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Compact solutions are presented for planetary, non-divergent, barotropic Rossby waves
generated by (a) an impulsive point-source and (b) a sustained point-source of curl of
wind-stress. Previously, only cumbersome integral expressions were known, rendering
them practically useless. Our simple expressions allow for immediate numerical visual-
ization/animation and further mathematical analysis.

1. Introduction

Non-divergent waves in a two-dimensional fluid layer on a rotating sphere, restored
solely by Coriolis forces due to vorticity conservation, are present as second-class waves
in Laplace’s equations and were studied by Margules (1893) and Hough (1898). Their
nature was clarified when Rossby & collaborators (1939) derived a simplified version
of the barotropic vorticity equation on a mid-latitude tangent plane (β-plane). They
eliminated the first-class, gravity waves by assuming a rigid lid. Thus they considered
non-divergent flow in a fluid layer in which vorticity changes in time due to advection of
variations in background, planetary vorticity. Linear, free-wave solutions of this equation
display strictly westward phase propagation, but west or eastward energy propagation
for long and short waves, respectively. In recognition of the value of this clarification,
these waves are nowadays called Rossby waves. They are forced by curl of the wind stress
and the barotropic, non-divergent linear motions are governed by

∂tq + βv = curl τ . (1.1)

The relative vorticity q = ∂xv − ∂yu is created by south-north advection of planetary
vorticity and by τ = {τx, τy} the wind-stress vector (see e.g. Veronis (1958); Pedlosky
(1987)). As usual, t is time, x longitude, y latitude and βv is the advection of planetary
vorticity by the latitudinal (south-north) velocity component v.
Introducing a streamfunction ψ, so that the velocity components are u = −∂yψ, v =

∂xψ and q = ∇2ψ, equation (1.1) becomes ∂t∇2ψ+ β∂xψ = curl τ with ∇2 = (∂2x + ∂2y).
In this study, the Green’s function Gδ for an ‘impulsive point source’ and GH for a
‘switch-on point source’ are defined as solutions of

(a) LGδ = δ(t)δ(x)δ(y), (b) LGH = H(t)δ(x)δ(y), L = ∂t∇2 + β∂x. (1.2)

L is the Rossby wave operator, δ the usual Dirac delta-function and H the Heaviside unit
stepfunction and by definition δ(t) ≡ dH(t)/dt. In this paper we shall show that

Gδ =
H(t)

4
[J0(z+)Y0(z−) + J0(z−)Y0(z+)], (1.3)
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Figure 1. The Cartesian {x, y} and cylindrical {r, θ} coordinate systems. The forcing location
for Gδ and GH at r = 0 is indicated by •. ‘East’ is defined by θ = 0, ‘west’ by θ = ±π, ‘north’
by θ = π/2, r is the distance from the source and x = r cos θ, y = r sin θ.

GH =
tH(t)

2(z2+ − z2−)
[z+J1(z+)Y0(z−)− z−J1(z−)Y0(z+)

+ z+J0(z−)Y1(z+)− z−J0(z+)Y1(z−)].

(1.4)

In (1.3) and (1.4) Jn, Yn are nth-order Bessel functions of the first and second kind,
respectively, with complex conjugate arguments

z+ =
√

βtre+iθ/2, z− =
√

βtre−iθ/2 or z± =
√

βt(x ± iy). (1.5)

The usual cylindrical coordinate system {r, θ} is employed with the origin at the forcing
location (see figure 1). The prefactor H(t) in (1.3) and (1.4) enforces ‘causality’, i.e.
Gδ,H = 0 for t < 0. Since efficient algorithms for Bessel functions exist, the compact
expressions in (1.3) and (1.4) allow for a quick evaluation: with a few lines of code in
little time a movie can be created visualizing the temporal and spatial evolutions.

Typically in finding Green’s functions and such as solutions of linear partial differential
equations like (1.2), well-established theory for Laplace and/or Fourier-transforms is used
in combination with theory of differential equations. Various integral representations for
Gδ and GH that have been derived in such a manner are briefly reviewed in §2. They
also reveal a relation between Gδ and GH: not only is ∂tGH = Gδ, as expected, but
once Gδ is known GH follows by differentiation of Gδ with respect to the polar angle
θ. Precise numerical evaluation of the integral representation is cumbersome, but for
locations exactly east (θ = 0) and west (θ = ±π) of the source they can be evaluated
exactly. Our new expressions for Gδ and GH provide a complete ‘picture’ at any angle θ
with the east-west axis.

The compact formula (1.3) for Gδ was discovered by recognizing that a particular
integral representation of Gδ is essentially an integral of the kind studied by Dixon &
Ferrar (1933). Differentiation of (1.3) then quickly yielded GH given by (1.4). This is
discussed in §3 where, for completeness’ sake, we also show that the Green’s functions
given by (1.3) and (1.4) indeed solve (1.2). In §4 we provide illustrative graphs of Gδ and
GH and derive simple approximations which presume large arguments |z±| or

√
βtr ≫ 1.

Also in §4 the associated wave-energy density distributions are considered. In §5 we
discuss the ramifications of this study and in particular we draw attention to results
that indicate that parabolic coordinates ζ =

√
r + x, η =

√
r − x appear to be a natural

choice when studying non-divergent Rossby waves.
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2. Integral representations and relations between Gδ and GH

Veronis (1958) showed that

Gδ = −H(t)

π

∫ ∞

0

J0

(

2
√

βtr(η2 + cos2 1
2θ)

)

√

η2 + 1
dη, (2.1)

correcting for a typographical error. He called the point-size burst of wind-stress-curl a
‘tweak’ and derived (2.1) through the use of a Laplace transform in time of (1.2a) which
reduced the problem to solving a second-order partial differential equation (in variables
x, y). With the solution at hand, (2.1) followed from the inverse Laplace transform.
Longuet-Higgins (1965) also found (2.1), but through a triple Fourier-transform. Much
later, Kamenkovich (1989) established that

GH = −H(t)

π

√

t

βr

∫ ∞

0

J1

(

2
√

βtr(η2 + cos2 1
2θ)

)

√

η2 + 1
√

η2 + cos2 1
2θ

dη, (2.2)

using a Laplace transform of (1.2b) with respect to time. Both infinite integrals defining
Gδ,H are difficult to evaluate numerically due to the oscillatory behavior of J0, J1 for
increasing η. However, computationally more efficient integral expressions for Gδ have
been found by Llewellyn-Smith (1997).

