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Abstract

Alzheimer’s Disease (AD) is one of the most common and complex age-related neurodegenerative dis-
orders in elderly people. Currently there is no cure for AD, and available therapeutic alternatives only
improve both cognitive and behavioral functions. For that reason, the search for anti-AD therapeutic agents
with neuroprotective properties is highly demanding. Several research studies have implicated the involve-
ment of G-Protein-Coupled Receptors (GPCRs) in diverse neurotransmitter systems that are dysregulated
in AD, mainly in modulation of amyloidogenic processing of Amyloid Precursor Protein (APP) and of
microtubule-associated protein tau phosphorylation and in learning and memory activities in in vivo AD
models subjected to numerous behavioral procedures. In this chapter, a special focus will be given to the
structure- and ligand-based in silico approaches and their applicability on the development of small
molecules that target various GPCRs potentially involved in AD such as 5-hydroxytryptamine receptors,
adenosine receptors, adrenergic receptors, chemokine receptors, histamine receptors, metabotropic gluta-
mate receptors, muscarinic acetylcholine receptors, and opioid receptors.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder clinically
characterized by a progressive and irreversible loss of memory and
impairment of other cognitive functions, which ultimately results in
a complete degradation of intellectual and mental activities.
Although age represents a critical risk factor, a combination of
genetic, lifestyle, and environmental factors may contribute for
the development of AD. Being the most common cause of demen-
tia in elderly people, continuous research efforts have been devoted
to unravel the etiology of AD with the objective of developing
effective pharmacological treatments.

Although the underlying mechanism of AD is not yet well
understood, several neuropathological hallmarks are thought to be
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involved in the neurodegeneration in AD, including (i) deficiency on
cholinergic transmission in the Central Nervous System (CNS) due
to an extensive loss of cholinergic neurons which results in a deficit of
AcetylCholine (ACh) in specific regions of the brain (cholinergic
hypothesis) (reviewed in [1, 2]); (ii) abnormal clustering of neuro-
toxic β-amyloid (Aβ) fragments and formation of senile plaques that
occur as a consequence of an imbalance between the amyloidogenic
(mediated by β- and γ-secretases) and non-amyloidogenic (mediated
by α- and γ-secretases) processing pathways of Amyloid Precursor
Protein (APP) and an inefficient clearance of Aβ oligomers (amyloid
hypothesis) (reviewed in [3, 4]); and (iii) hyperphosphorylation of
Serine (Ser), Threonine (Thr), and Tyrosine (Tyr) sites in
microtubule-associated tau proteins that leads to the destabilization
of neuronal microtubules, the formation of tau aggregates and
NeuroFibrillary Tangles (NFT), and the collapse of neuronal signal-
ing (tau hypothesis) (reviewed in [5, 6]). With the increasing num-
ber of people suffering from age-related neurodegenerative
disorders, particularly AD, effective therapeutic alternatives are
highly demanding. Currently, pharmacological research has been
focused on the discovery of drug candidates with neuroprotective
properties, which target disease-modifying effects, contributing to
the blockade of neuronal apoptosis and subsequent disease progres-
sion. These strategies are based on targeting key proteins involved in
amyloidogenic processing of APP (activation of α-secretase, inhibi-
tion of β- and γ-secretases, prevention of Aβ aggregation, and pro-
motion of Aβ clearance) and in tau pathology (inhibition of tau-
phosphorylating kinases, prevention of tau aggregation, and promo-
tion of tau aggregate disassembly). However, current clinically avail-
able AD therapies are essentially symptomatic and target mainly
AcetylCholinEsterase (AChE) (donepezil, rivastigmine, and galanta-
mine) and N-methyl-D-aspartate receptor (memantine), which lead
to the reversion of dysfunctions on cholinergic and glutamatergic
neurotransmission, respectively. Moreover, neurodegeneration is not
restricted to a particular neurotransmitter system. Histaminergic,
adenosinergic, adrenergic, and serotonergic, among other neuro-
transmitter systems, are also dysregulated in AD. Interestingly,
numerous studies have implicated the role of G-Protein-Coupled
Receptors (GPCRs) in the pathogenesis of AD, particularly in the
modulation of the distinct therapeutic targets involved in amyloido-
genic processing of APP and in microtubule-associated tau protein
aggregation, and the influence of GPCR modulators in AD animal
models subjected to various learning andmemory paradigms. Poten-
tial GPCR-derived therapeutic targets for AD include 5-
HydroxyTryptamine 2A, 2C, 4, and 6 Receptors (5-HT2AR [7, 8],
5-HT2CR [7, 9], 5-HT4R [10, 11, 12, 13], and 5-HT6R [14, 15,
16, 17]); Adenosine A1 and A2A Receptors (A1AR [18, 19, 20] and
A2AAR [18, 21, 22, 23, 24]); α2A- and β2-Adrenergic Receptors
(α2A-AR [25] and β2-AR [26, 27, 28]); CC motif chemokine
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receptor 2 (CCR2 [29, 30]); CXC motif chemokine receptor
2 (CXCR2 [31, 32, 33]); corticotropin-releasing factor receptor 1
(CRFR1 [34, 35, 36, 37]); δ-opioid receptors (DOR [38]); hista-
mine H3 receptor (H3R [39, 40, 41]); metabotropic glutamate
receptor types 1, 2, and 5 (mGluR1 [42, 43, 44, 45], mGluR2 [42,
46, 47], andmGluR5 [42, 48, 49]); andM1, M2, andM3muscarinic
acetylcholine receptors (M1 mAChR [50, 51, 52, 53, 54], M2

mAChR [54, 55], and M3 mAChR [53, 54]), among others. In
this chapter, we will provide an overview of the structure-based and
ligand-based computational approaches widely employed in in silico
medicinal chemistry to target the mentioned GPCRs potentially
implicated in AD.

2 GPCRs: A Case Study of Potential Targets for AD

Being one of the most heavily investigated drug targets in the
pharmaceutical industry, GPCR-targeting drugs represent about
~30–40% of the current market for human therapeutics and have
been subjected to a considerable number of computational studies
[56, 57]. They comprise a large family of membrane-embedded
proteins that mediate important physiological functions through
interaction with various endogenous ligands, including ions, pro-
teins, peptides, amines, hormones, chemokines, and neurotrans-
mitters [58, 59]. Structurally, a single polypeptide chain with a
variable length that crosses the phospholipidic bilayer seven times
adopting the typical structure of seven transmembrane (TM) α-
helices connected to extracellular (ECL) and intracellular (ICL)
loops characterizes the receptors belonging to this family [60].
Based on sequence homology and phylogenetic analysis, human
GPCRs can be classified into five main families of receptors: gluta-
mate (Class C, 22 members), rhodopsin (Class A, 672 members),
adhesion (33 members), frizzled/Taste2 (Class F, 36 members), and
secretin (Class B, 15 members), which are usually shortened to the
acronymGRAFS [60]. The complexity of GPCR-induced signaling
is determined by their association with specific heterotrimeric gua-
nine nucleotide-binding proteins (G-proteins) within the plasma
membrane. Heterotrimeric G-proteins are composed of a guanine-
binding α-subunit (Gα) and a dimer consisting of the β- and γ-
subunits (Gβγ). In their inactive state, Gα is bound to guanosine
diphosphate (GDP) and associated with Gβγ. In the extracellular
site, the binding of an agonist stabilizes the active conformation of
the receptor, which couples to heterotrimeric G-proteins, leading to
GDP release and guanosine triphosphate (GTP) binding to the Gα

subunit. Subsequently, the GTP binding induces a conformational
switch on the Gα subunit, which promotes the release of G-proteins
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from GPCR and the dissociation of heterotrimeric G-proteins into
Gα and Gβγ subunits [61, 62]. The Gα (Gαs, Gαi/o, Gαq, Gα12/13)
and Gβγ subunits amplify and propagate their transduction signals
by modulating the activity of distinct downstream cellular effectors,
including adenylyl and guanylyl cyclases, phospholipases, phospho-
diesterases, and phosphoinositide 3-kinases, that in turn induces an
increasing or decreasing production of second messengers, such as
Ca2+, diAcylglycerol (DAG), inositol 1,4,5-trisphosphate (IP3),
cyclic adenosine monophosphate (cAMP), and cyclic guanosine
monophosphate (cGMP) that triggers a wide range of cellular
responses [63, 64] (Fig. 1).

