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1. Introduction

A fundamental object of interest in the study of the arithmetic of Fano varieties is 
the density of rational points on it. This is usually measured by the counting function 
that determines the number of rational points of bounded anticanonical height on the 
underlying variety. More precisely, if X is a Fano variety and H(x) some anticanonical 
height function, then one studies the counting function

NU (P ) = �{x ∈ U(Q) : H(x) ≤ P}, (1.1)

where U ⊂ X is some Zariski-open subset. In [4] Manin conjectured that there is some 
open subset U such that

NU (P ) ∼ cP (logP )rank(Pic X)−1, (1.2)

where rank(PicX) is the rank of the Picard group of X and c some constant which has 
received an interpretation by Peyre [10]. In the case of smooth complete intersections in 
projective space of sufficiently large dimension it turns out that the asymptotic formula 
already holds for U = X, due to work of Birch [1]. Hence one would like to obtain at least 
in this setting even more precise information on the density of rational points measured 
by NU (P ). One goal of this paper is to answer this question via giving a higher order 
expansion for NX(P ) in Theorem 1.2 assuming that the dimension of X is sufficiently 
large, similar to [1].

The problem of studying NX(P ) is closely related to counting integral points on the 
affine cone of X via the circle method. Our main tool is a refinement of the major arc 
analysis, which has been essentially unchanged since Birch’s seminal work [1] in 1962. In 
this paper we present a much more precise and refined analysis of the major arcs which 
enables us to derive higher order expansions instead of only obtaining a main term.

We now come to the case where X ⊂ Ps−1 is a hypersurface of degree d, given by 
a homogeneous form F (x1, . . . , xs) ∈ Z[x1, . . . , xs] of degree d. For convenience we use 
in the following the vector notation x for (x1, . . . , xs). In order to find an asymptotic 
formula for NX(P ) one needs to count the number of integer solutions to the equation 
F (x) = 0 in some bounded domain. Technically this is no more difficult than counting 
integer solutions to F (x) = n for some integer n. Since this is an interesting question 
on its own right we consider this slightly more general problem. Let us introduce the 
counting function RB(P, n), which counts the number of solutions xi ∈ Z for 1 ≤ i ≤ s

to the equation

F (x1, . . . , xs) = n,

with (x1, . . . , xs) ∈ PB for some box B ⊂ Rn with sides parallel to the coordinate axes 
and a large real number P . When the box B is clear from the context we also use the 
notation R(P, n) for RB(P, n). In the situation where the form F (x) is not too singular 
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and the number of variables s is large compared to the degree d, the Hardy–Littlewood 
circle method provides an asymptotics for the counting function RB(P, n), as in [1]. If 
dimV ∗ denotes the affine dimension of the singular locus of the form F (x) = 0, then 
Birch proves an asymptotic for RB(P, n) as soon as

s− dimV ∗ > (d− 1)2d. (1.3)

There have been many refinements of the method since then, most of them developed 
for the homogeneous problem with n = 0 or a weighted version of the counting function 
R(P, n). These results include for example improvements in the cubic case due to Heath-
Brown [7,5], a new version of the circle method by Heath-Brown in [6], improvements 
in the quartic case by Browning and Heath-Brown [2] and improvements on the bound 
(1.3) by Browning and Prendiville [3].

All of these have in common that they produce an asymptotic formula for R(P, n) (or 
a weighted version of this counting function) of the form

R(P, n) = S(n)J (P−dn)P s−d + O(P s−d−δ), (1.4)

for some positive δ > 0. The value of δ stays unspecified in most applications of the 
circle method mentioned above. Here S(n) is the singular series and J (n) the singular 
integral. It is a natural question to ask to what extent one might be able to improve the 
error term in the asymptotic expansion (1.4). An inspection of the arguments in Birch’s 
work [1] shows that the minor arc contribution can be forced to be arbitrarily small when 
the number of variables s is sufficiently large. However, in the classical major arc analysis 
there seems to be a natural barrier which prevents one from obtaining any better error 
term than P s−d−1+η, for some small η > 0. More rigorously, in [9] Loh has studied the 
error term in Waring’s problem. If Rs(n) denotes the number of representations of some 
natural number n as the sum of s kth powers of positive integers, then provided that s
is sufficiently large, the circle method delivers an asymptotic formula of the form

Rs(n) ∼ Γ(1 + 1/k)s

Γ(s/k) Ss(n)ns/k−1.

Loh shows that for s ≥ k + 2 and k ≥ 3, the error term in this expansion is bounded 
below by

Rs(n) − Γ(1 + 1/k)s

Γ(s/k) Ss(n)ns/k−1 = Ω−(n(s−1)/k−1).

In their recent work [13] Vaughan and Wooley were able to explain this behaviour in 
establishing second and higher order terms in the asymptotic expansion of Rs(n).

Their arguments are very specific for the situation of Waring’s problem, which means 
in our language a diagonal hypersurface of the form
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F (x) = xk
1 + . . . + xk

s .

It is not clear from their work how to generalise this to more general forms F (x), since 
they heavily use the additive structure and separation of variables in their proof. Taking 
a different approach, we establish in this paper an asymptotic expansion for R(P, n) with 
an arbitrary number of higher order terms given that the form F is not too singular and 
the number of variables s is sufficiently large.

Suppose we aim to count integer points on the variety F (x) = n in a dilate of a box 
B =

∏s
i=1(ai, bi]. For example, if we have n = 0 and F (x) is of degree d we expect to 

see a main term of the form cP s−d. If we restricted F to one of the faces of the box, 
for example in setting xi = ai or xi = bi for some 1 ≤ i ≤ s, then we expect that this 
face contributes a term of order of magnitude P s−d−1. In the standard formulations and 
applications of the circle method this term is not visible since it is typically contained 
in the error term. We are going to make these terms visible in our main Theorem 1.1
below. The coefficients of these lower order terms, which to some extent correspond to 
lower dimensional faces of the box B, are again given by products of generalised singular 
series and singular integrals. We next describe their shape.

Let K ≥ 1. In order to label the different lower order contributions, we introduce the 
index set I(K), which is defined as follows. Let I(K) be the set of all tuples (I1, I2, τ ), 
where I1 and I2 are disjoint subsets of {1, . . . , s} and τ ∈ Zs

≥0 satisfies τi = 0 if i /∈
I1 ∪ I2 and for which the condition |I1| + |I2| + |τ | < K holds. Furthermore we let 
I = ∪K≥1I(K) be the union over all these sets. Given a tuple (I1, I2, τ ) ∈ I we will 
always set I3 = {1, . . . , s} \ (I1 ∪ I2) and I4 = ∅.

In a more general situation, if {1, . . . , s} = ∪4
i=1Ii is a partition into four arbitrary 

disjoint index sets, and a, b ∈ Rs, then we define the s-dimensional vector σa,b(x)
componentwise by

σa,b(x)i =

⎧⎪⎪⎨⎪⎪⎩
bi if i ∈ I1

ai if i ∈ I2

xi if i ∈ I3 ∪ I4.

For a tuple (I1, I2, τ ) ∈ I we now introduce the integral

J(I1,I2,τ )(γ) =
∫

∏
i∈I3

[ai,bi]

∂τ
x e(γF (x))|x=σa,b(x) dxI3 .

The generalised singular integral J(I1,I2,τ )(n) is then given by

J(I1,I2,τ )(n) =
∫
R

J(I1,I2,τ )(γ)e(−γn) dγ,

in case this is convergent.



336 D. Schindler / Journal of Number Theory 173 (2017) 332–370
For any l ≥ 0 let Bl(x) be the lth Bernoulli polynomial and set βl(x) = Bl({x}). In 
order to introduce the generalised singular series, we need to introduce some versions of 
the usual exponential sums occurring in the circle method. For 1 ≤ r < q we define

S(I1,I2,τ )(P ; r, q) =
∑

0≤z<q

e

(
r

q
F (z)

)(∏
i∈I1

(−1)τi+1

(τi + 1)! βτi+1

(
Pbi − zi

q

))

×
(∏

i∈I2

(−1)τi
(τi + 1)!βτi+1

(
Pai − zi

q

))
.

The singular series S(I1,I2,τ )(P, n) is then given by

S(I1,I2,τ )(P, n) :=
∞∑
q=1

q∑
r=1

(r,q)=1

q−|I3|+|τ |S(I1,I2,τ )(P ; r, q)e
(
−r

q
n

)
,

in case the series is convergent.
Recall that V ∗ denotes the singular locus of the form F (x) = 0, which is given in 

affine s-space as the zero set of

∂F

∂xi
(x) = 0, 1 ≤ i ≤ s.

We can now state our main theorem.

Theorem 1.1. Let d ≥ 2 and K ≥ 1, and assume that

s− dimV ∗ > (d− 1)2d−1(2K2 + 2K − 2). (1.5)

Let B be given by B =
∏s

i=1(ai, bi] where ai < bi are real numbers for 1 ≤ i ≤ s. Then 
we have the asymptotic expansion

RB(P, n) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n)J(I1,I2,τ )(P−dn)P s−|I1|−|I2|−|τ |−d

+ O
(
P s−d−(K−1)−δ

)
,

for some δ > 0. Furthermore, all the singular series S(I1,I2,τ )(P, n) and singular integrals 
J(I1,I2,τ )(P−dn) occurring in the summation are absolutely convergent.

Note that the main term for I1 = I2 = ∅ and τ = 0 is exactly the same as the main 
term in the asymptotic expansion (1.4), and S(∅,∅,0)(P, n) = S(n) and J(∅,∅,0)(n) = J(n)
reduce to the classical singular series and singular integral as they appear in (1.4).
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The main new ingredient in the proof of Theorem 1.1 is several applications of Euler–
MacLaurin’s summation formula in the analysis of the major arcs. These replace the 
rather crude estimates in the traditional treatment as in [1], Lemma 5.1, and are the key 
to understanding the major arc contribution in more depth.

