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ABSTRACT
We introduce type graphs into Elm in order to improve type error
messages for in�nite types, and integrate type quali�ers (for type
classes a la Haskell) and Elm’s row polymorphism into type graphs.
We also discuss how specialized type rules and siblings can be used
to achieve domain-speci�c type error diagnosis in the context of
Elm.
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1 INTRODUCTION
Type error messages for strongly typed functional programming
languages such as OCaml and Haskell can at times be daunting.
Type errors displayed by compilers often reason about the types
of various expressions of the program. These types can become
rather involved, rendering the error messages harder to read. And
type errors occur quite often: Hage and Keeken have observed
a steady 30 percent of all compiles resulting in a type error for
students learning Haskell [13]. Elm is, like OCaml and Haskell, a
strongly typed functional programming language, though despite
this, Elm [4] is famous for its nicely worded and understandable
error messages.

The main author of Elm, Evan Czaplicki, has put great amounts
of e�ort into getting Elm’s type error messages where they are now.
Some techniques involve suggesting alternatives for misspelled
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record �elds, highlighting the di�erence of two con�icting types
and displaying the source code containing the error without any re-
formatting. This paper provides the basis for further improvements,
working from two directions. First, we use type graphs to investi-
gate the context of a type error more thoroughly before throwing
an error. Type graphs can represent inconsistent sets of constraints,
allowing for the de�nition of heuristics that inspect the type graph
to look for well-known error patterns. Contributions of this paper
include the extension of the type graphs of [10] to represent type
class predicates within the type graph, provide support for Elm’s
row types, and improve error diagnosis for so-called “in�nite type
errors” in Elm. Elm itself does not support type classes, because of
the adverse e�ect on error diagnosis. One goal of our work was to
show the Elm designers that with our methods for error diagnosis,
this need not be an issue. We have re-implemented the most impor-
tant heuristics of the Helium compiler [12] to show that our type
graphs work as expected. Evidence for the fact that type graphs and
the associated heurstics can improve error diagnosis can be found
in [2, 10]. In comparison to Helium we run less risk of reducing
the quality of the provided error diagnosis, since our implemen-
tation in the Elm compiler typically still reports the same error
location as before and we only add a hint to the message to help the
programmer resolve the type error. For our improvements to the
diagnosis of in�nite type errors we may in fact change the original
type error message, and the paper provides anecdotal evidence
for the improved quality of our messages. Second, we have imple-
mented mechanisms (inspired by [17]) to let experienced library
programmers take control of type error messages to make the error
messages domain-speci�c. This support is crucial for Embedded
Domain Speci�c Language (EDSLs) [19]. The DSL can be modelled
to represent the abstraction for a particular domain, while being
able to interact with other DSLs. One problem though is that the
encoding of the DSL into the host language leaks in type errors
which quickly become impossible to understand by the domain
programmer. The mechanisms we provide help overcome this prob-
lem.

In �gure 1 we can see some color, transparent pink, being de-
�ned in terms of three integers and a �oat. Sadly, this code is
incorrect. The error shows that rgb takes 3 arguments, but has
been given 4. This error, its clear description of the problem and the
red underlining of the fourth argument are part of Elm’s famously
understandable error messages. The “Did you mean” hint below
the code is one of the contributions of this paper. The hint adds
valuable information, as it tells us how this problem can be resolved.
It appears to have some insight about the similarity between the
functions rgb and rgba and has �gured that the programmer might
have confused the two.
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transparentPink =
rgb 255 20 150 0.5

(a) An inconspicuous looking Elm statement
Function `rgb` is expecting 3 arguments,
but was given 4.

67| rgb 255 20 150 0.5
^^^

Did you mean Color.rgba instead of Color.rgb?

(b) The resulting error message

Figure 1: A confusion between the functions rgb and rgba.

The 1st argument of function `const` is in conflict with
the return type.

227| const "str" True

Function `const` is expecting the return value to be:
String

But the context requires:
Bool

Hint:
The author of function `const` gives the following
explanation: It’s the first parameter that gets
returned, not the second.

Figure 2: An error message with a hint from the author of
the function.

Error messages that suggest corrections based on conceptually
similar functions can be very helpful to programmers. The improve-
ments do not stop there, however. Type directives give authors
of functions a high degree of control over the hints added to the
error messages that are shown when their functions are not used
correctly. This makes it possible for error messages to explain the
problem as though they understand the meaning of the function.
One example of such an explanation can be seen in �gure 2. The
expression that caused this error is

if const "str" True then "foo" else "bar".
This paper expands on earlier research done by Hage and Heeren

[10, 16, 17], translating ideas implemented in the Helium com-
piler [12, 18] to the setting of Elm. The Helium compiler uses a
graph-based technique in combination with heuristics to �nd the
best explanation for error messages. This is part of a continuing
e�ort to improve type error messages.

A manifesto for good type error diagnosis was written by Yang
et al [35]. According to them, messages are to be correct, precise,
succinct, non-mechanical, source-based, unbiased and comprehen-
sive. Type graphs are particularly adept at removing bias and being
comprehensive.

The contributions we provide in this paper are that we extend
the type graphs of Heeren [10] with type class predicates and row
polymorphism, and improve Elm’s error diagnosis in the presence

of in�nite types. Our work con�rms the usefulness of the type graph
abstraction for controlling and improving type error diagnosis.

In addition, we o�er Elm-inspired programmer friendly syntax
for type classes, instances, siblings and type directives, in which
we deviate in subtle ways from Helium/Haskell. In particular, our
implementation of siblings decouples the decision of blaming a
particular location from the hint that replacing a function by a
sibling can solve the problem. Our implementation is available at
https://github.com/FPtje/elm-compiler, on the master branch. We
often omit code fragments due to space restrictions. These can be
found in [26].