Nevertheless, not all GPCR-dependent signaling pathways are
mediated via heterotrimeric G-proteins. The persistent stimulation
of a specific agonist may contribute to a decreasing responsiveness
of GPCRs, eliciting a process of receptor desensitization, which
terminates or attenuates the receptor signaling. Two families of
regulatory proteins participate in the mechanism of GPCR desen-
sitization, including second messenger-dependent protein kinases
and G-protein-coupled receptor kinases (GRKs). Second
messenger-dependent protein kinases, protein kinases A (PKA)
and C (PKC), induce a conformational change in the receptor

Fig. 1 General diagram of GPCR signaling mediated by activation of Gα subunit of
heterotrimeric G-proteins. AC Adenylyl Cyclase, ATP Adenosine TriPhosphate,
cAMP cyclic Adenosine MonoPhosphate, DAG DiAcylGlycerol, GDP Guanosine
DiPhosphate, GTP Guanosine TriPhosphate, IP3 Inositol 1,4,5-trisPhosphate, PIP2
PhosphatidylInositol 4,5-bisPhosphate, PKA Protein Kinase A, PLC
PhosphoLipase C, PPi inorganic PyroPhosphate, RhoA Ras homolog gene family,
member A, RhoGEF Rho Guanine nucleotide Exchange Factor
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through GPCR phosphorylation, directly uncoupling GPCR to
heterotrimeric G-proteins. This mechanism of receptor regulation
can be mediated in the absence of GPCR occupancy by an agonist
through a process of heterologous desensitization. In contrast,
GPCR occupancy is required for the recruitment of GRKs on
receptor desensitization (homologous desensitization). The GRKs
preferentially induce the phosphorylation in an agonist-bound con-
formation, leading to a significant attenuation of receptor signaling
[65]. GRK-dependent phosphorylation enables GPCRs to interact
with high affinity to a class of multifunctional scaffold proteins
called β-arrestins, which sterically blocks further interactions
between the G-protein and the activated receptor, preventing
GPCR signaling [66]. Additionally, receptor-bound β-arrestins
can also promote different signaling pathways or act as adapter
proteins, promoting receptor sequestration through interaction
with components of the cellular machinery required for clathrin-
mediated endocytosis [67]. This mechanism is critical not only for
receptor signaling desensitization but also for receptor resensitiza-
tion for a next round of GPCR activation. Other mechanisms of
desensitization include the receptor proteolysis in lysosomes [68],
dynamic regulation of receptor gene expression [69], and GTP
hydrolysis by regulators of G-protein signaling (RGS) proteins
[70, 71].

3 In Silico Approaches in the Discovery of New Modulators of GPCR-Derived
Therapeutic Targets for AD

Awide array of Computer-Aided Drug Design (CADD)methodol-
ogies have been employed as a complementary tool to the high-
throughput screening (HTS) approaches to identify new GPCR
modulators with therapeutic potential for AD. One critical stage
in in silico drug design of GPCR modulators is the discovery of
novel lead compounds (or hit-to-lead optimization), which can be
accomplished using different strategies such as virtual screening of
large libraries of chemical compounds using structure-based or
ligand-based drug design approaches (Fig. 2).

3.1 Structure-Based

Drug Design

Approaches

Over the last years, the progress of the structural biology on deter-
mination of accurate three-dimensional (3D) structures of GPCRs
has furnished a valuable tool for drug design of GPCR modulators
by structure-based drug design approaches, such as homology
modeling, virtual screening, and fragment screening. In fact, X-
ray crystallography and Nuclear Magnetic Resonance (NMR) stud-
ies provide detailed and atomic-level information of GPCR-drug
interactions. As their function implicates, GPCRs are membrane-
bound proteins, which make experimental 3D structure elucida-
tion, by X-ray crystallography or NMR studies, an extremely
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complex and challenging task compared to globular proteins
(reviewed in [74]). Until the elucidation of the X-ray diffraction
structure at 2.8 Å resolution of Class A GPCR bovine rhodopsin in
2000 [75], no X-ray structures of any GPCR were available. The
high quality and detailed structure of bovine rhodopsin provided a
huge progress of understanding of GPCRs at molecular level and
paved the way for structure-based design approaches for GPCRs.
Rhodopsin was chosen as the typical example for structural studies
due to the fact that it is easy to obtain considerable quantities of
functional protein with high stability under conditions that dena-
ture other GPCRs [76]. For many years, the structure of inactive
state of rhodopsin provided the only template sequence for molec-
ular modeling studies in homologous GPCRs (reviewed in [77]),
which was a limitation for the study of other GPCR family mem-
bers. Although rhodopsin-like or Class A GPCRs present similar
structural features with the prototypical bovine rhodopsin, espe-
cially concerning the TM domain, they share a low overall homol-
ogy. Moreover, other GPCRs belonging to glutamate, adhesion,
secretin, and frizzled/taste2 families have no homology with rhodop-
sin. Also, the distinct ligand binding and mechanism of activation
of rhodopsin from other GPCRs make the understanding from
rhodopsin structure how such a diverse plethora of ligands could
activate the large family of GPCRs difficult. Additionally, X-ray
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Structure-based
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Clustering of
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Fig. 2 General diagram of in silico drug design approaches based on the
availability of 3D structural information of therapeutic targets (Representative
images were extracted from [72, 73])
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structure of rhodopsin represents the inactive form of the receptor,
while the active form would be much more suitable for rational
drug design. The experimental progress in obtaining crystal GPCR
structures was very slow. In fact, it took more than seven years until
the 3D structures of β2-AR complexed with carazolol [78, 79] and
turkey β1-AR complexed with cyanopindolol [80] were solved.
With the development of receptor crystallization techniques, a
number of technical issues derived from the low expression of
GPCRs and their structural instability have been overcome, thereby
resulting in an accelerated increase in solved GPCR structures.
Currently, there are more than 150 3D structures of apo-,
peptide-, natural ligand-, agonist-, and antagonist-bound GPCR
complexes available within Protein Data Bank (PDB), in which the
family A GPCR structures have been the most frequently reported
ones. Only two family B, two family C, and one frizzled 3D GPCR
structures have been published. Given the diverse physiological and
pathological implications of their signaling, particularly in AD and
other neurodegenerative disorders, GPCRs have been considered
very promising therapeutic targets for pharmaceutical applications.
Moreover, the identification of 3D GPCR structures provides a
wealth of information to pharmaceutical researchers for drug
design of GPCR modulators with neuroprotective properties for
the treatment of AD.

Drug discovery efforts targeting GPCRs have been mainly
focused on the development of ligands which interact with the
orthosteric binding site for endogenous ligands, but a wide variety
of GPCRs possess additional topographically distinct druggable
sites (allosteric sites) (reviewed in [81, 82]). This allows the phar-
macological modulation of particular GPCRs not only by conven-
tional orthosteric agonists or antagonists but also by positive
allosteric modulators (PAMs) or negative allosteric modulators
(NAMs) with potentially high receptor subtype selectivity that
either increase or reduce the receptor responsiveness, respectively
(reviewed in [81, 82]). Since GPCRs interact with a plethora of
intracellular signaling proteins, such as heterotrimeric G-proteins
and β-arrestins, and modulate distinct intracellular pathways, dis-
tinct GPCR-targeted ligands are expected to stabilize various struc-
tural conformations and signaling states of GPCRs. In fact, specific
GPCR-targeted ligands possess the ability to selectively evoke a
particular stimulus-response, which results in a unique ligand-
dependent signaling profile referred to as functional selectivity,
biased signaling, or stimulus bias. The functional selectivity phe-
nomenon has been explored in medicinal chemistry for the
design of GPCR-targeted drugs with pathway selectivity (reviewed
in [83, 84]).