As pointed out in [13], already in the study of the higher order asymptotic expansion 
in Waring’s problem the singular series occurring in the higher order terms do in general 
not have an interpretation as an Euler product due to the presence of the Bernoulli 
polynomials. Hence they are difficult to understand. In section 10 we use the multi-
plication theorem for Bernoulli polynomials to give some interpretation to the singular 
series S(I1,I2,τ )(P, n), see Lemma 10.2 and Lemma 10.3. In particular, we expect that 
Lemma 10.3 turns out to be useful in proving that some of the singular series S(I1,I2,τ )
do not vanish.

In section 9 we rewrite the singular integrals J(I1,I2,τ )(P−dn) in a different way such 
that we can give a satisfactory interpretation to them. In particular, the singular integral 
J(I1,I2,τ )(n) can be viewed as some partial multiple derivative of the function in the 
variables xi, i ∈ I1 ∪ I2 describing the volume of the bounded piece of the hypersurface 
F (x) = n inside the box 

∏
i∈I3

[ai, bi], at the point xI1 = bI1 and xI2 = aI2 .
For s sufficiently large and the special case where F (x) =

∑s
i=1 x

d
i , we note that the 

conclusion of Theorem 1.1 reduces to the conclusions of Theorem 1.1 and Theorem 1.2 
in [13], and generalises Theorem 1.2 in [13] for the case of odd degree d to an arbitrary 
number of lower order terms.

Alternatively, to study the counting function R(P, n) one could introduce a weighted 
version of it. If ω(x) is a smooth and compactly supported weight function and Sω(α) =∑

x∈Zs ω(P−1x)e(αF (x)), then this would be given by

R(ω)(P, n) =
1∫

0

Sω(α)e(−αn) dα.

Slight modifications of our proof of Theorem 1.1 show that these techniques establish an 
asymptotic formula of the form

R(ω)(P, n) = S(n)J (P−dn)P s−d + O
(
P−s−d−(K−1)−δ

)
,

under the assumption that (1.5) holds. Hence all the lower order terms for R(ω)(P, n)
vanish identically due to the smooth cut-off function ω(x).

Finally, we apply Theorem 1.1 to give higher order expansions for NX(P ), as defined in 
equation (1.1). In the notation above set n = 0 and let F (x) be as before a homogeneous 
polynomial of degree d. Then F (x) = 0 defines a hypersurface X ⊂ Ps−1 of degree d. For 
a rational point x ∈ X(Q) given by a representative x ∈ Zs with coprime coordinates 
gcd(x1, . . . , xs) = 1, we define its naive height as

H(x) = max |xi|.

1≤i≤s
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Let B = [−1, 1]s. Via a Möbius inversion one can express the counting function NX(P )
as

NX(P ) = 1
2

∞∑
e=1

μ(e)
(
RB(e−1P, 0) − 1

)
.

Note here that the sum is in fact finite since RB(e−1P, 0) = 1 for e > P . In comparison to 
the usual applications of Möbius inversion in this setting, we observe that our generalised
singular series still depend on P . Hence we introduce for (I1, I2, τ ) ∈ I the modified 
versions

S̃(I1,I2,τ )(P ) = 1
2

∞∑
e=1

μ(e)e−(s−|I1|−|I2|−|τ |−d)S(I1,I2,τ )(e−1P, 0),

which are absolutely convergent by Lemma 6.1. As a consequence of Theorem 1.1 we 
then obtain the following result.

Theorem 1.2. Let d ≥ 2 and K ≥ 1, and assume that (1.5) holds. Then one has

NX(P ) =
∑

(I1,I2,τ )∈I(K)

S̃(I1,I2,τ )(P )J(I1,I2,τ )(0)P s−|I1|−|I2|−|τ |−d

+ O
(
P s−d−(K−1)−δ

)
,

for some δ > 0.

It is interesting to view Theorem 1.2 in the light of Manin’s conjecture (1.2). On 
the other hand, a conjecture of Sir P. Swinnerton-Dyer [12] predicts that the asymptotic 
expansion NU (P ) for smooth cubic surfaces consists of a main term of the form PQ(logP )
with a polynomial Q in logP and a square-root error term. Our result shows that the 
situation is very different for smooth hypersurfaces (and complete intersections) of large 
dimension. So far very little is known about the lower order terms. Theorem 1.2 gives 
some first evidence for what to expect for sufficiently large dimensional hypersurfaces in 
projective space.

We remark that in the case n = 0, which in some sense corresponds to Theorem 1.2, 
the generalised singular series and singular integrals satisfy some symmetry properties. 
If (I1, I2, τ ) ∈ I and (I ′1, I ′2, τ ′) is the dual index tuple given by I ′1 = I2 and I ′2 = I1 and 
τ ′ = τ , then one has

J(I′
1,I

′
2,τ

′)(0) = (−1)|τ |J(I1,I2,τ )(0),

and in the case where P is irrational (or τi > 0 for all i ∈ I1 ∪ I2) one has

S(I′ ,I′ ,τ ′)(P, 0) = (−1)|τ |S(I1,I2,τ )(P, 0).

1 2
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Hence the corresponding terms in the expansions in Theorem 1.2 give exactly the same 
contribution for (I1, I2, τ ) and (I2, I1, τ ).

The structure of this paper is as follows. After introducing some notation in the 
next section, we formulate a multi-dimensional version of Euler–MacLaurin’s summation 
formula in section 3 which is an immediate consequence of the one-dimensional version. 
After a treatment of the minor arcs in the following section, we give a refined major 
arc analysis in section 5 based on the use of Euler–MacLaurin’s summation formula. In 
section 6 and section 7 respectively, we show that the singular integrals and singular series 
which we introduced, are absolutely convergent. Together with the previous sections we 
then deduce the two main Theorems 1.1 and 1.2 in section 8. Section 9 and section 10
contain some finer analysis of the singular integrals and singular series, including some 
interpretations to all of these objects.

2. Notation and preliminaries

As usual, we write ‖α‖ = mina∈Z |a −α| for the minimal distance from a real number 
α to the next integer. For x ∈ R we let 
x� be the greatest integer which is not larger 
than x, and set {x} = x − 
x�. If a and b are real-valued s-dimensional vectors than we 
write a ≤ b (or a < b) if ai ≤ bi (or ai < bi) for all 1 ≤ i ≤ s.

If I = {i1, . . . , il} is a finite index set, then we write dxI for dxi1 dxi2 . . . dxil and |I|
for the cardinality of I.

We will often need mixed partial derivatives of functions in several variables. For a 
multi-index κ = (κ1, . . . , κs) of non-negative integers we hence introduce the notation

∂κ
x = ∂κ1

∂xκ1
1

. . .
∂κs

∂xκs
s

,

for this differential operator. Furthermore, we write |κ| =
∑s

i=1 κi for the weight of the 
multi-index κ.

In Vinogradov’s notation all implicit constants may depend in a, b and F , and as 
usual we write e(x) for e2πix.

Lemma 2.1. Let F (x) be a homogeneous polynomial of degree d and κ ∈ Zs a tuple of 
non-negative integers such that κj ≥ 1 for at least one index 1 ≤ j ≤ s. Then one has

∂κ
x e(γF (x)) =

|κ|∑
a=1

γah(κ)
a (x)e(γF (x)),

where h(κ)
a are homogeneous polynomials in x, which are identically zero or of degree 

ad − |κ|.

Proof. We prove the lemma by induction on |κ|. First assume that κj = 1 for one 
1 ≤ j ≤ s and κi = 0 for i �= j. Then we can directly compute
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∂κ
x e(γF (x)) = 2πiγ∂xj

F (x)e(γF (x)).

This coincides with the assertion of the lemma since ∂xj
F (x) is a homogeneous polyno-

mial of degree d − 1 or is identically zero.
Next suppose we are given the statement of the lemma for some κ. Choose one index 

1 ≤ j ≤ s and set κ′
j = κj + 1 and κ′

i = κi for i �= j. We now aim to prove the lemma 
for κ′. For this we note that

∂κ′

x e(γF (x)) = ∂xj
(∂κ

xF (x)).

By assumption this expression equals

∂xj

⎡⎣ |κ|∑
a=1

γah(κ)
a (x)e(γF (x))

⎤⎦
=

|κ|∑
a=1

γa∂xj
(h(κ)

a (x))e(γF (x)) +
|κ|∑
a=1

γah(κ)
a (x)∂xj

e(γF (x))

=
|κ|∑
a=1

γa(∂xj
h(κ)
a )(x)e(γF (x)) +

|κ|∑
a=1

2πiγa+1h(κ)
a (x)(∂xj

F )(x)e(γF (x)).

We note that the degree of the polynomial (∂xj
h

(κ)
a )(x) is deg h(κ)

a −1 = da −(
∑s

i=1 κi) −
1 = da −

∑s
i=1 κ

′
i, if it is non-zero. We next consider the second term in the above 

expression. We rewrite it as

|κ|+1∑
a=2

γah
(κ)
a−1(x)(∂xj

F )(x)e(γF (x)).

For some 2 ≤ a ≤ |κ′| we again note that the degree of the homogeneous polynomial

h
(κ)
a−1(x)(∂xj

F )(x)

is equal to d(a − 1) −
∑s

i=1 κi + d − 1 = da −
∑s

i=1 κ
′
i. This completes the proof of the 

lemma. �
3. Euler–MacLaurin summation formula

We recall the definition of Bernoulli polynomials. The sequence of Bernoulli numbers 
Bκ for κ ≥ 0 can be defined by setting B0 = 1 and

Bκ = −
κ−1∑(

κ

j

)
Bj

κ− j + 1 ,

j=0
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for κ ≥ 1. Then the Bernoulli polynomials Bκ(x) are given for κ ≥ 0 by the formula

Bκ(x) =
κ∑

j=0

(
κ

j

)
Bκ−jx

j .

In the following we use the periodic Bernoulli polynomials which are defined as βκ(x) =
Bκ({x}) for κ ≥ 0.

