�, we
shall denote the intersection B ∩ V� simply by B, for the sake of simplicity.

For small enough balls Br , at each point r ∈ R, the homotopy retraction within the
fibration π yields the isomorphism:

H∗(V�, Vε) �
⊕

r∈R

H∗(Br , Br ∩ Vε),

where Br ∩ Vε is the Milnor fibre of the isolated hypersurface singularity germ (V, r).
The relative homology H∗(Br , Br ∩ Vε) is concentrated in dimension n + 1 and
Hn+1(Br , Br ∩ Vε) is isomorphic to the Milnor lattice Lr of the hypersurface germ
(V, r), thus isomorphic to Z

μr, where μr is the Milnor number of (V, r). We get the
following conclusion:

Lemma 2.1 If dim Sing V � 0 then

H�
k (V ) = 0 if k �= n + 1,

H�
n+1(V ) =

⊕

r∈R

Lr .

From the long exact sequence of the pair (V�, Vε)we also obtain the following 5-terms
exact sequence:

0 → Hn+1(Vε) → Hn+1(V ) →
⊕

r∈R

Lr
	n−−→ L → Hn(V ) → 0,

where the map 	n is identified to the boundary map Hn+1(V�, Vε) → Hn(Vε) and
L = Hn(Vε) is the intersection lattice of the middle homology of the smooth hyper-
surface of degree d. We get the integer homology of V as follows:
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Proposition 2.2 (a) Hk(V ) � Hk(P
n) for k �= n, n + 1,

(b) Hn+1(V ) � Hn+1(P
n)⊕ker	n,

(c) Hn(V ) � coker	n.

This is strikingly similar to Dimca’s result [2, Theorem 2.1], [4, Theorem 5.4.3],
although formulated and proved in different terms. As Dimca observed in [2], we also
point out here that the relation between vanishing homology and absolute homology
is encoded by the morphism 	n , which is difficult to identify from the equation of
V . We send the reader to Proposition 7.7 for our extension of this result in case
dim Sing V = 1.

3 Local theory of 1-dimensional singular locus

We shall need several facts from the local theory of singularities with a 1-dimensional
singular set. We recall them here, following [16], see also the survey [17].

We consider a holomorphic function germ f : (Cn+1, 0) → (C, 0) with singular
locus � of dimension 1. Let � = �1∪ · · · ∪�r be the decomposition into irreducible
curve components. Let F be the local Milnor fibre of f . The homology H̃∗(F) is
concentrated in dimensions n − 1 and n, namely Hn(F) = Z

μn, which is free, and
Hn−1(F) which can have torsion.

There is a well-defined local system on �i \{0} having as fibre the homology of
the transversal Milnor fibre H̃n−1(F�

i ), i.e., F�
i is the Milnor fibre of the restriction

of f to the transversal hyperplane section at some x ∈ �i \{0}, which is an isolated
singularity whose equisingularity class is independent of the point x . Thus H̃∗(F�

i ) is
concentrated in dimension n −1. On this group there acts the local system monodromy
(also called vertical monodromy):

Ai : H̃n−1(F�
i ) → H̃n−1(F�

i ).

As explained in [16], one considers a tubular neighborhood N = ⊔r
i=1Ni of the link

� ∩ S2n+1
ε of � in S2n+1

ε and decomposes the boundary ∂ F of the Milnor fibre as
∂ F = ∂1F ∪∂2F , such that ∂2F = ∂ F ∩N and that ∂1F ∩∂2F retracts to the boundary
∂N. Then ∂2F = ⊔r

i=1 ∂2Fi , where ∂2Fi = ∂ F ∩ Ni .
The homology groups of ∂2F are related to the local system monodromies Ai in

the following way. Each boundary component ∂2Fi is fibered over the link of �i with
fibre F�

i . TheWang sequence of this fibration yields the following non-trivial part, for
n � 3:

0 → Hn(∂2Fi ) → Hn−1(F�
i )

Ai −I−−−→ Hn−1(F�
i ) → Hn−1(∂2Fi ) → 0. (1)

In this sequence the following two homology groups play a crucial role: Hn(∂2F) =⊕r
i=1 ker(Ai − I ) and Hn−1(∂2F) ∼= ⊕r

i=1 coker(Ai − I ). The first group is free, the
second one can have torsion, and they are isomorphic up to torsion. For n = 2 there
is an adapted interpretation of this sequence, cf. [16, Section 6].

What we will actually need in the following is a relative version of this Wang
sequence. Let E�

i be the transversal Milnor neighborhood containing the transversal
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fibre F�
i ; it is homeomorphic to a 2n-ball and hence contractible. Let ∂2Ei denote the

union of such transversal Milnor neighbourhoods along the link �i ∩ S2n+1
ε ; this may

be identified with the tubular neighborhood Ni , which retracts to the link of �i . We
then have:

Lemma 3.1 For n � 2,

0 → Hn+1(∂2Ei , ∂2Fi ) → Hn(E�
i , F�

i )

Ai −I−−−→ Hn(E�
i , F�

i ) → Hn(∂2Ei , ∂2Fi ) → 0

is an exact sequence, and

Hn+1(∂2E, ∂2F) =
r⊕

i=1

ker(Ai − I ),

Hn(∂2E, ∂2F) ∼=
r⊕

i=1

coker(Ai − I ).

Proof For n > 2 the statement follows immediately from the above Wang sequence
(1) and the definitions of E�

i and ∂2Ei . One observes that n = 2 is no longer a special
case like it was in the absolute setting [see the remark after (1)]. �
The non-trivial part of the long exact sequence of the pair (F, ∂2F) is the following
6-terms piece. More precisely, we need the following result:

Proposition 3.2 ([16]) The sequence

0 → Hn+1(F, ∂2F) → Hn(∂2F) → Hn(F)

→ Hn(F, ∂2F) → Hn−1(∂2F) → Hn−1(F) → 0

is exact. Moreover

Hn+1(F, ∂2F) ∼= Hn−1(F)free and Hn(F, ∂2F) ∼= Hn(F)⊕ Hn−1(F)torsion.

4 The vanishing neighbourhood of the projective hypersurface

We give here the necessary constructions and lemmas that we shall use in the proof
of the announced vanishing theorem:

Theorem 4.1 If dim Sing V � 1 then H�
j (V ) = 0 for all j �= n + 1, n + 2.