The usefulness of our techniques goes beyond Elm: some lan-
guages, e.g., OCaml and Purescript, provide records similar to Elm’s
row types and for which our type graphs can be employed. Other
languages, e.g., Erlang and F#, support a simpler form of record type.
In most, if not all, functional languages in�nite type errors may oc-
cur, and our work can help to improve errors in those languages as
well. Even though the Helium compiler uses type graphs to provide
better error diagnosis, it has no special support for in�nite type
errors as the type graphs in this paper do.

2 A LITTLE ON ELM
Evan Czaplicki and Stephen Chong describe the essence of the Elm
programming language [6]. Some design goals of Elm are to be sim-
ple, easy to learn, purely functional and to have a clean syntax. Elm
is a purely functional language designed for Functional Reactive
Programming. It is focussed on the design of user interfaces, strict
in evaluation, and event driven.

To correctly position our work, and the contribution in terms
of an implementation, we shortly discuss the Elm ecosystem. The
Elm toolset consists of several packages, all of which are written
in Haskell. The source is hosted on GitHub (https://github.com/
elm-lang). The most noteworthy packages, for our purposes, are
elm-compiler, elm-repl (Elm’s GHCi), core (Elm’s Prelude), and
error-message-catalog is a regression test set of program de-
signed to trigger exotic error messages in Elm.

The elm-compiler deals with the compilation of a single module.
At the highest level, it provides two features: (1) compiling a module
from source code to a type checked and optimized module and (2)
take an optimized module and generates Javascript code.

Type inference is implemented in two phases: constraint gen-
eration, and constraint solving. The former works in a top-down
fashion, collecting constraints much like those of [28]. The con-
straint solver takes these constraints and reconstructs the most
general types. At this time, errors and warnings can be thrown. The
compiling process halts immediately or at the end of the current
phase when errors are discovered. Errors and warnings are pretty
printed and shown to the user in inverse order of being thrown, i.e.
the �rst thrown error appears at the bottom of the output. More
about Elm can be read in Czaplicki’s thesis [4].

3 ELM TYPE GRAPHS
Type graphs have been described in great detail in chapter 7 of
Heeren’s PhD thesis [14]. Like Helium, Elm is based on the Hindley-
Milner type system, so we can largely follow the same principles.

https://github.com/FPtje/elm-compiler
https://github.com/elm-lang
https://github.com/elm-lang
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Figure 3: The type graph of not "foo"

After a short summary of Helium’s type graphs, we turn to our
enhancements for Elm.

Consider �gure 3. It is a drawing of the type graph that represents
the expression not "foo". The black lines indicate a type hierarchy,
the numbered purple lines with arrows are constraints and the red
dashed line shows the type con�ict.

Let us �rst take a look at the cyan encircled tree. This repre-
sents the type of the not function, which is Bool -> Bool. One
can see how this type forms a tree when writing the type in in-
�x notation (i.e. (->) Bool Bool), then noticing the associativity:
(((->) Bool) Bool) before making that explicit in a binary tree.
The app nodes are explicit applications of types to parameters.

From the type of not, one constraint goes out to the rest of the
graph. Constraints connect what would otherwise be islands of
types. Through the constraints and the hierarchy of types, one can
reason about which types should be equal to which. In �gure 3,
constraint #1 says that node 5 must be an instance of the type rep-
resented by node 0. Similarly, #2 states that node 8 must represent
a function with the same arity as node 5, #3 represents the return
type of the function, #4 the �rst argument of the function, and #5
that a String literal was passed in.

Node 7 is the placeholder for the type of the �rst argument.
Constraint #4 links this placeholder to the �rst argument of the
function. Constraint #5 links it to the type of the String literal
that was �lled in there. Finally, constraint #3 links the placeholder
for the return type of the function to node 12, which we already
know represents the return type of the function. If this expression
were to live inside another expression (e.g. an if-statement or as
an argument of another function), node 13 would be linked to some
type from that context.

Now that we know how the type graph represents the type of the
expression, we can reason about what has gone wrong. Constraints
#1 and #2 demand that node 0 must represent the same type as
node 8. This means that the left children (i.e. nodes 3 and 11) of
both nodes must hold equal types. The same applies to the right
children of those nodes (i.e. 2 and 10). Constraint number #4 states
that node 7 must hold the same type as node 10, which means it
must also hold the same type as node 2. Constraint #5 does this for
node 6. This means that nodes 2, 10, 7 and 6 must hold the same
type. The con�ict here is that node 2 holds a Bool while node 6
holds a String.
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Figure 4: BFS in action

Now that we know which types are in con�ict, we can start
thinking about which constraint is best to blame. A careful reader
might note that all constraints but constraint #3 are mentioned in
the previous paragraph. One can argue that cutting any of those four
constraints would break the link between nodes 2 and 6. This means
that all four constraints say something about the type error. Despite
this, it does not make equal sense for some of those constraints
to get the blame. After all, if constraint #1 were to get the blame,
then the error would be that somehow not does not have the type
Bool -> Bool. Constraint #4, on the other hand, appears to be the
right one to blame. After all, it says that the �rst argument of the
function has the wrong type.

We compute the (shortest) error path between two vertices by a
breadth-�rst search, keeping track of a list of successes (see [26],
p.31 for the code). In every iteration, paths in the list of successes
are expanded. If any of these reaches the destination, then the
algorithm stops and returns the paths that have been found to
take us from goal to destination. The algorithm is shown in action
in �gure 4. The orange arrows represent the actions of the BFS
algorithm. There are three ways to expand a path. The �rst and
simplest way is walking over a constraint edge, e.g., from node 6 to
7 and from node 7 to 10. The second and third ways are walking up
and down the type hierarchy. The reasoning for that is as follows:
when two type applications are equal, both left children and both
right children must be equal too. In �gure 4, nodes 0 and 8 must be
equal. This equality trickles down to the children: nodes 3 and 11
must be equal, etc.