The integral representation (2.1) for Gδ reduces on the east-west axis to

θ = 0 (east) : Gδ =
J0(

√
βtr)Y0(

√
βtr)

2
, (2.3a)

θ = ±π (west) : Gδ = −I0(
√
βtr)K0(

√
βtr)

π
, (2.3b)

with In, Kn the nth-order modified Bessel functions of the first and second kind, respec-
tively. For convenience we have dropped the ‘causality switch’ H(t). The limiting case
θ = ±π (2.3b) was first noted, apart from a missing minus sign, by Longuet-Higgins
(1965) but for θ = 0 he erred. The correct limit θ = 0 in (2.3a) was given by Llewellyn-
Smith (1997). Kamenkovich (1989) recognized with the integral representation (2.2) that
GH reduces on the east-west axis to

θ = 0 (east) : GH =
t

2

[

J0(
√

βtr)Y0(
√

βtr) + J1(
√

βtr)Y1(
√

βtr)
]

, (2.4a)

θ = ±π (west) : GH = − t

π

[

I0(
√

βtr)K0(
√

βtr) + I1(
√

βtr)K1(
√

βtr)
]

. (2.4b)

Simpler integral expressions

Gδ = − 1

4π

∫ +∞

−∞

J0

(

√

2βtr(cosh ν + cos θ)
)

dν, (2.5a)

GH = − t

2π

∫ +∞

−∞

J1

(

√

2βtr(cosh ν + cos θ)
)

√

2βtr(cosh ν + cos θ)
dν, (2.5b)

follow from (2.1) and (2.2) through substitution of η = sinh 1
2ν. Note that Gδ is a function

of the similarity variables βtx, βty or Gδ = F (βtr, θ) while GH is of the form tF (βtr, θ).

To proceed, observe how on the east side (θ = 0), integral expression (2.5a) for Gδ
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simplifies to

Gδ=− 1

4π

∫ +∞

−∞

J0

(

2
√

βtr cosh 1
2ν

)

dν = − 1

2π2

∫∫ +∞

−∞

sin
(

2
√

βtr cosh ν′ coshµ
)

dν′dµ,

where we use ν′ = 1
2ν, and the first of the integral expressions for the Bessel functions

J0(x) =
1

π

∫ +∞

−∞

sin(x coshµ)dµ, Y0(x) = − 1

π

∫ +∞

−∞

cos(x coshµ)dµ. (2.6a,b)

Setting m = µ+ ν′, n = µ− ν′, we rotate integration variables µ, ν′ over π/4, yielding

Gδ = − 1

4π2

∫ +∞

−∞

∫ +∞

−∞

sin
(

√

βtr[coshm+ coshn]
)

dmdn.

Using the trigonometric identity sin(a+ b) = sin a cos b+ sin b cos a, this integral is sepa-
rable and leads with the Bessel identities (2.6a,b) to (2.3a), i.e.

Gδ = − 1

4π2

(
∫ +∞

−∞

sin
(

√

βtrcoshm
)

dm

∫ +∞

−∞

cos
(

√

βtrcoshn
)

dn

+

∫ +∞

−∞

cos
(

√

βtrcoshm
)

dm

∫ +∞

−∞

sin
(

√

βtrcoshn
)

dn

)

=
J0(ρ)Y0(ρ)

2
,

(2.7)

with ρ ≡ √
βtr. A similar derivation can be used to obtain the established result (2.3b)

on the west-axis (θ = ±π).
Since GH describes the response to sustained forcing represented by the Heaviside

function H(t) and Gδ to impulsive forcing represented by δ(t), one expects Gδ = ∂GH/∂t.
The integral representations for Gδ and GH confirm this. For example, in (2.5b)

GH =
1

2π

∫ +∞

−∞

tJ ′
0(z)

z
dν, z ≡

√

2βtr(cosh ν + cos θ), (2.8)

where we used the fact that J1 = −J ′
0 (a prime indicates differentiation). Since ∂z/∂t =

z/2t, it follows that

∂GH

∂t
=

1

2π

[
∫

J ′
0(z)

z
dν +

∫

t

(

J ′′
0 (z)

z

z

2t
− J ′

0(z)

z2
z

2t

)

dν

]

=
1

2π

[
∫

1

2

(

J ′
0(z)

z
+ J ′′

0 (z)

)

dν

]

= − 1

4π

∫

J0(z)dν = (2.5a) = Gδ

(2.9)

because J0 solves the Bessel equation z2J ′′
0 + zJ ′

0 + z2J0 = 0.

Another relation exists between Gδ and GH: In (2.5b)

tJ1(z)

z
=

1

βr sin θ

∂J0(z)

∂θ
. (2.10)

Comparison with (2.5a) shows that

GH =
2

βr sin θ

∂ Gδ

∂θ
and

(

∂2

∂t∂θ
− 1

2βr sin θ

)

GH = 0 (2.11a,b)

because Gδ = ∂tGH. Time differentiation shows that therefore Gδ also satisfies (2.11b).
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3. Closed-form expressions for Gδ and GH

In view of the definition of z± in (1.5), the integral representation (2.5a) equals

Gδ =− 1

4π

∫ +∞

−∞

J0

(

√

z2+ + z2− + 2z+z− cosh ν

)

dν. (3.1)

This observation led us to the expression (1.3) for Gδ as follows. Dixon & Ferrar (1933)
considered products of modified Bessel functions of the second kind Kν,µ and showed
that such products can be reduced to a single integral involving Kν+µ, provided certain
conditions are met. For the purpose of this paper it suffices to point out that one of their
results implies that for real x, y > 0

K0(ix)K0(iy) =

∫ +∞

−∞

K0(iλ)dt
′, λ =

√

x2 + y2 + 2xy cosh 2t′ (3.2)

(Dixon & Ferrar (1933), formula 3.32). Connection formulas tell us further that

K0 (z) = − 1
2πiH

(2)
0 (−iz) , − 1

2π 6 ph z 6 π, (3.3)

with the Hankel function H
(2)
0 = J0− iY0 (see the NIST Handbook of Mathematical func-

tions, Olver et al. (2010), formula 10.27.8). Specifically this meansK0(ix) = − 1
2πiH

(2)
0 (x)

and likewise for y. Therefore with (3.2) it follows that
∫ +∞

−∞

[J0(λ) − iY0(λ)]dt
′ =

∫ +∞

−∞

H
(2)
0 (λ)dt′ = −πi

2
H

(2)
0 (x)H

(2)
0 (y)

= −π
2
[J0(x)Y0(y) + J0(y)Y0(x)] −

πi

2
[J0(x)J0(y)− Y0(x)Y0(y)]

(3.4)