In our major arc analysis we need a higher dimensional version of the Euler–MacLaurin 
summation formula which we obtain in successively applying the one-dimensional ver-
sion, which can for example be found in Lemma 4.1 in [13].

In the work of Vaughan and Wooley [13] it is sufficient to use this version of Euler–
MacLaurin’s summation formula since the diagonal structure of the form underlying 
Waring’s problem ensures that the exponential sum on the major arcs factorises into 
one-dimensional sums. We next state a version of Euler–MacLaurin’s summation for-
mula which applies to higher dimensional functions. Since we are only going to apply the 
Lemma to rather easy and well-behaved functions we do not aim for the greatest general-
ity in the assumptions under which this higher dimensional version of Euler–MacLaurin’s 
summation formula holds.

Lemma 3.1. Assume that s ≥ 1 and ai < bi are real numbers for 1 ≤ i ≤ s and let 
Ki be positive integers for 1 ≤ i ≤ s. Assume that g(x) has continuous mixed partial 
derivatives of total order up to 

∑s
i=1 Ki on the cube 

∏s
i=1[ai, bi]. Then

∑
a<x≤b

g(x) =
∑

∪4
i=1Ii={1,...,s}

(∏
i∈I4

(−1)Ki+1

Ki!

) ∫
∏

i∈I3∪I4
[ai,bi]

(∏
i∈I4

βKi
(xi)

)

×
[∏
i∈I1

(
Ki∑

κi=1

(−1)κi

κi!
βκi

(bi)
(

∂

∂xi

)(κi−1)
)

×
∏
i∈I2

(
Ki∑

κi=1

(−1)κi+1

κi!
βκi

(ai)
(

∂

∂xi

)(κi−1)
)

×
∏
i∈I4

(
∂

∂xi

)Ki

g(x)
]
x=σa,b(x)

dxI3 dxI4

The summation over ∪4
i=1Ii is over all possible partitions of {1, . . . , s} into four disjoint 

index sets Ii, 1 ≤ i ≤ 4.

4. Minor arc estimates

In this section we assume that F (x) is a polynomial in x of degree d, not necessarily 
homogeneous. We define the exponential sum
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S(α) =
∑

x∈PB
e(αF (x)).

By orthogonality we can express the counting function RB(P, n) as

RB(P, n) =
1∫

0

S(α)e(−αn) dα.

In order to apply the circle method to this counting function we need to dissect the unit 
interval [0, 1] into major and minor arcs. This is done in a traditional way following for 
example the work of Birch [1].

Let 0 < η < 1/2 be some small parameter to be chosen later. For coprime integers 
r, q we define the major arc

M′
r,q(η) = {α ∈ [0, 1) : |qα− r| ≤ qP−d+η},

and the major arcs M′(η) as the union

M′(η) =
⋃

1≤q≤Pη

⋃
1≤r≤q
(r,q)=1

M′
r,q(η). (4.1)

Similarly, we define slightly smaller major arcs by

Mr,q(η) = {α ∈ [0, 1) : |qα− r| ≤ P−d+η},

for coprime integers r, q and

M(η) =
⋃

1≤q≤Pη

⋃
1≤r≤q
(r,q)=1

Mr,q(η).

If the parameter η is clear from the context we sometimes use the shorter notation M′
r,q

for M′
r,q(η) and for the major arcs Mr,q similarly.

Furthermore, we define the minor arcs as the complement of the smaller version of 
the major arcs, i.e. m(η) = [0, 1) \M(η).

We recall Lemma 4.1 from Birch’s paper [1] which asserts that the major arcs M(η)
are disjoint in case that η is sufficiently small. For convenience we state it here for the 
slightly larger major arcs M′(η) since we need it for them in the later analysis of the 
major arcs. We do not give the proof since it is standard and identical to Lemma 4.1 
in [1].

Lemma 4.1. Assume that 3η < d. Then the union defining the major arcs M′(η) as in 
(4.1) is disjoint for P sufficiently large.



D. Schindler / Journal of Number Theory 173 (2017) 332–370 343
It is convenient to introduce more generally for any function ω : Rs → R of compact 
support the exponential sum

Sω(α, P ) =
∑
x∈Zs

ω
( x
P

)
e(αF (x)).

Hence if we take ω to be the indicator function of the box B, then we recover S(α). For 
a certain class of weight functions ω we need a form of Weyl’s inequality for S(α). For 
this we use a slight modification of recent work of Browning and Prendiville [3].

We first recall some conventions from [3]. We say that a pair α ∈ R/Z and q ∈ N

is primitive, if there is some r ∈ Z with (r, q) = 1 and ‖qα‖ = |qα − r|. For some 
positive constants c, C and a positive integer m we introduce the class of smooth weight 
functions S(c, C, m) as the set of smooth compactly supported functions ω : Rs → [0, ∞)
such that supp(ω) ⊂ [−c, c]s and ‖∂κ

xω(x)‖∞ ≤ C for all multi-indices κ ∈ (N ∪ {0})s
with |κ| ≤ m.

If F (x) is a polynomial in x, then we write F [d](x) for its homogeneous part of 
degree d. Furthermore, we write Sing(F [d]) for the singular locus of the affine variety 
given by F [d](x) = 0, which is the zero locus of the system of equations

∂F [d]

∂xi
(x) = 0, 1 ≤ i ≤ s.

Lemma 4.2. Assume that α and q are primitive. Let ω ∈ S(c, C, m) and χ the indicator 
function of some box in Rs, which is contained in [−c, c]s. Assume that m ≥ s. Then 
one has

∣∣∣∣Sωχ(α, P )
P s

∣∣∣∣2
d−1

�c,C,m (logP )s
(
P 1−d + ‖qα‖ + qP−d + min

{
q−1,

1
‖qα‖P d

}) s−σ
d−1

,

where σ = dim Sing(F [d]) is the dimension of the singular locus of the affine variety 
given by F [d](x) = 0.

This is a consequence of Lemma 3.3 in [3]. Note that we do not need an explicit 
dependence on the bound for Sω(α, P ) depending on the coefficients of F (x) which can 
be found in the formulation of Lemma 3.3 in [3].

Proof. The proof is identical to the proof of Lemma 3.3 in [3], with the function 
φ(x) = e(αFh1,...,hd−1(x)) in the notation of [3] replaced by the product φ(x) =
χ(h1,...,hd−1)/P (x/P )e(αFh1,...,hd−1(x)). For this we note that χ(h1,...,hd−1)/P (x/P ) is 
again the indicator function of a box, since the intersection of two boxes in Rs is again 
a box. �
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As a first application of Weyl’s Lemma 4.2 we provide an upper bound for the minor 
arc contribution to RB(P, n). In the following we assume that F (x) is homogeneous and 
set σ = dim Sing(F ) as in Lemma 4.2.

Lemma 4.3. Let 0 < θ0 < (1/2)d and assume that s − σ > (d − 1)2d. Then one has∫
α/∈M(θ0)

|S(α)|dα = Oδ

(
P

s−d+δ−θ0

(
2−d+1 s−σ

d−1−2
))

,

for any δ > 0.

Proof. Let Q ≥ 1. Assume that α ∈ m(θ) for some 0 < θ ≤ (1/2)d. Then there is some 
q ≤ Q such that α, q is primitive and ‖αq‖ ≤ Q−1. Furthermore one has q > P θ or 
‖αq‖ > P−d+θ, since otherwise α would be contained in the major arcs M(θ). We now 
apply the Weyl bound in Lemma 4.2 to the exponential sum S(α), where we set χ the 
characteristic function of the box B and ω a smooth function such that ω ≡ 1 on the 
box B. Then Lemma 4.2 delivers the bound

∣∣∣∣S(α)
P s

∣∣∣∣2
d−1

� (logP )s
(
P 1−d + 1

Q
+ QP−d + min

{
q−1,

1
‖qα‖P d

}) s−σ
d−1

.

Note that min
{
q−1, 1

‖qα‖Pd

}
≤ P−θ and set Q = P θ. Then we obtain

∣∣∣∣S(α)
P s

∣∣∣∣2
d−1

� (logP )s
(
P 1−d + P−θ + P θ−d

) s−σ
d−1 .

Note that our restriction 0 < θ ≤ (1/2)d implies that the second term in that bound 
dominates the expression, i.e.

∣∣∣∣S(α)
P s

∣∣∣∣2
d−1

� (logP )s(P−θ)
s−σ
d−1 . (4.2)

Now we define a sequence

θT > θT−1 > . . . > θ1 > θ0 > 0,

such that θT = (1/2)d and |θt+1 − θt| ≤ δ for all 1 ≤ t < T . We can do this with 
at most T �d δ−1 points. Note that by Dirichlet’s approximation theorem we have 
M(θT ) = [0, 1). We now estimate the contribution of∫

|S(α)|dα, (4.3)

α∈M(θt+1)\M(θt)
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for all 0 ≤ t < T . By the Weyl bound (4.2) we obtain

∫
α∈M(θt+1)\M(θt)

|S(α)|dα � meas (M(θt+1))P s+δP−2−d+1θt
s−σ
d−1 .

Note that the major arcs M(θt+1) might not be disjoint, but we can still bound their 
measure above by

meas (M(θt+1)) �
∑

q≤P θt+1

q∑
r=1

q−1P−d+θt+1 � P 2θt+1−d.

Hence we may bound the contribution of (4.3) by

� P 2θt+1−d+s+δ−θt2−d+1 s−σ
d−1 � P s−d+3δ−θt(2−d+1 s−σ

d−1−2).

Hence we can bound the complete minor arc contribution by

∫
α/∈M(θ0)

|S(α)|dα �
T−1∑
t=0

∫
α∈M(θt+1)\M(θt)

|S(α)|dα � P s−d+4δ−θ0(2−d+1 s−σ
d−1−2),

which completes the proof of the lemma. �
5. Major arc analysis

The main goal of this section is to replace the usual major arc approximation as in 
[1, Lemma 5.1] by a much finer approximation using the higher dimensional version 
of Euler–MacLaurin’s summation formula in Lemma 3.1. For this recall the notation 
of the singular series and singular integrals as in the introduction as well as the inte-
grals J(I1,I2,τ )(γ) and the exponential sums S(I1,I2,τ )(P ; r, q). In addition, we define the 
function f(γ, x) by

f(γ,x) = e(γF (x)),

and write f (κ)(γ, x) := ∂κ
x f(γ, x).