Let V = { f = 0} ⊂ P
n+1 denote a hypersurface of degree d with singular locus �̂ of

dimension one, more precisely �̂ consists of a union � = ⋃
i �i ∪ R of irreducible

projective curves �i and of a finite set of points R.
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We recall that we have denoted by A = { f = hd = 0} the axis of the pencil
π : V� → � defined in Introduction. One considers the polar locus2 of the map
(hd , f ) : Cn+2 → C

2 and since this is a homogeneous set one takes its image in
P

n+1 which will be denoted by �(hd , f ). Let us recall from [18] the meaning of
“general” for hd in this setting. By using the Veronese embedding of degree d, we
find a Zariski open set O of linear functions in the target such that whenever g ∈ O

then its pull-back is a general homogeneous polynomial hd defining a hypersurface
H = {hd = 0} which is transversal to V in the stratified sense, i.e. after endowing
V with some Whitney stratification, of which the strata are as follows: the isolated
singular points {{r} : r ∈ R} of V and the point-strata {{q} : q ∈ Q} in �, the
components of �\ Q and the open stratum V \�̂. Such hd will be called general.
This definition implies that A intersects �̂ at general points, in particular does not
contain any points of Q ∪ R. It was shown in [18, Lemma 5.1] that the space V� has
isolated singularities: SingV� = (A ∩ �)×{0}, and that π : V� → � is a map with
1-dimensional singular locus Sing (π) = �̂×{0}. One of the key preliminary results
is the following supplement to [18, Lemma 5.2], which extends the proof in loc.cit.
from Euler characteristic to homology3:

Lemma 4.2 If hd is general then �p(hd , f ) = ∅ at any point p ∈ A×{0}. In
particular, for a small enough ball Bp centered at p, the local relative homology is
trivial, i.e.

H∗(Bp, Bp ∩ Vε) = 0.

Proof The first claim has been proved in [18, (12)]. Let us show here the second one.
The notation Bp stands for the intersection ofV� with a small ball in some chosen affine
chartCn+1×� of the ambient space P

n+1×�. In particular Bp is of dimension n +1.
Consider the map (π, hd) : Bp → �×�′. Consider the germ of the polar locus of this
map at p, denoted by�(π, ĥd), where ĥd is the de-homogenization of hd in the chosen
chart. It follows from the definition of the polar locus that some point (x, ε) ∈ V�,
where ε = − f (x)/hd(x), is contained in �(π, hd)\({ f = 0} ∪ {hd = 0}) if and
only if x ∈ �( f, hd)\({ f = 0}∪ {hd = 0}). By the first statement, �( f, hd) is empty
at p. The absence of the polar locus implies that Bp ∩ Vε is homotopy equivalent (by
deformation retraction) to the space Bp ∩ Vε ∩ {hd = 0}. The latter is the slice by
ε = constant of the space V� ∩ {hd = 0} = { f = 0}×�, which is a product space.
Since this is homeomorphic to the complex link of this space and a product space has
contractible complex link, we deduce that Bp ∩ Vε is contractible too. Since Bp is
contractible itself, we get our claim. �

2 The polar locus of a map (h, f ) is defined as Sing (h, f )\(Sing h ∪ Sing f ).
3 A related result was obtained in [12]. Like in case of [12], the proof actually works for any singular locus
Sing V and any general pencil.
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4.1 Notations

Let us assume for the moment that � is irreducible and discuss the reducible case at
the end of Sect. 5.2. Let g be its genus, in the sense of the definition given in Sect. 4.5.
We use the following notations:

P = A ∩ �, the set of axis points of �.
Q = the set of special points on �.
R = the set of isolated singular points.
�∗ = �\(P ∪ Q).
Y = small enough tubular neighborhood of �∗ in V�.
Bp, Bq , Br are small enough Milnor balls within V� ⊂ P

n+1×� at the points
p ∈ P , q ∈ Q, r ∈ R respectively.
BP = ⊔

p Bp, BQ = ⊔
q Bq and BR = ⊔

r Br .
π� : Y → �∗ is the projection of the tubular neighborhood.

Let ν = # P be the number of axis points. At any special point q ∈ Q, let Sq be the
index set of locally irreducible branches of the germ (�, q), and let γ = ∑

q∈Q # Sq .
By homotopy retraction and by excision we have

H∗(V�, Vε) � H∗(Y∪ BP ∪ BQ, Vε ∩ Y∪ BP ∪ BQ) ⊕
⊕

r∈R

H∗(Br , Vε ∩ Br ). (2)

We introduce the following shorter notations:

X = BP  BQ, A = Vε ∩ X, B = Vε ∩ Y, Z = X ∩ Y, C = A ∩ B,

(Xp,Ap) = (Bp, Vε ∩ Bp), (Xq ,Aq) = (Bq , Vε ∩ Bq).

In the new notations, the first direct summand of (2) is H∗(X ∪ Y,A ∪ B), thus (2)
writes as follows:

H∗(V�, Vε) � H∗(X ∪ Y,A ∪ B) ⊕
⊕

r∈R

H∗(Br , Vε ∩ Br ). (3)

Note that each direct summand H∗(Br , Vε ∩ Br ) is concentrated in dimension n + 1
since it identifies to theMilnor lattice of the isolated singularities germs (V0, r), where
μr denotes its Milnor number. This aspect was treated in Sect. 1 in case of isolated
singularities. We shall therefore deal from now on with the first term in the direct sum
of (2).

We next consider the relative Mayer–Vietoris long exact sequence

· · · → H∗(Z,C) → H∗(X,A)⊕ H∗(Y,B) → H∗(X ∪ Y,A ∪ B)
∂s−→ · · · (4)

of the pair (X ∪ Y,A ∪ B) and we compute in the following each term of it.
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4.2 The homology of (X,A)

One has the direct sum decomposition

H∗(X,A) �
⊕

p

H∗(Xp,Ap) ⊕
⊕

q

H∗(Xq ,Aq)

sinceX is a disjoint union. The triviality H∗(Xp,Ap) = 0 follows by Lemma 4.2. The
pairs (Xq ,Aq) are local Milnor data of the germs (V, q) with 1-dimensional singular
locus and therefore the relative homology H∗(Xq ,Aq) is concentrated in dimensions
n and n + 1.

