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The conditional independencies from a joint probability distribution constitute a model 
which is closed under the semi-graphoid properties of independency. These models 
typically are exponentially large in size and cannot be feasibly enumerated. For describing a 
semi-graphoid model therefore, researchers have proposed a more concise representation. 
This representation is composed of a representative subset of the independencies involved, 
called a basis, and lets all other independencies be implicitly defined by the semi-graphoid 
properties. An algorithm is available for computing such a basis for a semi-graphoid 
independency model. In this paper, we identify some new properties of a basis in general 
which can be exploited for arriving at an even more concise representation of a semi-
graphoid model. Based upon these properties, we present an enhanced algorithm for basis 
construction which never returns a larger basis for a given independency model than 
currently existing algorithms.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models capturing joint probability distributions over sets of random variables are employed in numerous 
real-world applications. Especially probabilistic graphical models have become quite popular as appropriate models for de-
scribing distributions for problems in a range of societal fields. The practicability of computing probabilities of interest from 
these models typically derives from inference algorithms which exploit the modelled independency relation among the vari-
ables involved [5,6]. Independency relations embedded in joint probability distributions and their (concise) representation 
have therefore been subjects of extensive studies [2–4,9–11].

Pearl and his co-researchers were among the first to formalise qualitative properties of probabilistic independency in an 
axiomatic system [7,8]. The axioms from this system, which are known as the semi-graphoid axioms, are often looked upon as 
derivation rules for generating new independencies from a basic set of independency statements; any set of independencies 
that is closed under finite application of these rules is then called a semi-graphoid independency model. Semi-graphoid models 
constitute a quite general class among the various types of conditional independency model, in the sense that they provide 
for describing any independency relation embedded in a real-world probability distribution, even if this distribution is not 
strictly positive.
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A range of computational problems on semi-graphoid independency models are being addressed in the literature. Two 
closely-related problems are the implication problem and the representation problem. The implication problem is the problem 
of deciding whether a given statement of independency can be derived from a given set of such statements [14]. The 
representation problem is the problem of finding a small subset of independency statements that fully describes a given 
independency model. Semi-graphoid independency models in general include exponentially many statements. Representing 
these models by enumeration of their element independencies therefore is not feasible in practice. Studený was the first 
to propose a concise representation of an independency model, based on the semi-graphoid axioms [12,13]. The idea is 
to explicitly enumerate a representative subset of independency statements from a semi-graphoid model and let all other 
independencies be defined implicitly through the derivation rules; such a representative subset of statements is termed a 
basis for the model at hand. Studený designed an efficient algorithm for computing a basis for a semi-graphoid model from 
a given starting set of independency statements, which was later improved by Baioletti and his co-researchers [1].

In this paper, we revisit the representation of semi-graphoid independency models, and show that the subset of inde-
pendency statements which have to be represented explicitly, can often be further reduced in size. We introduce the new 
notion of maximal non-symmetric basis for this purpose, with an associated algorithm for its computation. Our algorithm 
is shown to never result in a larger basis for a given independency model than existing algorithms. Also, the intermediate 
bases constructed in the various iterations of our algorithm will never be larger than those constructed by existing algo-
rithms. Our enhanced algorithm as a consequence improves not just upon the size of the resulting basis for representation 
but upon the runtime complexity of its construction as well.

The paper is organised as follows. We provide some preliminaries on semi-graphoid independency models in Section 2, 
and review concise representations and their associated construction algorithms in Section 3. In Section 4 we detail, among 
other notions and properties, our notion of maximal non-symmetric basis. Section 5 then describes our enhanced algorithm 
for basis construction, and demonstrate the practicability of our algorithm by means of a number of example independency 
models. The paper ends with our concluding observations in Section 6.

2. Semi-graphoid independency models

We briefly review semi-graphoid independency models [7,13], and thereby introduce our notational conventions. We 
consider a finite, non-empty set S of random variables. A triplet θ over S is a statement of the form θ = 〈A, B | C〉, where 
A, B, C ⊆ S are mutually disjoint subsets of S with A, B �= ∅; we will use Xθ = A ∪ B ∪ C to refer to the triplet’s set of 
variables. A triplet 〈A, B | C〉 states that the sets of variables A and B are mutually independent given the set C ; in view 
of a joint probability distribution Pr over S , the triplet states that Pr(A, B | C) = Pr(A | C) · Pr(B | C). The set of all triplets 
over S is denoted by S(3) . A (sub-)set of triplets now constitutes a semi-graphoid independency model if it satisfies the four 
so-called semi-graphoid properties stated in the following definition.

