Green's functions for Rossby waves

R.C. Kloosterziel ${ }^{1}$ and L.R.M. Maas ${ }^{2,3}$
${ }^{1}$ School of Ocean \& Earth Science \& Technology, University of Hawaii, Honolulu, HI 96822, USA
${ }^{2}$ Institute for Marine \& Atmospheric Research, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands
${ }^{3}$ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790AB Texel, The Netherlands

(Received ?; revised ?; accepted ?. - To be entered by editorial office)
Compact solutions are presented for planetary, non-divergent, barotropic Rossby waves generated by (a) an impulsive point-source and (b) a sustained point-source of curl of wind-stress. Previously, only cumbersome integral expressions were known, rendering them practically useless. Our simple expressions allow for immediate numerical visualization/animation and further mathematical analysis.

1. Introduction

Non-divergent waves in a two-dimensional fluid layer on a rotating sphere, restored solely by Coriolis forces due to vorticity conservation, are present as second-class waves in Laplace's equations and were studied by Margules (1893) and Hough (1898). Their nature was clarified when Rossby \& collaborators (1939) derived a simplified version of the barotropic vorticity equation on a mid-latitude tangent plane (β-plane). They eliminated the first-class, gravity waves by assuming a rigid lid. Thus they considered non-divergent flow in a fluid layer in which vorticity changes in time due to advection of variations in background, planetary vorticity. Linear, free-wave solutions of this equation display strictly westward phase propagation, but west or eastward energy propagation for long and short waves, respectively. In recognition of the value of this clarification, these waves are nowadays called Rossby waves. They are forced by curl of the wind stress and the barotropic, non-divergent linear motions are governed by

$$
\begin{equation*}
\partial_{t} q+\beta v=\operatorname{curl} \boldsymbol{\tau} \tag{1.1}
\end{equation*}
$$

The relative vorticity $q=\partial_{x} v-\partial_{y} u$ is created by south-north advection of planetary vorticity and by $\boldsymbol{\tau}=\left\{\tau_{x}, \tau_{y}\right\}$ the wind-stress vector (see e.g. Veronis (1958); Pedlosky (1987)). As usual, t is time, x longitude, y latitude and βv is the advection of planetary vorticity by the latitudinal (south-north) velocity component v.

Introducing a streamfunction ψ, so that the velocity components are $u=-\partial_{y} \psi, v=$ $\partial_{x} \psi$ and $q=\nabla^{2} \psi$, equation (1.1) becomes $\partial_{t} \nabla^{2} \psi+\beta \partial_{x} \psi=\operatorname{curl} \boldsymbol{\tau}$ with $\nabla^{2}=\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$. In this study, the Green's function G_{δ} for an 'impulsive point source' and G_{H} for a 'switch-on point source' are defined as solutions of

$$
\begin{equation*}
\text { (a) } \mathcal{L} G_{\delta}=\delta(t) \delta(x) \delta(y), \quad \text { (b) } \quad \mathcal{L} G_{\mathrm{H}}=\mathrm{H}(t) \delta(x) \delta(y), \quad \mathcal{L}=\partial_{t} \nabla^{2}+\beta \partial_{x} \tag{1.2}
\end{equation*}
$$

\mathcal{L} is the Rossby wave operator, δ the usual Dirac delta-function and H the Heaviside unit stepfunction and by definition $\delta(t) \equiv \mathrm{dH}(t) / \mathrm{d} t$. In this paper we shall show that

$$
\begin{equation*}
G_{\delta}=\frac{\mathrm{H}(t)}{4}\left[J_{0}\left(z_{+}\right) Y_{0}\left(z_{-}\right)+J_{0}\left(z_{-}\right) Y_{0}\left(z_{+}\right)\right] \tag{1.3}
\end{equation*}
$$

Figure 1. The Cartesian $\{x, y\}$ and cylindrical $\{r, \theta\}$ coordinate systems. The forcing location for G_{δ} and G_{H} at $r=0$ is indicated by \bullet. 'East' is defined by $\theta=0$, 'west' by $\theta= \pm \pi$, 'north' by $\theta=\pi / 2, r$ is the distance from the source and $x=r \cos \theta, y=r \sin \theta$.

$$
\begin{align*}
G_{\mathrm{H}}= & \frac{t \mathrm{H}(t)}{2\left(z_{+}^{2}-z_{-}^{2}\right)}\left[z_{+} J_{1}\left(z_{+}\right) Y_{0}\left(z_{-}\right)-z_{-} J_{1}\left(z_{-}\right) Y_{0}\left(z_{+}\right)\right. \tag{1.4}\\
& \left.+z_{+} J_{0}\left(z_{-}\right) Y_{1}\left(z_{+}\right)-z_{-} J_{0}\left(z_{+}\right) Y_{1}\left(z_{-}\right)\right]
\end{align*}
$$

In (1.3) and (1.4) J_{n}, Y_{n} are n th-order Bessel functions of the first and second kind, respectively, with complex conjugate arguments

$$
\begin{equation*}
z_{+}=\sqrt{\beta \operatorname{tr}} \mathrm{e}^{+\mathrm{i} \theta / 2}, \quad z_{-}=\sqrt{\beta t r} \mathrm{e}^{-\mathrm{i} \theta / 2} \quad \text { or } \quad z_{ \pm}=\sqrt{\beta t(x \pm \mathrm{i} y)} . \tag{1.5}
\end{equation*}
$$

The usual cylindrical coordinate system $\{r, \theta\}$ is employed with the origin at the forcing location (see figure 1). The prefactor $\mathrm{H}(t)$ in (1.3) and (1.4) enforces 'causality', i.e. $G_{\delta, \mathrm{H}}=0$ for $t<0$. Since efficient algorithms for Bessel functions exist, the compact expressions in (1.3) and (1.4) allow for a quick evaluation: with a few lines of code in little time a movie can be created visualizing the temporal and spatial evolutions.

Typically in finding Green's functions and such as solutions of linear partial differential equations like (1.2), well-established theory for Laplace and/or Fourier-transforms is used in combination with theory of differential equations. Various integral representations for G_{δ} and G_{H} that have been derived in such a manner are briefly reviewed in $\S 2$. They also reveal a relation between G_{δ} and G_{H} : not only is $\partial_{t} G_{\mathrm{H}}=G_{\delta}$, as expected, but once G_{δ} is known G_{H} follows by differentiation of G_{δ} with respect to the polar angle θ. Precise numerical evaluation of the integral representation is cumbersome, but for locations exactly east $(\theta=0)$ and west $(\theta= \pm \pi)$ of the source they can be evaluated exactly. Our new expressions for G_{δ} and G_{H} provide a complete 'picture' at any angle θ with the east-west axis.

The compact formula (1.3) for G_{δ} was discovered by recognizing that a particular integral representation of G_{δ} is essentially an integral of the kind studied by Dixon \& Ferrar (1933). Differentiation of (1.3) then quickly yielded G_{H} given by (1.4). This is discussed in $\S 3$ where, for completeness' sake, we also show that the Green's functions given by (1.3) and (1.4) indeed solve (1.2). In $\S 4$ we provide illustrative graphs of G_{δ} and G_{H} and derive simple approximations which presume large arguments $\left|z_{ \pm}\right|$or $\sqrt{\beta t r} \gg 1$. Also in $\S 4$ the associated wave-energy density distributions are considered. In $\S 5$ we discuss the ramifications of this study and in particular we draw attention to results that indicate that parabolic coordinates $\zeta=\sqrt{r+x}, \eta=\sqrt{r-x}$ appear to be a natural choice when studying non-divergent Rossby waves.

2. Integral representations and relations between G_{δ} and G_{H}

Veronis (1958) showed that

$$
\begin{equation*}
G_{\delta}=-\frac{\mathrm{H}(t)}{\pi} \int_{0}^{\infty} \frac{J_{0}\left(2 \sqrt{\beta \operatorname{tr}\left(\eta^{2}+\cos ^{2} \frac{1}{2} \theta\right)}\right)}{\sqrt{\eta^{2}+1}} \mathrm{~d} \eta, \tag{2.1}
\end{equation*}
$$

correcting for a typographical error. He called the point-size burst of wind-stress-curl a 'tweak' and derived (2.1) through the use of a Laplace transform in time of (1.2a) which reduced the problem to solving a second-order partial differential equation (in variables $x, y)$. With the solution at hand, (2.1) followed from the inverse Laplace transform. Longuet-Higgins (1965) also found (2.1), but through a triple Fourier-transform. Much later, Kamenkovich (1989) established that

$$
\begin{equation*}
G_{\mathrm{H}}=-\frac{\mathrm{H}(t)}{\pi} \sqrt{\frac{t}{\beta r}} \int_{0}^{\infty} \frac{J_{1}\left(2 \sqrt{\beta \operatorname{tr}\left(\eta^{2}+\cos ^{2} \frac{1}{2} \theta\right)}\right)}{\sqrt{\eta^{2}+1} \sqrt{\eta^{2}+\cos ^{2} \frac{1}{2} \theta}} \mathrm{~d} \eta, \tag{2.2}
\end{equation*}
$$

using a Laplace transform of (1.2b) with respect to time. Both infinite integrals defining $G_{\delta, \mathrm{H}}$ are difficult to evaluate numerically due to the oscillatory behavior of J_{0}, J_{1} for increasing η. However, computationally more efficient integral expressions for G_{δ} have been found by Llewellyn-Smith (1997).

