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Monocytes originate from the bonemarrow (BM), are distributed in the
bloodstream, and can differentiate in the tissue into skin macrophages
or intestinal dendritic cells (DCs).1 They play an essential role in
the defense against pathogens2 and are implicated in a range of
diseases.3

Labeling experiments with 6,6-2H2-glucose
4 and 3H-thymidine5,6

have suggested a monocyte residence time in blood of 2 to 4 days.
Although theseexperiments consideredmonocytes as a singlepopulation,
the currently held view is that at least 3 monocyte subsets exist: classical
CD1411CD16– monocytes (CMs), intermediate CD1411CD161

monocytes (IMs), andnonclassicalCD141CD1611monocytes (NCMs).
The residence times of these subsets in blood and their interrelationship
remain to be determined. The 3 subsets are characterized by the gradually
changing expression of surface markers,7 differential gene enhancer
profiles8 expression profiles,9,10 and differences in functionality.3,11

Their maturation kinetics also differ, because human CMs repopulate
the bloodstream first after hematopoietic stem cell transplantation,
followed by IMs and later by NCMs.12 In rhesus macaques, similar
results were found by using in vivo bromodeoxyuridine labeling.13

The gradually changing expression patterns, combined with their
consecutive repopulation/labeling kinetics has led to the prevailing
idea that monocytes differentiate from CMs via IMs to NCMs.9,13

In mice, there is more direct evidence for such a linear differentia-
tion pattern.14 Adoptively transferred CM homologs were shown to
differentiate intoNCMs,15,16 and in vivo imagedmonocyteswere shown
to lose CM marker CCR2 while acquiring NCM marker CXC3CR1
at sites of sterile inflammation.17 However, adoptively transferred
CM preparations might contain small numbers of monocyte
progenitors15 and thus, even in mice, there remains discussion on the
developmental relation of these monocyte subsets under homeostatic
conditions.3,15,18

To investigate the circulatory and maturation/differentiation
kinetics of the human monocyte subsets, we used in vivo 6,6-2H2-
glucose labeling in 14 volunteers19,20 (see supplemental Methods,
available on the Blood Web site). This study was performed after

receiving approval from the local ethics review board (Medisch
Ethische Toetsingscommissie Utrecht) and obtaining written informed
consent from all volunteers in accordance with the Declaration of
Helsinki. Our study population consisted of 5 healthy volunteers and
9 eosinophilic asthma patients. Because no differences in monocyte
subset counts or labeling kinetics were found between asthma patients
and healthy volunteers (supplemental Figure 1), we combined data
from both groups for analysis.

Monocyte subset numbers and percentages in blood (Figure 1)were
in agreement with previous findings,3 with a median of 89% CMs,
4% IMs, and 7% NCMs. DNA 2H-enrichment was first detected in
CMs, inwhich it peaked at days 3 to 4, similar to earlier labeling studies
on the whole monocyte compartment.4,5 In IMs and NCMs, label
enrichment was detected later and peaked after approximately 4
and 8 days, respectively. These findings are in line with previous
results suggesting a linear differentiation pattern.12,13

Mathematical models (supplemental Methods) were fitted to the
measured 2H-enrichment levels to estimate monocyte subset kinetics.
These models take into account the observed ratios between cell
numbers in each subset (assumed to be constant) and assume that
incorporation of label occurred only at themonocyte progenitor stage in
the BM. After maturation in the postmitotic pool (PMP), the models
assume that cells enter the bloodstream as CMs and subsequently
mature into IMs and NCMs. Assuming differentiation from IMs into
NCMs directly in the circulation gave reasonablefits to the enrichment
data of CMs and IMs but failed to describe the delay with which label
was observed inNCMs (Figure 2A).We therefore extended themodel
by assuming that IMs can mature into NCMs only after a delay of
D2 days, Assuming that this maturation step occurs inside the blood
gave an improved fit to the data (Figure 2B; moderate improvement
according to theKullback-Leibler’s scale; supplementalMethods), but
an even better fit was obtained when we assumed that this differen-
tiation step occurs outside the blood (Figure 2C).

For all models, we found 2 optima, 1 with slow and 1 with fast
dynamics of BM precursors. The estimated average maturation time
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in the PMP (D1) was consistently ;2 days. For the third best-fitting
model, monocytes were estimated to reside in the blood as CMs for
0.4or 2.5days, dependingon the specific optimum,with corresponding
turnover rates of monocyte precursors in the BM of 0.4 or 2.6 per day,
respectively. The former optimum with a relatively slow BM turnover
gave a small improvement of the fit to the data compared with the latter