There is one essential caveat: when going up the tree, one must
remember to at one point go back down the tree, and in the “same
way”. In the example, when we go up the right edge of the tree
from node 10 to node 11, this implies a promise that at some point
we have take the corresponding step down; we ful�l this promise
going from 3 to 2. Similarly, the edge from 11 to 8 is paired with
the one from 0 to 3. The information about taking left and right
child edges is kept track of by the algorithm (the lists displayed in
orange at the nodes), taking care that we only look at pairs of equal
elements that also have equal lists associated with them.

A limitation of the algorithm is that it only �nds the shortest
path. In theory, the situation drawn in �gure 5 could occur, where
two paths lead to the same con�ict. In this example, only the edge
for constraint #1 would be identi�ed as an error path. One can
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Figure 5: BFS limitation. Only constraint #1 would be identi-
�ed.

change the algorithm to continue searching after a path has been
found, making sure not to not get stuck in a cycle. This however
becomes quite complicated in the presence of in�nite types, so we
have not explored this possibility.

To assure ourselves that our implementation of type graphs is
sound, we implemented the heuristics “Share in error paths”, “Con-
straint number” and “Trust factor”, and veri�ed that they behaved
as expected. A description of these heuristics can be found in [10].

How type graphs are used inside the compiler. The type graphs
in Elm form an alternative to the built-in solver. However, they
are quite a bit more expensive to compute with. Fortunately, type
graphs need only be constructed when there is a type error that
needs to be investigated. A module without type errors will be
compiled without the type graph ever being invoked. When the
built-in constraint solver comes across a type error, a type graph is
created to investigate the type con�ict, and it will only do so for
the binding group in which the inconsistency was detected. This
keeps the performance overhead quite low.

In contrast to Helium’s type inferencer, Elm’s built-in constraint
solver works with a state in IO which is maintained through de-
structive updates. As such, the types in a binding group are par-
tially resolved when the solver stops to report an error. Because
of the destructive updates, one cannot go back to the unsolved
and untouched binding group for reexamination. The solution is to
manually create a copy of the solving state, which is updated when
recursing into a binding group. This copy is examined when a type
con�ict occurs.

After the type graph has examined a type con�ict and thrown the
error(s) it has deemed most appropriate to throw, the built-in solver
can continue with the remaining binding groups like it would as if
the type graph never existed. At the end of the constraint solving
process, the errors are pretty printed and shown to the user.

4 DEALINGWITH INFINITE TYPES
Elm’s built-in constraint solver already has a mechanism which
attempts to reconstruct in�nite types, but the destructive-updating
nature of the built-in solver strongly hinders its ability to perform
a proper reconstruction. Type graphs do not su�er from this hin-
drance.

In Elm’s built-in solver, an in�nite type is reconstructed by re-
cursing over the type’s structure, which is stored in the solving
state. Whenever this recursive algorithm comes across a structure
it has visited before, it concludes it has found an in�nite type and

Code with in�nite type Elm Type graph
let inf = inf inf ? ∞ ->∞
in inf

let inf = [inf] ? List∞
in inf

let inf = ("str", inf) ? (String,∞ )
in inf

foo a = if True then a a ∞ -> a ∞ -> a
else 0 >= a

Figure 6: Reconstructed types, Elm’s built-in constraint
solver versus type graphs

replaces the structure with a type variable named “∞”. Types in-
volved in a con�ict are replaced with a type variable named “?”.
The type displayed to the user will display the resulting type. Sadly,
the errors are often just question marks, since in�nite types are
often also involved in type con�icts as well.

Type graphs do not su�er from destructive updates. Their ability
to represent types and their relations in spite of both type con�icts
and in�nite types render them ideal for in�nite type reconstruction.
The native inferencer falls back on “?” only because the actual
type has been lost in destructive uni�cation. In type graphs this
information is not lost. As such, they need never fall back on “?”.
The algorithm to reconstruct an in�nite type using the type graph
is based on Heeren’s substituteVariable function [14], being
inspired Elm’s technique of replacing seen type variables with “∞”.

During reconstruction (we omit the code for reasons of space,
but see Figure 6.5 of [26]) we keep track of the visited vertices.
When a vertex is revisited,∞ is �lled in. Otherwise, the contents
of the vertex is inspected. If the vertex holds a type application, the
algorithm recurses on the left and right children and returns their
combination. Type constructors are returned without modi�cation.

Type variables require some more e�ort. The equivalence group
containing the type variable vertex is inspected to see if there are
any more speci�c types. This most speci�c type is returned if the
type variable is part of a coherent equivalence group. That is, the
variable is not involved in a type con�ict. A uniquely named type
variable is returned if it turns out that the most speci�c type of the
group is again a type variable. The algorithm recurses when a type
constructor or type application is found to be the most speci�c type
of the group.

Type variables that are part of a type con�ict also generate a
uniquely named type variable. One may wonder whether this does
not defeat the purpose of reconstructing types involved in type
con�icts. The reason why it does not lies in the fact that type
applications and constructors are treated as though they live in a
coherent equivalence group. Reconstructing node 2 in �gure 3, for
example (also shown in 4), would give a Bool, even though this
node is in con�ict with the String in node 6.

In practice, reconstructing con�icted types works as well as in
Elm’s built-in solver. Reconstructing in�nite types works quite a
bit better, as Table 6 shows.

A more elaborate example is the Y combinator that cannot be
typed within Elm. In Figure 7 we have included one of the two type
error messages from our compiler and the corresponding message
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given by the standard Elm compiler. We omit the message for the
other type incorrect application of x to x for reasons of space. Note
that again our implementation reveals more information about the
identi�er x, and points to the application as the cause for the error.
The standard compiler refers only to x’s binding site.

I am inferring a weird self-referential type for `x`

7| fix f g = (\x -> \a -> f (x x) a) (\x -> \a -> f (x x) a) g
^

Here is my best effort at writing down the type. You will see
? and ∞ for parts of the type that repeat something already
printed out infinitely.

∞ -> a -> b
...

(a) Provided by our compiler.
I am inferring a weird self-referential type for `x`

7| fix f g = (\x -> \a -> f (x x) a) (\x -> \a -> f (x x) a) g
^

Here is my best effort at writing down the type. You will see
? and ∞ for parts of the type that repeat something already
printed out infinitely.