(for the more general case involving H
(2)
ν (x)H

(2)
µ (y) see formula 17.4.2 (76) in Erdélyi

(1953) and for related results Magnus et al. (1966), page 93, which contains a typo-
graphical error though). Equating real parts in (3.4) leads to the product J0(x)Y0(y) +
J0(y)Y0(x) expressed as an integral over J0(λ). Comparison with the integral expression
(3.1) shows that the closed-form expression (1.3) would follow if we could simply sub-
stitute x = z+, y = z− in (3.4) after setting ν = 2t′ in (3.1). Thus we surmised that
Gδ given in (1.3) is the solution of (1.2a). This ‘educated guess’ proved to be correct by
direct verification (see below).
However, S.G. Llewellyn-Smith (University of California, San Diego) pointed out dur-

ing the revision process of this manuscript that the results of Dixon & Ferrar (1933)
in fact imply that (3.1) equals (1.3) when the principle of analytic continuation is in-
voked. Again tailored specifically to our needs here, Dixon & Ferrar (1933) state that for
complex variables Z, z with positive real parts (absolute phase < π/2)

K0(Z)K0(z) =

∫ +∞

−∞

K0(
√

Z2 + z2 + 2Zz cosh 2t′)dt′, |phZ, z| < π

2
. (3.5)

The Bessel functions are analytic when a branch cut is made on the negative real axis,
i.e. for C\(−∞, 0]. If we exclude the west-axis (θ = ±π), equation (3.5) is valid when
Z = z+, z = z− is substituted (for θ = π we have z± = ±i

√
βtr and for θ = −π

we have z± = ∓i
√
βtr according to (1.5)). Both variables lie in the open right-half

of the complex plane and if rotated anti-clockwise by an angle φ they become z′± =
eiφz±. For φ = π/2 the rotated z′± = iz± have been moved to the upper half of the
complex plane without crossing the negative real axis. Therefore the left-hand side of
(3.5) remains analytic. The argument of K0 in the integral becomes under this rotation
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Figure 2. The parabolic coordinate system {ζ, η} with ζ =
√
r + x, η =

√
r − x defined in

(3.8). The entire western axis x < 0, y = 0 coincides with ζ = 0, the eastern axis x > 0, y = 0
with η = 0. The origin ζ = η = 0 indicated by • is the forcing location as in figure 1.

simply eiφ
√

2βtr(cos θ + cosh 2t′). Thus, if the west-axis is excluded from consideration,
as φ is increased towards π/2 the argument never crosses the branch cut of K0 and the
integrand and the integral on the right-hand side of (3.5) remain analytic. By analytic
continuation we therefore find that

K0(iz+)K0(iz−) =

∫ +∞

−∞

K0

(

i
√

z2+ + z2− + 2z+z− cosh 2t′
)

dt′. (3.6)

The conditions for (3.3) to be valid are met and we can, just as shown above for real x, y,
equate the real parts on the left and right in (3.6). This establishes that the integral rep-
resentation (3.1) equals the closed-form expression (1.3) for Gδ. Despite this compelling
argument, we nonetheless verify the validity of (1.3) below and show how GH (1.4) was
derived.

3.1. Validation of Gδ

In order to verify that Gδ (1.3) is correct, it is expedient to write the complex conjugate
variables z± introduced in (1.5) as

z+ = az⋆, z− = az̄⋆, a =

√

βt

2
, z⋆ ≡ ζ + iη, z̄⋆ ≡ ζ − iη (3.7)

with parabolic coordinates

ζ =
√

r(1 + cos θ) =
√
r + x, η =

√

r(1 − cos θ) =
√
r − x. (3.8)

Lines of constant ζ are parabolas that open towards the west (x < 0) and constant
η parabolas that open towards the east (x > 0) as sketched in figure 2. The Laplace
operator in these coordinates is well-known (see Moon & Spencer (1961)) while ∂/∂x is
easily calculated with the chain rule. They are

∇2 =
1

ζ2 + η2

[

∂2

∂ζ2
+

∂2

∂η2

]

,
∂

∂x
=

1

2r

[

ζ
∂

∂ζ
− η

∂

∂η

]

. (3.9)
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But 2r = ζ2 + η2 and the Rossby wave operator becomes

L =
1

ζ2 + η2

{

∂

∂t

(

∂2

∂ζ2
+

∂2

∂η2

)

+ β

(

ζ
∂

∂ζ
− η

∂

∂η

)}

. (3.10)

With a few elementary manipulations one finds next that

L =
1

z⋆z̄⋆

{

4
∂

∂t

(

∂2

∂z⋆∂z̄⋆

)

+ β

(

z̄⋆
∂

∂z⋆
+ z⋆

∂

∂z̄⋆

)}

. (3.11)

With (3.11) it follows, after collecting terms, that

LJ0(z+)Y0(z−) =
β

z⋆z̄⋆
{J ′

0(z+) [z−Y
′′

0 (z−) + Y ′

0(z−) + z−Y0(z−)]

+Y ′

0(z−) [z+J
′′

0 (z+) + J ′

0(z+) + z+J0(z+)]} = 0

(3.12)

because J0, Y0 satisfy the Bessel equation

z2J ′′

0 + zJ ′

0 + z2J0 = 0. (3.13)

Clearly also LJ0(z−)Y0(z+) = 0 and away from z⋆z̄⋆ = 2r = 0 for t > 0 indeed LGδ = 0.
The δ(t)δ(x)δ(y) singularity in (1.2a) has to come from the term ∂t∇2Gδ. The δ(t) be-

havior must be associated with the time-derivative of H(t) which multiplies J0(z+)Y0(z−)+
J0(z−)Y0(z+) in (1.3). Replacing δ(x)δ(y) on the right-hand side of (1.2a) by δ(r)/(2πr),
for small r the Green’s function must therefore behave as Gδ ≈ H(t) ln r/2π. That this
is true is seen as follows: Since for small z

z → 0 : J0(z) ≈ 1, Y0(z) ≈ (2/π) ln z, (3.14)

near the origin

r ↓ 0 : Gδ ≈ H(t)

4

[

2

π
ln z− +

2

π
ln z+

]

=
H(t)

2π
lnβtr =

H(t)

2π
[ln r + lnβt] (3.15)

because, according to (1.5), z± =
√

βtre±iθ. The part that only depends on time t plays
no role in getting δ(t)δ(x)δ(y) from ∂t∇2G and therefore (1.3) has the correct behavior
near the origin. Finally, on the x-axis in the limit θ → 0 (east) we have z+ = z− =

√
βtr

and it is seen with (1.3) that for t > 0 (2.3a) is recovered. For θ → π (west) we have
z± = ±i

√
βtr and connection formulas are needed. They imply that J0(z±)→ I0(

√
βtr)

and that

θ → π : Y0(z+) → iI0(
√

βtr)− 2

π
K0(

√

βtr), Y0(z−) → −iI0(· · · )−
2

π
K0(· · · ) (3.16)

(see the NIST Handbook of Mathematical functions (Olver et al. (2010)), formulas 10.27.6
and 10.27.11). Substituting this in (1.3) we find (2.3b). The same result is found in the
limit θ = −π. This proves that Gδ is correct.