We are now in a position to state our first major arc approximation to the exponential 
sum S(α).

Lemma 5.1. Assume that α ∈ M′
r,q for some q ≤ P η, and write α = r

q + γ with some 
|γ| ≤ P−d+η. Let K ≥ 1 be an integer. Then we have
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S(α)e(−αn)

=
∑

(I1,I2,τ )∈I(K)

q−|I3|+|τ |S(I1,I2,τ )(P ; r, q)e
(
−r

q
n

)
P |I3|−|τ |J(I1,I2,τ )(P dγ)e(−γn)

+ O(P s−K+2Kη).

Note that the term for I1 = I2 = ∅ and τ = 0 corresponds to the usual approximation 
on the major arcs as in [1, Lemma 5.1]. All the other terms will contribute to lower order 
terms.

Proof. We start by writing the exponential sum S(α) as

S(α) =
∑

0≤z<q

e

(
r

q
F (z)

) ∑
z+qy∈PB

e(γF (z + qy)), (5.1)

and consider the inner sum for a fixed vector z. Let ãi, ̃bi for 1 ≤ i ≤ s be defined by

s∏
i=1

(ãi, b̃i] =
s∏

i=1

(
Pai − zi

q
,
Pbi − zi

q

]
.

Let g(y) = f(γ, z + qy) and note that

∂κ
y g(y) = q|κ|f (κ)(γ, z + qy), (5.2)

for every multi-index κ ∈ Zs
≥0.

Now choose some fixed K ∈ N and let Ĩ(K) be the set of tuples (I1, I2, I4, τ ) with 
the following properties. For i = 1, 2, 4 one has Ii ⊂ {1, . . . , s} and the index sets Ii
are pairwise disjoint. Furthermore τ ∈ Zs

≥0 satisfies τi = 0 if i /∈ I1 ∪ I2 ∪ I4, and 
0 ≤ τi ≤ K − 1 for i ∈ I1 ∪ I2 and τi = K for i ∈ I4. Similarly as before we set 
I3 = {1, . . . , s} \ (I1 ∪ I2 ∪ I4) for such a tuple in Ĩ(K). Now we apply Lemma 3.1 to the 
sum

Σ(z) =
∑

z+qy∈PB
e(γF (z + qy)), (5.3)

with the parameters Ki = K for all 1 ≤ i ≤ s and to the box 
∏s

i=1(ãi, ̃bi]. We obtain

Σ(z) =
∑

(I1,I2,I4,τ )∈Ĩ(K)

Σ(z; I1, I2, I4, τ ), (5.4)

with
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Σ(z; I1, I2, I4, τ ) =
(∏

i∈I4

(−1)K+1

K!

)(∏
i∈I1

(−1)τi+1

(τi + 1)! βτi+1(b̃i)
)

×
(∏

i∈I2

(−1)τi
(τi + 1)!

βτi+1(ãi)
)

×
∫

∏
i∈I3∪I4

[ãi,b̃i]

(∏
i∈I4

βK(xi)
)
∂τ
x g(x)|x=σ

ã,b̃(x) dxI3 dxI4 .

First we estimate the contribution of Σ(z; I1, I2, I4, τ ) in the case |I1| + |I2| + |τ | ≥ K. 
We apply Lemma 2.1 and obtain

f (τ )(γ,x) =
|τ |∑
l=1

γlh
(τ )
l (x)e(γF (x)), (5.5)

with h(τ )
l (x) some homogeneous polynomials in x which are either zero or of degree 

ld − |τ |. Hence we have

∂(τ )
y g(y) = q|τ |

|τ |∑
l=1

γlh
(τ )
l (z + qy)e(γF (z + qy)).

For a point y lying in the box y ∈
∏s

i=1[ãi, ̃bi] we can now estimate

|∂(τ )
y g(y)| � q|τ |

|τ |∑
l=1

|γ|lP deg(h(τ)
l ) � q|τ |

|τ |∑
l=1

|γ|lP ld−|τ |.

Note that all the periodic Bernoulli polynomials βτ (x) are bounded. Hence we can now 
estimate Σ(z; I1, I2, I4, τ ) by

Σ(z; I1, I2, I4; τ ) �
∫

∏
i∈I3∪I4

[ãi,b̃i]

q|τ |
|τ |∑
l=1

|γ|lP ld−|τ | dxI3 dxI4 .

Since the volume of 
∏

i∈I3∪I4
[ãi, ̃bi] is bounded by 

(
P
q

)|I3|+|I4|
we obtain the upper 

bound

Σ(z; I1, I2, I4; τ ) �
(
P

q

)|I3|+|I4|
q|τ |

|τ |∑
l=1

|γ|lP ld−|τ |

� P |I3|+|I4|q|τ |−|I3|−|I4|P |τ |η−|τ |.

We estimate this further as
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Σ(z; I1, I2, I4; τ ) � q−sP s−K+2ηK , (5.6)

using η < 1/2.
We combine this information with equations (5.1), (5.3), (5.4), (5.6), and see that

S(α) =
∑

(I1,I2,τ )∈I(K)

∑
0≤z<q

e

(
r

q
F (z)

)
Σ(z; I1, I2, ∅, τ ) + O(P s−K+2ηK). (5.7)

Note for this that |τ | ≥ K as soon as I4 �= ∅.
Next we consider for a fixed tuple (I1, I2, τ ) ∈ I(K) the integral

J ′ =
∫

∏
i∈I3

[ãi,b̃i]

∂τ
y g(y)|y=σ

ã,b̃
(y) dyI3 .

We recall the relation (5.2) and perform the variable substitution xi = qyi+zi for i ∈ I3. 
This leads us to

J ′ = q−|I3|+|τ |
∫

∏
i∈I3

[Pai,Pbi]

f (τ )(γ, σPa,Pb(x)) dxI3 .

Note that J ′ is now independent of z. We further rewrite J ′ via substituting Px′
i = xi

for i ∈ I3, and obtain

J ′ = q−|I3|+|τ |P |I3|
∫

∏
i∈I3

[ai,bi]

f (τ )(γ, σPa,Pb(Px)) dxI3 .

We recall equation (5.5) and observe that

f (τ )(γ, Px) =
|τ |∑
l=1

γlh
(τ )
l (Px)e(γF (Px))

= P−|τ |f (τ )(P dγ,x).

Hence we can again reformulate J ′ as

J ′ = q−|I3|+|τ |P |I3|−|τ |
∫

∏
i∈I3

[ai,bi]

f (τ )(P dγ, σa,b(x)) dxI3

= q−|I3|+|τ |P |I3|−|τ |J(I1,I2,τ )(P dγ).

We conclude that
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Σ(z; I1, I2, ∅, τ ) =
(∏

i∈I1

(−1)τi+1

(τi + 1)! βτi+1(b̃i)
)(∏

i∈I2

(−1)τi
(τi + 1)!βτi+1(ãi)

)
J ′

=
(∏

i∈I1

(−1)τi+1

(τi + 1)!
βτi+1(b̃i)

)(∏
i∈I2

(−1)τi
(τi + 1)!

βτi+1(ãi)
)

× q−|I3|+|τ |P |I3|−|τ |J(I1,I2,τ )(P dγ).

The Lemma now follows from inserting this into equation (5.7). �
We now use this Lemma to evaluate the major arc contribution to the counting func-

tion R(P, n). For a measurable subset C ⊂ [0, 1] we write

R(P, n; C) =
∫
C

S(α)e(−αn) dα.

Hence our next goal is to further analyse R(P, n; M′). For a tuple (I1, I2, τ ) ∈ I, we 
introduce the truncated singular series

S(I1,I2,τ )(P, n;Q) :=
∑
q≤Q

q∑
r=1

(r,q)=1

q−|I3|+|τ |S(I1,I2,τ )(P ; r, q)e
(
−r

q
n

)
.

We write

S(I1,I2,τ )(P, n) = lim
Q→∞

S(I1,I2,τ )(P, n;Q),

if the limit exists. Similarly, for any real number Q ≥ 1 and (I1, I2, τ ) ∈ I, we introduce 
the truncated singular integral

J(I1,I2,τ )(n;Q) :=
∫

|γ|≤Q

J(I1,I2,τ )(γ)e(−γn) dγ,

and we write

J(I1,I2,τ )(n) = lim
Q→∞

J(I1,I2,τ )(n;Q),

in case the integral converges.

Lemma 5.2. Let K ≥ 1 be some integer and η < (1/3)d. Then one has

R(P, n;M′) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n;P η)J(I1,I2,τ )(P−dn;P η)P |I3|−|τ |−d

+ O
(
P s−K−d+(2K+3)η

)
.
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Proof. By definition of the major arcs we have

R(P, n;M′) =
∑

1≤q≤Pη

q∑
r=1

(r,q)=1

∫
M′

r,q

S(α)e(−αn) dα.

We use Lemma 5.1 to approximate S(α) on M′
r,q, and obtain

R(P, n;M′) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n;P η)P |I3|−|τ |

×
∫

|γ|≤P−d+η

J(I1,I2,τ )(P dγ)e(−γn) dγ + E1,
(5.8)

with some error term E1. By Lemma 5.1 we can bound the resulting error E1 by

E1 �
∑

1≤q≤Pη

q∑
r=1

meas(M′
r,q)P s−K+2Kη

� P 2ηP−d+ηP s−K+2Kη � P s−K−d+(2K+3)η.