The integral representation (2.1) for G_{δ} reduces on the east-west axis to

$$
\begin{array}{ll}
\theta=0 \text { (east) }: & G_{\delta}=\frac{J_{0}(\sqrt{\beta t r}) Y_{0}(\sqrt{\beta t r})}{2}, \\
\theta= \pm \pi(\text { west }): & G_{\delta}=-\frac{I_{0}(\sqrt{\beta t r}) K_{0}(\sqrt{\beta t r})}{\pi}, \tag{2.3b}
\end{array}
$$

with I_{n}, K_{n} the n th-order modified Bessel functions of the first and second kind, respectively. For convenience we have dropped the 'causality switch' $\mathrm{H}(t)$. The limiting case $\theta= \pm \pi$ (2.3b) was first noted, apart from a missing minus sign, by Longuet-Higgins (1965) but for $\theta=0$ he erred. The correct limit $\theta=0$ in (2.3a) was given by LlewellynSmith (1997). Kamenkovich (1989) recognized with the integral representation (2.2) that G_{H} reduces on the east-west axis to

$$
\begin{array}{ll}
\theta=0 \text { (east) }: & G_{\mathrm{H}}=\frac{t}{2}\left[J_{0}(\sqrt{\beta t r}) Y_{0}(\sqrt{\beta t r})+J_{1}(\sqrt{\beta t r}) Y_{1}(\sqrt{\beta t r})\right], \\
\theta= \pm \pi \text { (west) }: & G_{\mathrm{H}}=-\frac{t}{\pi}\left[I_{0}(\sqrt{\beta t r}) K_{0}(\sqrt{\beta t r})+I_{1}(\sqrt{\beta t r}) K_{1}(\sqrt{\beta t r})\right] . \tag{2.4b}
\end{array}
$$

Simpler integral expressions

$$
\begin{align*}
G_{\delta} & \left.=-\frac{1}{4 \pi} \int_{-\infty}^{+\infty} J_{0}(\sqrt{2 \beta \operatorname{tr}(\cosh \nu+\cos \theta})\right) \mathrm{d} \nu, \tag{2.5a}\\
G_{\mathrm{H}} & =-\frac{t}{2 \pi} \int_{-\infty}^{+\infty} \frac{J_{1}(\sqrt{2 \beta \operatorname{tr}(\cosh \nu+\cos \theta})}{\sqrt{2 \beta \operatorname{tr}(\cosh \nu+\cos \theta)}} \mathrm{d} \nu, \tag{2.5b}
\end{align*}
$$

follow from (2.1) and (2.2) through substitution of $\eta=\sinh \frac{1}{2} \nu$. Note that G_{δ} is a function of the similarity variables $\beta t x, \beta t y$ or $G_{\delta}=F(\beta t r, \theta)$ while G_{H} is of the form $t F(\beta t r, \theta)$.

To proceed, observe how on the east side $(\theta=0)$, integral expression (2.5a) for G_{δ}
simplifies to

$$
G_{\delta}=-\frac{1}{4 \pi} \int_{-\infty}^{+\infty} J_{0}\left(2 \sqrt{\beta \operatorname{tr}} \cosh \frac{1}{2} \nu\right) \mathrm{d} \nu=-\frac{1}{2 \pi^{2}} \iint_{-\infty}^{+\infty} \sin \left(2 \sqrt{\beta \operatorname{tr}} \cosh \nu^{\prime} \cosh \mu\right) \mathrm{d} \nu^{\prime} \mathrm{d} \mu
$$

where we use $\nu^{\prime}=\frac{1}{2} \nu$, and the first of the integral expressions for the Bessel functions

$$
\begin{equation*}
J_{0}(x)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \sin (x \cosh \mu) \mathrm{d} \mu, \quad Y_{0}(x)=-\frac{1}{\pi} \int_{-\infty}^{+\infty} \cos (x \cosh \mu) \mathrm{d} \mu \tag{2.6a,b}
\end{equation*}
$$

Setting $m=\mu+\nu^{\prime}, n=\mu-\nu^{\prime}$, we rotate integration variables μ, ν^{\prime} over $\pi / 4$, yielding

$$
G_{\delta}=-\frac{1}{4 \pi^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \sin (\sqrt{\beta \operatorname{tr}}[\cosh m+\cosh n]) \mathrm{d} m \mathrm{~d} n
$$

Using the trigonometric identity $\sin (a+b)=\sin a \cos b+\sin b \cos a$, this integral is separable and leads with the Bessel identities $(2.6 a, b)$ to $(2.3 a)$, i.e.

$$
\begin{align*}
G_{\delta} & =-\frac{1}{4 \pi^{2}}\left(\int_{-\infty}^{+\infty} \sin (\sqrt{\beta \operatorname{tr}} \cosh m) \mathrm{d} m \int_{-\infty}^{+\infty} \cos (\sqrt{\beta \operatorname{tr}} \cosh n) \mathrm{d} n\right. \\
& \left.+\int_{-\infty}^{+\infty} \cos (\sqrt{\beta \operatorname{tr}} \cosh m) \mathrm{d} m \int_{-\infty}^{+\infty} \sin (\sqrt{\beta \operatorname{tr}} \cosh n) \mathrm{d} n\right)=\frac{J_{0}(\rho) Y_{0}(\rho)}{2} \tag{2.7}
\end{align*}
$$

with $\rho \equiv \sqrt{\beta t r}$. A similar derivation can be used to obtain the established result (2.3b) on the west-axis $(\theta= \pm \pi)$.

Since G_{H} describes the response to sustained forcing represented by the Heaviside function $\mathrm{H}(t)$ and G_{δ} to impulsive forcing represented by $\delta(t)$, one expects $G_{\delta}=\partial G_{\mathrm{H}} / \partial t$. The integral representations for G_{δ} and G_{H} confirm this. For example, in (2.5b)

$$
\begin{equation*}
G_{\mathrm{H}}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{t J_{0}^{\prime}(z)}{z} \mathrm{~d} \nu, \quad z \equiv \sqrt{2 \beta \operatorname{tr}(\cosh \nu+\cos \theta)} \tag{2.8}
\end{equation*}
$$

where we used the fact that $J_{1}=-J_{0}^{\prime}$ (a prime indicates differentiation). Since $\partial z / \partial t=$ $z / 2 t$, it follows that

$$
\begin{align*}
\frac{\partial G_{\mathrm{H}}}{\partial t} & =\frac{1}{2 \pi}\left[\int \frac{J_{0}^{\prime}(z)}{z} \mathrm{~d} \nu+\int t\left(\frac{J_{0}^{\prime \prime}(z)}{z} \frac{z}{2 t}-\frac{J_{0}^{\prime}(z)}{z^{2}} \frac{z}{2 t}\right) \mathrm{d} \nu\right] \\
& =\frac{1}{2 \pi}\left[\int \frac{1}{2}\left(\frac{J_{0}^{\prime}(z)}{z}+J_{0}^{\prime \prime}(z)\right) \mathrm{d} \nu\right]=-\frac{1}{4 \pi} \int J_{0}(z) \mathrm{d} \nu=(2.5 a)=G_{\delta} \tag{2.9}
\end{align*}
$$

because J_{0} solves the Bessel equation $z^{2} J_{0}^{\prime \prime}+z J_{0}^{\prime}+z^{2} J_{0}=0$.
Another relation exists between G_{δ} and G_{H} : In $(2.5 b)$

$$
\begin{equation*}
\frac{t J_{1}(z)}{z}=\frac{1}{\beta r \sin \theta} \frac{\partial J_{0}(z)}{\partial \theta} \tag{2.10}
\end{equation*}
$$

Comparison with (2.5a) shows that

$$
\begin{equation*}
G_{\mathrm{H}}=\frac{2}{\beta r \sin \theta} \frac{\partial G_{\delta}}{\partial \theta} \quad \text { and } \quad\left(\frac{\partial^{2}}{\partial t \partial \theta}-\frac{1}{2} \beta r \sin \theta\right) G_{\mathrm{H}}=0 \tag{2.11a,b}
\end{equation*}
$$

because $G_{\delta}=\partial_{t} G_{\mathrm{H}}$. Time differentiation shows that therefore G_{δ} also satisfies $(2.11 b)$.

3. Closed-form expressions for G_{δ} and G_{H}

In view of the definition of $z_{ \pm}$in (1.5), the integral representation (2.5a) equals

$$
\begin{equation*}
G_{\delta}=-\frac{1}{4 \pi} \int_{-\infty}^{+\infty} J_{0}\left(\sqrt{z_{+}^{2}+z_{-}^{2}+2 z_{+} z_{-} \cosh \nu}\right) \mathrm{d} \nu \tag{3.1}
\end{equation*}
$$

This observation led us to the expression (1.3) for G_{δ} as follows. Dixon \& Ferrar (1933) considered products of modified Bessel functions of the second kind $K_{\nu, \mu}$ and showed that such products can be reduced to a single integral involving $K_{\nu+\mu}$, provided certain conditions are met. For the purpose of this paper it suffices to point out that one of their results implies that for real $x, y>0$

$$
\begin{equation*}
K_{0}(\mathrm{i} x) K_{0}(\mathrm{i} y)=\int_{-\infty}^{+\infty} K_{0}(\mathrm{i} \lambda) \mathrm{d} t^{\prime}, \quad \lambda=\sqrt{x^{2}+y^{2}+2 x y \cosh 2 t^{\prime}} \tag{3.2}
\end{equation*}
$$

(Dixon \& Ferrar (1933), formula 3.32). Connection formulas tell us further that

$$
\begin{equation*}
K_{0}(z)=-\frac{1}{2} \pi \mathrm{i} H_{0}^{(2)}(-\mathrm{i} z), \quad-\frac{1}{2} \pi \leqslant \operatorname{ph} z \leqslant \pi \tag{3.3}
\end{equation*}
$$

with the Hankel function $H_{0}^{(2)}=J_{0}-\mathrm{i} Y_{0}$ (see the NIST Handbook of Mathematical functions, Olver et al. (2010), formula 10.27.8). Specifically this means $K_{0}(\mathrm{i} x)=-\frac{1}{2} \pi \mathrm{i} H_{0}^{(2)}(x)$ and likewise for y. Therefore with (3.2) it follows that

$$
\begin{align*}
\int_{-\infty}^{+\infty}\left[J_{0}(\lambda)\right. & \left.-\mathrm{i} Y_{0}(\lambda)\right] \mathrm{d} t^{\prime}=\int_{-\infty}^{+\infty} H_{0}^{(2)}(\lambda) \mathrm{d} t^{\prime}=-\frac{\pi \mathrm{i}}{2} H_{0}^{(2)}(x) H_{0}^{(2)}(y) \tag{3.4}\\
& =-\frac{\pi}{2}\left[J_{0}(x) Y_{0}(y)+J_{0}(y) Y_{0}(x)\right]-\frac{\pi \mathrm{i}}{2}\left[J_{0}(x) J_{0}(y)-Y_{0}(x) Y_{0}(y)\right]
\end{align*}
$$

(for the more general case involving $H_{\nu}^{(2)}(x) H_{\mu}^{(2)}(y)$ see formula 17.4.2 (76) in Erdélyi (1953) and for related results Magnus et al. (1966), page 93, which contains a typographical error though). Equating real parts in (3.4) leads to the product $J_{0}(x) Y_{0}(y)+$ $J_{0}(y) Y_{0}(x)$ expressed as an integral over $J_{0}(\lambda)$. Comparison with the integral expression (3.1) shows that the closed-form expression (1.3) would follow if we could simply substitute $x=z_{+}, y=z_{-}$in (3.4) after setting $\nu=2 t^{\prime}$ in (3.1). Thus we surmised that G_{δ} given in (1.3) is the solution of (1.2a). This 'educated guess' proved to be correct by direct verification (see below).