?
...

(b) Provided by the standard Elm compiler.

Figure 7: Messages for the Y combinator for our own com-
piler and the standard Elm compiler.

5 ADDING ROW TYPES
Elm features a simple form of the extensible records described by
Leijen [22]. Extensible records contain values that can be indexed
by a member name. New members and values can be added to the
records, values of existing members can be removed or changed
and records can be indexed to retrieve speci�c values. All these
operations are type safe, meaning that invalid record operations
are detected at compile time. Elm implements this idea, but it does
not support the addition or deletion of members anymore. These
were supported until version 0.16 [5]. The features were removed
to allow for more program optimisations and because it encouraged
overly complex code.

Unlike functions and algebraic data types, records cannot be
described in terms of type constants, type applications and type
variables. The biggest reason for this is the polymorphism that
allows functions to merely demand the existence of speci�c mem-
bers in the records provided as arguments. This means that the
type graphs described thus far are ill equipped for reasoning about
records.

Figure 8 shows a simple record and the type graph representing
its type. In the type graph, node 0 contains a simple type constant
called Record. Nodes 1, 2 and 3 contain the types of the members of
the record. Note that the order of members di�ers between the code
and the type graph. The type graph adds the types of the members
arbitrarily in alphabetical order since order is irrelevant.

The blue edges going from node 0 to nodes 1, 2 and three are
neither type hierarchy nor constraint edges. The records keep track
of where the types of its members are located in the graph in a
special kind of edge called “member” edges. These member edges

someRecord =
{ a = True
, c = "str"
, b = False
}

(a) A simple record constant.

Record
0

Bool
2

Bool
1

String
3

EmptyRecord
4

b ca

(b) Its type graph

Figure 8: A simple record constant and its graph representa-
tion.

simply store the name of the member and a reference to the node
representing its type.

Finally, node 4 contains an EmptyRecord constructor. This is to
account for the ability to extend records. Even though adding or
removing members to and from records is disallowed, one can still
update values in records. One could, for example, write

otherRecord = { someRecord | a = False }

or even
otherRecord = { someRecord | a = "str" }}

although the ability to change types of record members may be
unintentional. Since the record in �gure 8 is not based on any other
record, the type graph just holds an empty record as placeholder.

Records must always be an extension of either an empty record,
another record or a type variable. Records that are not based on
other records, like the one in �gure 8, extend the empty record. A
record that extends another record forms a record containing the
union of the members of both records. The polymorphism of records
becomes apparent when a record extends a type variable, which
means that the record can have any number of other members
besides the ones de�ned in the record itself. This can be seen in
�gure 9, where the argument to foo can take any record as long as it
contains a member baz of type Bool. Record extension is a transitive
relationship between records. A record can extend another record
which in turn extends a type variable. This would make the former
as polymorphic as the record it extends.

foo : { bar | baz : Bool } -> Bool
foo x = x.baz

Figure 9: An instance of row polymorphism.
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5.1 Finding type con�icts
Type con�icts are found by �nding two nodes in the same equality
group that cannot be uni�ed. The algorithm that does this needs
not be modi�ed to reason about the individual members of records.
After all, unless those members are records themselves, they act
like any ordinary type. The rules of type constants apply as usual
to records. Bool types, for example, cannot be uni�ed with records
and should therefore still be marked as incompatible.

Additional logic, however, is needed to compare a pair of records.
The comparison depends on what both records extend. If both
records are monomorphic, meaning that their set of members is
�xed, then neither record is allowed to contain members that the
other record does not have. In other words, the sets of members
must be equal. When only one of the records is polymorphic, then
its set of members must be a subset of that of the monomorphic
record. The members may be completely disjoint when both of the
records are polymorphic, which means that polymorphic records
always match.

When checking compatibility between two records, not only
must the two records have comparable sets of members, the mem-
bers the two records have in common must have the same type.
This is a bit trickier and cannot easily be done in the function that
checks whether an equivalence group is consistent. After all, the
types of the members exist in di�erent equivalence groups which
themselves may be inconsistent for other reasons. Figure 10 demon-
strates a situation where two records are linked by a constraint.

Record
0

Bool
2

Bool
1

String
3

EmptyRecord
4

b ca

Bool
7

Bool
6

Record
5

Var
9

a b

#1

Figure 10: Amonomorphic record constrained to a polymor-
phic one.

The record at node 0 is the same as the record in �gure 8. Since
the record at node 5 extends a type variable, it is polymorphic. Its
members must be a subset of the members of the record at node
0. Nevertheless, the members both records have in common must
have the same type. Consequently, those common members must
end up in the same equivalence group. This is made sure of during
the type graph building phase.

Whenever a constraint is introduced that causes two records
into be put in the same equivalence group, this constraint is du-
plicated among the common members of the two records. In the
example, constraint #1 forces the two records directly into the same
equivalence group. This means that the common members of the

two records, namely a and b must share equivalence groups. Af-
ter all, member a of one record must have the same type as the a
member of the other record. The two dotted purple arrows show
how constraint #1 is duplicated amongst those members. Since the
record at node 5 lacks a member c, the c member of the record at
node 0 is left alone.

This method properly observes the rules of when two records
can be uni�ed. The duplication of a constraint among the members
of two records does, however, have a detrimental e�ect on error
messages. After all, when two records have a common member but
with con�icting types, e.g. {a = True} and {a = "str"}, the type
error will not state the type con�ict not as one between two records,
but one between a Bool and a String. This is highly undesirable.
We believe this e�ect can be countered by holding a reference back
to the original records in the duplicated constraints and making
sure to display the original records, rather than their members, in
the type error. At this time our implementation does not do so.

6 SIBLINGS
Siblings were introduced in [17] to provide additional hints in type
error messages that involve identi�ers, e.g., foldr, that are easily
confused with its “sibling”, e.g., foldl. If substituting the type of the
sibling for the identi�er resolves a type error, the hint is attached
to the default message.