Furthermore we note that the variable substitution γ′ = P dγ leads in the integral part 
to ∫

|γ|≤P−d+η

J(I1,I2,τ )(P dγ)e(−γn) dγ = P−d

∫
|γ|≤Pη

J(I1,I2,τ )(γ)e(−γP−dn) dγ

= P−dJ(I1,I2,τ )(P−dn, P η).

Together with equation (5.8) and the estimate for the error term E1 this completes the 
proof of the lemma. �
6. Singular series

The first goal of this section is to study convergence properties of the truncated 
singular series S(I1,I2,τ )(P, n; Q).

Lemma 6.1. Let (I1, I2, τ ) ∈ I(K), for some K ≥ 1. Assume that

2−d+1 s− σ

d− 1 > K + 1.

Then S(I1,I2,τ )(P, n; Q) is absolutely convergent and satisfies

S(I1,I2,τ )(P, n;Q) −S(I1,I2,τ )(P, n) �τ QK+1−2−d+1 s−σ
d−1 +ε,
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for any ε > 0, and the implicit constant depends on τ but not on P .

Proof. The main ingredient of the proof is a suitable upper bound for the exponential 
sum S(I1,I2,τ )(P ; r, q) which we deduce from Lemma 4.2. Recall that

S(I1,I2,τ )(P, n;Q) =
∑
q≤Q

q∑
r=1

(r,q)=1

q−|I3|+|τ |S(I1,I2,τ )(P ; r, q)e
(
−r

q
n

)
,

with exponential sums of the form

S(I1,I2,τ )(P ; r, q) =
∑
z∈Zs

e

(
r

q
F (z)

)
h(z/q),

where the weight function h(z) is given by

h(z) = id[0,1)s(z)
(∏

i∈I1

(−1)τi+1

(τi + 1)! βτi+1

(
Pbi
q

− zi

))

×
(∏

i∈I2

(−1)τi
(τi + 1)!βτi+1

(
Pai
q

− zi

))
.

Note that each of the βτi+1

(
Pai

q − zi

)
is a polynomial of bounded degree depending only 

on τi. Hence one can divide the interval [0, 1) into at most 1 +deg βτi+1 subintervals, on 
each of which βτi+1 does not change sign. We do this for each i ∈ I1 ∪ I2 and obtain a 
finite set of boxes on each of which h(z) has bounded derivatives up total order at least 
s. Hence we can write

h(z) =
L∑

l=1

χl(z)ωl(z),

where L �|τ | 1 and χl is the indicator function of a box contained in [0, 1)s and ωl(z) ∈
S(c, C, s) for some positive constants c and C. Note that both c and C do not depend 
on P , and c, C �|τ | 1. Hence we can rewrite

S(I1,I2,τ )(P ; r, q) =
L∑

l=1

∑
z∈Zs

χl

(
z
q

)
ωl

(
z
q

)
e

(
r

q
F (z)

)
.

We now apply Lemma 4.2 to each of the inner exponential sums. Note that if (r, q) = 1, 
then the tuple r/q, q is primitive. Hence we obtain

∣∣∣∣∣q−s
∑

χl

(
z
q

)
ωl

(
z
q

)
e

(
r

q
F (z)

)∣∣∣∣∣
2d−1

�|τ | (log q)s
(
q1−d + min{q−1,∞}

) s−σ
d−1 .
z∈Zs
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This implies that

∑
z∈Zs

χl

(
z
q

)
ωl

(
z
q

)
e

(
r

q
F (z)

)
�|τ | q

s+ε
(
q−1)2−d+1 s−σ

d−1 ,

and hence the same bound holds for S(I1,I2,τ )(P ; r, q).
We recall that |I1| + |I2| + |I3| = s for any tuple (I1, I2, τ ) ∈ I. We bound a truncated 

version of the singular series S(I1,I2,τ )(P, n; Q) by

∑
Q1<q≤Q2

q∑
r=1

(r,q)=1

q−|I3|+|τ |
∣∣∣∣S(I1,I2,τ )(P ; r, q)e

(
−r

q
n

)∣∣∣∣
�

∑
Q1<q≤Q2

q|I1|+|I2|+|τ |+1+εq−2−d+1 s−σ
d−1 .

Note that |I1| + |I2| + |τ | < K for (I1, I2, τ ) ∈ I(K), and hence we can bound the last 
expression by

� Q
K+1−2−d+1 s−σ

d−1 +ε

1 ,

for any ε > 0. �
7. Singular integral

In this section we study the singular integrals J(I1,I2,τ )(n; Q) for (I1, I2, τ ) ∈ I. Under 
suitable conditions on F and the box B we show that these are absolutely convergent 
and we give some rate of convergence as Q → ∞. The analysis is inspired by the classical 
statement in [1].

Assume as before that F (x) is a homogeneous form of degree d. Fix a partition of 
{1, . . . , s} into three index sets Ii, 1 ≤ i ≤ 3 and set I4 = ∅. Then F (σa,b(x)) is a 
polynomial in the variables xi, i ∈ I3 of degree d′ ≤ d. We assume that d′ = d, and 
write as before F [d](σa,b(x)) for the homogeneous part of F in xI3 of degree d. The 
affine singular locus Sing(F [d](σa,b(x))) of F [d](σa,b(x)) in affine |I3|-space is given by 
the system of equations

∂

∂xi
F [d](σa,b(x)) = 0, i ∈ I3.

Let ρ(I1,I2) be the dimension of this affine variety, and note that it is independent of a
and b.

Lemma 7.1. Let Q ≥ 1 and (I1, I2, τ ) ∈ I. Assume that F (σa,b(x)) is of degree d in xI3 , 
and
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s− |I1| − |I2| − ρ(I1,I2) > (|τ | + 1)(d− 1)2d−1. (7.1)

Then J(I1,I2,τ )(n; Q) is absolutely convergent and we have

|J(I1,I2,τ )(n;Q) − J(I1,I2,τ )(n)| � Q−2−d+1 s−|I1|−|I2|−ρ(I1,I2)
d−1 +1+|τ |+ε.

Proof. We recall that

J(I1,I2,τ )(n;Q) =
∫

|γ|≤Q

J(I1,I2,τ )(γ)e(−γn) dγ, (7.2)

and

J(I1,I2,τ )(γ) =
∫

∏
i∈I3

[ai,bi]

f (τ )(γ, σa,b(x)) dxI3 .

It is clear that |J(I1,I2,τ )| �a,b 1 for all γ and hence we assume in the following that 
|γ| ≥ 1. Furthermore we first treat the case where |τ | ≥ 1. We start the proof in rewriting 
the integral J(I1,I2,τ )(γ) in the following way. By Lemma 2.1 one has

f (τ )(γ, σa,b(x)) =
|τ |∑
l=1

γlh
(τ )
l (σa,b(x))e(γF (σa,b(x))),

with homogeneous polynomials h(τ)
l which are either identically zero of degree ld − |τ |. 

Hence we have

J(I1,I2,τ )(γ) =
∫

∏
i∈I3

[ai,bi]

|τ |∑
l=1

γlh
(τ )
l (σa,b(x))e(γF (σa,b(x))) dxI3

=
∫

∏
i∈I3

[ai,bi]

|τ |∑
l=1

(P−dγ)lh(τ )
l (σPa,Pb(Px))P |τ |

× e(P−dγF (σPa,Pb(Px))) dxI3 .

A change of variables in the integral leads to
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J(I1,I2,τ )(γ) = P |τ |−|I3|
∫

P
∏

i∈I3
[ai,bi]

|τ |∑
l=1

(P−dγ)lh(τ )
l (σPa,Pb(x))

× e(P−dγF (σPa,Pb(x))) dxI3

= P |τ |−|I3|
∫

P
∏

i∈I3
[ai,bi]

f (τ )(P−dγ, σPa,Pb(x)) dxI3 .

Next we approximate the last integral by a sum over integer tuples x ∈ Z|I3| ∩
P
∏

i∈I3
[ai, bi]. For this we could us a form of Euler–MacLaurin summation formula, 

but for our purposes a much simpler argument is sufficient here. Note that if |x−y| ≤ 1, 
then ∣∣∣f (τ )(P−dγ, σPa,Pb(x)) − f (τ )(P−dγ, σPa,Pb (y))|

� max
j∈I3

f (τ )+ej (P−dγ, σPa,Pb(ξ)),

for |ξ − x| ≤ 1, where ej is the jth unit vector. If |x| � P , then the decomposition for 
f (τ )+ej (P−dγ, σPa,Pb(ξ)) as in Lemma 2.1 implies that

∣∣∣f (τ ) − (P−dγ, σPa,Pb(x))f (τ )(P−dγ, σPa,Pb(y))
∣∣∣

�
∑

1≤l≤|τ |+1

|P−dγ|lP ld−|τ |−1 �
∑

1≤l≤|τ |+1

|γ|lP−|τ |−1 � |γ||τ |+1P−|τ |−1.

Hence we can rewrite J(I1,I2,τ )(γ) as

J(I1,I2,τ )(γ) = P |τ |−|I3|
∑

xI3∈P
∏

i∈I3
[ai,bi]

f (τ )(P−dγ, σPa,Pb(x)) + E1 + E2,

with an error term E1 from the boundary of the box

E1 � P |τ |−|I3|P |I3|−1 sup
x∈PB

f (τ )(P−dγ, σPa,Pb(x)),

and an error term E2 from approximating the sum by the integral in the interior of the 
box

E2 � P |τ |−|I3|P |I3||γ||τ |+1P−|τ |−1.

Using again the decomposition of f (τ) from Lemma 2.1 we can bound the first error 
term by

E1 � P |τ |−1 max P−ld|γ|lP ld−|τ | � P−1|γ||τ |.

1≤l≤|τ |
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Recalling that we have assumed |γ| ≥ 1, we obtain

J(I1,I2,τ )(γ) = P |τ |−|I3|
∑

xI3∈P
∏

i∈I3
[ai,bi]

f (τ )(P−dγ, σPa,Pb(x)) + O
(
P−1|γ||τ |+1

)
.