(supplemental Table 1). To determine which of the optima is the one
that matches the biology, information about the dynamics of monocyte
progenitors or the relative pool sizes of progenitors and circulating
monocytes21 would be required. According to the literature,22 the
number of circulating monocytes exceeds by far the number of pro-
genitors, which would suggest that monocyte progenitors have a fast
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Figure 1. Analysis and isolation of circulating

monocytes. Monocyte subsets were gated on the

basis of (A) forward scatter (FSC) and side scatter (SSC)

and (B) singlets and CD14/CD16 expression. Resulting

monocyte (C) percentages and (D) numbers showed

CMs to be the most common circulating monocyte

subset, followed by NCMs and IMs. (E) Fluorescence-

activated cell sorter analysis of 200 sorted cells from all 3

monocyte subsets typically revealed a purity .99% and

good separation between the populations. Note that the

inclusion of pan-monocyte markers CD86 and major

histocompatibility complex II in our gating strategy (either

with or without the inclusion of cells in the lymphocyte

gate) resulted in a slightly higher number of CMs and IMs

recovered (1% and 2% higher counts on average,

respectively) and a lower number of recovered NCMs

(3%). However, use of these cell numbers did not result in

significant differences in parameter estimates. (F) Cyto-

spin preparations stained with May-Grünwald-Giemsa

showed an increasingly mature phenotype from CMs to

NCMs as characterized by a more neutrophilic cytoplasm

and increasingly dendritic appearance. The objective was

a 1003 oil immersion lens, numerical aperture was 1.30,

and scale bars 5 10 mm. (G) DNA 2H-enrichments after in

vivo pulse-labeling with 6,6-2H2-glucose were determined

by gas chromatography-mass spectrometry and plotted

after normalization for plasma enrichment and intracellular

dilution of label (supplemental Methods). Results are based

on a total of 249 measurements from 14 individuals; circles

indicate medians, and bars represent interquartile ranges.

(A-B,E-F) Representative results from 1 experiment. (C-D)

Circles represent the medians of 6 measurements for each

volunteer, and lines indicate medians for the 14 volunteers.

BLOOD, 21 SEPTEMBER 2017 x VOLUME 130, NUMBER 12 LETTERS TO BLOOD 1475

For personal use only.on October 30, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


turnover rate and that CMs have a residence time of 2.5 days in the
blood. The residence times of IMs and NCMs could be estimated
with more certainty, because both optima yielded similar estimates of
;0.9 days for IMs and ;2.3 days for NCMs. Likewise, we consis-
tently estimated IMs to stay outside the circulation for;1.6 days with
negligible cell death before reentering the blood as NCMs.

In addition to estimating monocyte subset kinetics, our model
allowed estimation of the fraction of cells lost from circulation
during each maturation step. We estimated that, on average, less
than 10% of all CMs differentiate into circulating IMs, whereas
82% to 89% of circulating IMs eventually mature into circulat-
ing NCMs. This is in line with previous experiments showing
monocyte-derived macrophages in skin23 and DCs in the gut16 to
be directly derived from CMs, implying that not all CMs become
IMs. Alternatively, there might be noncirculating pools of IMs and
NCMs, which cannot be obtained by venipuncture. The existence of
noncirculating monocytes has been demonstrated in the BM24 in the
form of patrolling NCMs11 adhering to blood vessel walls or as
marginated monocytes in mice. 2H-labeling experiments that include
noncirculating monocyte samples might allow determination of the
location of IM into NCM maturation.

Note that our models assume the existence of no more than
2 kinetically different populations within each subset. Additional
monocyte subsets as proposed recently25 might result in slightly
different estimates. Furthermore, the fact that our results can be

fitted with a linear CM-IM-NCM differentiation does not exclude the
possibility that each subset develops separately in the BM. This would
require longer retention of IMs and NCMs in the PMP and can be
excluded only by lineage tracing experiments (eg, by infusion of
labeled CMs followed by measurements in IMs and NCMs).

Our results have important implications for monocytes under
homeostasis. We show that all 3 monocyte subsets have a rapid turn-
over in the circulation. Our results support the hypothesis of a linear
CM-IM-NCM differentiation but imply that the majority of CMs do
not end up as circulatory NCMs and suggest that the last differenti-
ation step takes place outside the circulation. Thus,monocytes seem to
leave the circulation as IMs and re-enter as NCMs. From these results,
important questions arise, such as what determines whether amonocyte
follows the CM-IM-NCM differentiation pathway, why IMs leave the
circulation, and how these processes are involved in immune homeo-
stasis and pathogenesis of immune-mediated diseases.

*J.A.M.B. and K.T. contributed equally to this study.

The online version of this article contains a data supplement.

Acknowledgments:Theauthors thankSimoneSluis-Eising for takingcare ofour

healthy volunteers and patients, Corneli van Aalst for help in the laboratory, Sigrid

Otto for her help with the gas chromatography–mass spectrometry analyses, the

fluorescence-activated cell sorter operators of the Laboratory for Translational

Immunology Flow Cytometry Core Facility, and Stijn van Oirschot and Marieke
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With the advent of pathway inhibitors, the management of high-risk
chronic lymphocytic leukemia (HR-CLL) has dramatically changed

during recent years.1-3 This has downscaled the role of alloge-
neic hematopoietic cell transplantation (allo-HCT) as the formerly
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