In order to address how drug-dependent GPCR signaling
relates to the concept of functional selectivity, atomistic-level infor-
mation about the mode of ligand-GPCR interactions coupled with
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its two signaling partners, G-proteins and β-arrestins, is required
[85]. However, relevant structure-function information is still
scarce. The first X-ray crystal structure of a GPCR/G-protein
complex only became available in 2011, in which the β2-AR was
complexed to Gαs protein [86]. Given the limitations of the crystal-
lizable fragments and the static nature of this single available model,
this important but restricted information is insufficient to under-
stand the function of such a complex biological system. Nowadays,
molecular dynamics (MD) simulations are a treasured resource for
the study of GPCRs and can be applied to better understand their
function. In fact, the usage of MD simulations has been extremely
relevant to model the process of GPCR activation on an atomistic
level [87, 88], to study ligand recognition or GPCR oligomeriza-
tion [89] by generating ensembles of energetically accessible con-
formations [90, 91]. The overall construction of the membrane-
protein systems is harder than for soluble proteins, but a few tools
provide accurate and fast alternatives to step-by-step manual con-
struction, such as Chemistry at HARvard Macromolecular
Mechanics-Graphical User Interface (CHARMM-GUI) [92, 93],
QwikMD [94], and high-throughput molecular dynamics
(HTMD) [95]. The membrane environment can be explicitly (all
atom) or implicitly (coarse grained (CG)) modeled. However,
when a researcher aims to fully characterize the ligand-GPCR inter-
actions, the explicit option should be chosen as it allows a detailed
characterization of pairwise interactions and the measurement of a
variety of chemical-physical features. While the dynamics of activa-
tion are beginning to be clarified for individual GPCRs, an increas-
ingly important consideration pertains to the identity of the
“signaling unit.” Thus, for many years, the GPCRs were thought
to function only as monomers, but increasing evidence suggests
that they can form homodimers, heterodimers, or higher-order
oligomers. It was already demonstrated that minimal functional
signaling unit is a complex between a GPCR and heterotrimeric
G proteins [56]. Various dimer interfaces have been proposed, but
a rearrangement of the dimerization interface to form a TM4-TM4
interface is likely a critical component of activation [96]. Nonethe-
less, the mechanistic and structural details of the ligand-GPCR
function are not known, either at the level of the receptor signaling
unit or with regard to the functional epitope between GPCR/G-
proteins and GPCR/β-arrestins. These aims could be also achieved
upon long all-atom MD simulations of the complete systems and
their subsequent analysis.

Another in silico approach widely employed in drug design is
docking-based virtual screening, which consists of a wide range of
computational methodologies that analyze the interaction of large
databases of small-molecule drug candidates against a 3D represen-
tation of the structure of a therapeutic target protein of interest
(reviewed in [97]). This approach is usually performed through
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molecular docking, in which each “virtual” drug candidate is docked
into the X-ray crystallographic structure of the therapeutic target or,
if 3D structure is not available, into a model of the target (homology
model-based virtual screening), using algorithms that explore the
multiple binding conformations of the ligand inside the binding
cavity of a target protein. Subsequently, for each of the generated
ligand conformation, the strength of their binding affinity to the
target is predicted through the determination of a scoring function.
Inmost of the automatedmolecular docking studies, a flexible ligand
is docked in a rigid protein, since a flexible macromolecular target
would demand a high cost of computational time (reviewed in [97]).
Docking-based virtual screening can be applied to databases of com-
mercially available compounds and in-house ligands that have been
previously synthesized and tested in vitro or databases of virtual
ligands that can be synthesized according to their calculated docking
scores. Moreover, docking-based virtual screening may be also useful
following in vitro studies for the interpretation of potential target-
ligand interactions. Therefore, the main purpose of structure-based
virtual screening is to select the ligand structures that are most likely
to bind to a certain therapeutic target of interest, providing a library
of the best scored ligands for experimental screening and, thereby,
improving the overall efficacy of the drug screening process. Cur-
rently, there are a number of in silico tools widely employed in
protein-ligand docking studies including automated docking (Auto-
Dock) [98], AutoDock Vina [99], CHARMm-based DOCKER
(CDOCKER) [100], FlexX [101], Genetic Optimization of Ligand
Docking (GOLD) [102], Grid-based Ligand Docking with Ener-
getics (GLIDE) [103], Internal Coordinate Mechanics (ICM)
[104], molecular Interaction FingerPrints (IFP) [105], Induced-
Fit Docking (IFD) [106], Library Docking (LibDock) [107], Mol-
GridCal [108], and Protein-Ligand ANT System (PLANTS) [109],
among others. Table 1 summarizes themost relevant structure-based
studies performed by these docking programs for the GPCRs
involved in AD.

3.2 Ligand-Based

Drug Design

Approaches

The GPCR ligand-based drug design useful for the identification of
therapeutic agents for AD relies on knowledge of compounds that
are recognized to modulate the activity of this family of TM pro-
teins and represents a suitable in silico approach when the structural
information of the therapeutic target is not available. In fact, the
majority of potential drug candidates that act on GPCRs have been
conceived from ligand-based methodologies, due to the restricted
availability of 3D structural data on GPCRs. Various ligand-based
drug design approaches have been used to better understand the
mechanism of action of GPCR modulators and to screen for new
bioactive molecules. Table 2 reports the applicability of ligand-
based drug design approaches on the discovery of GPCR modula-
tors with therapeutic potential for AD using large databases of
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Table 1
Structure-based drug design techniques for the modulation of potential GPCR-derived therapeutic
targets of AD

GPCR: Adenosine A1 receptor (A1AR)

Ligands

Adenosine

Drug design technique(s) Computational tool(s) References

Docking into a human A1AR model using the
X-ray structure of bovine rhodopsin as
template (PDBid 1F88)

AUTODOCK [110]

Ligands

Library of commercially available compounds (ZINC database) with molecular weight between 250 and
350 g/mol, less than 7 rotatable bonds, and a xlogP between 2.5 and 3.5

Drug design technique(s) Computational tool(s) References

Docking into a human A1AR model using the
X-ray structure of A2AAR as template (PDBid
3EML)

DOCK [111]

Ligands

DPCPX, 52 active antagonists, and 1000 decoys

Drug design technique(s) Computational tool(s) References

Docking into 12 models of A1AR using the
X-ray structure of A2AAR as template (PDBid
3EML)

DOCK, VINA, GOLD [112]

GPCR: Adenosine A2A receptor (A2AAR)

Ligands

Library of 545,000 CNS drug-like compounds

Drug design technique(s) Computational tool(s) References

Docking into a A2AAR model using the X-ray
structure of turkey β1-AR as template (PDBid
2VT4)

GLIDE [113]

Ligands

Library of 4,300,000 drug-like compounds

Drug design technique(s) Computational tool(s) References

Docking into X-ray structure of A2AAR (PDBid
3EML)

ICM [114]

Ligands

ZM241385

(continued)
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Table 1
(continued)

Drug design technique(s) Computational tool(s) References

Docking into X-ray structure of A2AAR (PDBid
3EML) and into a A2AAR model using X-ray
structure of β2-AR as template (PDBid
2R4R)

GLIDE XP, InducedFit, MOE Tabu
search

[115]

Ligands

Library of commercially available compounds (ZINC database)

Drug design technique(s) Computational tool(s) References

Docking into four X-ray structures of A2AAR
(PDBid 3QAK; PDBid 2YDO; PDBid
2YDV; PDBid 3EML)

DOCK [116]

Ligands

Library of commercially available compounds (ZINC database) with molecular weight less than
350 g/mol, less than seven rotatable bonds, and logP lower than 3.5

Drug design technique(s) Computational tool(s) References

Docking into X-ray structure of A2AAR (PDBid
3EML)

DOCK [117]

GPCR: α2A-Adrenergic Receptor (α2A-AR)

Ligands

Library of WOMBAT 2007.1 compounds

Drug design technique(s) Computational tool(s) References

Docking into a α2A-AR model using the X-ray
structure of human β2-AR as template
(PDBid 2RH1)

GLIDE [118]

Ligands

Chlorpromazine, spiperone, spiroxatrine, quinazolines, dopamine, adrenaline, clonidine,
dexmedetomidine, BRL-44408, JP-1302, OPC-2836, ARC239, clozapine, WB4101

Drug design technique(s) Computational tool(s) References

Docking into a α2A-AR model using the X-ray
structure of human dopamine D3 receptor
(D3R) as template (PDBid 3PBL) as template

GLIDE [119]

GPCR: β2-Adrenergic receptor (β2-AR)

Ligands

Library of commercially available compounds (ZINC database)

Drug design technique(s) Computational tool(s) References

Docking into the X-ray structures of β2-AR
(PDBid 2RH1; PDBid 3P0G) and virtual
screening

PLANTS, IFP [120]

(continued)
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Table 1
(continued)

Ligands

Library of commercially available compounds (ZINC database)

Drug design technique(s) Computational tool(s) References

Docking into the X-ray structure of β2-AR
(PDBid 2RH1)

DOCK [121]

Ligands

Library of commercially available compounds (ZINC database)

Drug design technique(s) Computational tool(s) References

Docking intothe X-ray structure of β2-AR
(PDBid 3SN6)

MolGridCal, AUTODOCK VINA,
LibDock, CDOCKER, Discovery
Studio 2.5, NAMD

[108]

GPCR: CC motif chemokine receptor 2 (CCR2)