4.3 The homology of (Z,C)

The pair (Z,C) is a disjoint union of pairs localized at points p ∈ P and q ∈ Q. For
axis points p ∈ P we have a unique pair (Zp,Cp) as bundle over the link of � at p
with fibre the transversal data (E�

p , F�
p ), in the notations of Sect. 3. For the non-axis

points q ∈ Q we have one contribution for each locally irreducible branch of the germ
(�, q). Let Sq be the index set of all these branches at q ∈ Q. We get the following
decomposition:

H∗(Z,C) �
⊕

p∈P

H∗(Zp,Cp) ⊕
⊕

q∈Q

⊕

s∈Sq

H∗(Zs,Cs). (5)

More precisely, one such local pair (Zs,Cs) is the bundle over the corresponding
component of the link of the curve germ � at q having as fibre the local transversal
Milnor data (E�

s , F�
s ). In the notations of Sect. 3, we thus have ∂2Aq = ⊔

s∈Sq
Cs .

The relative homology groups in the above decomposition (5) depend on the vertical
monodromy via the Wang sequence of Lemma 3.1, as follows:

0 → Hn+1(Zs,Cs) → Hn(E�, F�)

As−I−−−→ Hn(E�, F�) → Hn(Zs,Cs) → 0.
(6)

Note that here the transversal data is independent of the points q or the index s since
�∗ is connected and therefore the transversal fibre is uniquely defined. However the
vertical monodromies As depend of s ∈ Sq . From the above and from Lemma 4.2 we
get:

Lemma 4.3 At points q ∈ Q, for each s ∈ Sq one has

Hk(Zs,Cs) = 0, k �= n, n + 1,

Hn+1(Zs,Cs) ∼= ker(As − I ), Hn(Zs,Cs) ∼= coker(As − I ).

At axis points p ∈ P and more generally, at any point p such that Ap = I , one has
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574 D. Siersma, M. Tibăr

Hk(Zp,Cp) = 0, k �= n, n + 1,

Hn+1(Zp,Cp) ∼= Hn(Zp,Cp) ∼= Hn(E�, F�) = Z
μ�

.

Proof The first statement follows from theWang sequence (6) and since Hk(E�, F�)

is concentrated in k = n. The last statement follows because the axis points p ∈ P
are general points of � and hence the local vertical monodromy Ap is the identity. �
We conclude that H∗(Z,C) is concentrated in dimensions n and n + 1 only.

4.4 The CW-complex structure of (Z,C)

The pair (Zs,Cs) has moreover the following structure of a relative CW-complex, up
to homotopy. Each bundle over some circle link can be obtained from a trivial bundle
over an interval by identifying the fibres above the end points via the geometric vertical
monodromy As . In order to obtain Zs from Cs one can start by first attaching n-cells
c1, . . . , cμ� to the fibre F� in order to kill the μ� generators of Hn−1(F�) at the
identified ends, and next by attaching (n +1)-cells e1, . . . , eμ� to the preceding n-
skeleton. The attaching of some (n +1)-cell is as follows: consider some n-cell a of
the n-skeleton and take the cylinder I ×a as an (n +1)-cell. Fix an orientation of the
circle link, attach the base {0}×a over a, then follow the circle bundle in the fixed
orientation by themonodromy As and attach the end {1}×a over As(a). At the level of
the cell complex, the boundarymap of this attaching identifies to As − I : Z

μ� → Z
μ�
.

4.5 The CW-complex structure of (Y,B)

For technical reasons we introduce one more puncture on �. Let us therefore define
the total set of punctures T = P  Q  {y}, where y is a general point of �, then
redefine �∗ = �\T by considering the new puncture y.

Let n : �̃ → � be the normalization map. Then we have the isomorphism �∗ =
�\T � �̃\n−1(T ).We choose generators ofπ1(�

∗, z) for some base point z ∈ �∗ as
follows: first the 2g loops (called genus loops in the following) which are generators
of π1(�̃, n−1(z)), where g denotes the genus of the normalization �̃, and next by
choosing one loop for each puncture of P and of Q. The total set of loops is indexed
by the set T ′ = T \{y}. Let us denote by W the set of indices for the union of T ′ with
the genus loops, and therefore # W = 2g+ν+γ , where ν = # P and γ = ∑

q∈Q # Sq

(recalling the notations in Sect. 4.1). By enlarging the “hole” defined by the puncture y,
we retract �∗ to the chosen bouquet configuration of non-intersecting loops, denoted
by �. The number of loops is 2g + ν + γ . Note that ν > 0 since there must be at least
d “axis points”.

The pair (Y,B) is then homotopy equivalent (by retraction) to the pair (π−1
� (�),B∩

π−1
� (�)). We endow the latter with the structure of a relative CW-complex as we did

with (Z,C) in Sect. 4.4, namely for each loop the similar CW-complex structure as
we have defined above for some pair (Zs,Cs), see Fig. 1. The difference is that the
pairs (Zs,Cs) are disjoint whereas in �∗ the loops meet at a single point z. We thus
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Fig. 1 Retraction of the
surface �∗

z

take as reference the transversal fibre F� = B ∩ π−1
� (z) above the point z, namely

we attach the n-cells (thimbles) only once to this single fibre in order to kill the μ�
generators of Hn−1(F�). The (n +1)-cells of (Y,B) correspond to the fibre bundles
over the loops in the bouquet model of �∗. Over each loop, one attaches a number μ�
of (n +1)-cells to the fixed n-skeleton described before, more precisely one (n +1)-
cell over one n-cell generator of the n-skeleton. We extend the notation (Z j ,Cj ) to
genus loops, although they are not contained in (Z,C).

The attaching map of the (n +1)-cells corresponding to the bundle over some loop
can be identified with Aj − I : Z

μ� → Z
μ�
, where the local system monodromies

Aj corresponding to loops may not be local monodromies, and where Z
μ�

is the
homology group Hn−1(F�) of the transversal fibre over z and hence the same for
each loop.

From this CW-complex structure we get the following precise description in terms
of the local monodromies of the transversal local system:

Lemma 4.4 • Hk(Y,B) = 0 if k �= n, n + 1,
• Hn(Y,B) � Z

μ�
/〈Im (Aj − I ) : j ∈ W 〉,

• Hn+1(Y,B) is free of rank (2g+ν+γ −1)μ�+rank Hn(Y,B) � (2g+ν+γ )μ�,
• Hn+1(Y,B) naturally contains

⊕
j∈W Hn+1(Z j ,Cj ) as a direct summand,

• χ(Y,B) = (−1)n−1(2g + ν + γ − 1)μ�.