Again, we use the decomposition of f (τ)(γ, x) as in Lemma 2.1 to decompose the main 
term as

J(I1,I2,τ )(γ) =
|τ |∑
l=1

Sl + O
(
P−1|γ||τ |+1

)
, (7.3)

with sums Sl of the form

Sl = P |τ |−|I3|
∑

xI3∈P
∏

i∈I3
[ai,bi]

(γP−d)lh(τ )
l (σPa,Pb(x))e

(
γP−dF (σPa,Pb(x))

)
.

Using the homogeneity of the polynomials h(τ)
l (x), we rewrite Sl as

Sl = P−|I3|
∑

xI3∈P
∏

i∈I3
[ai,bi]

γlh
(τ )
l (σa,b(x/P ))e

(
γP−dF (σPa,Pb(x))

)
.

We now apply Weyl’s lemma in the form 4.2 to the exponential sum Sl. We will choose 
P later and large enough such that |γ| < (1/2)P d. We apply Lemma 4.2 to the primitive 
tuple 1, γP−d. Note that our choice of P implies that |γP−d| = ‖γP−d‖. Furthermore, the 
quantity σ occurring in the exponent in Lemma 4.2 is in our case exactly the dimension 
of the singular locus of F [d](σa,b(x)), which we denoted by ρ(I1,I2). The polynomial 
h

(τ )
l (σa,b(x)) is a sum of monomials in xI3 with coefficients depending polynomially on 

a and b. We consider each monomial separately. The product of each of these with the 
indicator function id∏

i∈I3
[ai,bi](x) can be decomposed into 

∑
m χmωm as in the proof of 

Lemma 6.1, with some indicator functions χm and ωm ∈ S(c, C, s) for c and C some 
positive constants only depending on τ , |a|, |b| and F . Hence we obtain

|γ−lSl|2
d−1 �c,C (logP )|I3|

×
(
P 1−d + |P−dγ| + P−d + min

{
1, 1

|γP−d|P d

}) |I3|−ρ(I1,I2)
d−1

.

Now we choose P sufficiently large depending on |γ| such that

|γ−lSl|2
d−1 � |γ|ε|γ|−

|I3|−ρ(I1,I2)
d−1 .

Again choosing P sufficiently large (a suitable power of |γ|) we see from equation (7.3)
that
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J(I1,I2,τ )(γ) �
|τ |∑
l=1

|γ|ε−2−d+1 |I3|−ρ(I1,I2)
d−1 +l,

and hence

J(I1,I2,τ )(γ) � |γ|ε−2−d+1 |I3|−ρ(I1,I2)
d−1 +|τ |.

The assumption in (7.1) now shows that the integral defining J(I1,I2,τ ) in equation (7.2)
is absolutely convergent. Similarly the second part of the lemma immediately follows. For 
τ = 0 the same arguments (in a simplified form) reduce to the classical way of bounding 
the singular integral and hence the proof of the lemma follows also in this case. �
8. Proof of the main theorems

In this section we collect together the information about the major and minor arcs 
and give a proof of Theorem 1.1, followed by a deduction of Theorem 1.2. Before, we 
shortly give an easy upper bound for the size of the singular loci ρ(I1,I2) in terms of the 
singular locus σ.

Lemma 8.1. For any I1 and I2 one has

ρ(I1,I2) ≤ σ + |I1| + |I2|.

If s − σ > 2(|I1| + |I2|), then the homogeneous part F [d](σa,b(x)) is not identically zero.

Proof. Recall that F (x) is a homogeneous form of degree d, and note that the homoge-
neous part F [d](σa,b(x)) if independent of a and b. We write

F (x) = F [d](σa,b(x)) +
∑

i∈I1∪I2

xiHi(x),

with Hi(x) homogeneous polynomials of degree d −1 in all of the variables xi, 1 ≤ i ≤ s. 
Let Y be the affine variety given by the system of equations

∂

∂xi
F [d](σa,b(x)) = 0, i ∈ I3 (8.1)

xi = Hi(x) = 0, i ∈ I1 ∪ I2. (8.2)

Then we have Y ⊂ Sing(F (x)), and hence dimY ≤ σ. On the other hand we may 
consider the affine variety Y ′ ⊂ As given by the system of equations (8.1) only. By 
definition of ρ(I1,I2) we have

dimY ′ = ρ(I1,I2) + |I1| + |I2|. (8.3)
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Since all the polynomials defining Y and Y ′ are homogeneous, we have

dimY ≥ dimY ′ − 2(|I1| + |I2|).

Together with equation (8.3) this implies

ρ(I1,I2) ≤ σ + |I1| + |I2|.

In particular we have F [d](σa,b(x)) �= 0 as soon as

σ + |I1| + |I2| < s− (|I1| + |I2|). �
We now come to the proof of our main Theorem 1.1.

Proof of Theorem 1.1. Let 0 < η < (1/3)d to be chosen later, and K ≥ 1 as in Theo-
rem 1.1. We decompose the counting function R(P, n) as

R(P, n) = R(P, n;M′(η)) + O

⎛⎜⎝ ∫
m(η)

|S(α)|dα

⎞⎟⎠ . (8.4)

By Lemma 4.3 the contribution of the minor arcs is bounded by∫
m(η)

|S(α)|dα �ε P
s−d+ε−η

(
2−d+1 s−σ

d−1−2
)
, (8.5)

for any ε > 0. The major arc contribution is by Lemma 5.2 given by

R(P, n;M′) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n;P η)J(I1,I2,τ )(P−dn;P η)P |I3|−|τ |−d

+ O
(
P s−K−d+(2K+3)η

)
.

(8.6)

We next complete the singular series and singular integral in each term appearing in 
the sum over (I1, I2, τ ) ∈ I(K). Note that the number of terms in the summation is 
bounded by |I(K)| �K 1. By Lemma 6.1 we have

S(I1,I2,τ )(P, n;P η) −S(I1,I2,τ )(P, n) � P
η
(
K+1−2−d+1 s−σ

d−1

)
+ε

,

for any ε > 0, as soon as

2−d+1 s− σ
> K + 1.
d− 1
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In particular the proof of Lemma 6.1 shows that both S(I1,I2,τ )(P, n; P η) and 
S(I1,I2,τ )(P, n) are bounded by � 1. For the singular integrals we use Lemma 7.1 and 
observe that

|J(I1,I2,τ )(n;P η) − J(I1,I2,τ )(n)| � P
−η

(
2−d+1 s−|I1|−|I2|−ρ(I1,I2)

d−1 −1−|τ |
)
+ε

,

as soon as equation (7.1) holds. We replace in equation (8.6) the truncated singular 
integral J(I1,I2,τ )(n; P η) by J(I1,I2,τ )(n) and S(I1,I2,τ )(P, n; P η) by S(I1,I2,τ )(P, n). We 
obtain

R(P, n;M′) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n)J(I1,I2,τ )(P−dn)P |I3|−|τ |−d

+ O
(
P s−K−d+(2K+3)η

)
+ E1 + E2,

(8.7)

with error terms of the form

E1 �
∑

(I1,I2,τ )∈I(K)

P
η
(
K+1−2−d+1 s−σ

d−1

)
P |I3|−|τ |−d+ε

�
∑

(I1,I2,τ )∈I(K)

P
|I3|−|τ |−d−η

(
2−d+1 s−σ

d−1−K−1
)
+ε

� P
s−d−η

(
2−d+1 s−σ

d−1−K−1
)
+ε

,

(8.8)

and

E2 �
∑

(I1,I2,τ )∈I(K)

P |I3|−|τ |−d+εP
−η

(
2−d+1 |I3|−ρ(I1,I2)

d−1 −1−|τ |
)
. (8.9)

We now compare the different error terms. First we note that the bound for E1 in (8.8)
is weaker than the bound for the minor arc contribution in (8.5). Furthermore, we can 
estimate an individual term in the bound for E2 in (8.9) by

P |I3|−|τ |−d+εP
−η

(
2−d+1 |I3|−ρ(I1,I2)

d−1 −1−|τ |
)

� P
s−d+ε−|I1|−|I2|−(1−η)|τ |−η

(
2−d+1 |I3|−ρ(I1,I2)

d−1 −1
)
.

Assume that η < 1 and s − σ > 2(|I1| + |I2|). Together with Lemma 8.1 we obtain
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|I1| + |I2| + η

(
2−d+1 |I3| − ρ(I1,I2)

d− 1 − 1
)

≥ |I1| + |I2| + η

(
2−d+1 s− σ − 2(|I1| + |I2|)

d− 1 − 1
)

≥ η

(
2−d+1 s− σ

d− 1 − 1
)
.

Hence we see that

E2 � P
s−d+ε−η

(
2−d+1 s−σ

d−1−1
)
,

which is a better bound than what we obtained for E1 in equation (8.8). From equation 
(8.4) and equation (8.7) and the bounds in (8.5) and (8.8) we conclude that

R(P, n) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n)J(I1,I2,τ )(P−dn)P |I3|−|τ |−d

+ O
(
P s−K−d+(2K+3)η

)
+ O

(
P

s−d+ε−η
(
2−d+1 s−σ

d−1−K−1
))

.

(8.10)

We choose η such that

−K + (2K + 3)η = −η

(
2−d+1 s− σ

d− 1 −K − 1
)
,

which is equivalent to

K = η

(
2−d+1 s− σ

d− 1 + K + 2
)
.

Note that the assumption 2−d+1 s−σ
d−1 > K + 1 ensures that

η <
K

2K + 3 <
1
2 ≤ 1

3d,

and hence our assumption above on η < 1 is justified, as well as the major arcs are 
disjoint as required in Lemma 5.2. Furthermore, the assumption

2−d+1 s− σ

d− 1 > 2K2 + 2K − 2

in the theorem ensures that

η < K(2K2 + 3K)−1 = (2K + 3)−1.