However, S.G. Llewellyn-Smith (University of California, San Diego) pointed out during the revision process of this manuscript that the results of Dixon \& Ferrar (1933) in fact imply that (3.1) equals (1.3) when the principle of analytic continuation is invoked. Again tailored specifically to our needs here, Dixon \& Ferrar (1933) state that for complex variables Z, z with positive real parts (absolute phase $<\pi / 2$)

$$
\begin{equation*}
K_{0}(Z) K_{0}(z)=\int_{-\infty}^{+\infty} K_{0}\left(\sqrt{Z^{2}+z^{2}+2 Z z \cosh 2 t^{\prime}}\right) \mathrm{d} t^{\prime}, \quad|\mathrm{ph} Z, z|<\frac{\pi}{2} \tag{3.5}
\end{equation*}
$$

The Bessel functions are analytic when a branch cut is made on the negative real axis, i.e. for $\mathbb{C} \backslash(-\infty, 0]$. If we exclude the west-axis $(\theta= \pm \pi)$, equation (3.5) is valid when $Z=z_{+}, z=z_{-}$is substituted (for $\theta=\pi$ we have $z_{ \pm}= \pm \mathrm{i} \sqrt{\beta t r}$ and for $\theta=-\pi$ we have $z_{ \pm}=\mp \mathrm{i} \sqrt{\beta t r}$ according to (1.5)). Both variables lie in the open right-half of the complex plane and if rotated anti-clockwise by an angle ϕ they become $z_{ \pm}^{\prime}=$ $\mathrm{e}^{\mathrm{i} \phi} z_{ \pm}$. For $\phi=\pi / 2$ the rotated $z_{ \pm}^{\prime}=\mathrm{i} z_{ \pm}$have been moved to the upper half of the complex plane without crossing the negative real axis. Therefore the left-hand side of (3.5) remains analytic. The argument of K_{0} in the integral becomes under this rotation

Figure 2. The parabolic coordinate system $\{\zeta, \eta\}$ with $\zeta=\sqrt{r+x}, \eta=\sqrt{r-x}$ defined in (3.8). The entire western axis $x<0, y=0$ coincides with $\zeta=0$, the eastern axis $x>0, y=0$ with $\eta=0$. The origin $\zeta=\eta=0$ indicated by \bullet is the forcing location as in figure 1 .
simply $\mathrm{e}^{\mathrm{i} \phi} \sqrt{2 \beta \operatorname{tr}\left(\cos \theta+\cosh 2 t^{\prime}\right)}$. Thus, if the west-axis is excluded from consideration, as ϕ is increased towards $\pi / 2$ the argument never crosses the branch cut of K_{0} and the integrand and the integral on the right-hand side of (3.5) remain analytic. By analytic continuation we therefore find that

$$
\begin{equation*}
K_{0}\left(\mathrm{i} z_{+}\right) K_{0}\left(\mathrm{i} z_{-}\right)=\int_{-\infty}^{+\infty} K_{0}\left(\mathrm{i} \sqrt{z_{+}^{2}+z_{-}^{2}+2 z_{+} z_{-} \cosh 2 t^{\prime}}\right) \mathrm{d} t^{\prime} \tag{3.6}
\end{equation*}
$$

The conditions for (3.3) to be valid are met and we can, just as shown above for real x, y, equate the real parts on the left and right in (3.6). This establishes that the integral representation (3.1) equals the closed-form expression (1.3) for G_{δ}. Despite this compelling argument, we nonetheless verify the validity of (1.3) below and show how G_{H} (1.4) was derived.

3.1. Validation of G_{δ}

In order to verify that $G_{\delta}(1.3)$ is correct, it is expedient to write the complex conjugate variables $z_{ \pm}$introduced in (1.5) as

$$
\begin{equation*}
z_{+}=a z_{\star}, \quad z_{-}=a \bar{z}_{\star}, \quad a=\sqrt{\frac{\beta t}{2}}, \quad z_{\star} \equiv \zeta+\mathrm{i} \eta, \quad \bar{z}_{\star} \equiv \zeta-\mathrm{i} \eta \tag{3.7}
\end{equation*}
$$

with parabolic coordinates

$$
\begin{equation*}
\zeta=\sqrt{r(1+\cos \theta)}=\sqrt{r+x}, \quad \eta=\sqrt{r(1-\cos \theta)}=\sqrt{r-x} \tag{3.8}
\end{equation*}
$$

Lines of constant ζ are parabolas that open towards the west $(x<0)$ and constant η parabolas that open towards the east $(x>0)$ as sketched in figure 2. The Laplace operator in these coordinates is well-known (see Moon \& Spencer (1961)) while $\partial / \partial x$ is easily calculated with the chain rule. They are

$$
\begin{equation*}
\nabla^{2}=\frac{1}{\zeta^{2}+\eta^{2}}\left[\frac{\partial^{2}}{\partial \zeta^{2}}+\frac{\partial^{2}}{\partial \eta^{2}}\right], \quad \frac{\partial}{\partial x}=\frac{1}{2 r}\left[\zeta \frac{\partial}{\partial \zeta}-\eta \frac{\partial}{\partial \eta}\right] \tag{3.9}
\end{equation*}
$$

But $2 r=\zeta^{2}+\eta^{2}$ and the Rossby wave operator becomes

$$
\begin{equation*}
\mathcal{L}=\frac{1}{\zeta^{2}+\eta^{2}}\left\{\frac{\partial}{\partial t}\left(\frac{\partial^{2}}{\partial \zeta^{2}}+\frac{\partial^{2}}{\partial \eta^{2}}\right)+\beta\left(\zeta \frac{\partial}{\partial \zeta}-\eta \frac{\partial}{\partial \eta}\right)\right\} \tag{3.10}
\end{equation*}
$$

With a few elementary manipulations one finds next that

$$
\begin{equation*}
\mathcal{L}=\frac{1}{z_{\star} \bar{z}_{\star}}\left\{4 \frac{\partial}{\partial t}\left(\frac{\partial^{2}}{\partial z_{\star} \partial \bar{z}_{\star}}\right)+\beta\left(\bar{z}_{\star} \frac{\partial}{\partial z_{\star}}+z_{\star} \frac{\partial}{\partial \bar{z}_{\star}}\right)\right\} \tag{3.11}
\end{equation*}
$$

With (3.11) it follows, after collecting terms, that

$$
\begin{align*}
\mathcal{L} J_{0}\left(z_{+}\right) Y_{0}\left(z_{-}\right)=\frac{\beta}{z_{\star} \bar{z}_{\star}} & \left\{J_{0}^{\prime}\left(z_{+}\right)\left[z_{-} Y_{0}^{\prime \prime}\left(z_{-}\right)+Y_{0}^{\prime}\left(z_{-}\right)+z_{-} Y_{0}\left(z_{-}\right)\right]\right. \tag{3.12}\\
& \left.+Y_{0}^{\prime}\left(z_{-}\right)\left[z_{+} J_{0}^{\prime \prime}\left(z_{+}\right)+J_{0}^{\prime}\left(z_{+}\right)+z_{+} J_{0}\left(z_{+}\right)\right]\right\}=0
\end{align*}
$$

because J_{0}, Y_{0} satisfy the Bessel equation

$$
\begin{equation*}
z^{2} \mathcal{J}_{0}^{\prime \prime}+z \mathcal{J}_{0}^{\prime}+z^{2} \mathcal{J}_{0}=0 \tag{3.13}
\end{equation*}
$$