Ligands

Teijin, RS-504393, 2-amino-N-(2-(((1S,2R)-2-((4-(methylthio)benzyl)amino)cyclohexyl)amino)-2-
oxoethyl)-5-(trifluoromethyl)benzamide, 2-amino-N-(2-(((3S,4R)-4-((4-(methylthio)benzyl)
amino)piperidin-3-yl)amino)-2-oxoethyl)-5-(trifluoromethyl)benzamide

Drug design technique(s) Computational tool(s) References

Docking into a CCR2 model using the X-ray
structure of CXC chemokine receptor 4
(CXCR4) as template (PDBid 3ODU)

GROMACS, AUTODOCK [122]

Ligands

TAK779, Teijin-comp1, JnJ-comp1, Merck-comp55, INCB3344, and BMS-comp22

Drug design technique(s) Computational tool(s) References

Docking into a CCR2 model using the X-ray
structure of CXCR4 as template (PDBid
3ODU)

AMBER, GLIDE [123]

GPCR: Corticotropin-releasing factor receptor 1 (CRFR1)

Ligands

Dihydropyrrole[2,3-d]pyridines

Drug design technique(s) Computational tool(s) References

Docking into a CRFR1 model using the X-ray
structure of glucagon and calcitonin
receptors as templates

MacroModel/BatchMin [124]

GPCR: δ-Opioid receptor (DOR)

Ligands

NTB, NTI, NTIR, BNTX, SNC80, SNC67, BW373U86, SIOM, TAN-67, SB219825, SB206848,
SUPERFIT, cis-(+)-3-methylfentanyl

(continued)
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Table 1
(continued)

Drug design technique(s) Computational tool(s) References

Docking into three DOR models using the
X-ray structure of bovine rhodopsin as
template (PDBid 1F88)

AUTODOCK [125]

Ligands

Morphine

Drug design technique(s) Computational tool(s) References

Docking into a DOR model using the X-ray
structure of bovine rhodopsin (PDBid 1F88)
and the theoretical model of bovine
rhodopsin based on electron microscopy
(PDBid 1B0J) as templates

MOE [126]

GPCR: Histamine H3 receptor (H3R)

Ligands

Library of compounds derived from ChEMBL database and VU-MedChem fragment library

Drug design technique(s) Computational tool(s) References

Virtual fragment screening into a H3R model
using the X-ray structure of histamine H1

receptor (H1R) as template (PDBid 3RZE)

PLANTS, GOLD [127]

Ligands

Library of 418 H3R antagonists

Drug design technique(s) Computational tool(s) References

Docking into a H3R model using the X-ray
structure of bivine rhodopsin (PDBid 1HZX)
as template

GOLD [128]

Ligands

Library of non-imidazole H3R antagonists

Drug design technique(s) Computational tool(s) References

Docking into a H3R model using the X-ray
structure of bovine rhodopsin as template
(PDBid 1L9H)

GOLD [129]

GPCR: Metabotropic glutamate receptor type 1 (mGluR1)

Ligands

L-Glu, QUIS, Ibo, (1S,3R)-ACPD, S-4CPG, S-4C3HPG, S-4H3CPG, M4CPG, S-3HPG, UPF523

Drug design technique(s) Computational tool(s) References

Docking into a NH2-terminal domain of
mGluR1 model using the X-ray structures of
leucine/isoleucine/valine-binding protein

SYBYL [130]

(continued)
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Table 1
(continued)

(LIVBP) (PDBid 2LIV) and of leucine-
binding protein (LBP) (PDBid 2LBP) as
templates

GPCR: M1 muscarinic AcetylCholine Receptor (M1 mAChR)

Ligands

L005771, L005772, L005773, L006454, L014151, pilocarpine, NCC11-1314, NCC11-1585,
NCC11-1607, nebracetam, oxotremorine, oxotremorine-M, quinuclidine, RU47213, SDZ ENS
163, pilofrin, gliatilin (TN), sabcomeline, VU0357017, xanomeline, pentylthio-TZTP

Drug design technique(s) Computational tool(s) References

Docking into a M1 mAChR model using the X-
ray structure of M3 mAChR as template
(PDBid 4DAJ)

GLIDE [131]

Ligands

Flavonoids

Drug design technique(s) Computational tool(s) References

Docking into a M1 mAChR model using the X-
ray structure of M3 mAChR as template
(PDBid 4DAJ)

GLIDE, AUTODOCK [132]

GPCR: M2 muscarinic AcetylCholine Receptor (M2 mAChR)

Ligands

Library of lead-like compounds and fragments derived from the ZINC database

Drug design technique(s) Computational tool(s) References

Docking into the X-ray structure ofM2mAChR
(PDBid 3UON) and virtual screening

DOCK [133]

GPCR: M3 muscarinic AcetylCholine Receptor (M3 mAChR)

Ligands

Library of lead-like compounds and fragments derived from the ZINC database

Drug design technique(s) Computational tool(s) References

Docking into the X-ray structure ofM3mAChR
(PDBid 4DAJ) and virtual screening

DOCK [133]

GPCR: 5-HydroxyTryptamine 2A Receptor (5-HT2AR)

Ligands

Library of 5-HT2AR agonists (serotonin, DOI, mescaline, LSD, 5-MeO-alpha-ET, psilocin, bufotenine,
dimethyltryptamine) and antagonists (nefazodone, aripiprazole, haloperidol, cyproheptadine,
trazodone, clozapine, ketanserin, spiperone, risperidone)

(continued)
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Table 1
(continued)

Drug design technique(s) Computational tool(s) References

Docking into human 5-HT2ARmodel using the
X-ray structure of β2-AR (PDBid 3SN6) as
template and virtual screening

GLIDE [134]

Ligands

Serotonin, dopamine, DOI, LSD, haloperidol, ketanserin, clozapine, risperidone

Drug design technique(s) Computational tool(s) References

Docking into human 5-HT2ARmodel using the
X-ray structure of β2-AR (PDBid 2RH1) as
template

AUTODOCK [135]

Ligands

(Aminoalkyl)benzo and heterocycloalkanones

Drug design technique(s) Computational tool(s) References

Docking into the transmembrane α-helices
bundle of 5-HT2AR model using the X-ray
structure of bovine rhodopsin (PDBid 1F88)
as template

AMBER [136]

GPCR: 5-HydroxyTryptamine 2C Receptor (5-HT2CR)

Ligands

(Aminoalkyl)benzo and heterocycloalkanones

Drug design technique(s) Computational tool(s) References

Docking into the transmembrane α-helices
bundle of 5-HT2CR model using the X-ray
structure of bovine rhodopsin (PDBid 1F88)
as template

AMBER [136]

Ligands

11-Chloro-2,3,4,5-tetrahydro-1H-[1, 4]diazepino[1,7-a]ı́ndole, 8,9-dichloro-2,3,4,4a-tetrahydro-
1H-pyrazino[1,2-a]quinoxalin-5(6H)-one, (S)-1-(2-aminopropyl)-7-fluoro-1H-indazol-6-ol, (R)-1-
(7-(2-chlorophenyl)-5-fluoro-2,3-dihydrobenzofuran-2-yl)-N-methylmethanamine, N-(3-(4-
methylimidazolidin-1-yl)phenyl)-5,6-dihydrobenzo[h]quinazolin-4-amine, N-(4-methoxy-3-(4-
methylpiperazin-1-yl)phenyl)-1,2-dihydro-3H-benzo[e]indole-3-carboxamide, 1-(3,5-
difluorophenyl)-3-(4-methoxy-3-(2-(piperidin-1-yl)ethoxy)phenyl)imidazolidin-2-one, N-(3-(2-((3-
(piperazin-1-yl)pyrazin-2-yl)oxy)ethoxy)benzyl)propan-2-amine

Drug design technique(s) Computational tool(s) References

Docking into 5-HT2CR model using the X-ray
structure of β2-AR (PDBid 2RH1) as
template

FlexX [137]
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Table 2
Ligand-based drug design techniques for the modulation of potential GPCR-derived therapeutic
targets of AD

GPCR: Adenosine A1 receptor (A1AR)

Ligands

N6-Substituted adenosines, 8-substituted xanthines

Drug design technique(s) Computational tool(s) References

CoMFA CHEM-X [155]

GPCR: Adenosine A2A receptor (A2AAR)

Ligands

2-(Furan-2-yl)-[1, 2, 4]triazolo[1,5-f]pyrimidin-5-amines, 2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a]
pyrazin-8-amine, and 2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-7-amines

Drug design technique(s) Computational tool(s) References

HQSAR SYBYL [154]