Proof The relative CW-complex model of (Y,B) contains only cells in dimension
n and n + 1. At the level n + 1, the chain group is generated by all (n +1)-cells
corresponding to elements of W . Then Hn+1(Y,B) identifies to the kernel of the
boundary map ∂ in the second row of the following commuting diagram of exact
sequences [provided by Lemma 3.1 and by (6)], where the vertical arrows are induced
by inclusion:
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0 � Hn+1(Z j ,C j ) ⊂ � Hn(E�
j , F�

j )
∂j� Hn(E�

j , F�
j ) � Hn(Z j ,C j ) � 0

0 � Hn+1(Y,B)
�

⊂�
⊕

j∈W

Hn(E�
j , F�

j )

�
∑

j∈W

∂j

� Hn(E�
j , F�

j )

=
�

� Hn(Y,B)
�

� 0.

(7)
For any j ∈ W we get that the first vertical arrow is injective. By taking the direct

sum over j ∈ W in the left hand commutative square of (7), we get an injective map⊕
j∈W Hn+1(Z j ,Cj ) ↪→ Hn+1(Y,B). It follows that the image is a direct summand.
Counting the ranks in the lower exact sequence yields the above claimed formula

for χ . �

5 Concentration of the vanishing homology. Proof of Theorem 4.1

Lemma 4.3, Sect. 4.2 and Lemma 4.4 show that the terms H∗(X,A), H∗(Y,B) and
H∗(Z,C) of the Mayer–Vietoris sequence (4) are concentrated in dimensions n and
n + 1 only, which fact implies the following result:

Proposition 5.1 The relative Mayer–Vietoris sequence (4) is trivial except for the
following 7-terms sequence:

0 → Hn+2(X ∪ Y,A ∪ B) → Hn+1(Z,C)

→ Hn+1(X,A)⊕ Hn+1(Y,B) → Hn+1(X ∪ Y,A ∪ B)

→ Hn(Z,C)
j−→ Hn(X,A)⊕ Hn(Y,B) → Hn(X ∪ Y,A ∪ B) → 0.

(8)

From Proposition 5.1 and (3) it follows that the vanishing homology H∗(V�, Vε) is
concentrated in dimensions n, n + 1, n + 2.

We pursue by showing that Hn(V�, Vε) = 0, i.e. that the last term of (8) is zero.
We need the relative version of the exact sequence of Proposition 3.2, which appears
to have an important overlap with our relative Mayer–Vietoris sequence.

Proposition 5.2 For any q ∈ Q, the sequence

0 → Hn+1(Aq , ∂2Aq) →
⊕

s∈Sq

Hn+1(Zs,Cs) → Hn+1(Xq ,Aq)

→ Hn(Aq , ∂2Aq) →
⊕

s∈Sq

Hn(Zs,Cs) → Hn(Xq ,Aq) → 0

is exact for n � 2. Moreover we have

Hn+1(Aq , ∂2Aq) ∼= Hn−1(Aq)free and

Hn(Aq , ∂2Aq) ∼= Hn(Aq)⊕ Hn−1(Aq)torsion.
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Proof Note that we have the following coincidence of objects which have different
notations in the projective setting of this section and in the local setting of Sect. 3:
Aq = F , ∂2Aq = ∂2F .

We also have the isomorphisms H∗+1(Xq ,Aq) = H̃∗(Aq) since Xq is con-
tractible, then H∗(∂2Aq) = ⊕

s∈Sq
H∗(Cs) by definition, and for k > 2, Hk(Cs) =

Hk+1(Zs,Cs), since Zs contracts to a circle. We use Proposition 3.2 and check that,
like in Lemma 3.1 on another (but similar) relative situation, the case n = 2 does not
give any problem for the exactness of the above sequence. �

5.1 Surjectivity of j

We focus on the following map which occurs in the 7-term exact sequence (8):

j = j1⊕ j2 : Hn(Z,C) → Hn(X,A)⊕ Hn(Y,B). (9)

5.1.1 The first component j1 : Hn(Z,C) → Hn(X,A)

Note that, as shown above, we have the following direct sum decompositions of the
source and the target:

Hn(Z,C) =
⊕

p∈P

Hn(Zp,Cp) ⊕
⊕

q∈Q

⊕

s∈Sq

Hn(Zs,Cs)⊕ Hn(Zy,Cy),

Hn(X,A) =
⊕

q∈Q

Hn(Xq ,Aq)⊕ Hn(Xy,Ay).

The terms corresponding to the points p ∈ P are mapped by j1 to zero since
Hn(Xp,Ap) = 0 by Lemma 4.2. Next, as shown in Proposition 5.2, at the special
points q ∈ Q we have surjections

⊕
s∈Sq

Hn(Zs,Cs) → Hn(Xq ,Aq) and moreover
Hn(Zy,Cy) → Hn(Xy,Ay) is an isomorphism. This shows that the morphism j1 is
surjective.

5.1.2 The second component j2 : Hn(Z,C) → Hn(Y,B)

Both sides are described with a relative CW-complex as explained in Sect. 4.5. At the
level of n-cells there are μ� n-cell generators for each p ∈ P , and the same for each
s ∈ Sq and any q ∈ Q. Each of these generators is mapped bijectively to the single
cluster of n-cell generators attached to the reference fibre F� (which is the fibre above
the common point of the loops, see also Fig. 1). We have the same boundary map for
each axis point p ∈ P in the source and in the target of j2 and therefore, at the level
of the n-homology, the restriction j2| : Hn(Zp,Cp) → Hn(Y,B) is surjective. Since
we have at least one axis point on � and

⊕
p∈P Hn(Zp, Cp) ⊂ ker j1, this shows that

the restriction j2| :
⊕

p∈P Hn(Zp,Cp) → Hn(Y,B) is surjective too. We have thus
proven the surjectivity of j and in particular the following statement:
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Proposition 5.3 Hn(V�, Vε) = 0 and in particular the relative Mayer–Vietoris
sequence (8) reduces to the following 6-terms sequence:

0 → Hn+2(X ∪ Y,A ∪ B) → Hn+1(Z,C) → Hn+1(X,A)⊕ Hn+1(Y,B)

→ Hn+1(X ∪ Y,A ∪ B) → Hn(Z,C)
j−→ Hn(X,A) ⊕ Hn(Y,B) → 0.