Siblings can be introduced by the programmer, typically the
implementor of the library that de�nes the siblings. In Elm we
employ the following syntax:
sibling foldr resembles foldl

This means that foldl will be tried whenever an expression
containing foldr is type incorrect, but not the other way aroundl;
for that another sibling directive will be needed. The reason we
have chosen for the non-symmetric interpretation is to allow a
di�erent error messages to be attached for each case.

Once the compiler is informed of all siblings, its task becomes
deciding when it is useful to show a hint. There are three important
factors here: (1) the function is involved in a type error, (2) its sibling
function solves this type error, and (3) the sibling does not cause
new type errors.

The implementation of siblings is easily done directly on the
type graphs. In Figure 11 we provide a piece of Elm code, and in
Figure 12 we depict the associated type graph. The type graph
suggests how the type of foo is replaced by bar to see if that
resolves the type error. This is done by redirecting the edge labelled
with #1 to the type graph representation of the type of bar. When,
after the replacement, the instance constraint is still part of an error
path, then either the original type con�ict was not resolved or a
new type con�ict was created. Since the instance constraint is the
only constraint connecting the type of the sibling to the rest of the
graph, it being a part of an error path must necessarily mean that
the type of the sibling is in con�ict with some other type in the
graph.

Contrary to Heeren’s implementation of siblings [14], siblings
do not decide which constraint gets the blame. In Heeren’s imple-
mentation, the instance constraint (constraint #1) would have been
blamed, since redirecting it led to a consistent type graph. This
constraint holds an error message that says the function foo is
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foo : Int -> String
bar : String -> Int

sibling foo resembles bar

baz = foo "15"

Figure 11: Elm code with siblings directive

var
5

app
0

app
7

app
3

String
4

app
10

var
11

→
1

Int
2 8

var
9

→

var
12

#1 #2

#3

app
0

app
3

Int
4

→
1

String
2

foo

bar

String
6

#4

Figure 12: Siblings in action.

The argument to function `foo` is causing a mismatch.

39| foo "15"
^^^^

Function `foo` is expecting the argument to be:
Int

But it is:
String

Hint: Did you mean bar instead of foo?

Figure 13: The error shown for the code shown in �gure 11

somehow used incorrectly. Our implementation, however, allows
the type graph heuristics to blame any of the constraints in the error
path. This includes the instance constraint, #1, but also constraints
#2, #3 and #4. In this particular case, constraint #3 is chosen, since
it states speci�cally that the �rst argument of the function has the
wrong type. The error in Figure 13 is displayed.

7 TYPE CLASSES IN ELM
We have added Haskell 98 type classes, using an alternative, novice
friendly syntax, to the Elm compiler, in order to see whether they
would a�ect type error diagnosis. We have extended type graphs
to include type class predicates. In Heeren’s work these are dealt
with outside of type graphs, but this prevents the introduction of
heuristics that employ knowledge of instances to decide where to
lay the blame.

foo : a -> a | Eq a
foo a =
if equals a a
then a
else a

type Foo = Foo

bar =
if foo Foo
then "baz"
else "qux"

Figure 14: Sample code

Technically, extending type graphs to deal with type class predi-
cates is rather simple: we label vertices in the type graph with any
predicates that should hold for the content of the vertex. So, Eq a is
represented by a vertex that contains the type variable a, to which
we then attach a label that says that Eq should hold for that vertex.
Clearly, a vertex should be able to have multiple labels.

We have implemented an algorithm to look for missing imple-
mentations. For type variables, it simply collects all the predicates
that should hold, while for non-variables, types like Int, it will
check whether matching implementations can be found. This check
is applied to all binding groups in the graph. The advantage of
such an approach is that looking for implementations and solving
uni�cation constraints become relatively independent: we can look
for missing implementations even if the uni�cation constraints turn
out to be inconsistent, and can potentially use this information to
drive heuristics to use this information when choosing a constraint
to blame for the inconsistency. The set-up allows us to generate
uni�cation errors instead, instead of missing instances errors, but
also vice versa.

Elm’s built-in solver, on the other hand, resolves implementa-
tions as soon as a type variable is uni�ed with a type constant
(or type application). This means that it could throw a missing
implementation error when a normal type error would explain the
situation more appropriately.

Assuming a de�nition of an Eq type class that supports a mem-
ber function equals to test for equality, Figure 14 de�nes �rst a
function foo that has the type foo : a -> a | Eq a (equivalent
to Haskell’s Eq a => a -> a). Underneath, Foo is de�ned as an
algebraic data structure with just one nullary constructor. The (mod-
i�ed) built-in inferencer throws two errors: the ones seen in �gure
15b and 15c. The type graph only throws one error, which is the
one shown in 15a. Since the two errors computed without type
graphs have the same root cause, Foo is given as an argument to
foo, it can be argued that the error thrown by the type graph is
more appropriate.

8 SPECIALIZED TYPE RULES
Our implementation also supports the specialized type rules of
Helium [17]. Specialized type rules allow the creation of custom
(=domain-speci�c) hints for error messages shown when their
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`foo` is being used in an unexpected way.

320| bar = if foo Foo then "bas" else ""

Based on its definition, `foo` has this type:
a -> a | Main.Eq a

But you are trying to use it as:
Foo -> Bool

(a) Error thrown based on type graph.
This condition does not evaluate to a boolean value,
True or False.

320| bar = if foo Foo then "baz" else ""

You have given me a condition with this type:
Foo

But I need it to be:
Bool

(b) First error thrown by built-in inferencer.
Missing a specific implementation of an interface.

320| bar = if foo Foo then "baz" else ""

In order for this code to work, there needs to be
an implementation of `Eq` for

Foo

This implementation should either be in this file or in
one of your imports. Perhaps you forgot to import a
module that provides this implementation?

(c) Second error thrown by built-in inferencer.