Clearly also $\mathcal{L} J_{0}\left(z_{-}\right) Y_{0}\left(z_{+}\right)=0$ and away from $z_{\star} \bar{z}_{\star}=2 r=0$ for $t>0$ indeed $\mathcal{L} G_{\delta}=0$.
The $\delta(t) \delta(x) \delta(y)$ singularity in (1.2a) has to come from the term $\partial_{t} \nabla^{2} G_{\delta}$. The $\delta(t)$ behavior must be associated with the time-derivative of $\mathrm{H}(t)$ which multiplies $J_{0}\left(z_{+}\right) Y_{0}\left(z_{-}\right)+$ $J_{0}\left(z_{-}\right) Y_{0}\left(z_{+}\right)$in (1.3). Replacing $\delta(x) \delta(y)$ on the right-hand side of $(1.2 a)$ by $\delta(r) /(2 \pi r)$, for small r the Green's function must therefore behave as $G_{\delta} \approx \mathrm{H}(t) \ln r / 2 \pi$. That this is true is seen as follows: Since for small z

$$
\begin{equation*}
z \rightarrow 0: \quad J_{0}(z) \approx 1, \quad Y_{0}(z) \approx(2 / \pi) \ln z \tag{3.14}
\end{equation*}
$$

near the origin

$$
\begin{equation*}
r \downarrow 0: G_{\delta} \approx \frac{\mathrm{H}(t)}{4}\left[\frac{2}{\pi} \ln z_{-}+\frac{2}{\pi} \ln z_{+}\right]=\frac{\mathrm{H}(t)}{2 \pi} \ln \beta t r=\frac{\mathrm{H}(t)}{2 \pi}[\ln r+\ln \beta t] \tag{3.15}
\end{equation*}
$$

because, according to (1.5), $z_{ \pm}=\sqrt{\beta t r \mathrm{e}^{ \pm \mathrm{i} \theta}}$. The part that only depends on time t plays no role in getting $\delta(t) \delta(x) \delta(y)$ from $\partial_{t} \nabla^{2} G$ and therefore (1.3) has the correct behavior near the origin. Finally, on the x-axis in the limit $\theta \rightarrow 0$ (east) we have $z_{+}=z_{-}=\sqrt{\beta t r}$ and it is seen with (1.3) that for $t>0(2.3 a)$ is recovered. For $\theta \rightarrow \pi$ (west) we have $z_{ \pm}= \pm \mathrm{i} \sqrt{\beta t r}$ and connection formulas are needed. They imply that $J_{0}\left(z_{ \pm}\right) \rightarrow I_{0}(\sqrt{\beta t r})$ and that

$$
\begin{equation*}
\theta \rightarrow \pi: \quad Y_{0}\left(z_{+}\right) \rightarrow \mathrm{i} I_{0}(\sqrt{\beta t r})-\frac{2}{\pi} K_{0}(\sqrt{\beta t r}), \quad Y_{0}\left(z_{-}\right) \rightarrow-\mathrm{i} I_{0}(\cdots)-\frac{2}{\pi} K_{0}(\cdots) \tag{3.16}
\end{equation*}
$$

(see the NIST Handbook of Mathematical functions (Olver et al. (2010)), formulas 10.27.6 and 10.27.11). Substituting this in (1.3) we find $(2.3 b)$. The same result is found in the limit $\theta=-\pi$. This proves that G_{δ} is correct.

3.2. Derivation and validation of G_{H}

The integral representations showed that G_{H} can be obtained through differentiation of G_{δ} according to (2.11a). With the $\left\{z_{\star}, \bar{z}_{\star}\right\}$ variables we find that (2.11a) becomes

$$
\begin{equation*}
G_{\mathrm{H}}=-\frac{4}{\beta\left(z_{\star}^{2}-\bar{z}_{\star}^{2}\right)}\left[z_{\star} \frac{\partial}{\partial z_{\star}}-\bar{z}_{\star} \frac{\partial}{\partial \bar{z}_{\star}}\right] G_{\delta} . \tag{3.17}
\end{equation*}
$$

Substitution of $G_{\delta}=\frac{1}{4}\left[J_{0}\left(a z_{\star}\right) Y_{0}\left(a \bar{z}_{\star}\right)+c . c.\right]$ results in the expression (1.4) for G_{H} with the definition of $z_{ \pm}$given in (3.7) and use of the fact that $J_{0}^{\prime}=-J_{1}$ and $Y_{0}^{\prime}=-Y_{1}$. Also
the integral representations implied $\partial_{t} G_{\mathrm{H}}=G_{\delta}$. According to (3.17) this is true if

$$
\begin{equation*}
G_{\delta}=-\frac{2 t}{z_{+}^{2}-z_{-}^{2}}\left[z_{+} \frac{\partial}{\partial z_{+}}-z_{-} \frac{\partial}{\partial z_{-}}\right] \frac{\partial G_{\delta}}{\partial t} \tag{3.18}
\end{equation*}
$$

having restored $z_{ \pm}$on the right-hand side. We find, for example, that

$$
\begin{aligned}
& \frac{\partial J_{0}\left(z_{+}\right) Y_{0}\left(z_{-}\right)}{\partial t}=\left[z_{+} J_{0}^{\prime}\left(z_{+}\right) Y_{0}\left(z_{-}\right)+z_{-} J_{0}\left(z_{+}\right) Y_{0}^{\prime}\left(z_{-}\right)\right] / 2 t \quad \text { and } \\
& {\left[z_{+} \frac{\partial}{\partial z_{+}}-z_{-} \frac{\partial}{\partial z_{-}}\right] \frac{\partial J_{0}\left(z_{+}\right) Y_{0}\left(z_{-}\right)}{\partial t}=-\frac{z_{+}^{2}-z_{-}^{2}}{2 t} J_{0}\left(z_{+}\right) Y_{0}\left(z_{-}\right)}
\end{aligned}
$$

after use of the Bessel equation (3.13). It quickly follows with (1.3) for G_{δ} that indeed $\partial_{t} G_{\mathrm{H}}=G_{\delta}$. Moreover, since we know $\mathcal{L} G_{\delta}=0$ for $r \neq 0$ and therefore $\partial_{t} \mathcal{L} G_{\mathrm{H}}=0$, it follows that $\mathcal{L} G_{\mathrm{H}}=0\left(\mathcal{L} G_{\mathrm{H}}=f(x, y) \neq 0\right.$ can be ruled out $)$.

The singularity at the origin has to come from $\partial_{t} \nabla^{2} G_{\mathrm{H}}$ in (1.2b) and the factor $\mathrm{H}(t)$ on the right-hand side must be due to a time-derivative of $t \mathrm{H}(t)$. Therefore for small r the Green's function must behave as $G_{\mathrm{H}} \approx t \mathrm{H}(t) \ln r / 2 \pi$. That this is true follows with (3.14) for J_{0}, Y_{0} and the fact that

$$
\begin{equation*}
z \rightarrow 0: \quad J_{1}(z) \sim z / 2, \quad Y_{1}(z) \sim-2 /(\pi z)+(z / \pi) \ln z \tag{3.19}
\end{equation*}
$$

When put in (1.4), we find that for small r

$$
\begin{equation*}
r \downarrow 0: G_{\mathrm{H}} \approx \frac{t \mathrm{H}(t)}{2 \pi}[\ln r+\ln \beta t] . \tag{3.20}
\end{equation*}
$$

Again the part that only depends on t is irrelevant, and G_{H} has the correct singularity.
Finally, it is easily verified with the Bessel equation (3.13) that $\partial_{t}(2.4 a)=(2.3 a)$. Also one finds $\partial_{t}(2.4 b)=(2.3 b)$ through use of $I_{0}^{\prime}=I_{1}, K_{0}^{\prime}=-K_{1}$ and the fact that $I_{0}(z)$ satisfies $z^{2} \mathcal{I}_{0}^{\prime \prime}+z \mathcal{I}_{0}^{\prime}-z^{2} \mathcal{I}_{0}=0$ and $K_{0}(z)$ too. Since we have just shown that everywhere $\partial_{t} G_{\mathrm{H}}=G_{\delta}$ and G_{δ} given by (1.3) has the correct limiting behavior on the east-west axis, our expression for $G_{\mathrm{H}}(1.4)$ reduces there to $(2.4 a)$ and $(2.4 b)$. This has been verified independently with a Taylor series expansion of G_{H} about $\theta=0$ and $\theta= \pm \pi$.

4. Properties of the Green's functions

In the integral expressions (2.1) and (2.5a) for G_{δ} and (2.2) and $(2.5 b)$ for G_{H}, the arguments of the integrands contain the similarity variable $\beta t r$. Our new expressions for $G_{\delta}(1.3)$ and for $G_{\mathrm{H}}(1.4)$ also contain this variable via the complex conjugate variables $z_{ \pm}$ defined in (1.5). If time t and distance r were dimensional, the combination $\beta t r$ is a nondimensional variable. The mathematical problem has however already been formulated with non-dimensional time t and r or $\{x, y\}$ through scaling with some time scale T and length scale L, i.e. in (1.2a,b) the variables are actually non-dimensional $\tilde{t}=t / T$ and $\{\tilde{x}, \tilde{y}\}=\{x / L, y / L\}$ and non-dimensionally $\tilde{\beta}=\beta \times T L$. For convenience we have however dropped the tildes. In the graphs below we shall plot the response against non-dimensional $\{x, y\}$ and time t scaled with arbitrary L and T but in the numerical evaluations we have set $\beta=1$.

4.1. Response to impulsive forcing: G_{δ}

Graphing the exact solution G_{δ} given in (1.3) is easy with available numerical packages although some care is required on the western axis where $\theta= \pm \pi$. Due to ambiguity as to how the Bessel functions behave as their arguments become purely imaginary $\left(z_{ \pm}= \pm \mathrm{i} \sqrt{\beta t r}\right)$, it is best to use a numerical grid that has no points exactly on the

Figure 3. Contours of $G_{\delta}(1.3)$ at (a) non-dimensional time $t=0.25$ and (b) $t=0.5$. White circle in panel (a) has a radius $r=50$ and in (b) a radius $r=25$. Because of self-similarity in panel (b) at the double the time compared to panel (a), the pattern within the circle is exactly the same. Black dot - at the center $r=0$ indicates the source origin. White space thereabouts indicates extreme negative values associated with the logarithmic singularity of G_{δ} (see text). In panel (a) the black dashed line is the parabola $2 a \zeta=\pi / 2$ with $\zeta=\sqrt{x+r}$ and $a=\sqrt{\beta t / 2}$. Along this contour $G_{\delta}=0$. In panel (b) the white dashed parabolas are $2 a \zeta=(n+1) \pi$ with $n=0,1,2$.
western axis. Since spatially the response depends only on the similarity coordinates $\beta t x, \beta t y$ or $\beta t r$ and θ, for any $t=t_{0}>0$ all information is contained in the response at t_{0}. But it is illuminating to graph the response as a function of time. As mentioned in the introduction, very little effort is required to create a movie that vividly illustrates the evolution.