This shows that the relative homology H∗(V�, Vε) is concentrated at the levels n + 1
and n + 2, and thus finishes the proof of Theorem 4.1 in case of irreducible �.

5.2 Reducible �

Let � = �1∪ · · · ∪ �ρ be the decomposition into irreducible components. The proof
of Theorem 4.1 in the reducible case remains the same modulo the following small
changes and additional notations:

• For each i one considers the set Qi of special singular points of �i . The points of
intersection �i1 ∩ �i2 for i1 �= i2 are considered as special points of both sets Qi

and Qj , and therefore the union Q = ⋃
i Qi is not disjoint. For some q ∈ �i1∩�i2 ,

the set of indices Sq runs over all the local irreducible components of the curve
germ (�, q). Nevertheless, when we are counting the local irreducible branches at
some point q ∈ Qi on a specified component �i then the set Sq will tacitly mean
only those local branches of �i at q.

• The pair (Y,B) is a disjoint union and its homology decomposes accordingly,
namely H∗(Y,B) = ⊕

1�i�ρ H∗(Yi ,Bi ).

• For each component �i one has its transversal Milnor fibre denoted by F�
i and

its transversal Milnor number μ�
i .

6 Betti numbers of hypersurfaces with 1-dimensional singular locus

By Theorem 4.1, the vanishing homology of a hypersurface V ⊂ P
n+1 with 1-

dimensional singularities is concentrated in dimensions n +1 and n +2. We show that
its (n +2)th vanishing homology group depends on the local data of the special points
Q and on the genus loop monodromies along the singular branches. We study this
dependence in more detail, we determine the rank of the free group Hn+2(V�, Vε),
and discover mild conditions which ensure the vanishing of this group.

Wecontinue to use the notations of Sect. 4. Let us especially recall the notations from
Sect. 4.5 adaptedhere to the general setting of a reducible singular locus� = ⋃ρ

i=1 �i .
For any 1 � i � ρ,�∗

i = �i \(Pi  Qi {yi }) retracts to a bouquet Wi of 2gi +νi +γi

circles, where gi denotes the genus of the normalization �̃i , where νi = # Pi is the
number of axis points A ∩ �i , where γi = ∑

q∈Qi
# Sq and Qi denotes the set of

special points of �i , the set Sq is indexing the local branches of �i at q, and where
yi ∈ �i is some point not in the set Pi ∪ Qi . We denote by Gi the set of genus loops
of Wi .
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By Proposition 5.1, we have Hn+2(V�, Vε) = ker j = ker [ j1⊕ j2], where

j1⊕ j2 : Hn+1(Z,C) → Hn+1(X,A)⊕ Hn+1(Y,B).

Themain idea in this section is to embed Hn+2(V�, Vε) into themoduleD = ⊕ρ
i=1 Di ,

where Di is the image of the diagonal map

�i∗ : Hn(E�
i , F�

i ) →
⊕

q∈Qi

⊕

s∈Sq

Hn(E�
i , F�

i ), a �→ (a, a, . . . , a).

The space D will serve as a reference space and is isomorphic to
⊕ρ

i=1 Hn(F�
i ) =

⊕ρ
i=1 Z

μ�
i .

The source and the target of j1⊕ j2 have a direct sum decomposition at level n +1,
like has been discussed in Sect. 5.1 for the n-th homology groups4:

j1⊕ j2 :
⊕

p∈P

Hn+1(Zp,Cp)
⊕

q∈Q

⊕

s∈Sq

Hn+1(Zs,Cs)

ρ⊕

i=1

Hn+1(Zyi ,Cyi )

→
⊕

q∈Q

Hn+1(Xq ,Aq) ⊕ Hn+1(Y,B).

(10)

By Lemma 4.3, we have Hn+1(Zv,Cv) = ker(Av − I ), where

Av − I : Hn(E�
i , F�

i ) → Hn(E�
i , F�

i )

is the vertical monodromy at some point v ∈ Pi , or v ∈ Sq and q ∈ Qi , or v =
yi . The left hand side of (10) consists therefore of local contributions of the form
ker(Av − I ) ⊂ Hn(E�

i , F�
i ) � Hn−1(F�

i ) � Z
μ�

i .
We have studied j1 in Sect. 5.1.1 at the level n. For the (n +1)th homology

groups, the restriction of j1 to the first summand in (10) is zero since its image
is in

⊕
p∈P Hn+1(Xp,Ap) which is zero by Lemma 4.2. Since Hn+1(Xyi ,Ayi ) =

Hn(Ayi ) = 0, the image by j1 of
⊕ρ

i=1 Hn+1(Zyi ,Cyi ) is also zero. The restriction
of j1 to the remaining summand is the direct sum

⊕
q∈Q j1,q of the maps

j1,q :
⊕

s∈Sq

Hn+1(Zs,Cs) → Hn+1(Xq ,Aq).

By Proposition 3.2, the kernel of j1,q is equal to Hn+1(Aq , ∂2Aq), where Aq is the
local Milnor fibre of the hypersurface germ (V, q), q ∈ Q, and can be identified to the
free part of Hn−1(Aq). The intersection

(⊕ρ
i=1 Di

)∩⊕
q∈Q Hn+1(Aq , ∂2Aq) is well

defined, since Hn+1(Aq , ∂2Aq) is contained in
⊕ρ

i=1

⊕
Qi �q

⊕
s∈Sq

Hn+1(Zs,Cs).
After these preparations we can state:

4 We recall from Sect. 5.2 that the notation Sq depends on whether the point q is considered in Q or in Qi ,
namely it takes either the local branches of � at q, or the local branches of �i at q, accordingly.
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Theorem 6.1 In the above notations we have

H�
n+2(V ) =

(

D ∩
⊕

q∈Q

Hn+1(Aq , ∂2Aq)

)

∩
ρ⊕

i=1

�i∗
( ⋂

j∈Gi

ker(Aj − I )

)

,

where Aj : Hn(E�
i , F�

i ) → Hn(E�
i , F�

i ) denotes the monodromy along the loop of
Wi indexed by j ∈ Gi .