Figure 15: Code with both a type con�ict and a missing im-
plementation.

functions are misused. Like in Helium the rules are automatically
checked for soundness and completeness with respect to the built-
in type system. Besides a more friendly syntax, in the spirit of Elm,
they are very much like those in Helium.

Figure 16 shows a specialized type rule for the function checkMaybe
when applied to two arguments. Here, constrain rules recursively
constrain either one of the arguments or the return type. When left
out, they are inserted automatically during the validation phase in
the compiler pipeline. The unify rules create equality constraints.
Note the use of subscripts here to refer to what are at �rst di�er-
ent “uses” of a. Essentially, the type of checkMaybe should be read
as Maybe a_1 -> a_2 -> Bool | Eq a (type variables in class
predicates need not be numbered). The numbering is used by the
compiler for reasons discussed below. Finally, check rules enforce
type class predicates.

Specialized type rules, when de�ned, must reside between the
type annotation and the de�nition of a function. This conveniently
forces the type annotation to exist, which is strictly necessary. Spe-
cialized type rules can be created for all curried versions of a func-
tion, in the example, errors for checkMaybe and checkMaybe maybe

could have optionally been de�ned besides checkmaybe maybe val,
but this was left out for brevity. Rules pertaining uni�cation and
predicate checking can optionally be given a reason. This reason
will be shown in a hint to the user when the constraint cannot be
satis�ed. For brevity, we have kept these messages simple.

1 checkMaybe : Maybe a -> a -> Bool | Eq a
2 errors for checkMaybe maybe val where
3 constrain maybe
4 constrain val
5

6 unify maybe with Maybe a_1
7 because The first argument has to be a Maybe.
8

9 unify val with a_2
10

11 unify a_2 with a_1
12 because The second argument must match the
13 thing in the Maybe.
14

15 check Eq a_1
16 because Eq is needed to test equality.
17

18 unify return with Bool
19

20 constrain return
21

22 checkMaybe maybe val =
23 case maybe of
24 Nothing -> False
25 Just x -> isis x val

Figure 16: A function de�nition with type rules.

We note that writing specialized type rules may not be as simple
as writing code, but remember that these are not written by the end
users of libraries but by those who either develop the library, or
they may be added to the libraries by some third party. By writing
these rules once, many end users of the library may pro�t.

8.1 Implementing specialized type rules
The magic of specialized type rules happens in the constraint gen-
eration phase of the compiler. Constraint generation works in a
top-down fashion. When the constraint generator comes across
a function application, the compiler checks if there are any type
rules that match the function application (with the right number
of arguments). If such a type rule exist, then the constraints de-
�ned by that type rule replace the constraints that would otherwise
be generated by the compiler (the necessary code is omitted for
reasons of space, but see p. 50 of [26]).

A unify rule, e.g., unify val with a_2, leads to an equality
constraint. First it instantiates the types of both the left hand side
(lhs) and right hand side (rhs). This instantiation uses a state monad
to make sure that already instantiated types are re-used. A function
decideErrorMessage generates an appropriate error message to
show to the user when the constraint is broken. Similarly, a check
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rule generates a constraint. A rule like check Eq a_1 can be viewed
as syntactic sugar for unify a_1 with b | Eq b, where b is fresh.

The function decideErrorMessage requires some attention, as
it decides the error message based on a unify or check type rule.
The error generated by this function can tell the user whether the
error lies with a single argument that has an unexpected type, the
return type being di�erent than expected, a con�ict between the
types suggested by the arguments and the return type or a con�ict
between two or more arguments. These errors di�er from the error
messages added to constraints when no type rules are involved, yet
they are still generated automatically. The big question here is: how
does this function know which parameters the type rules reason
about?

Part of the answer to this question is numbered type variables.
In �gure 16, Maybe a -> a -> Bool | Eq a of the type of the
function checkMaybe. In the type rules of that function, there are
mentions of a_1 and a_2. These numbered type variables actually
refer to the type variables in the type annotation. In this example,
a_1 refers to the a in Maybe a. The variable a_2 refers to the a of
the second parameter. Type variables in quali�ers never need to
be referred to. As such, the a of the Eq quali�er has no associated
numbered type variable.

It is easy to calculate to which parameters (or return value)
numbered type vars refer to; this is clear from the type annotation.
Type rules can also contain references to the arguments to the
function, and its return value. In �gure 16, these are maybe, val
and the special identi�er return. Finally, fresh type variables can
be used at will. The role these fresh variables play is implicit in
how the rules relate them to the numbered variables, the named
parameters and return. A simple �xed point algorithm veri�es
that all mentioned fresh variable will related in such a way, and to
which variables they are related.

Figure 17 shows the results of this e�ort for checkMaybe function
de�ned in �gure 16, albeit in a somewhat trivial setting. When the
solving fails when looking at unify a_2 with a_1, the algorithm
can discover that the types we are comparing originate from the
�rst and second parameter. This information is used in the error
message to give precise location information. It also shows the hint
provided by the author of checkMaybe at the bottom of the error
message.

8.2 Validating type rules
Specialized type rules can be very powerful for adding custom
hints to error messages and de�ning an order in which the type
of a function application is to be checked. When left unchecked,
though, a programmer could write type rules that make no sense
or describe a type that is not in line with the type of the function
annotation. One could, for example write type rules that demand
implementations of interfaces that the type annotation does not
demand. Fortunately, we can automatically validate the type rules.

Before validation, we �rst check there are no missing constrain
rules. Any missing parameter constrain rules are added before all
other rules. If the return constrain rule is missing, it is added at
the end. This way, constrain rules can be left out.

The �rst actual part of validation requires that all parameters
of the function (in �gure 16, maybe and val) and return appear

foo =
checkMaybe

(Just True)
"bar"

(a) An error in the use of checkMaybe
The 1st and 2nd arguments of function `checkMaybe`

conflict with one another.