3.2. Derivation and validation of GH

The integral representations showed that GH can be obtained through differentiation of
Gδ according to (2.11a). With the {z⋆, z̄⋆} variables we find that (2.11a) becomes

GH = − 4

β(z2⋆ − z̄2⋆)

[

z⋆
∂

∂z⋆
− z̄⋆

∂

∂z̄⋆

]

Gδ. (3.17)

Substitution of Gδ = 1
4 [J0(az⋆)Y0(az̄⋆) + c.c.] results in the expression (1.4) for GH with

the definition of z± given in (3.7) and use of the fact that J ′
0 = −J1 and Y ′

0 = −Y1. Also
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the integral representations implied ∂tGH = Gδ. According to (3.17) this is true if

Gδ = − 2t

z2+ − z2−

[

z+
∂

∂z+
− z−

∂

∂z−

]

∂Gδ

∂t
, (3.18)

having restored z± on the right-hand side. We find, for example, that

∂J0(z+)Y0(z−)

∂t
= [z+J

′

0(z+)Y0(z−) + z−J0(z+)Y
′

0(z−)] /2t and
[

z+
∂

∂z+
− z−

∂

∂z−

]

∂J0(z+)Y0(z−)

∂t
= −z

2
+ − z2−
2t

J0(z+)Y0(z−)

after use of the Bessel equation (3.13). It quickly follows with (1.3) for Gδ that indeed
∂tGH = Gδ. Moreover, since we know LGδ = 0 for r 6= 0 and therefore ∂tLGH = 0, it
follows that LGH = 0 (LGH = f(x, y) 6= 0 can be ruled out).
The singularity at the origin has to come from ∂t∇2GH in (1.2b) and the factor H(t)

on the right-hand side must be due to a time-derivative of tH(t). Therefore for small r
the Green’s function must behave as GH ≈ tH(t) ln r/2π. That this is true follows with
(3.14) for J0, Y0 and the fact that

z → 0 : J1(z) ∼ z/2, Y1(z) ∼ −2/(πz) + (z/π) ln z. (3.19)

When put in (1.4), we find that for small r

r ↓ 0 : GH ≈ tH(t)

2π
[ln r + lnβt]. (3.20)

Again the part that only depends on t is irrelevant, and GH has the correct singularity.
Finally, it is easily verified with the Bessel equation (3.13) that ∂t(2.4a)=(2.3a). Also

one finds ∂t(2.4b)=(2.3b) through use of I ′0 = I1, K
′
0 = −K1 and the fact that I0(z)

satisfies z2I ′′
0 + zI ′

0− z2I0 = 0 and K0(z) too. Since we have just shown that everywhere
∂tGH = Gδ and Gδ given by (1.3) has the correct limiting behavior on the east-west axis,
our expression for GH (1.4) reduces there to (2.4a) and (2.4b). This has been verified
independently with a Taylor series expansion of GH about θ = 0 and θ = ±π.

4. Properties of the Green’s functions

In the integral expressions (2.1) and (2.5a) for Gδ and (2.2) and (2.5b) for GH, the
arguments of the integrands contain the similarity variable βtr. Our new expressions for
Gδ (1.3) and forGH (1.4) also contain this variable via the complex conjugate variables z±
defined in (1.5). If time t and distance r were dimensional, the combination βtr is a non-
dimensional variable. The mathematical problem has however already been formulated
with non-dimensional time t and r or {x, y} through scaling with some time scale T and
length scale L, i.e. in (1.2a,b) the variables are actually non-dimensional t̃ = t/T and
{x̃, ỹ} = {x/L, y/L} and non-dimensionally β̃ = β×TL. For convenience we have however
dropped the tildes. In the graphs below we shall plot the response against non-dimensional
{x, y} and time t scaled with arbitrary L and T but in the numerical evaluations we have
set β = 1.

4.1. Response to impulsive forcing: Gδ

Graphing the exact solution Gδ given in (1.3) is easy with available numerical packages
although some care is required on the western axis where θ = ±π. Due to ambiguity
as to how the Bessel functions behave as their arguments become purely imaginary
(z± = ±i

√
βtr), it is best to use a numerical grid that has no points exactly on the
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Figure 3. Contours of Gδ (1.3) at (a) non-dimensional time t = 0.25 and (b) t = 0.5. White
circle in panel (a) has a radius r = 50 and in (b) a radius r = 25. Because of self-similarity in
panel (b) at the double the time compared to panel (a), the pattern within the circle is exactly
the same. Black dot • at the center r = 0 indicates the source origin. White space thereabouts
indicates extreme negative values associated with the logarithmic singularity of Gδ (see text).

In panel (a) the black dashed line is the parabola 2aζ = π/2 with ζ =
√
x+ r and a =

√

βt/2.
Along this contour Gδ = 0. In panel (b) the white dashed parabolas are 2aζ = (n + 1)π with
n = 0, 1, 2.

western axis. Since spatially the response depends only on the similarity coordinates
βtx, βty or βtr and θ, for any t = t0 > 0 all information is contained in the response
at t0. But it is illuminating to graph the response as a function of time. As mentioned
in the introduction, very little effort is required to create a movie that vividly illustrates
the evolution.

Thus in figure 3 we chose non-dimensional time t = t0 = 0.25 (panel (a)) and t = 2t0 =
0.5 (panel (b)). In panel (a) we have drawn a circle with radius r0 = 50 and in panel
(b) with radius r = 1

2r0 = 25. Therefore in both panels the circles have tr = t0r0 and
the self-similarity is evident: in figure 3b the same pattern is seen within the circle as in
figure 3a but shrunk to half the scale. For increasing time more of the ‘banana’ shaped
regions appear to propagate from the east towards the source location indicated by ‘•’.
An ever larger number gets wrapped about the origin, with increasing curvature.

West of the source a wake-like region exists forever concentrated about the western
axis. In panel (a) the boundary of the wake is indicated by the dashed curve along which
Gδ = 0. Within this region, all streamlines indicate flow with the same sense of circulation
about the origin but elongated in the western direction. East of the source, contours
near the east-west axis are nearly north-south thus indicating predominantly north-south
motions with velocity v advecting planetary vorticity. In the white area in figure 3 near
the source location, the response exceeds some arbitrarily chosen (negative) amplitude
threshold. Veronis (1958) was already able to sketch these patterns by numerically solving
a partial differential equation similar to (2.11b) (see also Longuet-Higgins (1965)). Near
the source location (the white region in figure 3), according to (3.15) the singular behavior
persists.
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Figure 4. Graph showing the exact Gδ (1.3) on the east-west axis through the source and the
approximation Ga

δ (4.4a,b). According to (2.3a) to the east: Gδ = J0(ρ)Y0(ρ)/2 and to the west

according to (2.3b) Gδ = −I0(ρ)K0(ρ)/π with ρ =
√

βt|x|. For convenience we used β = 1.