Thus in figure 3 we chose non-dimensional time $t=t_{0}=0.25$ (panel (a)) and $t=2 t_{0}=$ 0.5 (panel (b)). In panel (a) we have drawn a circle with radius $r_{0}=50$ and in panel (b) with radius $r=\frac{1}{2} r_{0}=25$. Therefore in both panels the circles have $t r=t_{0} r_{0}$ and the self-similarity is evident: in figure 3 b the same pattern is seen within the circle as in figure 3a but shrunk to half the scale. For increasing time more of the 'banana' shaped regions appear to propagate from the east towards the source location indicated by ' \bullet '. An ever larger number gets wrapped about the origin, with increasing curvature.

West of the source a wake-like region exists forever concentrated about the western axis. In panel (a) the boundary of the wake is indicated by the dashed curve along which $G_{\delta}=0$. Within this region, all streamlines indicate flow with the same sense of circulation about the origin but elongated in the western direction. East of the source, contours near the east-west axis are nearly north-south thus indicating predominantly north-south motions with velocity v advecting planetary vorticity. In the white area in figure 3 near the source location, the response exceeds some arbitrarily chosen (negative) amplitude threshold. Veronis (1958) was already able to sketch these patterns by numerically solving a partial differential equation similar to (2.11b) (see also Longuet-Higgins (1965)). Near the source location (the white region in figure 3), according to (3.15) the singular behavior persists.

Figure 4. Graph showing the exact $G_{\delta}(1.3)$ on the east-west axis through the source and the approximation $G_{\delta}^{\mathrm{a}}(4.4 a, b)$. According to $(2.3 a)$ to the east: $G_{\delta}=J_{0}(\rho) Y_{0}(\rho) / 2$ and to the west according to $(2.3 b) G_{\delta}=-I_{0}(\rho) K_{0}(\rho) / \pi$ with $\rho=\sqrt{\beta t|x|}$. For convenience we used $\beta=1$.

With the known properties
$z \rightarrow \infty: \quad J_{\nu}(z) \sim \sqrt{2 /(\pi z)} \cos \left(z-\frac{1}{2} \nu \pi-\frac{1}{4} \pi\right), Y_{\nu}(z) \sim \sqrt{2 /(\pi z)} \sin \left(z-\frac{1}{2} \nu \pi-\frac{1}{4} \pi\right)$,
according to (1.3)

$$
\begin{equation*}
\beta \operatorname{tr} \rightarrow \infty: G_{\delta} \sim-\frac{\cos \left(z_{+}+z_{-}\right)}{2 \pi \sqrt{z_{+} z_{-}}} \tag{4.2}
\end{equation*}
$$

With the definitions of $z_{ \pm}$in (3.7) and the parabolic coordinates $\{\zeta, \eta\}$ in (3.8):

$$
\begin{equation*}
\beta t r \rightarrow \infty: G_{\delta} \sim-\frac{\cos (2 a \zeta)}{2 \pi \sqrt{a^{2}\left(\zeta^{2}+\eta^{2}\right)}}=-\frac{\cos (\sqrt{2 \beta t(x+r)})}{2 \pi \sqrt{\beta t r}} \equiv G_{\delta}^{\mathrm{a}} \tag{4.3}
\end{equation*}
$$

Lines of constant $\zeta=\sqrt{x+r}$ are parabolas that open towards the west $(x<0)$ as shown in figure 2. Some of these parabolas have been drawn in figure 3 as dashed curves. Longuet-Higgins (1965) already predicted that lines of constant phase would be such parabolas. The approximation $G_{\delta}^{\text {a }}$ in (4.3) was recently found by Webb et al. (2016), but as the large-time behavior implied by an (inverse Laplace transform) integral representation of G_{δ}.

The approximation (4.3) predicts zeros for $2 a \zeta=\left(n+\frac{1}{2}\right) \pi(n=0,1, \cdots)$. The first zero $(n=0)$ has $2 a \zeta=\pi / 2$ which has been drawn in figure 3 a as the dashed black parabola, delineating the 'wake'. The approximation predicts on the eastern side maxima/minima for $2 a \zeta=(n+1) \pi$. For $n=0,1,2$ these are the three white dashed parabolas drawn in figure 3b. It is seen that they form the 'spine' of the curved patterns.

The approximation reveals the salient behavior for large $\beta t r$ that is hidden in the exact but complex expression (1.3) for G_{δ}. For large $\beta t r$ or $\beta t|x|$ on the east-west axis

$$
\begin{equation*}
\theta=0(\text { east }): \quad G_{\delta}^{\mathrm{a}}=-\frac{\cos (2 \sqrt{\beta t r})}{2 \pi \sqrt{\beta t r}}, \quad \theta= \pm \pi(\text { west }): \quad G_{\delta}^{\mathrm{a}}=-\frac{1}{2 \pi \sqrt{\beta t r}} \tag{4.4a,b}
\end{equation*}
$$

In figure 4 we compare the approximation on this axis with the known exact solution(s) $(2.3 a, 2.3 b)$. This cross-section along the axis illustrates some of the features seen in figure 3. In particular, the first zero crossing with $2 a \zeta=2 \sqrt{\beta t x}=\frac{1}{2} \pi$ on the eastern side corresponds to the 'wake' defined by $G_{\delta}=0$ (the black parabola in figure 3a).

Figure 5. Contours of G_{H} at (a) non-dimensional time $t=0.5$ and (b) $t=1.0$. White circle in panel (a) has a radius $r=50$ and in (b) a radius $r=25$. In panel (a) the black dashed line line is the parabola $2 a \zeta=\pi$ with $\zeta=\sqrt{x+r}$ and $a=\sqrt{\beta t / 2}$. Along this curve $G_{\mathrm{H}}=0$. In panel (b) the white dashed lines are for $2 a \zeta=(n+3 / 2) \pi$ with $n=0,1$.

Figure 6. Graph showing the exact G_{H} (1.4) on the east-west axis through the source and the approximation $G_{\mathrm{H}}^{\mathrm{a}}(4.8 a, b)$ at non-dimensional time $t=0.5$. According to (2.4a) to the east: $G_{\mathrm{H}}=t\left[J_{0}(\rho) Y_{0}(\rho)+J_{1}(\rho) Y_{1}(\rho)\right] / 2$ and to the west according to (2.4b) $G_{\mathrm{H}}=-t\left[I_{0}(\rho) K_{0}(\rho)+I_{1}(\rho) K_{1}(\rho)\right] / \pi$ with argument $\rho=\sqrt{\beta t|x|}$.

4.2. Response to sustained forcing: G_{H}

In figure 5 we show contours of the exact solution G_{H} given in (1.4) for non-dimensional times $t=t_{0}=0.5$ (panel (a)) and $t=2 t_{0}=1$. As in figure 3 for G_{δ}, we have drawn in panel (a) a circle with radius $r_{0}=50$ and in panel (b) with radius $r=\frac{1}{2} r_{0}=25$. In both panels the circles have $\operatorname{tr}=t_{0} r_{0}$ and spatial self-similarity is evident. The source location is again indicated by ' \bullet '. Close to the source according to (3.20) with increasing time the singularity grows in amplitude, if this can be said with regard to something that has infinite amplitude. Within the white areas in figure $5, G_{\mathrm{H}}$ exceeds some (negative) amplitude threshold associated with this singularity.

According to (4.1), for large arguments $\left|z_{ \pm}\right| \gg 1$, the terms within square brackets in
(1.4) become

$$
\begin{align*}
& z_{+}\left[J_{1}\left(z_{+}\right) Y_{0}\left(z_{-}\right)+J_{0}\left(z_{-}\right) Y_{1}\left(z_{+}\right)\right] \sim-\frac{2}{\pi} \frac{z_{+}}{\sqrt{z_{+} z_{-}}} \sin \left(z_{+}+z_{-}\right) \tag{4.5}\\
& z_{-}\left[J_{1}\left(z_{-}\right) Y_{0}\left(z_{+}\right)+J_{0}\left(z_{+}\right) Y_{1}\left(z_{-}\right)\right] \sim-\frac{2}{\pi} \frac{z_{-}}{\sqrt{z_{+} z_{-}}} \sin \left(z_{+}+z_{-}\right)
\end{align*}
$$

Putting (4.5) in (1.4) yields

$$
\begin{equation*}
\beta t r \rightarrow \infty: \quad G_{\mathrm{H}} \sim-\frac{1}{\pi} \frac{t \sin \left(z_{+}+z_{-}\right)}{\left(z_{+}+z_{-}\right) \sqrt{z_{+} z_{-}}} \tag{4.6}
\end{equation*}
$$

and with (3.7), (3.8)

$$
\begin{equation*}
\beta t r \rightarrow \infty: \quad G_{\mathrm{H}} \sim-\frac{1}{\pi} \frac{\sin (2 a \zeta)}{\beta \zeta \sqrt{\zeta^{2}+\eta^{2}}}=-\frac{\sin (\sqrt{2 \beta t(x+r)})}{\pi \beta \sqrt{x+r} \sqrt{2 r}} \equiv G_{\mathrm{H}}^{\mathrm{a}} \tag{4.7}
\end{equation*}
$$

This agrees with the result of Kamenkovich (1989) who derived large time expansions of G_{H} via a consideration of the asymptotic properties of inverse Laplace transforms. There is a noticeable difference between G_{δ} and G_{H} : whereas according to (4.3) amplitudes of G_{δ} decay with time as $t^{-1 / 2}$, amplitudes of G_{H} are constant (with the exception of the west-axis; see below). Nonetheless $G_{\delta}=\partial G_{\mathrm{H}} / \partial t$ and one easily verifies with (4.3) and (4.7) that also $G_{\delta}^{\mathrm{a}}=\partial G_{\mathrm{H}}^{\mathrm{a}} / \partial t$.