273| checkMaybe (Just True) "bar"

Function `checkMaybe` is expecting the 2nd argument
to be:

Bool
But it is:

String

Hint:
The author of function `checkMaybe` gives the following

explanation: The second argument must match the thing
in the Maybe

(b) Resulting error

Figure 17: A type error in the use of a function based on a
specialized type rules

on the left hand side of at least one unify type rule. Secondly, all
numbered type variables must appear at least once on the right
hand side of a unify type rule. The �rst check enforces that rules
exist that reason about every part of the function. The second check
is needed for the parameter matching described in the previous
section. It would be di�cult to �nd out which parameters type rules
reason about if the numbered type variables were not used.

Once these basic checks have been performed, the type infer-
encer makes sure that the type annotation agrees fully with the
type described by the type rules. On a high level, this is done by
generating constraints between the type of the type annotation and
the type described by the type rules. This happens in the constraint
generation phase. Once these constraints exist, the constraint solver
will make sure that the right error message is thrown when the
type described by the type rule does not match the type annotation.

Two sets of constraints are generated. The �rst set, generated
for the type rules in �gure 16, can be seen in �gure 18. In the box
on the left we can read the type of the type annotation, split up into
the types of parameters and the return value. The pairs of boxes on
the right match the type rules in order. An observant reader might
notice that constrain rules are missing in this set of constraints.
This is because constrain rules do not a�ect the type represented
by the type rules. Finally, type variables with the same name are
linked with gray lines. This shows that variables with the same
name represent the same entity. In a type graph, all variables with
the same name would share the same vertex.

The �rst three constraints link the type annotation to the type
rules. The type of the �rst parameter is linked to the type variable
maybe in constraint #1. The type of the second parameter to val in
constraint #2 and the return type Bool to return in constraint #3.
Constraints such as #1 and #2 carry an error message that states that
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Maybe

-
>

Bool

maybe Maybe a 1

val a 2

a 2 a 1

a 1 c | Eq c

return Bool

-
>

Type annotation
#1

#2

#3

#4

#5

#6

#7

#8

a

a | Eq a

| Eq a

Figure 18: The �rst set of constraints used to validate type
rules.

the argument in the type rule does not match the argument in the
type annotation. Constraint #3 carries the message that the return
type of the type rules does not match that of the type annotation.

Constraints #4, #5, #6 and #8 link the left hand sides of the unify
rules to their right hand sides. Constraint #7 conceptually does the
same for the check rule, with the variable being checked being
the left hand side and a fresh variable (arbitrarily called c in this
example) as the right hand side. Constraints #4, #5, #6, #7 and #8
carry an error message that states that the left hand side of the type
rule does not match the right hand side.

The type variables in the type annotation, in the example just
a, are made rigid (a.k.a. skolem variables). Rigid type variables,
unlike �exible variables, cannot be uni�ed with concrete types.
They must remain polymorphic. This prevents type rules such as
unify a_1 with Bool from passing the validation, which would
have made the type rules describe a more monomorphic type than
the type annotation. Rigid type variables also cannot be uni�ed
with other type variables that have more interface quali�ers than
themselves. This excludes the possibility of writing check rules
with quali�ers that the type annotation knows nothing about.

To demonstrate this, let us add the following rule to the type
rules in �gure 16:
check Ord a_1

The type of checkMaybe does not include Ord a. As such the
addition of this check rule results in an error. This error is shown
in �gure 19. It shows the quali�ers that the type annotation expects
for that speci�c variable, and the quali�er(s) described by the type
rules.

One error that has not been accounted for yet is forgetting to
check for a quali�er. While rigid type variables cannot be uni�ed
with type variables with more quali�ers, they can be uni�ed with
type variables with fewer. The above set of constraints would not
account for this. To account for this situation, a second set of con-
straints is built. This is shown in �gure 20.

On the left side of the black bar the same constraints are seen as
in the �rst set of type rules. Again, those constraints build the type
represented by the type rules. The constraints have been renum-
bered to start at #1. Again, the gray lines indicate how variables

The qualifier in this constraint does not exist in the
type annotation.

261| Check Ord a_1
^^^^^^^^^^^^^

The type annotation describes this type:
a | Main.Eq a

But the type rule describes this type:
a | Main.Ord a

Hint:
Note that the previous rules and the type annotation
decide the types of the variables

Figure 19: The error shown when the type rules check for
quali�ers that are not mentioned in the type annotation.

maybe Maybe

val a 2

a 2 a 1

a 1 c | Eq c

return Bool

#1

#2

#3

#4

#5

a 1

maybe -> val -> return

Maybe a -> a -> Bool | Eq a

#6

Figure 20: The second set of constraints used to validate type
rules.

with the same name represent the same entity. The black bar shows
the structure of a let-constraint. A let-constraint is named as such
because it models the types of let-expressions: the types of the
expressions in the let of a let ... in ... statement must be
generalized when the type of the body is inferred. This means that
speci�c variables in the let can be made rigid when the inferencing
of the body begins.

This property is precisely what is needed to �nd out whether
any predicates are missing in the type rules. The constraints on
the left side of the black bar are conceptually put into the let, the
constraint on the right side of the bar is conceptually put as the body
of the let. After the constraints in the let (on the left side of the
bar) have been resolved, the constraint solver moves on to the body
of the let (the right side of the bar), but not before making some
type variables rigid. The numbered type variables, in the example
a_1 and a_2, are made rigid when the constraint solver moves from
the left side of the bar to the right side. When constraint #6 is then
resolved, those numbered type variables cannot be uni�ed with
type variables that have more quali�ers. If the type variables in the
type annotation have more quali�ers than the type represented by
the type rules, the numbered variables in the type rules will refuse
to be uni�ed, causing an error.

This can be demonstrated by removing the check rule on lines
14 and 15 in �gure 16. This would remove constraint #4 in �gure 20.
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Without that rule, the type described by the type rules would be
Maybe a -> a -> Bool, which is missing the Eq a quali�er. The
error resulting from this mistake can be seen in �gure 21.

Type generated by the type rules does not match the
type annotation.