Hence we obtain
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R(P, n) =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(P, n)J(I1,I2,τ )(P−dn)P |I3|−|τ |−d

+ O
(
P s−d−(K−1)−δ

)
,

(8.11)

for this choice of η and some δ > 0. �
Finally we deduce Theorem 1.2 from Theorem 1.1

Proof of Theorem 1.2. Recall that

NX(P ) = 1
2

∞∑
e=1

μ(e)
(
RB(e−1P, 0) − 1

)

= 1
2

[P ]∑
e=1

μ(e)
(
RB(e−1P, 0) − 1

)
.

(8.12)

By Theorem 1.1 we have for any e ≤ P

RB(e−1P, 0) − 1 =
∑

(I1,I2,τ )∈I(K)

S(I1,I2,τ )(e−1P, 0)J(I1,I2,τ )(0)(e−1P )s−|I1|−|I2|−|τ |−d

+ O
(
(e−1P )s−d−(K−1)−δ

)
.

By Lemma 6.1 we observe that

S̃(I1,I2,τ )(P ) = 1
2

[P ]∑
e=1

μ(e)e−(s−|I1|−|I2|−|τ |−d)S(I1,I2,τ )(e−1P, 0)

+ O(P−(s−|I1|−|I2|−|τ |−d)+1).

Putting the higher order asymptotic expansions for RB(e−1P, 0) −1 into equation (8.12)
finally leads to

NX(P ) =
∑

(I1,I2,τ )∈I(K)

S̃(I1,I2,τ )(P )J(I1,I2,τ )(0)P s−|I1|−|I2|−|τ |−d

+ O
(
P s−d−(K−1)−δ

)
. �

9. Singular integral II

In this section we come back to the study of the singular integrals J(I1,I2,τ )(n). We 
shortly recall the definitions
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J(I1,I2,τ )(γ) =
∫

∏
i∈I3

[ai,bi]

f (τ )(γ, σa,b(x)) dxI3 ,

and

J(I1,I2,τ )(n) =
∞∫

−∞

J(I1,I2,τ )(γ)e(−γn) dγ,

which is absolutely convergent under condition (7.1) by Lemma 7.1. Recall that we have 
set

f (τ )(γ, σa,b(x)) = ∂τ
x e(γF (x))|x=σa,b(x).

Let xI1 and xI2 be vectors defined in an analogous way as xI3 , i.e. xI1 = (xi)i∈I1 and 
xI2 = (xi)i∈I2 . As a generalisation of J(I1,I2,τ )(γ), it is convenient to define

J(I1,I2,τ )(γ;xI1 ,xI2) =
∫

∏
i∈I3

[ai,bi]

f (τ )(γ,x) dxI3 ,

and

J(I1,I2,τ )(n;xI1 ,xI2) =
∞∫

−∞

J(I1,I2,τ )(γ;xI1 ,xI2)e(−γn) dγ.

This integral is absolutely convergent for xI1 ∈
∏

i∈I1
[ai, bi] and xI2 ∈

∏
i∈I2

[ai, bi], as 
soon as (7.1) holds. Note that we have

J(I1,I2,τ )(γ) = J(I1,I2,τ )(γ;bI1 ,aI2),

and

J(I1,I2,τ )(n) = J(I1,I2,τ )(n;bI1 ,aI2).

Furthermore, we write J(I2,I2)(n; xI1 , xI2) for J(I1,I2,0)(n; xI1 , xI2).
In order to give a different description of J(I1,I2,τ )(n; xI1 , xI2), we proceed in a similar 

way as Schmidt in his work [11]. However, in contrast to his treatment we need to 
introduce some different kernel with sufficient decay. We choose to use the smooth and 
compactly supported weight function

ω(x) =
{
c0e

−(1−x2)−1 for |x| < 1
0 for |x| ≥ 1,

where c0 is a normalisation constant such that 
∫

ω(x) dx = 1. Let

R
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ω̂(y) =
∫
R

ω(γ)e(γy) dγ,

be the Fourier transform of ω. Then we have ω̂(0) = 1 and ω̂(x) = ω̂(0) + O(|x|). We 
now define the modified singular integrals as

J T
(I1,I2,τ )(n;xI1 ,xI2) =

∞∫
−∞

ω̂(T−1γ)J(I1,I2,τ )(γ;xI1 ,xI2)e(−γn) dγ.

Next we observe that J T
(I1,I2,τ )(n; xI1 , xI2) is a good model for the original singular 

integral as T gets large.

Lemma 9.1. Assume that (7.1) holds. Then one has

J T
(I1,I2,τ )(n;xI1 ,xI2) → J(I1,I2,τ )(n;xI1 ,xI2), for T → ∞,

and the convergence is uniform in xI1 ∈
∏

i∈I1
[ai, bi] and xI2 ∈

∏
i∈I2

[ai, bi].

Proof. We bound the difference in the lemma by

J(I1,I2,τ )(n;xI1 ,xI2) − J T
(I1,I2,τ )(n;xI1 ,xI2) � A + B,

with

A =
∫

|γ|≤T

|1 − ω̂(T−1γ)||J(I1,I2,τ )(γ;xI1 ,xI2)|dγ,

and

B =
∫

|γ|>T

|1 − ω̂(T−1γ)||J(I1,I2,τ )(γ;xI1 ,xI2)|dγ

�
∫

|γ|>T

|J(I1,I2,τ )(γ;xI1 ,xI2)|dγ.

We recall by the proof of Lemma 7.1 that for any ε > 0 we have

J(I1,I2,τ )(γ;xI1 ,xI2) �ε |γ|ε−2−d+1 |I3|−σ(I1,I2)
d−1 +|τ |,

uniformly in xI1 ∈
∏

i∈I1
[ai, bi] and xI2 ∈

∏
i∈I2

[ai, bi]. Hence we can bound the first 
term by
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A �
∫

|γ|≤T

|γT−1|min
(

1, |γ|ε−2−d+1 |I3|−ρ(I1,I2)
d−1 +|τ |

)
dγ

�
∫

|γ|<1

T−1 dγ +
∫

1≤|γ|≤T

|γT−1||γ|ε−2−d+1 |I3|−ρ(I1,I2)
d−1 +|τ | dγ � T−δ,

for some δ > 0 as soon as

|I3| − ρ(I1,I2) > (|τ | + 1)(d− 1)2d−1.

The same argument shows that B � T−δ under condition (7.1) and hence the lemma 
follows. �

Next we aim to find some interpretation for the integral J T
(I1,I2)(n; xI1 , xI2). By Fu-

bini’s theorem we have

J T
(I1,I2)(n;xI1 ,xI2) =

∫
∏

i∈I3
[ai,bi]

∫
R

ω̂(T−1γ)e(γ(F (x) − n)) dγ dxI3

= T

∫
∏

i∈I3
[ai,bi]

∫
R

ω̂(γ)e(Tγ(F (x) − n)) dγ dxI3

= T

∫
∏

i∈I3
[ai,bi]

ω(T (F (x) − n)) dxI3 .

If we set ωT (y) = Tω(Ty), then we can rewrite the last equation as

J T
(I1,I2)(n;xI1 ,xI2) =

∫
∏

i∈I3
[ai,bi]

ωT (F (x) − n) dxI3 . (9.1)

For T → ∞, the integral J T
(I1,I2)(n; xI1 , xI2) hence converges to the volume of the 

bounded piece of the hypersurface F (x) = n inside the box 
∏

i∈I3
[ai, bi], where xI1

and xI2 are considered fixed. By Lemma 9.1 this limit equals the singular integral 
J(I1,I2)(n; xI1 , xI2).

The following lemma relates the singular integrals J(I1,I2,τ )(n) for non-zero τ to the 
function J(I1,I2)(n; xI1 , xI2) and hence gives a natural interpretation for these kinds of 
singular integrals.

Lemma 9.2. Assume that (7.1) holds. Then one has

J(I1,I2,τ )(n) = ∂τ
xJ(I1,I2)(n;xI1 ,xI2)|x=σa,b(x).
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In particular, the singular integral J(I1,I2,τ )(n) is the partial derivative ∂τ
x of the function 

in xI1 and xI2 describing the volume of the bounded piece of the hypersurface F (x) = n

inside the box 
∏

i∈I3
[ai, bi], at the point xI1 = b and xI2 = a.

Proof. Recall that

J(I1,I2)(n;xI1 ,xI2) =
∫
R

e(−γn)
∫

∏
i∈I3

[ai,bi]

e(γF (x)) dxI3 dγ.

The proof of Lemma 7.1 shows that J(I1,I2)(n; xI1 , xI2) as an integral with respect to the 
integration variable γ, is uniformly convergent with respect to xI1 ∈

∏
i∈I1

[ai− 1, bi +1]
and xI2 ∈

∏
i∈I2

[ai − 1, bi + 1]. The same holds for the integral

J(I1,I2,τ )(n;xI1 ,xI2) =
∫
R

e(−γn)∂τ
x

∫
∏

i∈I3
[ai,bi]

e(γF (x)) dxI3 dγ

=
∫
R

e(−γn)
∫

∏
i∈I3

[ai,bi]

∂τ
x e(γF (x)) dxI3 dγ.

Hence we see that by Leibniz’ rule we have

J(I1,I2,τ )(n) = ∂τ
xJ(I1,I2)(n;xI1 ,xI2)|x=σa,b(x),

which proves the lemma. �
10. Singular series II

In this section we give some interpretation of the singular series S(I1,I2,τ )(P, n). If 
I1 = I2 = ∅ (and hence τ = 0), then this series reduces to the classical singular series. 
The function S(∅,∅,0)(P ; r, q) is multiplicative in q in a sense that

S(∅,∅,0)(P ; r, q)S(∅,∅,0)(P ; r′, q′) = S(∅,∅,0)(P ; rq′ + r′q, qq′)

for coprime moduli (q, q′) = 1. This leads to an expression of S(∅,∅,0)(P, n) as a product 
of local densities. However, if not both of I1 and I2 are empty we do not expect the same 
multiplicative behaviour of S(I1,I2,τ )(P ; r, q) because of the presence of the Bernoulli 
polynomials βτi+1

(
Pbi−zi

q

)
. Hence we cannot expect to factorise S(I1,I2,τ )(P, n) in the 

traditional way. In order to get some interpretation for these terms, we take the follow-
ing approach. We truncate the series S(I1,I2,τ )(P, n) at some height q ≤ Q and interpret 
the truncated singular series up to a small error as a weighted number of local solu-
tions modulo Q!. For this we need to lift the denominators in the exponential sums 
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S(I1,I2,τ )(P ; r, q) all to the same denominator. In the case of the classical singular series 
one clearly has

S(∅,∅,0)(P ; dr, dq) = dsS(∅,∅,0)(P ; r, q).