The approximation (4.7) predicts zeros for $2 a \zeta=(n+1) \pi(n=0,1, \cdots)$ and again $\zeta=\sqrt{x+r}$ and $a=\sqrt{\beta t / 2}$. The first zero has $2 a \zeta=\pi$ and the 'wake' defined by this curve on which $G_{\mathrm{H}}=0$ is the black dashed line in figure 5 a. The approximation predicts on the eastern side maxima/minima for $2 a \zeta=\left(n+\frac{3}{2}\right) \pi$. The first two $(n=0,1)$ are the dashed parabolas drawn in figure 5 b.

Comparison of figure 5 with figure 3 reveals a difference: in figure 5 the response to the east of the forcing appears to contain fewer of the typical patterns. Why this is can be illustrated with the far field approximation of G_{H} given by (4.7), i.e. for large $\beta t r$ on the east-west axis:

$$
\begin{equation*}
\theta=0(\text { east }): \quad G_{\mathrm{H}}^{\mathrm{a}}=-\frac{\sin (2 \sqrt{\beta t r})}{2 \pi \beta r}, \quad \theta= \pm \pi(\text { west }): \quad G_{\mathrm{H}}^{\mathrm{a}}=-\frac{1}{\pi} \sqrt{\frac{t}{\beta r}} \tag{4.8a,b}
\end{equation*}
$$

In figure 6 we compare the approximation on the entire axis with the exact solution(s) $(2.4 a, 2.4 b)$. This explains why in figure 5 there are fewer of the parabolically-shaped regions visible east of the forcing: on the eastern axis for fixed time (4.4a) reveals that $G_{\delta} \propto 1 / \sqrt{r}$ whereas (4.8a) indicates $G_{\mathrm{H}} \propto 1 / r$, i.e. G_{H} decays more rapidly towards the east than G_{δ} with distance r from the source location. The two prominent patterns east of the source seen in figure 5 a correspond to the first maximum and minimum in the cross section shown in figure 6 , i.e. $2 a \zeta=2 \sqrt{\beta t x}=\left(n+\frac{3}{2}\right) \pi$ and $n=0,1$. Finally, note that (4.6) shows that amplitudes do not decay nor grow with time t except exactly on the west-axis $(\zeta=0)$ where

$$
\begin{equation*}
\zeta \downarrow 0: \quad \frac{\sin (2 a \zeta)}{\zeta} \rightarrow 2 a=\sqrt{2 \beta t} \tag{4.9}
\end{equation*}
$$

and this singular limit leads to the unbounded growth of G_{H} displayed in (4.8b).

4.3. Kinetic energy distributions

The approximation (4.3) suggests that at a fixed location with increasing time, the quasiwave field associated with G_{δ} disappears with $1 / \sqrt{t}$. Thus, nothing but the singularity
(3.15) would remain. But a more relevant quantity is kinetic energy E. This is determined by gradients of the stream function $\psi=G_{\delta}$ and because with increasing time the spatial scales decrease, gradients increase. This compensates for the overall decrease of the amplitude of G_{δ}.

The kinetic energy associated with the Green's function is $E=\frac{1}{2} \nabla G \cdot \nabla G$. The easiest way to calculate E is to use the fact that in parabolic coordinates

$$
\begin{equation*}
\nabla=\frac{1}{\sqrt{\zeta^{2}+\eta^{2}}}\left[\hat{\zeta} \frac{\partial}{\partial \zeta}+\hat{\boldsymbol{\eta}} \frac{\partial}{\partial \eta}\right] \tag{4.10}
\end{equation*}
$$

with $\{\hat{\boldsymbol{\zeta}}, \hat{\boldsymbol{\eta}}\}$ the orthogonal unit vectors associated with $\{\zeta, \eta\}$ (see Morse \& Feshbach (1953), Moon \& Spencer (1961)). Without going into any further details, we find

$$
\begin{align*}
E=\frac{1}{2\left(\zeta^{2}+\eta^{2}\right)} & {\left[\left(\frac{\partial G}{\partial \zeta}\right)^{2}+\left(\frac{\partial G}{\partial \eta}\right)^{2}\right] } \tag{4.11}\\
& =\left(\frac{1}{4}\right)^{2} \frac{\beta t}{\zeta^{2}+\eta^{2}}\left|J_{0}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+J_{1}\left(z_{-}\right) Y_{0}\left(z_{+}\right)\right|^{2}=E_{\delta}
\end{align*}
$$

when $G=G_{\delta}$ given by (1.3) is substituted in (4.11). This may give the impression that the kinetic energy grows with time t. But, for large $\beta t r$ it follows with (4.1) that

$$
\begin{equation*}
\beta t r \rightarrow \infty: \quad J_{0}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+J_{1}\left(z_{-}\right) Y_{0}\left(z_{+}\right) \sim-\frac{2}{\pi} \frac{\sin \left(z_{+}+z_{-}\right)}{\sqrt{z_{+} z_{-}}} \tag{4.12}
\end{equation*}
$$

Squaring (4.12) and substitution in (4.11) yields for large $\beta t r$ the approximation

$$
\begin{equation*}
E_{\delta} \sim \frac{1}{2} \frac{\sin ^{2}(2 a \zeta)}{\pi^{2}\left(\zeta^{2}+\eta^{2}\right)^{2}}=\frac{1}{2} \frac{\sin ^{2}(\sqrt{2 \beta t(x+r)})}{(2 \pi r)^{2}} \equiv E_{\delta}^{\mathrm{a}} \tag{4.13}
\end{equation*}
$$

In figure 7 we show contours of kinetic energy E_{δ} (4.11). The patterns are similar to that of G_{δ} shown in figure 3. The one-term approximation (4.13) predicts maximal energy along parabolas $2 a \zeta=\left(n+\frac{1}{2}\right) \pi$ with $n=0,1, \cdots(\zeta=\sqrt{x+r}, a=\sqrt{\beta t / 2})$. In figure 7 the innermost dashed parabola is for $n=0$ and coincides with the wake boundary shown in figure 3a. This is a location of maximal kinetic energy. In figure 7 the second parabola $(n=1)$ is seen to match the next pattern of maximal energy well. In figure 7 we have drawn a circle with radius $r=40$. Going around this circle of radius $r=40$ the peaks of energy are shown in figure 8 as well as for a circle of smaller radius $r=30$. The approximation (4.13), based on the assumption $\beta t r \gg 1$, shows that at large r all maxima will have the same amplitude, as observed in figure 8 . In polar coordinates the approximation

$$
\begin{equation*}
E_{\delta}^{\mathrm{a}}=\frac{1}{2} \frac{\sin ^{2}(2 a \zeta)}{(2 \pi r)^{2}}, \quad 2 a \zeta=\sqrt{2 \beta \operatorname{tr}} \sqrt{1+\cos \theta} \tag{4.14}
\end{equation*}
$$

shows that the energy peaks decay with distance $1 / r^{2}$ from the source and the peak positions in terms of the polar angle θ are determined by $2 \beta \operatorname{tr}(1+\cos \theta)=\left(n+\frac{1}{2}\right)^{2} \pi^{2}$. At fixed radius r with increasing time t more peaks appear as continuously more of the parabolic patterns seen in figure 3 coming from the eastern side get wrapped about the forcing origin.

Figure 7. Contours of kinetic energy E_{δ} given by (4.11) at $t=0.5$. The innermost dashed parabola is defined by $2 a \zeta=(n+1 / 2) \pi$ with $n=0$ and $\zeta=\sqrt{x+r}, a=\sqrt{\beta t / 2}$. This corresponds to the 'wake' boundary shown in figure 3a along which $G_{\delta}=0$. The second parabola is for $n=1$. Energy along the circle with radius $r=40$ is shown in figure 8 .

Figure 8. Kinetic energy E_{δ} (4.11) and the approximation $E_{\delta}^{\text {a }}$ (4.13) along circles of radius $r=30$ and $r=40$ at $t=0.5$. The circle $r=40$ is shown in figure 7 .

The energy associated with G_{H} can be calculated exactly too and we find

$$
\begin{align*}
\frac{\partial G_{\mathrm{H}}}{\partial \eta} & =\frac{1}{\eta}\left\{t\left(G_{\delta}+\frac{1}{4}\left[J_{1}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+c . c .\right]\right)-G_{\mathrm{H}}\right\}, \tag{4.15a}\\
\frac{\partial G_{\mathrm{H}}}{\partial \zeta} & =\frac{1}{\zeta}\left\{t\left(G_{\delta}-\frac{1}{4}\left[J_{1}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+c . c .\right]\right)-G_{\mathrm{H}}\right\} \tag{4.15b}
\end{align*}
$$

with G_{δ} as in (1.3) and G_{H} again given by (1.4). Division by η in (4.15a) may be cause of concern at first sight, but $\eta=0$ corresponds to the east-axis and there according to (2.3a) and (2.4a):

$$
\begin{array}{r}
\eta=0(\text { east }): G_{\delta}=\frac{1}{2} J_{0}(\rho) Y_{0}(\rho), \quad G_{\mathrm{H}}=\frac{1}{2} t\left[J_{0}(\rho) Y_{0}(\rho)+J_{1}(\rho) Y_{1}(\rho)\right], \\
 \tag{4.16}\\
\text { and } \quad \frac{1}{4}\left[J_{1}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+c . c .\right]=\frac{1}{2} J_{1}(\rho) Y_{1}(\rho), \quad \rho=\sqrt{\beta t r}
\end{array}
$$

Figure 9. Contours of energy E_{H} according to (4.18) at $t=1$. The innermost dashed parabola is for $2 a \zeta=\sqrt{2}$ with $\zeta=\sqrt{x+r}, a=\sqrt{\beta t / 2}$. This lies inside to the 'wake' boundary shown in figure 5a along which $G_{\mathrm{H}}=0$ and for which $2 a \zeta=\pi$. Energy along the circle with radius $r=30$ is shown in figure 10 .
so that in the limit $\eta=0$ the numerator of (4.15a) vanishes and an expansion in small η can be shown to give a finite answer for $\partial G_{\mathrm{H}} / \partial \eta$. Also the limit $\zeta=0$ appears dangerous in $(4.15 b)$ but again a finite answer is obtained by taking into account that there

$$
\begin{align*}
\zeta=0 \text { (west) }: \quad G_{\delta}=-\frac{I_{0}(\rho) K_{0}(\rho)}{\pi}, \quad G_{\mathrm{H}}=-\frac{t}{\pi}\left[I_{0}(\rho) K_{0}(\rho)+I_{1}(\rho) K_{1}(\rho)\right] \tag{4.17}\\
\frac{1}{4}\left[J_{1}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+c . c .\right]=\frac{I_{1}(\rho) K_{1}(\rho)}{\pi}, \quad \rho=\sqrt{\beta t r} .
\end{align*}
$$

Therefore in the limit $\zeta=0$ the numerator of (4.15b) vanishes and $\partial G_{\mathrm{H}} / \partial \zeta$ is welldefined. Contours of

$$
\begin{equation*}
E_{\mathrm{H}}=\frac{1}{2\left(\zeta^{2}+\eta^{2}\right)}\left[\left(\frac{\partial G_{\mathrm{H}}}{\partial \zeta}\right)^{2}+\left(\frac{\partial G_{\mathrm{H}}}{\partial \eta}\right)^{2}\right] \tag{4.18}
\end{equation*}
$$

are shown in figure 9. The energy along the circle with radius $r=30$ drawn in figure 9 is shown in figure 10.