In particular, H�
n+2(V ) is free and its rank is bounded as follows5:

rank H�
n+2(V ) �

ρ∑

i=1

min
s∈Sq
q∈Qi
j∈Gi

{
dim ker(As − I ), dim ker(Aj − I )

}
�

ρ∑

i=1

μ�
i .

Proof In order to handle the map j2, we recall the relative CW-complex structure of
(Y,B) given in Sect. 4.5. On each component Wi we have identified the set of points
Ti which consists of the axis points Pi , the special points Qi , and one general point
yi . The punctured �∗

i retracts to a configuration Wi of 2gi + νi + γi loops indexed by
the set Wi , based at some point zi , where 2gi of them are “genus loops” and the other
loops are projections by the normalization map ni : �̃i → �i of loops around all the
punctures of �̃i \n−1

i (Pi  Qi ). Notice that # Ti − 1 � νi > 0.
Let W = ⊔

i Wi . Consider the spaces YW = π−1
� (W ) and BW = B ∩ YW .

We have the homotopy equivalence of pairs (Y,B) � (YW ,BW ) which has been
discussed in Sect. 4.5 and use the CW-complex model for (YW ,BW ). We also have
the decomposition (Y,B) = ⊔ρ

i=1(Yi ,Bi ) according to the components Wi .
In our representation, the map j2 splits into the direct sum of the following maps,

for i ∈ {1, . . . , ρ}:

j2,i :
⊕

p∈Pi

Hn+1(Zp,Cp)
⊕

q∈Qi

⊕

s∈Sq

Hn+1(Zs,Cs)⊕ Hn+1(Zyi ,Cyi ) → Hn+1(Yi ,Bi ).

By Lemma 4.4, the map j2,i restricts to an embedding of the direct sum

⊕

p∈Pi

Hn+1(Zp,Cp)
⊕

q∈Qi

⊕

s∈Sq

Hn+1(Zs,Cs)

into Hn+1(Yi ,Bi ). Note that Hn+1(Zv,Cv) = ker(Av − I ) ⊂ Hn(E�
i , F�

i ) �
Hn−1(F�

i ) for any point v ∈ Pi or v ∈ Sq and q ∈ Qi . The kernel ker j2,i is
therefore determined by the relations induced by the image of the remaining direct
summand Hn+1(Zyi ,Cyi ) into Hn+1(Yi ,Bi ).

More precisely, every (n +1)-cycle generator w of

Hn+1(Zyi ,Cyi ) � Hn(E�
i , F�

i ) � Hn−1(F�
i )

5 Note that no multiplicities but only transversal types are involved in the rank formula.
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induces one single relation. Namely j2(w) is a (n +1)-cycle above the loop around the
point yi , and since this loop is homotopy equivalent to a certain composition of other
loops of Wi , it follows that j2(w) is precisely homologous to the corresponding sum of
cycles above the loops in Wi . Our scope is to find all such sums which contain as terms
only elements from the images j2(Hn+1(Zp,Cp)) for p ∈ Pi and j2(Hn+1(Zs,Cs))

for s ∈ Sq and q ∈ Qi . We have the following facts:

(a) By Lemma 4.3 and Sect. 4.4, such images are in the kernels of A − I where A
is the vertical monodromy of the loop corresponding to p ∈ Pi or to s ∈ Sq and
q ∈ Qi . Therefore the expression of j2(w) contains the sum of those generators of
j2(Hn+1(Zp,Cp)) and of j2(Hn+1(Zs,Cs)) which correspond to the same represen-
tative w ∈ Hn−1(F�

i ), for any p ∈ Pi and any s ∈ Sq and q ∈ Qi . This implies
that w ∈ ⋂

s∈Sq ,q∈Qi
ker(As − I ). Note that the points p ∈ Pi are superfluous in this

intersection since Ap = I for all such points.

(b) Let us consider a pair γ1 and γ2 of genus loops (whenever gi > 0) and let us denote
by B1 and B2 the local system monodromy along these loops. The relation produced
by j2(w) contains in principle the following relative cycle along the wedge γ1∨γ2: it
starts from the representative aw ∈ Hn−1(F�

i ) of w, moves in the local system along
γ1 arriving as B1(aw) after one loop at the fibre over the base point z, next moved
along γ2 to B2B1(aw), then in the opposite direction along γ1 to B−1

1 B2B1(aw) and
finally in the opposite direction along γ2 to B−1

2 B−1
1 B2B1(aw). Our condition tells

that the relation produced by j2(w) does not involve (n +1)-cycles along the genus
loops since Im j2∩⊕

j∈Gi
Hn+1(E�

j , F�) = 0, by Lemma 4.4 and (7). Therefore the
relative cycles along γ1 and along γ2 must cancel, which fact amounts to the following
two pairs of equalities:

B−1
1 B2B1(aw) = aw and B2B1(aw) = B1(aw),

B−1
2 B−1

1 B2B1(aw) = B1(aw) and B−1
1 B2B1(aw) = B2B1(aw).

These equalities are cyclic, thus the eight above terms appear to be equal. In particular
we get B1(aw) = aw and B2(aw) = (aw) for any w ∈ ⋂

s∈Sq ,q∈Qi
ker(As − I ). We

conclude to the same equalities for any pair of genus loops.
Altogether we obtain the following diagonal presentation of ker j2,i :

ker j2,i =
{

(aw, aw, . . . , aw) ∈
⊕

q∈Qi

⊕

s∈Sq

Hn+1(Zs,Cs)⊕ Hn+1(Zyi ,Cyi ) :

w ∈
⋂

s∈Sq
q∈Qi

ker(As − I ) ∩
⋂

j∈Gi

ker(Aj − I )

}

⊂ Di .

Now, since

Hn+2(V�, Vε) ⊂ ker j2 =
ρ⊕

i=1

�i∗
( ⋂

s∈Sq
q∈Qi

ker(As − I ) ∩
⋂

j∈Gi

ker(Aj − I )

)
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we get in particular the claimed inequality for the Betti number bn+2(V�, Vε). The
freeness of Hn+2(V�, Vε) follows from the fact that ker j2 is free (as the image of the
intersection of free Z-submodules).