In the case of generalised exponential sums S(I1,I2,τ )(P ; r, q), which may contain products 
of Bernoulli polynomials, this is less obvious. In this case the analogous observation is 
a consequence of the multiplication theorem for Bernoulli numbers. This states that for 
any d ≥ 1 one has

Bn(dx) = dn−1
d−1∑
k=0

Bn

(
x + k

d

)
, (10.1)

see for example [8] for a reference.

Lemma 10.1. Assume that d ≥ 1. Then one has

S(I1,I2,τ )(P ; dr, dq) = d|I3|−|τ |S(I1,I2,τ )(P ; r, q).

Proof. For simplicity of notation we write

�(I1,I2,τ ) := (−1)|I2|
∏

i∈I1∪I2

(−1)τi+1

(τi + 1)! .

Then we can write the exponential sum of interest as

S(I1,I2,τ )(P ; dr, dq) = �(I1,I2,τ )
∑

z′ mod dq

e

(
r

q
F (z′)

) ∏
i∈I1

βτi+1

(
Pbi − z′i

dq

)

×
∏
i∈I2

βτi+1

(
Pai − z′i

dq

)
.

Next we rewrite the variables z′i in the summation as z′i = zi + qhi with 0 ≤ hi < d and 
zi running through an interval of length q, such that the following holds. If i ∈ I1 one 
has

−1 ≤ Pbi − zi
dq

− hi

d
< 0

for all choices of 0 ≤ hi < d. Similarly for i ∈ I2 or i not contained in I1 ∪ I2. If for 
example i ∈ I1, then one has

−1 ≤ Pbi − zi
< 0.
q
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For i ∈ I1 we need to compute the sum

∑
0≤hi<d

βτi+1

(
Pbi − zi − qhi

dq

)
=

∑
0≤hi<d

Bτi+1

(
1 + Pbi − zi

dq
− hi

d

)

=
∑

0≤hi<d

Bτi+1

(
1
d

+ Pbi − zi
dq

+ d− 1 − hi

d

)

=
∑

0≤hi<d

Bτi+1

(
1
d

+ Pbi − zi
dq

+ hi

d

)
.

We apply the multiplication theorem for Bernoulli numbers (10.1) and obtain

∑
0≤hi<d

βτi+1

(
Pbi − zi − qhi

dq

)
= d−τiBτi+1

(
1 + Pbi − zi

q

)

= d−τiβτi+1

(
Pbi − zi

q

)
.

Similarly the same computation holds for i ∈ I2 with bi replaced by ai. Hence we obtain

S(I1,I2,τ )(P ; dr, dq) = �(I1,I2,τ )d
|I3|−|τ |

∑
z mod d

e

(
r

q
F (z)

) ∏
i∈I1

βτi+1

(
Pbi − zi

q

)

×
∏
i∈I2

βτi+1

(
Pai − zi

q

)
= d|I3|−|τ |S(I1,I2,τ )(P ; r, q).

This completes the proof of the lemma. �
Next we consider a truncated piece of the singular series S(I1,I2,τ )(P, n) in the case 

where it is absolutely convergent. Under the assumptions of Lemma 6.1 we have

S(I1,I2,τ )(P, n) =
∑
q|Q!

q∑
r=1

(r,q)=1

q−|I3|+|τ |S(I1,I2,τ )(P ; r, q)e
(
−r

q
n

)
+ O(Q−δ).

For some q appearing in the summation we let d be defined by qd = Q!. Using Lemma 10.1
we rewrite the sum on the right hand side as
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S(I1,I2,τ )(P, n) =
∑
q|Q!

q∑
r=1

(r,q)=1

(qd)−|I3|+|τ |S(I1,I2,τ )(P ; rd, qd)e
(
−rd

Q! n

)
+ O(Q−δ)

=
Q!∑

r′=1
(Q!)−|I3|+|τ |S(I1,I2,τ )(P ; r′, Q!)e

(
− r′

Q!n
)

+ O(Q−δ).

(10.2)

Note that by orthogonality one has

Q!∑
r=1

e

(
r

Q! (F (z) − n)
)

=
{
Q! if F (z) − n ≡ 0 mod Q!
0 otherwise.

Let

βτ (z, Q!) = �(I1,I2,τ )
∏
i∈I1

βτi+1

(
Pbi − zi

Q!

) ∏
i∈I2

βτi+1

(
Pai − zi

Q!

)
.

If we use the definition of S(I1,I2,τ )(P ; r′, Q!) in the last sum in (10.2), we see that

S(I1,I2,τ )(P, n) = (Q!)−|I3|+|τ |+1
∑

0≤z<Q!
1{F (z)≡n mod Q!}βτ (z, Q!) + O(Q−δ).

We state our observations in the following lemma.

Lemma 10.2. Let (I1, I2, τ ) ∈ I(K), and assume that

2−d+1 s− σ

d− 1 > K + 1.

Let Q ≥ 1. Then there is some δ > 0 such that

S(I1,I2,τ )(P, n) = (Q!)−|I3|+|τ |+1
∑

0≤z<Q!
1{F (z)≡n mod Q!}βτ (z, Q!) + O(Q−δ).

One can interpret the expression for S(I1,I2,τ )(P, n) in Lemma 10.2 as a weighted 
version of the counting function F (z) ≡ n modulo Q!. We use Lemma 10.2 to further 
understand the singular series S(I1,I2,τ )(P, n), which occur in the terms of largest order 
directly after the main term in the expansion in Theorem 1.1. They correspond to situ-
ations where I1 ∪ I2 = {i0} for a single element 1 ≤ i0 ≤ s and |τ | = 0. We assume in 
the following that Q!|Pbi0 or Q!|Pai0 depending on whether i0 ∈ I1 or i0 ∈ I2. Under 
some symmetry assumptions on the form F (x) we can rewrite S(I1,I2,τ )(P, n) as a local 
density, up to a small error, and in particular determine its sign.



368 D. Schindler / Journal of Number Theory 173 (2017) 332–370
Lemma 10.3. In addition to the assumptions in Lemma 10.2, let I1 ∪ I2 = {i0}, |τ | = 0
and Q!|Pai0 if i0 ∈ I2 or Q!|Pbi0 if i0 ∈ I1. Furthermore assume that the counting 
function

r(zi0 , Q!, n) := �{zI3 mod Q! : F (zI3 , zi0) ≡ n mod Q!}

satisfies r(zi0 , Q!, n) = r(−zi0 , Q!, n) for all zi0 modulo Q!. Then one has

S(I1,I2,τ )(P, n) = 1
2(−1)|I1|+1(Q!)−s+2r(0, Q!, n) + O(Q−δ),

for some δ > 0.

Proof. By Lemma 10.2 we can express a truncated version of the singular series 
S(I1,I2,τ )(P, n) as

S(I1,I2,τ )(P, n) = (−1)|I1|(Q!)−s+2
∑

0≤zi0<Q!
β1

(
−zi0
Q!

)
r(zi0 , Q!, n) + O(Q−δ).

Recall that the first Bernoulli polynomial B1(x) is defined as B1(x) = x − 1
2 . We hence 

rewrite the last expression as

S(I1,I2,τ )(P, n) = (−1)|I1|(Q!)−s+2β1(0)r(0, Q!, n)

+
∑

0<zi0<Q!

(
1
2 − zi0

Q!

)
r(zi0 , Q!, n) + O(Q−δ). (10.3)

By assumption we have r(zi0 , Q!, n) = r(Q! − zi0 , Q!, n) and we observe that

1
2 − zi0

Q! + 1
2 − Q! − zi0

Q! = 0.

Hence the second sum in (10.3) vanishes and we obtain

S(I1,I2,τ )(P, n) = (−1)|I1|(Q!)−s+2β1(0)r(0, Q!, n) + O(Q−δ),

as desired. �
We remark that Lemma 10.2 is useful in determining the sign of S(I1,I2,τ )(P, n)

and showing that these singular series are non-zero under certain conditions. The 
counting function r(zi0 , Q!, n) is always non-negative, and furthermore, the term 
(Q!)−s+2r(0, Q!, n) can be shown to be positive under the assumption of the existence 
of non-singular local solutions for all finite primes. As an example, we compare this to 



D. Schindler / Journal of Number Theory 173 (2017) 332–370 369
Theorem 1.4 in [13] for the special case of F (x) =
∑s

i=1 x
d
i . As we shall see in the next 

section one has

S∅,I2,0(P, n) = Ss,|I2|(n),

where the singular series on the right hand side is defined as in Theorem 1.4 in [13]. In the 
case where |I2| = 1 and Q!|n, the symmetry assumption on r(zi0 , Q!, n) in Lemma 10.3
is satisfied and this shows that

Ss,|I2|(n) = −1
2(Q!)−s+2r(0, Q!, n) + O(Q−δ).

Observe that (Q!)−s+1r(0, Q!, n) converges to Ss−1(n) for Q → ∞ (by applying the 
Chinese remainder theorem) and hence we recover, up to a less precise error term, the 
result of Theorem 1.4 in [13]. We note that our assumptions on s are of course much 
stronger than those in [13], since we applied a result for a very general form F (x) to 
the sum of s dth powers. However, we could feed our method on the minor arcs with 
mean value estimates for sums of dth powers instead, and recover results of comparable 
strength in s.
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