With the known properties

z → ∞ : Jν(z) ∼
√

2/(πz) cos
(

z− 1
2νπ− 1

4π
)

, Yν(z) ∼
√

2/(πz) sin
(

z− 1
2νπ− 1

4π
)

, (4.1)

according to (1.3)

βtr →∞ : Gδ ∼ −cos(z+ + z−)

2π
√
z+z−

. (4.2)

With the definitions of z± in (3.7) and the parabolic coordinates {ζ, η} in (3.8):

βtr →∞ : Gδ ∼ − cos(2aζ)

2π
√

a2(ζ2 + η2)
= −cos(

√

2βt(x+ r))

2π
√
βtr

≡ Ga
δ . (4.3)

Lines of constant ζ =
√
x+ r are parabolas that open towards the west (x < 0) as

shown in figure 2. Some of these parabolas have been drawn in figure 3 as dashed curves.
Longuet-Higgins (1965) already predicted that lines of constant phase would be such
parabolas. The approximation Ga

δ in (4.3) was recently found by Webb et al. (2016), but
as the large-time behavior implied by an (inverse Laplace transform) integral represen-
tation of Gδ.

The approximation (4.3) predicts zeros for 2aζ = (n+ 1
2 )π (n = 0, 1, · · · ). The first zero

(n = 0) has 2aζ = π/2 which has been drawn in figure 3a as the dashed black parabola,
delineating the ‘wake’. The approximation predicts on the eastern side maxima/minima
for 2aζ = (n + 1)π. For n = 0, 1, 2 these are the three white dashed parabolas drawn in
figure 3b. It is seen that they form the ‘spine’ of the curved patterns.

The approximation reveals the salient behavior for large βtr that is hidden in the exact
but complex expression (1.3) for Gδ. For large βtr or βt|x| on the east-west axis

θ = 0 (east) : Ga
δ = −cos(2

√
βtr)

2π
√
βtr

, θ = ±π (west) : Ga
δ = − 1

2π
√
βtr

. (4.4a,b)

In figure 4 we compare the approximation on this axis with the known exact solution(s)
(2.3a,2.3b). This cross-section along the axis illustrates some of the features seen in
figure 3. In particular, the first zero crossing with 2aζ = 2

√
βtx = 1

2π on the eastern side
corresponds to the ‘wake’ defined by Gδ = 0 (the black parabola in figure 3a).
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Figure 5. Contours of GH at (a) non-dimensional time t = 0.5 and (b) t = 1.0. White circle in
panel (a) has a radius r = 50 and in (b) a radius r = 25. In panel (a) the black dashed line line

is the parabola 2aζ = π with ζ =
√
x+ r and a =

√

βt/2. Along this curve GH = 0. In panel
(b) the white dashed lines are for 2aζ = (n+ 3/2)π with n = 0, 1.
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Figure 6. Graph showing the exact GH (1.4) on the east-west axis through the source
and the approximation Ga

H (4.8a,b) at non-dimensional time t = 0.5. According to (2.4a)
to the east: GH = t[J0(ρ)Y0(ρ) + J1(ρ)Y1(ρ)]/2 and to the west according to (2.4b)

GH = −t[I0(ρ)K0(ρ) + I1(ρ)K1(ρ)]/π with argument ρ =
√

βt|x|.

4.2. Response to sustained forcing: GH

In figure 5 we show contours of the exact solution GH given in (1.4) for non-dimensional
times t = t0 = 0.5 (panel (a)) and t = 2t0 = 1. As in figure 3 for Gδ, we have drawn
in panel (a) a circle with radius r0 = 50 and in panel (b) with radius r = 1

2r0 = 25. In
both panels the circles have tr = t0r0 and spatial self-similarity is evident. The source
location is again indicated by ‘•’. Close to the source according to (3.20) with increasing
time the singularity grows in amplitude, if this can be said with regard to something that
has infinite amplitude. Within the white areas in figure 5, GH exceeds some (negative)
amplitude threshold associated with this singularity.

According to (4.1), for large arguments |z±| ≫ 1, the terms within square brackets in
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(1.4) become

z+[J1(z+)Y0(z−) + J0(z−)Y1(z+)] ∼ − 2

π

z+√
z+z−

sin(z+ + z−),

z−[J1(z−)Y0(z+) + J0(z+)Y1(z−)] ∼ − 2

π

z−√
z+z−

sin(z+ + z−).

(4.5)

Putting (4.5) in (1.4) yields

βtr → ∞ : GH ∼ − 1

π

t sin(z+ + z−)

(z+ + z−)
√
z+z−

(4.6)

and with (3.7), (3.8)

βtr → ∞ : GH ∼ − 1

π

sin(2aζ)

βζ
√

ζ2 + η2
= − sin(

√

2βt(x+ r))

πβ
√
x+ r

√
2r

≡ Ga
H. (4.7)

This agrees with the result of Kamenkovich (1989) who derived large time expansions of
GH via a consideration of the asymptotic properties of inverse Laplace transforms. There
is a noticeable difference between Gδ and GH: whereas according to (4.3) amplitudes of
Gδ decay with time as t−1/2, amplitudes of GH are constant (with the exception of the
west-axis; see below). Nonetheless Gδ = ∂GH/∂t and one easily verifies with (4.3) and
(4.7) that also Ga

δ = ∂Ga
H/∂t.

The approximation (4.7) predicts zeros for 2aζ = (n + 1)π (n = 0, 1, · · · ) and again
ζ =

√
x+ r and a =

√

βt/2. The first zero has 2aζ = π and the ‘wake’ defined by this
curve on which GH = 0 is the black dashed line in figure 5a. The approximation predicts
on the eastern side maxima/minima for 2aζ = (n+ 3

2 )π. The first two (n = 0, 1) are the
dashed parabolas drawn in figure 5b.
Comparison of figure 5 with figure 3 reveals a difference: in figure 5 the response to

the east of the forcing appears to contain fewer of the typical patterns. Why this is can
be illustrated with the far field approximation of GH given by (4.7), i.e. for large βtr on
the east-west axis:

θ = 0 (east) : Ga
H = − sin(2

√
βtr)

2πβr
, θ = ±π (west) : Ga

H = − 1

π

√

t

βr
. (4.8a,b)

In figure 6 we compare the approximation on the entire axis with the exact solution(s)
(2.4a,2.4b). This explains why in figure 5 there are fewer of the parabolically-shaped
regions visible east of the forcing: on the eastern axis for fixed time (4.4a) reveals that
Gδ ∝ 1/

√
r whereas (4.8a) indicates GH ∝ 1/r, i.e. GH decays more rapidly towards the

east than Gδ with distance r from the source location. The two prominent patterns east
of the source seen in figure 5a correspond to the first maximum and minimum in the
cross section shown in figure 6, i.e. 2aζ = 2

√
βtx = (n+ 3

2 )π and n = 0, 1. Finally, note
that (4.6) shows that amplitudes do not decay nor grow with time t except exactly on
the west-axis (ζ = 0) where

ζ ↓ 0 :
sin(2aζ)

ζ
→ 2a =

√

2βt (4.9)

and this singular limit leads to the unbounded growth of GH displayed in (4.8b).