245| checkMaybe : Maybe a -> a -> Bool | Eq a
^^^^^^^^^^^^^^^^^^^^^^^^^^^

The type rules generate this type:
Maybe a -> a -> Bool

But the type annotation has this type:
Maybe a -> a -> Bool | Main.Eq a

Figure 21: An error shown when the type rules and the type
annotation describe di�erent types.

9 RELATEDWORK
Type classes were introduced by Philip Wadler and Stephen Blott
[32]. Wadler and Blott argue for type classes to be the standard
solution for ad-hoc polymorphism. Type classes, and extensible
records as well, are instances of the general theory of quali�ed
types [20].

The type systems of functional languages are typically based on
the Hindley-Milner type system for the polymorphic λ-calculus,
implemented as a variant of algorithmW [7]. It uni�es types on the
go to �nd the most general types of expressions. Lee and Yi [21]
proved that the folklore algorithm M generally �nds type errors
before algorithmW does, and that combining the two algorithms
can give a strictly more precise location of the error.

An issue with traditional inference algorithms is the inherent
left-to-right bias. McAdam [23] removes bias by treating subexpres-
sions symmetrically. Yang [34] describes two algorithms UAE and
IEI . The �rst removes left-to-right bias by typing subexpressions
independently. LikeW ,UAE �nds errors only in applications. When
this happens, a switch is made to algorithm M to narrow down the
error locations. This combination is called algorithm IEI .

A type inferencing algorithm (1) �nds out how subexpressions
are related, and (2) �nds a way to assign types such that all these
“relations” are respected. Part (1) corresponds to the generation of
constraints to be satis�ed for the program to be type correct, while
solving implements part (2). The separation of the parts allows us to
manipulate the order of solving constraints, or to consider multiple
constraints at once, reducing the bias that any variant ofW will
su�er from. Various implementations of this idea exist [11, 24, 28].

Some constraint-based type inferencing systems can be designed
to allow equality constraints to be represented as a graph of types
and their relations. This allows unbiased views on type con�icts
through the ability to investigate the neighborhood (in a graph
sense) of a type con�ict. This is what is described in the TOP frame-
work [16]. The constraint graph can be used to act as a constraint
solver. When an error occurs, a number of heuristics can be applied
to have the type graph point to a likely culprit [10]. A downside is
that generating type graphs can be quite expensive.

Another use for type graphs is described by Zhang and Myers
[36], who outline a method of analysing both satis�able and unsat-
is�able constraints in a type graph using context-free grammars for
a large subset of ML. It uses a Bayesian algorithm to rank the most
likely explanation of an error. Sadly, the graph structure is quite
expensive to calculate. A continuation of this work [37] supports
some of the more complicated structures of Haskell (like GADTs
and type families) and is capable of counterfactual reasoning. The
performance does seem to go down quickly as the lines of code
increase.

Type directives in the form of specialized type rules and sib-
lings were introduced in [17] and implemented into the Helium
compiler [12, 18]. A later extension addressed type classes [15]. A
coherent story is provide in [14].

Recently, work on type directives has begun to address Haskell’s
many type level extensions [9]. Using GHC’s OutsideIn(X) frame-
work as the basis, [30] provides the ability to to de�ne advanced
conditions on when a specialised type rule should apply by means
of a two-stage type checker.

In a completely di�erent approach, Christiansen [3] de�ned post-
processing directives for the dependently typed Idris by means of
re�ection. It allows library writers to rewrite errors before they
are shown to the end user. Domain speci�c type error diagnosis
is also achieved in the work of Hubert Plocziniczak [27] for the
Scala language. The idea is to post-process by programmatically
exploring the typing derivation constructed by the Scala compiler.
In that way, common error patterns can be detected.

GHC version 8 introduces a completely di�erent kind of type
directives [1]. Speci�cally designed for type level programming, a
special TypeError type family will throw a custom error when it is
reduced by the type inferencer. This approach is very speci�c for
type family programming and type classes.

Wand [33] devised a method to explain why the compiler comes
to the conclusion that there is a type error by keeping track of the
reasons for unifying type variables. Once a type con�ict arises, both
incompatible sides of the con�ict will have a list of reasons as to
why it was inferred.

Chen and Erwig [2] coined the term counterfactual typing to
describe variational types for a simple lambda calculus. Variational
types represent the type of an expression not as a single decision,
but as a choice between types. A very di�erent approach for coun-
terfactual typing is outlined by [31], which uses the type checking
algorithm as a black box. When an error occurs, subexpressions
are replaced by holes until the error is resolved. Once a type cor-
rect program has been found, the types of the inserted holes are
requested from the type checker and displayed as “expected type”.

The focus of error slicing lies in reporting all parts in a program
that may be responsible for a type con�ict (called a “slice”). Such
a slice then excludes all parts for which no change can �x the
type error. Haack and Wells [8] introduced this concept for the
Hindley-Milner type system. A continuation of this work, (Rahli et
al. [29]) consists of a type slicer tool for standard ML. It visualises
the error slices by highlighting the parts in a text editor. It resolves
the previous issue of exploding constraint sizes. Nevertheless, type
slices tend to be rather big, since generally there tend to be many
locations at which a type error can be �xed.
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Pavlinovic et. al. [25] show that type inferencing can also be seen
as an optimisation problem. The constraint based method assigns
weights to generated constraints. These weights are decided by the
compiler, which uses heuristics to determine which errors are more
likely than others. The algorithm is expensive, but accuracy can be
traded for speed.

10 CONCLUSION AND FUTUREWORK
We have shown how to add specialized type rules and siblings to
Elm, adding support for type classes, row types, and improving type
error diagnosis for in�nite types. As future work, we can extend
our specialized type rules to two phase type rules, following [30].
The designers of Elm see alternative solutions to type classes, most
notable some support for rank-N polymorphism, higher kinded
polymorphism or implicit arguments. It would be good to give
these the same treatment, before deciding which approach to take
for Elm. Hopefully, the choice for which approach to take is partly
informed by the quality of type error message the choice enables.
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