Whereas it is easy to find the approximation (4.13) for the kinetic energy E_{δ} by employing the asymptotic properties of J_{ν}, Y_{ν} according to (4.1), things become quite difficult if the same route is taken here for E_{H} : it requires the rarely used higher-order corrections to (4.1). Instead we calculate the approximation by differentiation of (4.7). This yields in polar coordinates

$$
\begin{gather*}
E_{\mathrm{H}} \sim \frac{1}{2} \frac{1}{(2 \pi r)^{2}}\left(\frac{t}{\beta r}\right) \frac{1}{1+\cos \theta}\left[2 \cos ^{2}(2 a \zeta)-\frac{2(3+\cos \theta) \cos (2 a \zeta) \sin (2 a \zeta)}{(2 a \zeta)}\right. \\
\left.+\frac{(5+3 \cos \theta) \sin ^{2}(2 a \zeta)}{(2 a \zeta)^{2}}\right] \equiv E_{\mathrm{H}}^{\mathrm{a}}, \quad 2 a \zeta=\sqrt{2 \beta t} \sqrt{r(1+\cos \theta)} \tag{4.19}
\end{gather*}
$$

For large time the first term within square brackets, $\cos ^{2}(2 a \zeta)$, dominates but the next two terms cannot be discarded: they are both required to negate the singular behavior

Figure 10. Contours of kinetic energy E_{H} (4.18) at $t=1$ and the approximation $E_{\mathrm{H}}^{\mathrm{a}}$ (4.19) along circles of radius $r=25$ and $r=30$ at $t=1$. The circle $r=30$ is shown in figure 9 .
of the prefactor $1 / r(1+\cos \theta)=1 / \zeta^{2}$. In other words, in the limit $\theta= \pm \pi$ or $\zeta=0$ (the western axis) all three terms are required. In that limit $\sin (2 a \zeta) /(2 a \zeta) \rightarrow 1$ and the bracketed term in (4.19) evaluates to

$$
[2-2(3-1)+(5-3)]=0
$$

and expansions of the second and third term in powers of small ζ always yield a finite result. In figure 10 we compare the appxomation (4.19) with the exact energy along the circle of radius $r=30$ also shown in figure 9 and at a smaller radius $r=25$. We simply chose $t=1$ which was also used for figure 5b. Comparison of figures (9) and (10) with the corresponding figures (7) and (8) for G_{δ} reveals that for G_{H} the kinetic energy is dominated by two plumes on the western side of the forcing. Another differences is that (4.19) shows that away from the western axis, E_{H} decays with distance from the forcing with $1 / r^{3}$ while linearly growing in time while (4.13) shows that E_{δ} decays with $1 / r^{2}$ with amplitudes that are independent of time.

Finally, as in figure 7 for E_{δ} we have drawn in figure 9 two parabolas $\zeta=$ constant that fit the maximal energy patterns. For G_{δ} in figure 7 the innermost parabola coincided with the wake boundary $G_{\delta}=0$ and $2 a \zeta=\frac{1}{2} \pi$: this is the first maximum of the leading-order term $\sin ^{2}(2 a \zeta)$ in (4.14). But for E_{H} the first maximum is not determined by $\cos ^{2}(2 a \zeta)$ with maxima at $2 a \zeta=(n+1) \pi$ but by the combination of all three terms within the square brackets in (4.19). We find that the parabolic axis through the dominant energy pattern in figure 9 lies well within the wake region: in figure 5 a the wake boundary (dashed parabola) is defined by $2 a \zeta=\pi$ but in figure 9 the axis was found to coincide with $2 a \zeta=\sqrt{2}<\pi$ and the second parabola with $2 a \zeta=4<2 \pi$. At later times (not shown) the tendency is that the axis of the dominant energy 'plumes' of E_{H} moves further towards the west-axis, i.e. further into the interior of the wake region.

5. Discussion

In this paper we have shown that two-dimensional Green's functions G_{δ} and G_{H} given by (1.3) and (1.4), respectively, solve the forced Rossby wave equation (1.2). Previously only known via integral representations, these new compact expressions provide a com-
plete description of the response. They reduce on the east-west axis to the long-known exact expressions discussed in $\S 2$, i.e. $(2.3 a, 2.3 b)$ for G_{δ} and $(2.4 a, 2.4 b)$ for G_{H} and far from the forcing location to the asymptotic forms (4.3) and (4.7), respectively. The latter were also known via transform methods but here they arise directly from the properties of the Bessel functions $J_{n}(z), Y_{n}(z)$ for large (complex) arguments z.

Exact explicit expressions for Green's functions were known in one-dimensional (Cahn (1945); Rossby (1945)) and three-dimensional (Dickinson (1969a,b)) settings only. Usually solutions of the forced problem are sought through transform methods (see Veronis (1958); Longuet-Higgins (1965); Kamenkovich (1989); Llewellyn-Smith (1997) but also the recent studies by McKenzie (2014); Webb et al. (2016)). In two-dimensional problems this has led to integral representations like those mentioned in $\S 2$.

A crucial development has been that the integral representation for G_{δ} can be written as (3.1). From this the closed-form expression (1.3) for G_{δ} followed via the work of Dixon \& Ferrar (1933) as discussed in $\S 3$. The validity of this solution has been verified in $\S 3.1$ and in $\S 3.2$ we derived and verified the expression (1.4) for G_{H}. This becomes very efficient through the introduction of the complex conjugate variables $z_{\star}=\zeta+\mathrm{i} \eta, \bar{z}_{\star}=\zeta-\mathrm{i} \eta$ defined in (3.7). In particular, the Rossby wave operator then assumes the symmetric form given in (3.11). That contour patterns of G_{δ} and G_{H} shown in $\S 4$ in figure 3 and figure 5 coincide largely with the parabolas $\zeta=\sqrt{r+x}=$ constant is perhaps not surprising since if on the right-hand side of (1.2a) instead of $\delta(t)$ periodic forcing $\exp (\mathrm{i} \omega t)$ is assumed, lines of constant phase are also $\zeta=$ constant (see Rhines (2003)).

The parabolic coordinates $\{\zeta, \eta\}$ are of wider interest in the context of non-divergent Rossby waves. First note that the form of \mathcal{L} in (3.10) suggests that there is no real distinction between ζ and η whereas in the Cartesian $\{x, y\}$ formulation longitude x introduces an 'asymmetry' not obvious in (3.10) except for the sign-difference between the ζ and η terms multiplying β (the same spatial part of this Rossby wave operator for a steady, frictional version of the vorticity equation was previously considered in ocean circulation context in Maas (1989); Zimmerman \& Maas (1989) and Boyd \& Sanjaya (2014)). Let us further note that in as much that the Green's functions are stream functions ψ with the associated velocity components $u=-\partial_{y} \psi, v=\partial_{x} \psi$, equation (2.11b) is simply

$$
\begin{equation*}
\partial_{t}(x u+y v)+\frac{1}{2} \beta y \psi=0 \quad \text { with } \quad x u+v y=\mathbf{u} \cdot \mathbf{r}, \quad \mathbf{u}=u \mathbf{i}+v \mathbf{j}, \mathbf{r}=x \mathbf{i}+y \mathbf{j} \tag{5.1}
\end{equation*}
$$

and $\{\mathbf{i}, \mathbf{j}\}$ the customary unit vectors associated with $\{x, y\}$. The projection of the velocity vector \mathbf{u} on the position vector \mathbf{r} is $\mathbf{u} \cdot \mathbf{r}=r u_{r}$ with u_{r} the radial velocity component in cylinder coordinates (see figure 1). In other words, in the wave field associated with the Green's functions the radial velocity component evolves according to $\partial_{t} r u_{r}+\frac{1}{2} \beta y \psi=0$. It is not clear to us whether this has a physical meaning. However, leaving out a common factor $\frac{1}{2}$, in parabolic coordinates (5.1) becomes

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\eta \frac{\partial}{\partial \zeta}-\zeta \frac{\partial}{\partial \eta}\right) \psi+\beta \zeta \eta \psi=0 \tag{5.2}
\end{equation*}
$$

Further, differentiation of (5.1) with respect to x and multiplication of the Rossby wave equation by y allows for the elimination of the β-terms which results in

$$
\begin{equation*}
\partial_{t}\left\{y \nabla^{2}+2 \partial_{x}\left(x \partial_{y}-y \partial_{x}\right)\right\} \psi=0 \tag{5.3}
\end{equation*}
$$

but in the parabolic coordinates (5.3) assumes the form

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\{\frac{\partial^{2}}{\partial \zeta \partial \eta}+\frac{\eta}{\zeta^{2}+\eta^{2}} \frac{\partial}{\partial \zeta}+\frac{\zeta}{\zeta^{2}+\eta^{2}} \frac{\partial}{\partial \eta}\right\} \psi=0 \tag{5.4}
\end{equation*}
$$

Remarkably, integrating (5.4) in time shows that the Green's functions are determined by a second-order partial differential equation, which, moreover, is entirely symmetric in parabolic coordinates ζ, η. Additionally, the form of the Rossby wave operator $\mathcal{L}(3.10)$ in these coordinates suggests that the parabolic coordinates are rather 'natural' coordinates for non-divergent Rossby waves.