Ligands

Thieno[3,2-d]pyrimidine-4-methanones, 4-arylthieno[3,2-d]pyrimidines, pyrazolo[3,4-d]pyrimidines,
pyrrolo[2,3-d]pyrimidines, 6-arylpurines, pyrimidine-4-carboxamides, 7-aryltriazolo[4,5-d]
pyrimidines

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [156]

Ligands

Pyrimidines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [157]

Ligands

2-Substituted adenosines, 2-substituted adenosine-5’uronamides, 2-substituted adenosine-50N-
ethyluronamides

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [158]

Ligands

Triazolopyrimidines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [159]

Ligands

2-Alkyloxy-, 2-aryloxy-, and 2-aralkyloxy-adenosines

(continued)
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Table 2
(continued)

Drug design technique(s) Computational tool(s) References

CoMFA CHEM-X [160]

GPCR: β2-Adrenergic receptors (β2-AR)

Ligands

Library of 94 β2-AR agonists and antagonists

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [161]

Ligands

Tryptamines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [162]

Ligands

Fenoterol derivatives

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [163, 164,
165]

GPCR: CXC motif chemokine receptor 2 (CXCR2)

Ligands

N,N0-Diarylsquaramides, N,N0-diarylureas, diaminocyclobutenediones

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [166]

GPCR: δ-Opioid receptor (DOR)

Ligands

SNC80 analogs

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [167]

GPCR: Histamine H3 receptor (H3R)

Ligands

Quinolines

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [168]

Ligands

(continued)
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Table 2
(continued)

4-(3-(Phenoxy)propyl)-1H-imidazoles, 4-aminoquinolines, 3-(1H-imidazol-4-yl)propanol derivatives,
1-(4-(phenoxymethyl)benzyl)piperidines

Drug design technique(s) Computational tool(s) References

CoMFA and CoMSIA combined with the implementation
of charged partial surface area and VolSurf descriptors,
among others

SYBYL [169]

Ligands

Imidazoles, thiazoles

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [170]

GPCR: Metabotropic glutamate receptor type 1 (mGluR1)

Ligands

Triazafluorenones

Drug design technique(s) Computational tool(s) References

CoMFA CERIUS2 [171]

Ligands

Quinolines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [172]

GPCR: Metabotropic glutamate receptor type 2 (mGluR2)

Ligands

Triazolopyridines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL, PIPELINE PILOT [173]

GPCR: Metabotropic glutamate Receptor type 5 (mGluR5)

Ligands

N-(1,3-Diphenyl-1H-pyrazol-5-yl)benzamides

Drug design technique(s) Computational tool(s) References

HQSAR SYBYL [174]

Ligands

Benzodiazepines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [175]

Ligands

(continued)
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Table 2
(continued)

Aryl ethers

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [176]

GPCR: M2 muscarinic AcetylCholine Receptor (M2 mAChR)

Ligands

Bisquaternary caracurine V derivatives

Drug design technique(s) Computational tool(s) References

CoMSIA SYBYL [177]

Ligands

Piperidinylpiperidines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [178]

GPCR: 5-HydroxyTryptamine 2A Receptor (5-HT2AR)

Ligands

Tryptamines

Drug design technique(s) Computational tool(s) References

HQSAR SYBYL [153]

Ligands

Indoles, methoxybenzenes, quinazolinediones

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [179]

Ligands

1,4-Disubstituted aromatic piperazines

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [180]

Ligands

3-(Aminomethyl)tetralones, ketanserin analogs, 2-aminoethyl benzocyclanones, 2-(2-piperidinoethyl)
benzocycloalkanones

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [181]

Ligands

Phenylalkylamines

(continued)
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Table 2
(continued)

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [182]

GPCR: 5-HydroxyTryptamine 2C Receptor (5-HT2CR)

Ligands

1-(3-Pyridylcarbamoyl)indolines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [183]

GPCR: 5-HydroxyTryptamine 4 Receptor (5-HT4R)

Ligands

Benzimidazoles

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [184, 185]

Ligands

Indole carbazimidamides, 5-hydroxytryptamine, 4-amino-5-chloro-2-methoxybenzoic acid esters, 4-
amino-N-[2-(1-aminocycloalkan-1-yl)ethyl]-5-chloro-2-methoxybenzamides, (�)-1-hydroxy-3-
aminopyrrolidones, 5-benzyloxytryptamines, 5-methoxytryptamines

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [186]

Ligands

Benzamides

Drug design technique(s) Computational tool(s) References

CoMFA SYBYL [187]

GPCR: 5-HydroxyTryptamine 6 Receptor (5-HT6R)

Ligands

Arylsulfonamides

Drug design technique(s) Computational tool(s) References

HQSAR HQSAR software [152]

Ligands

N1-Arylsulfonylindoles

Drug design technique(s) Computational tool(s) References

CoMFA, CoMSIA SYBYL [188]
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compounds with drug-like properties, including Quantitative
Structure-Activity Relationship (QSAR) techniques such as Com-
parative Molecular Field Analysis (CoMFA) (Fig. 3a, b), Compara-
tive Molecular Similarity Index Analysis (CoMSIA) (Fig. 3c, d),
Self-Organizing Molecular Field Analysis (SOMFA) (Fig. 3e), and
HologramQuantitative Structure-Activity Relationships (HQSAR)
(Fig. 3f).

The investigation of QSARs has been a ligand-based drug
design approach of utmost importance for computational chemis-
try and has opened new perspectives on the drug discovery process.
This useful computational methodology searches for mathematical
models that explore the contribution of specific functional groups
and moieties of the ligands (physicochemical parameters and/or
theoretical molecular descriptors) to the experimental determined
biological/pharmacological data for congeneric or non-congeneric
series of chemical compounds (reviewed in [138, 139, 140]). The
development of a robust and trustworthy QSARmodel should take
into account some considerations, particularly the guarantee that

Fig. 3 Representative QSAR-based methodologies for drug design of modulators
of potential GPCR-derived therapeutic targets of AD. Color-coded contour maps
(a) and (b) Comparative Molecular Field Analysis (CoMFA) [72], color-coded
contour maps (c) and (d) Comparative Molecular Similarity Index Analysis
(CoMSIA) [72], color-coded contour map (e) Self-Organizing Molecular Field
Analysis (SOMFA) [149], and color-coded contour map (f) Hologram Quantitative
Structure-Activity Relationship (HQSAR) [152]
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the chemical structure of all ligands is properly drawn or imported,
the reliability of biological/pharmacological activity data, and the
use of validated software to calculate the descriptor values. In
addition, the biological/pharmacological activity data should pos-
sess a normal distribution pattern (reviewed in [138, 139, 140]).
The main purposes of QSAR are focused on explaining the subtle
differences in biological/pharmacological data, at the molecular
level, of a statistical population of drug candidates (training set)
through the use of appropriate and relevant molecular descriptors
(e.g., topological descriptors, electronic descriptors, geometrical
descriptors, constitutional descriptors, etc.) (reviewed in [138,
139, 140]). The construction of mathematical QSAR models usu-
ally employs a wide variety of statistical methods for linear model-
ing, such as multiple (or multivariate) linear regression (MLR)
[141], partial least squares (PLS) regression [142], and linear
discriminant analysis (LDA) [143], and nonlinear modeling, such
as artificial neural networks (ANN) [144] or support vector
machines (SVM) [145] to derive a robust mathematical correlation
that explains the dependence of particular descriptor variables
(independent variables) to the biological/pharmacological activity
of a set of ligands (dependent variables). The choice of an appropri-
ate statistical method is crucial especially when a large number of
descriptors are calculated in order to neglect the least relevant or
redundant descriptors and to select the other ones with the highest
mutual intercorrelation with the activity data. The resulting QSAR
model is subjected to several validation tests to verify the reliability
of the correlation models. After its construction, a QSAR model is
usually corroborated by applying multiple strategies of QSAR
model validation, in particular the internal validation or cross-vali-
dation and the external validation, which provide information
about its stability and predictivity (reviewed in [138, 139, 140]).
Regarding internal validation or cross-validation, the training set is
modified by deleting one (leave-one-out cross-validation, LOO) or
more (leave-some-out cross-validation, LSO; leave-many-out
cross-validation, LMO) ligands from the set. The QSAR model is
reconstructed based on the remaining ligands using the combina-
tion of descriptors previously determined, and the biological/phar-
macological activity of the eliminated ligand(s) is calculated from
the developed QSAR equation. Subsequently, the same procedure
is performed until all or a definite portion of the ligands of the
training set have been eliminated once and the predictive activity
values of the compounds are used for the calculation of several
internal validation parameters, in particular the predictive correla-
tion coefficient r2cv (reviewed in [138, 139, 140]). The external
validation consists in the prediction of activity of a group of chemi-
cal compounds that are not included in the training set (i.e., test
set) and the same parameters are used in the construction of QSAR
model. The external predictive ability of the generated QSAR
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model is determined using the predictive correlation coefficient
r2pred (reviewed in [138, 139, 140]).