We also obtain the desired expression of Hn+2(V�, Vε) = ker( j1⊕ j2) = ker j1 ∩
ker j2 by intersecting ker j2 with the diagonal expression of ker j1 given just before
the statement of Theorem 6.1. �
Remark 6.2 (Irreducible �) In case � is irreducible, the equality of Theorem 6.1
reads

H�
n+2(V ) �

⋂

q∈Q

Hn+1(Aq , ∂2Aq) ∩
⋂

j∈G

ker(Aj − I ).

In particular, if there are no special points on � and the monodromy along every the
genus loop is the identity, then H�

n+2(V ) � Hn−1(F�). This situation can be seen in
the example V = {xy = 0} ⊂ P

3 for which H�
4 (V ) � Z and rank H�

3 (V ) = 1.

Remark 6.3 ((n +1)th vanishing Betti number) It appears that H�
n+2(V ) does not

depend neither on the axis points, nor on the isolated singular points of V . However
H�

n+1(V ) depends on those elements since the Euler number does, after [18, Theorem
5.3]:

χ(V�, Vε) = (−1)n+1
ρ∑

i=1

(2gi + νi + γi − 2)μ�
i −

∑

q∈Q

(χ(Aq) − 1)

+ (−1)n+1
∑

r∈R

μr .

(11)

Theorem 6.1 is useful when we have information about the transversal monodromies,
namely about the eigenspaces corresponding to the eigenvalue 1. We immediately
derive:

Corollary 6.4 If, for every i ∈ {1, . . . , ρ}, at least one of the transversal monodromies
along the loops Wi ⊂ �∗

i has no eigenvalue 1, then H�
n+2(V ) = 0.

Wemay also apply Theorem 6.1 whenwe have enough information about localMilnor
fibres of special points, like in the following case (see also Example 7.3):

Corollary 6.5 Assume that for any i ∈ {1, . . . , ρ} there is some special point qi ∈ Q
such that the (n −1)th homology group of the local Milnor fibreAqi of the hypersurface
germ (V, qi ) has rank zero. Then

H�
n+2(V ) = 0

and the single non-zero vanishing Betti number b�
n+1(V ) is given by the formula

rank H�
n+1(V ) =

∑

i

(νi + γi + 2gi − 2)μ�
i + (−1)n

∑

q∈Q

(χ(Aq) − 1) +
∑

r∈R

μr .
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Proof Let (w1, . . . , wρ) be an element of the reference space
⊕ρ

i=1 Hn(E�
i , F�

i ) ∼=
⊕ρ

i=1 Z
μ�

i . By the diagonal map this corresponds to elements wi ∈ Hn+1(Zs,Cs) for
s ∈ Sq and q ∈ �i . By the discussion introducing Theorem 6.1 the kernel of some
component j1,q : ⊕

s∈Sq
Hn+1(Zs,Cs) → Hn+1(Xq ,Aq) is equal to Hn+1(Aq , ∂2Aq)

which in turn is identified to the free part of Hn−1(Aq) = 0. The rank zero condition
implies that wi = 0 for i such that q ∈ �i , thus all wi are zero.

As for the rank of Hn+1(V�, Vε), the formula follows from the Euler characteristic
computation (11). �
Remark 6.6 In case of an irreducible singular set �, Corollary 6.5 tells that one sin-
gular point q ∈ Q with an (n −1)th Betti number of the Milnor fibre equal to zero is
sufficient for the vanishing of H�

n+2(V ).

7 Computations of Betti numbers

7.1 Vanishing Betti numbers

As direct application of Theorem 6.1, we provide explicit computations of the ranks
of the vanishing homology of some projective hypersurfaces.

Example 7.1 (some cubic hypersurfaces) If V = {x2z + y2w = 0} ⊂ P
3 then Sing V

is a projective line and its generic transversal type is A1. There are three axis points
and two special points q with local singularity type D∞. The hypersurface singularity
germ D∞ is an isolated line singularity in the terminology of [14]. Its Milnor fibre
F is homotopy equivalent to the sphere S2, the transversal monodromy is −id. From
Corollary 6.4 it follows that H�

4 (V ) � H1(F) = 0 and applying Corollary 6.5 we get
that rank H�

3 (V ) = 5.
For V = {x2z + y2w + t3 = 0} ⊂ P

4, Sing V is again a projective line but its
generic transversal type is A2, with three axis points and two special points for both of
which the local Milnor fibre F is homotopy equivalent to S3∨S3. Then Corollary 6.5
yields H�

5 (V ) � H2(F) = 0 and rank H�
4 (V ) = 10. This construction can be

iterated, for instance V = {x2z + y2w + t31 + t32 = 0} ⊂ P
5 has H�

6 (V ) = 0 and
rank H�

5 (V ) = 20.

Example 7.2 (including an isolated singular point) Let V = {y2(x + y − 1)(x −
y + 1) + z4 = 0} ⊂ P

3. We have Sing V is the disjoint union of �, a projective line
{y = z = 0} with transversal type A3 and a point R = {(0 :1:0 :0)} of type A3. There
are two special points: Q = {(1:0 :0 :0), (−1:0 :0 :0)}, each of them with Milnor fibre
S2∨S2∨S2. It follows that H�

4 (V ) = 0 and rank H�
3 (V ) = 21.

Example 7.3 (singular locus with two disjoint curve components) Let V = { f =
x2z2 + x2w2 + y2z2 + 2y2w2 = 0} ⊂ P

3, which is defined by an element f of the
ideal (x, y)2 ∩ (z, w)2. Then Sing V = � = �1 ∪ �2, where �1 = {x = y = 0}
and �2 = {z = w = 0}. It turns out that the generic transversal type at both of the
line components of the singular locus is A1 and that there are exactly four D∞-points
on each of these two components. We are in the situation of Corollary 6.5, hence
H�
4 (V ) = 0 and rank H�

3 (V ) = 20.
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7.2 Computation of vanishing homology groups

Using the full details of the proof of Theorem 6.1, we may compute not only the
rank of the vanishing homology groups, but in several examples even the vanishing
homology group H�

n+1(V ) itself, as follows.
The main ingredient is the map

j [k] = j [k]
1 ⊕ j [k]

2 : Hk(Z,C) → Hk(X,A)⊕ Hk(Y,B),

which was denoted by j in (9). Like in (10), we use the direct sum splitting into axis,
special and auxiliary contributions.