This raises the question why the response in the forced problem considered here is dominated by the westward parabolas $\zeta=\sqrt{r+x}$ while the opposite parabola $\eta=\sqrt{r-x}$ only plays a role in providing overall amplitude attenuation via inverse (fractional) powers of $r=\frac{1}{2}\left(\zeta^{2}+\eta^{2}\right)$. This can be understood with the analyses of Longuet-Higgins (1965) and the more recent work by McKenzie (2014), i.e. via considerations of the dispersion relation for monochromatic waves, the group velocity and the method of stationary phase. But a cursory examination of the properties of \mathcal{L} in parabolic coordinates, i.e. (3.10), indicates that free, parabolically-shaped Rossby waves following lines of constant $\eta=\sqrt{r-x}$ instead of $\zeta=\sqrt{r+x}$ do also exist at any given frequency. The repercussions of this observation are left for a future study.

A few final remarks are in order: The singular behavior found for G_{δ} in (3.15) and G_{H} in (3.20) at the forcing location persists. For G_{H} this is not surprising since the forcing is maintained but for G_{δ} this is counterintuitive since one can interpret G_{δ} for some $t=t_{0}>0$ as a given initial stream function $\psi_{0}(x, y)=\psi\left(x, y, t_{0}\right)$. This initial condition for $t=t_{0}$ can be developed in plane Rossby waves with the spectrum $A_{0}(k, l)$ and for $t>t_{0}$ the field would evolve as

$$
\psi(x, y, t)=\iint A_{0}(k, l) \mathrm{e}^{\mathrm{i}(\omega t-k x-l y)} \mathrm{d} k \mathrm{~d} l
$$

with ω satisfying the well-known dispersion relation

$$
\omega=-\frac{\beta k}{k^{2}+l^{2}}
$$

Without explicitly knowing the spectrum $A_{0}(k, l)$, one would think that dispersion leads to the disappearance of the singularity. But it does not. The 'shrinking' of the patterns via the similarity variable $\beta t r$ towards the origin is also baffling although one might see this as a confirmation of the long-known properties of the Rossby waves: short waves (small spatial scales) have small group velocities (Pedlosky (1987)).

The Rossby wave equation describes the time-evolution of vorticity q which for the Green's functions is $q=\nabla^{2} G$. This can be calculated quickly. For example, with the variables $\left\{z_{\star}, \bar{z}_{\star}\right\}$, introduced in (3.7),

$$
\begin{equation*}
\nabla^{2}=\frac{4}{z_{\star} \bar{z}_{\star}} \frac{\partial^{2}}{\partial z_{\star} \partial \bar{z}_{\star}} \quad \text { and } \quad q_{\delta} \equiv \nabla^{2} G_{\delta}=\frac{\beta t}{4 r}\left[J_{1}\left(z_{+}\right) Y_{1}\left(z_{-}\right)+J_{1}\left(z_{-}\right) Y_{1}\left(z_{+}\right)\right] \tag{5.5}
\end{equation*}
$$

after substitution of (1.3) and using $J_{0}^{\prime}=-J_{1}, Y_{0}^{\prime}=-Y_{1}$. For large arguments, i.e. far from the forcing, apart from a constant prefactor, q_{δ} behaves as $\cos (2 a \zeta) / r^{3 / 2}$. The asymptotic energy distribution given in (4.14) behaves as $\sin ^{2}(2 a \zeta) / r^{2}$ and we thought that perhaps the 'empty' spaces seen in the energy distribution in figure 7 might be filled by $r \times \mathcal{E}_{\delta}$ with enstrophy $\mathcal{E}_{\delta}=\frac{1}{2} q_{\delta}^{2}$ so that a conservation law of the form $\partial_{t}\left(E_{\delta}+r \mathcal{E}_{\delta}\right)=0$ would follow. This was nearly so, but not exactly. Thus we have no good understanding yet of the E_{δ} pattern seen in figure 7 nor of the energy distribution E_{H} in figure 9 . A proper energy flux formulation is lacking in terms of recognizable physical quantities (see also Rhines (1975)). At best we can draw attention to the salient differences between E_{δ} and E_{H} : whereas figures 7 and 8 show that at any distance and given time t peaks of energy E_{δ} have equal amplitude and occur both west and east of the forcing, figures 9
and 10 show that the energy E_{H} associated with the sustained forcing is predominantly found west of the forcing. The peak amplitudes of E_{δ} do not vary with time t while with distance r from the source $E_{\delta} \propto 1 / r^{2}$ (see (4.14)) but E_{H} grows with time t and decays more rapidly, i.e. $E_{\mathrm{H}} \propto 1 / r^{3}$ (see (4.19)). The temporal behavior is not surprising in that continued forcing leads to growth in energy but the spatially more confined nature of E_{H} as compared to that of E_{δ} is surprising.
In as much in that the barotropic, non-divergent Rossby wave is a small but fundamental element in the realm of theoretical geophysical fluid dynamics, this study may stimulate interest beyond the current study to search for simple closed-form solutions of forced divergent Rossby waves (waves with finite Rossby deformation radius). This introduces finite group velocity for very long waves and more can then perhaps be said about the evolution of energy distributions and may help recognize 'where' wave energy goes. In view of our results there is reason to be optimistic that the complicated integral representation of Veronis (1958) for divergent Rossby waves and the elegant result of Webb et al. (2016) can be reduced to simpler expressions.

Another possible strategy is to consider a 'switch-on/switch-off' source, that is, the response G_{δ} which Veronis (1958) called a 'tweak', followed by an 'anti-tweak'. This will eliminate the singularity at the forcing location and energy will subsequently be finite everywhere. The simplicity of our expression for $G_{\delta}(1.3)$ allows for quick visualization of such a scenario and further mathematical analysis but this too is left for future research.

RCK acknowledges support from National Science Foundation grants OCE 10-32256 and OCE 15-38559. We thank two anonymous referees and Stefan Llewellyn-Smith for their insightful comments of the manuscript.

REFERENCES

Boyd, J.P. \& Sanjaya, E. 2014 Geometrical effects of western intensification of wind-driven ocean currents: The stommel model, coastal orientation, and curvature. Dynamics of Atmospheres and Oceans 65, 17-38.
Cahn, A. J. 1945 An investigation of the free oscillations of a simple current system. J. Meteor. 2 (2), 113-119.
Dickinson, R.E 1969a Propagators of atmospheric motions 1. excitation by point impulses. Rev. Geophys. 7 (3), 483-514.
Dickinson, R.E. 1969b Propagators of atmospheric motions 2. excitation by switch-on sources. Rev. Geophys. 7 (3), 515-538.
Dixon, A.L. \& Ferrar, W.L. 1933 Integrals for the products of two bessel functions. Quart. J. of Math. 4, 193-208.

Erdélyi, A., ed. 1953 Higher transcendental functions, 3, vol. 2. McGraw-Hill.
Hough, S. S. 1898 On the application of harmonic analysis to the dynamical theory of the tides. - part ii. on the general integration of laplaces dynamical equations. Phil. Trans (A) 191, 139-185.
Kamenkovich, V.M. 1989 Development of rossby waves generated by localized effects. Oceanology 29 (1), 1-11.
Llewellyn-Smith, S.G. 1997 The motion of a non-isolated vortex on the beta-plane. J. Fluid Mech. 346, 149-179.
Longuet-Higgins, M.S. 1965 The response of a stratified ocean to stationary or moving windsystems. Deep-Sea Research 12, 923-973.
Mass, Leo RM 1989 A closed form green function describing diffusion in a strained flow field. SIAM Journal on Applied Mathematics 49 (5), 1359-1373.
Magnus, W., Oberhettinger, F. \& Soni, R.P. 1966 Formulas and theorems for the special functions of mathematical physics, 3rd edn. Springer-Verlag.

Margules, M. 1893 Luftbewegungen in einer rotierenden sphäroidschale (ii. teil). Sitz. der Math. - Naturwiss. Klasse, Kais. Akad. Wiss., Wien 102, 11-56.
McKenzie, J.F. 2014 The group velocity and radiation pattern of rossby waves. Geophys. Astrophys. Fluid Dyn. 108 (3), 258-268.
Moon, P. \& Spencer, D. E. 1961 Field Theory Handbook. Springer.
Morse, P.M. \& Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. \& Clark, C.W., ed. 2010 NISt Handbook of Mathematical Functions. Cambridge University Press.
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. New York, U.S.A.: Springer-Verlag.
Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid. Mech. 69, 417-443.
Rhines, P.B. 2003 Rossby waves. In Encyclopedia of Atmospheric Sciences (ed. J.R Holton, J.A. Curry \& J.A. Pyle), pp. 1-37. Academic Press: Oxford.

Rossby, C.-G 1945 On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteor. 2 (4), 187-204.
Rossby, C.-G. \& collaborators 1939 Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centres of action. J. Marine Res. 2, 38-54.
Veronis, G. 1958 On the transient response of a beta-plane ocean. J. Oceanogr. Soc. Japan 14 (1), 1-5.

Webb, G.M., Duba, C.T. \& Hu, Q. 2016 Rossby wave green's functions in an azimuthal wind. Geophys. Astrophys. Fluid Dyn. 110 (3), 224-258.
Zimmerman, JTF \& Masa, LRM 1989 Renormalized greens function for nonlinear circulation on the β plane. Physical Review A 39 (7), 3575.