The CoMFA and CoMSIA methodologies have been impor-
tant ligand-based tools for the design and development of more
potent drug candidates targeting GPCRs (Fig. 4). The basic con-
cept of CoMFA methodology consists in finding differences in
biological/pharmacological activity of a data set of ligands corre-
lated to the differences in their 3D shape and the magnitude of
molecular field properties. Particularly, CoMFA is restrained to
steric (Lennard-Jones potential functions) and electrostatic com-
ponents (Coulomb potential functions) for field calculation, and
therefore these descriptors only take into account the ability of
ligands to establish intermolecular interactions with a putative tar-
get protein (enthalpic contributions) [72, 146, 147]. A similar
QSAR-based methodology, CoMSIA, was conceived based on arbi-
trary descriptors, so-called similarity indices. Unlike CoMFA,
CoMSIA applies a smoother potential based on Gaussian-type
distance-dependent functions, allowing the calculation of various
similarity indices, in particular steric, electrostatic, hydrophobic,
hydrogen-bond acceptor and donor properties, that were created
to cover more broadly than the steric and electrostatic fields calcu-
lated by CoMFA, the possible major contributions for the binding
free energy of ligands to a putative therapeutic target [148]. The
3D alignment of the chemical structures of ligands is required to

Application of Lennard-
Jones and Coulomb-type
potential functions

Application of Gaussian
potential functions

CoMFA CoMSIA

Database 3D alignment
by superimposition

Placement of ligands into virtual 3D grids and determination of their
interaction energies to molecular probes at each grid point

Construction of a PLS model to explain the dependence of CoMFA/CoMSIA
field properties with the ligand activity and statistical validation

Steric and electrostatic field
properties for CoMFA

Steric, electrostatic, hydrophobic,
hydrogen bond donor and acceptor field
properties for CoMSIA

Fig. 4 General procedure for CoMFA and CoMSIA methodologies (Representative
images were extracted from [72])
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perform both methodologies. An optimal structure alignment of a
data set of molecules can be described as the alignment that reaches
the maximum superimposition of steric, electrostatic, hydrophobic,
hydrogen-bond acceptor and hydrogen-bond donor parameters. In
3D QSAR-based methodologies, the 3D alignment is a crucial step
and should reveal the superimposition of molecular conformations
that a data set of ligands adopt when interacting with a specific
therapeutic target. Each member of the training set is aligned to a
template molecule which shares a common molecular substructure,
and the members of the aligned training sets are placed inside
virtual 3D grid boxes with a default grid spacing in all Cartesian
directions [72, 146, 147, 148]. Subsequently, the interaction ener-
gies are calculated between the ligands and molecular fragments
(molecular probes) at each grid point. Using an appropriate
method for regression analysis, usually by PLS, the 3D QSAR
model is constructed to describe the variation of biological/phar-
macological activity with the variation of CoMFA/CoMSIA inter-
action fields, and the predictive ability of 3D QSAR model is
verified by cross-validation and prediction of activity of test set.
The resulting QSAR model is usually interpreted in a graphic
form as color-coded contour maps, which exhibit specific volumes
of space where the magnitudes of the steric, electrostatic, hydro-
phobic, hydrogen-bond acceptor and hydrogen-bond donor para-
meters are positively or negatively correlated with the biological/
pharmacological activity [72, 146, 147, 148]. This type of graphi-
cal representation can be assumed as a model of the binding site in
which a training set of ligands is supposed to interact. While the
colored contour maps relative to steric and electrostatic field con-
tributions of CoMFA display the regions of space where the aligned
ligands can favorably or unfavorably bind to a putative therapeutic
target, the colored contour maps generated by CoMSIA-field con-
tributions highlight the regions of the aligned molecules that can
favor the presence of a moiety with a given physicochemical prop-
erty [148]. From the information provided by these graphical
representations of CoMFA/CoMSIA models, the activity of novel
synthesized drug candidates can be predicted.

A grid-based 3D QSAR technique known as SOMFA (Fig. 5)
was originally developed by Robinson et al. to estimate the binding
affinity of steroid compounds with corticosteroid-binding globulin
[149]. This methodology shares common characteristics with
CoMFA, in which a grid-based approach is employed, and with
molecular similarity methods, in which the intrinsic molecular
properties, such as molecular shape and electrostatic potential, are
used to construct SOMFA-based QSAR models [149, 150]. The
first step in the SOMFA procedure consists in the determination of
mean centered activities for a training set of known ligands. The
mean centered activity for each ligand of the training set, which
consists in the subtraction of mean activity of the training set from
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each ligand’s activity, is calculated in order to obtain a scale of
activity where the most and the least active ligands present positive
and negative values, respectively. In general, the mean centered
activity represents a form of descriptor filtering which denotes the
structural features that discriminate high-activity from low-activity
ligands [149]. Subsequently, the ligands are structurally aligned by
superimposition using molecular alignment tools such as principal
component analysis (PCA) method and placed on a given orienta-
tion into 3D grids with a given resolution, as in other QSAR
methodologies, with values at each grid point representing the
shape and electrostatic potential. Linear regression models are
constructed to describe the dependence of a given SOMFA molec-
ular property with the experimental training set activities repre-
sented on logarithmic scale. The calculation of correlation
coefficient indicates the potential importance of a given property.
The final result is a grid-based map representing each molecular
property that can support the molecular design of novel com-
pounds with improved activity (e.g., binding affinity, etc.) [149,
150]. In general, a SOMFA grid can be used to calculate any
molecular property. For each molecular property, particularly for
molecular shape and electrostatic properties, the grids for each
ligand in the training set are combined to yield property master
grids that highlight the regions of ligands where steric and electro-
static parameters might be expected to be correlated with the
activity (e.g., binding affinity values, etc.) [149]. Highly active

Determination of mean centered activities for ligands (positive values -
most active ligands; negative values - least active ligands)

Database 3D alignment by superimposition using a predefined template

Electrostatic master gridShape master grid

Placement of aligned ligands with a
given orientation into a virtual 3D grid
with a given resolution

For each SOMFA property, the 3D grids obtained for each molecule are
combined to yield master grids which denotes the contribution of a given
property to the activity

Linear statistical methods (e.g. PLS) are used to analyse the relationship
between the SOMFA field properties and the logarithms of experimental
activities and statistical validation

Fig. 5 General procedure for SOMFA methodology (Representative images were
extracted from [149])
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ligands sharing similar structural features superimpose these fea-
tures at the same point on a master grid. The grid values for highly
active ligands strengthen each other, resulting in a final master grid,
in which the positive values are associated with common character-
istics to these compounds. In a similar way, the least active com-
pounds share common features that lead to a master grid of
negative grid values. Since the grid values are assigned based on
mean centered activity, moderately active ligands will have small
effect on the final grid values. The quality of the model produced in
SOMFA increases rapidly with the size of the training set data, and,
for that reason, small data sets will not produce the overlapping
features for SOMFA, contributing for a lower quality of correla-
tion. The development of SOMFA has been revealed to be advan-
tageous into the search for the best 3D QSAR model due to its
speed and simplicity. Additionally, for the construction of a
SOMFA model, the structural similarity between the suitably
aligned ligands of a training set is not mandatory [149].