0 → coker j [n+1] → Hn+1(V�, Vε) → ker j [n] → 0

and the strategy will be to work with j [n+1] and j [n] at the level of generators.

Example 7.4 Let V = {x2z + y3 + xyw = 0} ⊂ P
3. Then Sing V is a projective

line with generic transversal type A1, three axis points, and a single special point q of
local singularity type J2,∞ [9]. The latter is an isolated line singularity germ, cf. [14],
with Milnor fibre F a bouquet of four spheres S2 and the transversal monodromy is
the identity. By Theorem 6.1 and Corollary 6.5 we get H�

4 (V ) � H1(F) = 0 and
rank H�

3 (V ) = 6.We next can show (but skip the details) that there is an isomorphism
H�
3 (V ) � Z

6. Note that Dimca [3] observed that V has the rational homology of P
2.

Example 7.5 V = {xyz = 0} ⊂ P
3 of degree d = 3. Then V is reducible with

three components, Sing V is the union of three projective lines intersecting at a single
point [0 :0 :0 :1], and the transversal type along each of them is A1. Following the
proof of Theorem 6.1, we get ker j [3]2 = ⊕3

i=1 H1(F�
i ) � Z

3 and ker j [3]1 � H1(F)

where F denotes the Milnor fibre of the non-isolated singularity of V at the single
special point [0 :0 :0 :1], which is homotopically equivalent to S1×S1. We thus get
H�
4 (V ) � H1(F) � Z

2.
The axis A of our pencil has degree nine and intersects each of the components of

V at three general points. Hence νi = 3, γi = 1 for any i = 1, 2, 3.
Applying formula (11) we get that the vanishing Euler characteristic is −5, and

that rank H�
3 (V ) = 7. We can moreover show the freeness of this group; we skip the

details.

7.3 The surfaces case

Several examples in the previous subsections are surfaces and the computation of
H4 and the rank of H3 could be simplified by counting the number of irreducible
components of �∗. Indeed in case of surfaces V ⊂ P

3 we have

H�
4 (V ) � Z

r−1, (12)

where r is the number of irreducible components of V .
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We have included these examples anyhow as applications of our method.
Combining (12) with Theorem 6.1 yields several consequences on the singular set

and its generic transversal types. We mention here only one:

Corollary 7.6 r − 1 �
ρ∑

i=1

μ�
i .

7.4 Absolute homology of projective hypersurfaces

If dim Sing V = 1 then from Theorem 4.1 and the long exact sequence of the pair
(V�, Vε) one gets the isomorphisms

Hk(V ) � Hk(Vε) = Hk(P
n) for k �= n, n + 1, n + 2.

This corresponds to Kato’s result [10] in cohomology.6

In the remaining dimensions we have an 8-term exact sequence

0 → Hn+2(Vε) → Hn+2(V�) → Hn+2(V�, Vε)
	n+1−−−→ Hn+1(Vε)

→ Hn+1(V�) → Hn+1(V�, Vε)
	n−→ Hn(Vε) → Hn(V�) → 0

(13)

from which we obtain, with help of Theorem 6.1:

Proposition 7.7 Let dim Sing V = 1. If n is even, then

(c) Hn+2(V ) � Z⊕ H�
n+2(V ),

(d) Hn+1(V ) � ker	n,
(e) Hn(V ) � coker	n,

whereas for any n one has the following inequalities:

(a) bn+2(V ) � 1 + ∑ρ
i=1 μ�

i ,
(b) bn(V ) � dim Hn(Vε).

This can be regarded as a natural extension of Proposition 2.2 to 1-dimensional sin-
gularities, thus extending also Dimca’s corresponding result for isolated singularities
that was discussed in Sect. 2. Like in the isolated singularities setting, one has to deal
with the difficulty of identifying 	n from the equation of f .

Example 7.8 Let V = { f (x, y)+ f (z, w) = 0} ⊂ P
3, where f (x, y) = y2

∏3
i=1(x −

αi y), with αi �= 0 pairwise different. Its singular set is the smooth line given by
y = w = 0, with generic transversal type y2 + w3. There are two special points
[0 :0 :1:0] and [1:0 :0 :0], each with Milnor fibre a bouquet of spheres S2. By Corol-
lary 6.5 we get H�

4 (V ) = 0 and from the Euler characteristic formula (11) (by
computing its ingredients) we get rank H�

3 (V ) = 38. One can compute the eigen-
values of the monodromies for all types of singular points; they are all different from

6 Dimca states such a result [5, Theorem 4.1] referring to [4, p. 144] for Kato’s proof in cohomology [10].
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1. By using Randell’s criterion [13, Proposition 3.6], one can show that V is a Q-
homology manifold. Since a homology manifold satisfies Poincaré duality, it follows
e.g. that H3(V ; Q) ∼= H1(V ; Q) ∼= H1(P

n; Q) = 0 and H4(V ; Q) ∼= H0(V ; Q) ∼=
H0(P

n; Q) ∼= Q. By computations and the exact sequence (13) we get also H2(V ; Q)

since rank H2(V ) = rank H2(Vε) − rank H3(V�, Vε) = 53 − 38 = 15.
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12. Parusiński, A., Pragacz, P.: Characteristic classes of hypersurfaces and characteristic cycles. J. Alge-

braic Geom. 10(1), 63–79 (2001)
13. Randell, R.: On the topology of non-isolated singularities. In: Cantrell, J.C. (ed.) Geometric Topology,

pp. 445–473. Academic Press, New York (1979)
14. Siersma, D.: Isolated line singularities. In: Peter, O. (ed.) Singularities, Part 2. Proceedings of Symposia

in Pure Mathematics, vol. 40.2, pp. 485–496. American Mathematical Society, Providence (1983)
15. Siersma, D.: Quasihomogeneous singularities with transversal type A1. In: Richard, R. (ed.) Singular-

ities. Contemporary Mathematics, vol. 90, pp. 261–294. American Mathematical Society, Providence
(1989)

16. Siersma, D.: Variation mappings on singularities with a 1-dimensional critical locus. Topology 30(3),
445–469 (1991)

17. Siersma, D.: The vanishing topology of non isolated singularities. In: Siersma, D., Wall, C.T.C.,
Zakalyukin, V. (eds.) New Developments in Singularity Theory. NATO Science Series II: Math. Phys.
Chem., vol. 21, pp. 447–472. Kluwer, Dordrecht (2001)
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