4.3. Kinetic energy distributions

The approximation (4.3) suggests that at a fixed location with increasing time, the quasi-
wave field associated with Gδ disappears with 1/

√
t. Thus, nothing but the singularity
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(3.15) would remain. But a more relevant quantity is kinetic energy E. This is deter-
mined by gradients of the stream function ψ = Gδ and because with increasing time the
spatial scales decrease, gradients increase. This compensates for the overall decrease of
the amplitude of Gδ.

The kinetic energy associated with the Green’s function is E = 1
2∇G·∇G. The easiest

way to calculate E is to use the fact that in parabolic coordinates

∇ =
1

√

ζ2 + η2

[

ζ̂
∂

∂ζ
+ η̂

∂

∂η

]

(4.10)

with {ζ̂, η̂} the orthogonal unit vectors associated with {ζ, η} (see Morse & Feshbach
(1953), Moon & Spencer (1961)). Without going into any further details, we find

E =
1

2(ζ2 + η2)

[

(

∂G

∂ζ

)2

+

(

∂G

∂η

)2
]

=

(

1

4

)2
βt

ζ2 + η2
|J0(z+)Y1(z−) + J1(z−)Y0(z+)|2 = Eδ

(4.11)

when G = Gδ given by (1.3) is substituted in (4.11). This may give the impression that
the kinetic energy grows with time t. But, for large βtr it follows with (4.1) that

βtr → ∞ : J0(z+)Y1(z−) + J1(z−)Y0(z+) ∼ − 2

π

sin(z+ + z−)√
z+z−

. (4.12)

Squaring (4.12) and substitution in (4.11) yields for large βtr the approximation

Eδ ∼ 1

2

sin2(2aζ)

π2(ζ2 + η2)2
=

1

2

sin2(
√

2βt(x+ r))

(2πr)2
≡ Ea

δ . (4.13)

In figure 7 we show contours of kinetic energy Eδ (4.11). The patterns are similar to that
of Gδ shown in figure 3. The one-term approximation (4.13) predicts maximal energy
along parabolas 2aζ = (n + 1

2 )π with n = 0, 1, · · · (ζ =
√
x+ r, a =

√

βt/2). In figure
7 the innermost dashed parabola is for n = 0 and coincides with the wake boundary
shown in figure 3a. This is a location of maximal kinetic energy. In figure 7 the second
parabola (n = 1) is seen to match the next pattern of maximal energy well. In figure 7
we have drawn a circle with radius r = 40. Going around this circle of radius r = 40
the peaks of energy are shown in figure 8 as well as for a circle of smaller radius r = 30.
The approximation (4.13), based on the assumption βtr ≫ 1, shows that at large r all
maxima will have the same amplitude, as observed in figure 8. In polar coordinates the
approximation

Ea
δ =

1

2

sin2(2aζ)

(2πr)2
, 2aζ =

√

2βtr
√
1 + cos θ (4.14)

shows that the energy peaks decay with distance 1/r2 from the source and the peak
positions in terms of the polar angle θ are determined by 2βtr(1 + cos θ) = (n+ 1

2 )
2π2.

At fixed radius r with increasing time t more peaks appear as continuously more of the
parabolic patterns seen in figure 3 coming from the eastern side get wrapped about the
forcing origin.
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Figure 7. Contours of kinetic energy Eδ given by (4.11) at t = 0.5. The innermost dashed

parabola is defined by 2aζ = (n + 1/2)π with n = 0 and ζ =
√
x+ r, a =

√

βt/2. This
corresponds to the ‘wake’ boundary shown in figure 3a along which Gδ = 0. The second parabola
is for n = 1. Energy along the circle with radius r = 40 is shown in figure 8.
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Figure 8. Kinetic energy Eδ (4.11) and the approximation Ea

δ (4.13) along circles of radius
r = 30 and r = 40 at t = 0.5. The circle r = 40 is shown in figure 7.

The energy associated with GH can be calculated exactly too and we find

∂GH

∂η
=

1

η

{

t
(

Gδ +
1
4 [J1(z+)Y1(z−) + c.c.]

)

−GH

}

, (4.15a)

∂GH

∂ζ
=

1

ζ

{

t
(

Gδ − 1
4 [J1(z+)Y1(z−) + c.c.]

)

−GH

}

(4.15b)

with Gδ as in (1.3) and GH again given by (1.4). Division by η in (4.15a) may be cause
of concern at first sight, but η = 0 corresponds to the east-axis and there according to
(2.3a) and (2.4a):

η = 0 (east) : Gδ = 1
2J0(ρ)Y0(ρ), GH = 1

2 t [J0(ρ)Y0(ρ) + J1(ρ)Y1(ρ)] ,

and 1
4 [J1(z+)Y1(z−) + c.c.] = 1

2J1(ρ)Y1(ρ), ρ =
√

βtr
(4.16)
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Figure 9. Contours of energy EH according to (4.18) at t = 1. The innermost dashed parabola

is for 2aζ =
√
2 with ζ =

√
x+ r, a =

√

βt/2. This lies inside to the ‘wake’ boundary shown in
figure 5a along which GH = 0 and for which 2aζ = π. Energy along the circle with radius r = 30
is shown in figure 10.

so that in the limit η = 0 the numerator of (4.15a) vanishes and an expansion in small η
can be shown to give a finite answer for ∂GH/∂η. Also the limit ζ = 0 appears dangerous
in (4.15b) but again a finite answer is obtained by taking into account that there

ζ = 0 (west) : Gδ = −I0(ρ)K0(ρ)

π
, GH = − t

π
[I0(ρ)K0(ρ) + I1(ρ)K1(ρ)] ,

1
4 [J1(z+)Y1(z−) + c.c.] =

I1(ρ)K1(ρ)

π
, ρ =

√

βtr.