HQSAR has emerged as a novel 2D and fragment-based QSAR
technique which employs fragment fingerprints as predictive vari-
ables of biological/pharmacological activity. The methodology
employed in HQSAR procedure (Fig. 6) involves several steps,
including the generation of structural fragments for each ligand in
the training set and the encoding of these fragments in holograms
[151]. Initially, the input molecules are broken into all possible
structural fragments of atoms (e.g., linear, branched, cyclic, and

Input molecule of a training set

Fragmentation

All possible structural fragments (linear, branched, cyclic, and overlapping
fragments) containing a minimum and a maximum number of atoms

Generation of a PLS statistical model to describe the contribution of molecular
hologram bin values to the corresponding activity and statistical validation

Cyclic redundancy check algorithm
and hologram generation

Molecular hologram (hologram length
values between 53 and 401)

9 3 11 2 5 8 15 7

Fig. 6 General procedure for HQSAR methodology
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overlapping fragments, etc.) connected in size between a minimum
and a maximum number of atoms as defined by hologram length
parameters [152, 153, 154]. Afterwards, each unique fragment in
the data set is assigned a large positive integer by means of a cyclic
redundancy check (CRC) algorithm. Each of these integers corre-
sponds to a square array of integers in a specified hologram length
L. The cell values (bin occupancies) are incremented according to
the produced fragments. Therefore, all the generated fragments are
hashed into boxes (array bins), composing a matrix in the range of 1
to L. The matrix now constitutes a molecular hologram, and the
bin occupancies are the descriptor parameters [152, 153, 154].
These descriptors provide some information about chemical and
topological features of ligands under study. The use of hashing
significantly diminishes the size of the molecular hologram but
induces a phenomenon of fragment collision. Upon production
of molecular fragments, the identical ones are hashed to the same
bin, and the respective bin occupancy is increased. With the objec-
tive of avoiding the occurrence of identical or similar fragment
collisions between unique molecular fragments, the values of holo-
gram length are often selected to be prime numbers (default holo-
gram length values which are a set of 12 prime numbers ranging
from 53 to 401) [152, 153, 154]. The development of HQSAR
model is strongly correlated to a number of different parameters
concerning hologram generation, in particular the fragment size,
the hologram length, and the fragment distinction. Diverse pat-
terns of following fragment distinction parameters, including atom
types (A), bond types (B), connectivity (C), hydrogen atoms (H),
chirality (Ch), and donors and acceptors (DA), are used for the
generation of molecular fragments and for the construction of
HQSAR models [152, 153, 154]. Once an optimal model is iden-
tified, linear statistical methods such as PLS yield a mathematical
equation that explains the dependence of molecular hologram bin
values to the corresponding biological/pharmacological activity of
each ligand in the training set. The resulting HQSAR models can
be graphically displayed as color-coded contribution maps in which
the color of each molecular fragment exhibits the contribution
(favorable contribution, intermediate contribution, or unfavorable
contribution) of an atom or a small number of atoms to the overall
activity of ligands under study [152, 153, 154]. As in other QSAR
methodologies, the derived HQSAR models are validated, and the
biological/pharmacological activities of external test sets are pre-
dicted from the generated models. The application of HQSAR as an
alternative to the existing QSAR methodologies exhibited a pleth-
ora of potential advantages. It avoids the selection and calculation
of the physicochemical descriptors by traditional QSAR, and no
explicit 3D information for the ligands (e.g., determination of the
3D structure, putative binding conformation, and molecular align-
ment) is required for the generation of molecular holograms.
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Additionally, HQSAR analyses could be easily and rapidly per-
formed for both small and large data sets that are not analyzable
by traditional QSAR techniques [152].

3.3 Pharmacophore-

Based Drug Design

Pharmacophoremodeling has been demonstrated to be a remarkably
useful in silico approach for the discovery of potentially bioactive
molecules acting on several therapeutic targets [189, 190]. A phar-
macophore does not represent a real molecule or an association of
functional groups, but it represents an ensemble of steric and elec-
tronic determining features that assure an optimal interaction toward
a relevant biological/pharmacological target and trigger its
biological/pharmacological activity. Therefore, a pharmacophore
can be described as the highest common denominator shared by a
set of active ligands with similar biological/pharmacological activity
and which may interact to the same site of a protein (reviewed in
[73]). A pharmacophore model can be developed either in the
absence of therapeutic target structure (ligand-based pharmaco-
phore modeling) or based on the 3D structure of a therapeutic target
(structure-based pharmacophore modeling) (Fig. 7). The construc-
tion of receptor-based pharmacophore models implies the analysis of
the pharmacophoric features (hydrogen-bond acceptors and donors,
hydrophobic groups, aromatic rings, etc.) in the active site and their
spatial relationships which are important for ligand binding
(reviewed in [73]). Regarding ligand-based pharmacophore

Structure-based pharmacophore modelling

Ligand-based pharmacophore modelling

H

H

H
Ar

HbD

Probing key interaction
features between ligands
and protein target

Structural alignment of a
set of active ligands and
determination of 3D
common chemical features

H Ar
HbA HbD

Fig. 7 Representative schemes of structure-based and ligand-based pharmaco-
phore modeling techniques

88 Agostinho Lemos et al.



modeling, the construction of a pharmacophore model involves
initially the generation of a conformational space for each ligand of
training set to represent their conformational flexibility. The major
goal of conformation generation relies on the identification of bio-
active conformation(s) of a set of ligands from conformational
ensembles in the lowest amount of computational time. Various
software tools and algorithms used for conformation generation
possess the ability to calculate different conformational geometries
containing the bioactive conformation and other similar geometries
(reviewed in [73]). A suitable computational tool for conformational
search needs to generate all conformational geometries that ligands
adopt when they interact with protein targets, to select a short list of
low-energy conformational geometries in order to avoid the excess
of mass storage capacity and to calculate the conformational geome-
tries in a lower computational time. Subsequently, the multiple
ligands belonging to training set are superimposed, and the common
3D structural features crucial for biological/pharmacological activity
are determined (reviewed in [73]). Currently, several computational
functionalities for generation of pharmacophore models have been
developed, including Pharmacophore Alignment and Scoring
Engine (PHASE) [191], Activity Prediction Expert System-3D
(Apex-3D) [192], MOLMOD [193], System Level Automation
Tool for Engineers (SLATE) [194], LigandScout [195], distributed
computing (DistComp) [196], SYBYL [197], CATALYST [198],
discrete surface charge optimization (DISCO) [198], genetic algo-
rithm for structure and phase production (GASP) [198], and molec-
ular operating environment (MOE) [199], among others. Table 3
reports the most relevant examples of applicability of these software
packages for the study of the most critical molecular and electronic
features of ligand databases for the modulation of GPCRs with
therapeutic potential for AD.

Once a pharmacophore model is created by either ligand-based
or structure-based manner, it can be used as a query to perform a
virtual screening of 3D chemical databases in the search for new
therapeutic strategies for AD based on modulation of GPCRs
(reviewed in [73]). In the pharmacophore-based virtual screening
procedure, a pharmacophore hypothesis is considered as a template
for the identification of hit ligands that present similar chemical
features to those of the pharmacophoric template. Apart from the
applicability of pharmacophore modeling for virtual screening, de
novo drug design approaches have been explored specifically for the
design of drug candidates with novel structures which cover the
chemical features of a given pharmacophore hypothesis. The soft-
ware programs of pharmacophore-based de novo drug design usu-
ally use as input a set of detached molecular fragments consistent
with the pharmacophore hypothesis, and the pharmacophoric frag-
ments are connected by using appropriate linkers (reviewed in [73]).
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Table 3
Pharmacophore-based drug design approaches for the modulation of potential GPCR-derived
therapeutic targets of AD

GPCR: Adenosine A2A receptor (A2AAR)

Ligands

1,2,4-Triazolo[5,1-i]purines, 2-N-butyl-9-methyl-8-[1–3]triazol-2-yl-9H-purin-6-ylamines, pyrazolo
[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines, 2-amino-6-furan-2-yl-4-substituted nicotinonitriles, 40-aza-
carbocyclic nucleosides, 5,6-dihydro-(9H)-pyrazolo[3,4-c]-1,2,4-triazolo[4,3-a]pyridines, N-[6-
amino-2-(heteroaryl)pyrimidin-4-yl]acetamides, 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-6-
pyridylpyrimidines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with QSAR PHASE [200]

Ligands

Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines, triazolopyridines, 4-amido-2-aryl-1,2,4-triazolo[4,3-
a]quinoxalin-1-ones, 2-amino-5-benzoyl-4-(2- furyl)thiazoles, N2-substituted pyrazolo[3,4-d]
pyrimidines, 2-(benzimidazol-2-yl)quinoxalines, 5-amino-2-phenyl [1–3]triazolo[1,2-a] [1, 2, 4]
benzotriazin-1-ones, 1,3-dipropyl-8-(1-heteroarylmethyl-1H-pyrazol-4-yl)-xanthines, 9-
alkylpurines, pyrido[2,1-f]purine-2,4-diones, 1,3-dialkyl-8-N-substituted benzyloxycarbonylamino-
9-deazaxanthines, 7-aryltriazolo[4,5-d]pyrimidines, 7-imino-2-thioxo-3,7-dihydro-2H-thiazolo
[4,5-d] pyrimidines, 2-amino-6-furan-2-yl-4-substituted nicotinonitriles, 2-aminoimidazopyridines,
8-(furan-2-yl)-3-substituted thiazolo[5,4-e][1, 2, 4]triazolo-[1,5-c]pyrimidine-2(3H)-thiones, 2,6-
diaryl-4-acylaminopyrimidines, 1,2,4-triazolo[1,5-c]pyrimidines, 1,2,4-triazolo[5,1-i]purines, N-1
monosubstituted 8-(pyrazol-4-yl)xanthenes, 1,3-dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines,
pyrimidine-4-carboxamides, 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-6-pyridylpyrimidines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with QSAR PHASE [201]