(4.17)

Therefore in the limit ζ = 0 the numerator of (4.15b) vanishes and ∂GH/∂ζ is well-
defined. Contours of

EH =
1

2(ζ2 + η2)

[

(

∂GH

∂ζ

)2

+

(

∂GH

∂η

)2
]

(4.18)

are shown in figure 9. The energy along the circle with radius r = 30 drawn in figure 9
is shown in figure 10.
Whereas it is easy to find the approximation (4.13) for the kinetic energy Eδ by

employing the asymptotic properties of Jν , Yν according to (4.1), things become quite
difficult if the same route is taken here for EH: it requires the rarely used higher-order
corrections to (4.1). Instead we calculate the approximation by differentiation of (4.7).
This yields in polar coordinates

EH ∼ 1

2

1

(2πr)2

(

t

βr

)

1

1 + cos θ

[

2 cos2(2aζ)− 2(3 + cos θ) cos(2aζ) sin(2aζ)

(2aζ)

+
(5 + 3 cos θ) sin2(2aζ)

(2aζ)2

]

≡ Ea
H, 2aζ =

√

2βt
√

r(1 + cos θ).

(4.19)

For large time the first term within square brackets, cos2(2aζ), dominates but the next
two terms cannot be discarded: they are both required to negate the singular behavior
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Figure 10. Contours of kinetic energy EH (4.18) at t = 1 and the approximation Ea

H (4.19)
along circles of radius r = 25 and r = 30 at t = 1. The circle r = 30 is shown in figure 9.

of the prefactor 1/r(1 + cos θ) = 1/ζ2. In other words, in the limit θ = ±π or ζ = 0
(the western axis) all three terms are required. In that limit sin(2aζ)/(2aζ) → 1 and the
bracketed term in (4.19) evaluates to

[2− 2(3− 1) + (5− 3)] = 0

and expansions of the second and third term in powers of small ζ always yield a finite
result. In figure 10 we compare the appxomation (4.19) with the exact energy along the
circle of radius r = 30 also shown in figure 9 and at a smaller radius r = 25. We simply
chose t = 1 which was also used for figure 5b. Comparison of figures (9) and (10) with
the corresponding figures (7) and (8) for Gδ reveals that for GH the kinetic energy is
dominated by two plumes on the western side of the forcing. Another differences is that
(4.19) shows that away from the western axis, EH decays with distance from the forcing
with 1/r3 while linearly growing in time while (4.13) shows that Eδ decays with 1/r2

with amplitudes that are independent of time.
Finally, as in figure 7 for Eδ we have drawn in figure 9 two parabolas ζ = constant that

fit the maximal energy patterns. For Gδ in figure 7 the innermost parabola coincided with
the wake boundary Gδ = 0 and 2aζ = 1

2π: this is the first maximum of the leading-order

term sin2(2aζ) in (4.14). But for EH the first maximum is not determined by cos2(2aζ)
with maxima at 2aζ = (n + 1)π but by the combination of all three terms within the
square brackets in (4.19). We find that the parabolic axis through the dominant energy
pattern in figure 9 lies well within the wake region: in figure 5a the wake boundary
(dashed parabola) is defined by 2aζ = π but in figure 9 the axis was found to coincide
with 2aζ =

√
2 < π and the second parabola with 2aζ = 4 < 2π. At later times (not

shown) the tendency is that the axis of the dominant energy ‘plumes’ of EH moves further
towards the west-axis, i.e. further into the interior of the wake region.

5. Discussion

In this paper we have shown that two-dimensional Green’s functions Gδ and GH given
by (1.3) and (1.4), respectively, solve the forced Rossby wave equation (1.2). Previously
only known via integral representations, these new compact expressions provide a com-
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plete description of the response. They reduce on the east-west axis to the long-known
exact expressions discussed in §2, i.e. (2.3a, 2.3b) for Gδ and (2.4a, 2.4b) for GH and far
from the forcing location to the asymptotic forms (4.3) and (4.7), respectively. The latter
were also known via transform methods but here they arise directly from the properties
of the Bessel functions Jn(z), Yn(z) for large (complex) arguments z.
Exact explicit expressions for Green’s functions were known in one-dimensional (Cahn

(1945); Rossby (1945)) and three-dimensional (Dickinson (1969a,b)) settings only. Usu-
ally solutions of the forced problem are sought through transform methods (see Veronis
(1958); Longuet-Higgins (1965); Kamenkovich (1989); Llewellyn-Smith (1997) but also
the recent studies by McKenzie (2014); Webb et al. (2016)). In two-dimensional problems
this has led to integral representations like those mentioned in §2.
A crucial development has been that the integral representation for Gδ can be written

as (3.1). From this the closed-form expression (1.3) for Gδ followed via the work of Dixon
& Ferrar (1933) as discussed in §3. The validity of this solution has been verified in §3.1
and in §3.2 we derived and verified the expression (1.4) forGH. This becomes very efficient
through the introduction of the complex conjugate variables z⋆ = ζ + iη, z̄⋆ = ζ − iη
defined in (3.7). In particular, the Rossby wave operator then assumes the symmetric
form given in (3.11). That contour patterns of Gδ and GH shown in §4 in figure 3
and figure 5 coincide largely with the parabolas ζ =

√
r + x = constant is perhaps not

surprising since if on the right-hand side of (1.2a) instead of δ(t) periodic forcing exp(iωt)
is assumed, lines of constant phase are also ζ = constant (see Rhines (2003)).
The parabolic coordinates {ζ, η} are of wider interest in the context of non-divergent

Rossby waves. First note that the form of L in (3.10) suggests that there is no real
distinction between ζ and η whereas in the Cartesian {x, y} formulation longitude x
introduces an ‘asymmetry’ not obvious in (3.10) except for the sign-difference between
the ζ and η terms multiplying β (the same spatial part of this Rossby wave operator for
a steady, frictional version of the vorticity equation was previously considered in ocean
circulation context in Maas (1989); Zimmerman & Maas (1989) and Boyd & Sanjaya
(2014)). Let us further note that in as much that the Green’s functions are stream
functions ψ with the associated velocity components u = −∂yψ, v = ∂xψ, equation
(2.11b) is simply

∂t(xu + yv) + 1
2βy ψ = 0 with xu+ vy = u · r, u = ui+ vj, r = xi+ yj (5.1)

and {i, j} the customary unit vectors associated with {x, y}. The projection of the velocity
vector u on the position vector r is u · r = rur with ur the radial velocity component in
cylinder coordinates (see figure 1). In other words, in the wave field associated with the
Green’s functions the radial velocity component evolves according to ∂trur +

1
2βyψ = 0.