Ligands

7-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [202]

Ligands

2,6-Diaryl-4-phenacylaminopyrimidines, 2-amino-N-pyrimidin-4-ylacetamides, 2-amino-N-pyrimidin-
4-yl acetamides, N-pyrimidinyl-2-phenoxyacetamides, 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-
6-pyridylpyrimidines, N-[6-amino-2-(heteroaryl)pyrimidin-4-yl]acetamides, pyrazolo[4,3-e][1, 2, 4]
triazolo[1,5-c]pyrimidin-5-amine, pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines, 6-(furanyl)-9H-
purin-2-amines, 2-(2-furanyl)-7-phenyl[1, 2, 4]triazolo[1,5-c]pyrimidin-5-amines, 3H-[1, 2, 4]-
triazolo[5,1-i]purin-5-amines, 1,2,4-triazolo[1,5-c]pyrimidines, biaryl, heteroaryl, and heterocyclic
derivatives of SCH 58261

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with QSAR based on
GFA joined with kNN

CATALYST [203]

GPCR: α2A-Adrenergic receptor (α2A-AR)

(continued)
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Table 3
(continued)

Ligands

Catecholamines, imidazolines, guanidines, structures possessing distinct scaffolds (rilmenidine,
talipexole, xylazyne)

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with CoMFA DISCO, SYBYL [204]

GPCR: CC motif chemokine receptor 2 (CCR2)

Ligands

R-3-amino-pyrrolidines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with CoMFA and
CoMSIA

SYBYL [205]

Ligands

Diaminopropionamide-glycine dipeptides, disubstituted and trisubstituted cyclohexanes

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [206]

GPCR: Corticotropin-releasing factor receptor 1 (CRFR1)

Ligands

Arylquinolines, phenylpyrazolo[1,5-a]pyrimidines, benzoylpyrimidines, and arylpyrrolopyridines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [207]

Ligands

Anilinopyrimidines and triazines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [208]

Ligands

N3-Phenylpyrazinones

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling PHASE [209]

GPCR: δ-Opioid receptor (DOR)

Ligands

SB219825, SIOM, (-) TAN-67, BNTX, naltriben, naltrindole, oxymorphindole

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling SYBYL [210]

(continued)
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Table 3
(continued)

Ligands

Non-peptides (xorphanol, naltrindole, BNTX, SIOM, Win44441, lofentanil, carfentanil, SNC80(+8)),
cyclic peptides (DPDPE, DPLPE), linear peptides (TIPP, TIP, TI-NH2)

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling DistComp [196]

Ligands

(E)- and (Z)-arylidenenaltrexones

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling SYBYL [211]

Ligands

DADLE, DPDPE, deltorphins, Leu- and Met-enkephalins, Dmt-Tic, ICI 174,864, TIPP

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling SYBYL [212]

GPCR: Histamine H3 receptor (H3R)

Ligands

Dibasic biphenyl derivatives, tetrahydroisoquinolines, tetrahydroquinolines, tetrahydroazepines,
imidazolidinylidenepropanedinitriles

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [213]

Ligands

Imidazoles

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling SLATE [214]

Ligands

1-(4-(3-(Piperidin-1-yl)propoxy)benzyl)piperidine, 1-(4-chlorobenzyl)-1-(5-(pyrrolidin-1-yl)pentyl)
guanidine, 3-(2,6-dibromo-4-(2-(dimethylamino)ethyl)phenoxy)-N,N-dimethylpropan-1-amine

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [215]

GPCR: Metabotropic glutamate receptor type 1 (mGluR1)

Ligands

Methylglutamates

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling APEX-3D [216]

(continued)
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Table 3
(continued)

Ligands

α-Substituted cyclobutylglycins, 4-carboxy phenylglycins, (R,S)-1-aminoindan-2,5-dicarboxylic acid,
(�)-α-thioxanthylmethyl-3-carboxycyclobutylglycine

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling MOLMOD [217]

GPCR: Metabotropic glutamate receptor type 2 (mGluR2)

Ligands

1,3-Dihydrobenzo[b][1, 4]diazepin-2-ones

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with CoMFA and
CoMSIA

DISCO, SYBYL [218]

Ligands

Methylglutamates

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling APEX-3D [216]

GPCR: 5-Hydroxytryptamine 2C Receptor (5-HT2CR)

Ligands

RS-102221, SB240284, Haloperidol, S20098, 2-alkyl-4-aryl-pyrimidines, bisaryl imidazolidin-2-ones,
2-phenyl-dihydropyrrolones, N-substituted-pyridoindolines, cis-fused 2-N,N-dimethylaminomethyl-
2,3,3a,12b-tetrahydrodibenzo[b,f]furo[2,3-d]oxepines, 1H-indole-3-carboxylic acid pyridine-3-
ylamides, benzazepines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with CoMFA CATALYST, SYBYL [219]

Ligands

Library of 16,560 ChemDiv GPCR compounds

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [220]

GPCR: 5-Hydroxytryptamine 4 Receptor (5-HT4R)

Ligands

Indolecarbazimidamide, 3-N-isopropylbenzimidazolone amide, 3-N-ethylbenzimidazolone amide and
benzamide, (R)-zacopride, 5-carbamoyltryptamine and metoclopramide

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling combined with CoMFA SYBYL [221]

Ligands

Indolecarbazimidamides, azabicyclic indole esters, macrocyclic benzamides

Drug design technique(s) Computational tool(s) References

(continued)
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4 Concluding Remarks

With the progress of the structural biology on elucidation of 3D
crystal structures of GPCRs from X-ray crystallography and NMR
techniques and of in silico-based drug design tools, a diverse pleth-
ora of GPCR modulators have been identified by structure- and
ligand-based drug design strategies. Experimentally, the application
of structure-based drug design methodologies allows the under-
standing of ligand-GPCR interactions at a molecular level, which is
fundamental for the construction of reliable structure-based phar-
macophores and generation of novel drugs. However, future drug
candidates acting on GPCRs are likely to rely on ligand-based
approaches because of limited structural data information for the
majority of GPCRs. The present chapter provided a general over-
view of the structure- and ligand-based computational methodol-
ogies as well as their applicability on various potential GPCR-
derived therapeutic targets for AD by small-molecule modulators.
In fact, the pharmacological activation/inhibition of all the afore-
mentioned GPCRs on Tables 1, 2, and 3 has provided therapeutic
opportunities, and from the analysis of these tables, it has become
evident that diverse chemical scaffolds of small molecules have been
explored using structure-based, ligand-based, and pharmacophore-

Table 3
(continued)

Pharmacophore modeling CATALYST [222]

GPCR: 5-Hydroxytryptamine 6 receptor (5-HT6R)

Ligands

Arylsulfonamides, arylsulfonyl derivatives, N-arylsulfonylindoles, 2-substituted tryptamines

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [223]

Ligands

Indoles; indole-like derivatives; monocyclic, bicyclic, and tricyclic aryl-piperazines; and miscellaneous
derivatives

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [224]

Ligands

2-Methylindoles, 2-phenylindoles

Drug design technique(s) Computational tool(s) References

Pharmacophore modeling CATALYST [225]

GFA genetic function algorithm, kNN k nearest neighbor
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based methodologies in the search for anti-AD alternatives. Collec-
tively, these in silico approaches have revealed to be of utmost
importance in early stages of drug discovery, particularly in hit-to-
lead optimization of drug candidates, in order to uncover the most
favorable molecular modifications for the development of more
potent and subtype-selective GPCR modulators targeting AD.

Apart from the extreme relevance of pharmacodynamic (PD)
profile of GPCR modulators, pharmacokinetic (PK) properties,
including absorption, distribution, metabolism, and excretion
(ADME), and toxicology are vital features that should be taken
into account in early phases of drug discovery since usually drug
candidates with a promising PD profile may be failed at late stages
of drug development due to unfavorable PK properties and toxicity.
In silico structure- and ligand-based drug design approaches com-
bined with in silico prediction of ADME properties are expected to
contribute to the improvement of the computational methodolo-
gies used for drug discovery and be fundamental for the develop-
ment of drugs targeting AD with enhanced PD and PK properties.
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