It is not clear to us whether this has a physical meaning. However, leaving out a common
factor 1

2 , in parabolic coordinates (5.1) becomes

∂

∂t

(

η
∂

∂ζ
− ζ

∂

∂η

)

ψ + βζηψ = 0. (5.2)

Further, differentiation of (5.1) with respect to x and multiplication of the Rossby wave
equation by y allows for the elimination of the β-terms which results in

∂t
{

y∇2 + 2∂x (x∂y − y∂x)
}

ψ = 0 (5.3)

but in the parabolic coordinates (5.3) assumes the form

∂

∂t

{

∂2

∂ζ∂η
+

η

ζ2 + η2
∂

∂ζ
+

ζ

ζ2 + η2
∂

∂η

}

ψ = 0. (5.4)
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Remarkably, integrating (5.4) in time shows that the Green’s functions are determined
by a second-order partial differential equation, which, moreover, is entirely symmetric in
parabolic coordinates ζ, η. Additionally, the form of the Rossby wave operator L (3.10) in
these coordinates suggests that the parabolic coordinates are rather ‘natural’ coordinates
for non-divergent Rossby waves.
This raises the question why the response in the forced problem considered here is dom-

inated by the westward parabolas ζ =
√
r + x while the opposite parabola η =

√
r − x

only plays a role in providing overall amplitude attenuation via inverse (fractional) powers
of r = 1

2 (ζ
2 + η2). This can be understood with the analyses of Longuet-Higgins (1965)

and the more recent work by McKenzie (2014), i.e. via considerations of the disper-
sion relation for monochromatic waves, the group velocity and the method of stationary
phase. But a cursory examination of the properties of L in parabolic coordinates, i.e.
(3.10), indicates that free, parabolically-shaped Rossby waves following lines of constant
η =

√
r − x instead of ζ =

√
r + x do also exist at any given frequency. The repercussions

of this observation are left for a future study.
A few final remarks are in order: The singular behavior found for Gδ in (3.15) and GH

in (3.20) at the forcing location persists. For GH this is not surprising since the forcing
is maintained but for Gδ this is counterintuitive since one can interpret Gδ for some
t = t0 > 0 as a given initial stream function ψ0(x, y) = ψ(x, y, t0). This initial condition
for t = t0 can be developed in plane Rossby waves with the spectrum A0(k, l) and for
t > t0 the field would evolve as

ψ(x, y, t) =

∫∫

A0(k, l)e
i(ωt−kx−ly)dkdl

with ω satisfying the well-known dispersion relation

ω = − βk

k2 + l2
.

Without explicitly knowing the spectrum A0(k, l), one would think that dispersion leads
to the disappearance of the singularity. But it does not. The ‘shrinking’ of the patterns
via the similarity variable βtr towards the origin is also baffling although one might see
this as a confirmation of the long-known properties of the Rossby waves: short waves
(small spatial scales) have small group velocities (Pedlosky (1987)).
The Rossby wave equation describes the time-evolution of vorticity q which for the

Green’s functions is q = ∇2G. This can be calculated quickly. For example, with the
variables {z⋆, z̄⋆}, introduced in (3.7),

∇2 =
4

z⋆z̄⋆

∂2

∂z⋆∂z̄⋆
and qδ ≡ ∇2Gδ =

βt

4r
[J1(z+)Y1(z−) + J1(z−)Y1(z+)] (5.5)

after substitution of (1.3) and using J ′
0 = −J1, Y ′

0 = −Y1. For large arguments, i.e.
far from the forcing, apart from a constant prefactor, qδ behaves as cos(2aζ)/r3/2. The
asymptotic energy distribution given in (4.14) behaves as sin2(2aζ)/r2 and we thought
that perhaps the ‘empty’ spaces seen in the energy distribution in figure 7 might be filled
by r×Eδ with enstrophy Eδ = 1

2q
2
δ so that a conservation law of the form ∂t(Eδ+rEδ) = 0

would follow. This was nearly so, but not exactly. Thus we have no good understanding
yet of the Eδ pattern seen in figure 7 nor of the energy distribution EH in figure 9. A
proper energy flux formulation is lacking in terms of recognizable physical quantities (see
also Rhines (1975)). At best we can draw attention to the salient differences between Eδ

and EH: whereas figures 7 and 8 show that at any distance and given time t peaks of
energy Eδ have equal amplitude and occur both west and east of the forcing, figures 9
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and 10 show that the energy EH associated with the sustained forcing is predominantly
found west of the forcing. The peak amplitudes of Eδ do not vary with time t while with
distance r from the source Eδ ∝ 1/r2 (see (4.14)) but EH grows with time t and decays
more rapidly, i.e. EH ∝ 1/r3 (see (4.19)). The temporal behavior is not surprising in that
continued forcing leads to growth in energy but the spatially more confined nature of EH

as compared to that of Eδ is surprising.

In as much in that the barotropic, non-divergent Rossby wave is a small but funda-
mental element in the realm of theoretical geophysical fluid dynamics, this study may
stimulate interest beyond the current study to search for simple closed-form solutions
of forced divergent Rossby waves (waves with finite Rossby deformation radius). This
introduces finite group velocity for very long waves and more can then perhaps be said
about the evolution of energy distributions and may help recognize ‘where’ wave energy
goes. In view of our results there is reason to be optimistic that the complicated integral
representation of Veronis (1958) for divergent Rossby waves and the elegant result of
Webb et al. (2016) can be reduced to simpler expressions.

Another possible strategy is to consider a ‘switch-on/switch-off’ source, that is, the
response Gδ which Veronis (1958) called a ‘tweak’, followed by an ‘anti-tweak’. This will
eliminate the singularity at the forcing location and energy will subsequently be finite
everywhere. The simplicity of our expression for Gδ (1.3) allows for quick visualization of
such a scenario and further mathematical analysis but this too is left for future research.
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insightful comments of the manuscript.
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Erdélyi, A., ed. 1953 Higher transcendental functions, 3 , vol. 2. McGraw-Hill.

Hough, S. S. 1898 On the application of harmonic analysis to the dynamical theory of the
tides. - part ii. on the general integration of laplaces dynamical equations. Phil. Trans (A)
191, 139–185.

Kamenkovich, V.M. 1989 Development of rossby waves generated by localized effects. Oceanol-
ogy 29 (1), 1–11.

Llewellyn-Smith, S.G. 1997 The motion of a non-isolated vortex on the beta-plane. J. Fluid
Mech. 346, 149–179.

Longuet-Higgins, M.S. 1965 The response of a stratified ocean to stationary or moving wind-
systems. Deep-Sea Research 12, 923–973.

Maas, Leo RM 1989 A closed form green function describing diffusion in a strained flow field.
SIAM Journal on Applied Mathematics 49 (5), 1359–1373.

Magnus, W., Oberhettinger, F. & Soni, R.P. 1966 Formulas and theorems for the special
functions of mathematical physics, 3rd edn. Springer-Verlag.



20 R.C. Kloosterziel and L.R.M. Maas

Margules, M. 1893 Luftbewegungen in einer rotierenden sphäroidschale (ii. teil). Sitz. der
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