Definition 1. A semi-graphoid independency model is a subset of triplets J ⊆ S(3) which satisfies the following properties:

G1: if 〈A, B | C〉 ∈ J , then 〈B, A | C〉 ∈ J (symmetry);
G2: if 〈A, B | C〉 ∈ J , then 〈A, B ′ | C〉 ∈ J for any non-empty subset B ′ ⊆ B (decomposition);
G3: if 〈A, B1 ∪ B2 | C〉 ∈ J with B1 ∩ B2 = ∅, then 〈A, B1 | C ∪ B2〉 ∈ J (weak union);
G4: if 〈A, B | C ∪ D〉 ∈ J and 〈A, C | D〉 ∈ J , then 〈A, B ∪ C | D〉 ∈ J (contraction).

The four semi-graphoid properties jointly convey the idea that learning irrelevant information does not alter the indepen-
dencies among the variables discerned [7]. The weak union property G3 for example, states that learning information about 
B2 which is known to be irrelevant with respect to A given C cannot help irrelevant information about B1 to become rele-
vant to A. We note that the contraction rule G4 cannot always be applied to two arbitrarily chosen triplets; we will return 
to this observation in Section 4.1.

The semi-graphoid properties of independency are often viewed, and referred to, as derivation rules for generating (new) 
triplets from a given set of triplets. Given a starting set of triplets J ⊆ S(3) and a designated triplet θ ∈ S(3) , we write J �∗ θ

if the triplet θ can be derived from J by finite application of the semi-graphoid rules G1, G2, G3 and G4. We note that 
the four rules thereby induce a derivational relation among the triplets of a semi-graphoid model. A variety of problems on 
semi-graphoid independency models are being studied by building upon this derivational relation. A well-known problem is 
the implication problem [14], which is the problem of deciding whether a specific triplet θ can be derived from a given set 
of triplets J . More formally, the problem asks whether a given triplet θ is included in the closure of a triplet set J , where 
the notion of closure is defined as follows.

Definition 2. Let J ⊆ S(3) be a set of triplets. Then, the closure of J , denoted by J , is the set of all triplets θ ∈ S(3) such that 
J �∗ θ .

Another, closely related problem on semi-graphoid independency models is the representation problem [13], which is the 
problem of finding a (small) subset of triplets J that fully describes a given semi-graphoid independency model M . More 
formally, the problem asks for a basis for a given independency model, where the notion of basis is defined as follows.
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Definition 3. Let M be a semi-graphoid independency model over a set of random variables S . Then, a set of triplets J ⊆ S(3)

is called a basis for M if J = M .

We observe that any triplet set J constitutes a basis for its own closure J . The set J may not be a minimum nor a minimal 
basis for J , however.

3. Representing semi-graphoid independency models

Semi-graphoid independency models typically are exponentially large in size, and representing them by enumeration 
of their element triplets is not feasible in practice. Studený was the first to propose a more concise representation of a 
semi-graphoid model based on the four semi-graphoid derivation rules [13]. The idea of his representation is to explicitly 
capture a basis for a model and let all other triplets be defined implicitly through these rules. In Sections 3.1 and 3.2 we 
review the basic notions underlying Studený’s representation; in Section 3.3 we describe his algorithm for constructing 
a concise basis for the closure of a given triplet set. Throughout the three sections, we discuss, in addition, the notions 
introduced by Baioletti and his co-researchers to improve upon Studený’s original algorithm.

3.1. The derivational relation between triplet pairs

For constructing concise representations of semi-graphoid independency models in general, several researchers have in-
vestigated and contributed to a characterisation of the derivational relation between triplets which is induced by application 
of the semi-graphoid rules. We begin by reviewing the notion of dominance which underlies the representation of indepen-
dency models proposed by Studený [13].

Definition 4. Let J ⊆ S(3) be a semi-graphoid independency model, and let G2s and G3s be the following derivation rules 
over J :

G2s: if 〈A, B | C〉 ∈ J , then 〈A′, B | C〉 ∈ J for any non-empty subset A′ ⊆ A;
G3s: if 〈A1 ∪ A2, B | C〉 ∈ J with A1 ∩ A2 =∅, then 〈A1, B | C ∪ A2〉 ∈ J .

Now, let θi ∈ J , i = 1, 2. If θ1 can be derived from θ2 by finite application of the rules G2, G3, G2s and G3s, we say that θ1
is dominated by θ2, denoted θ1 ≺ θ2. A triplet θ ∈ J is called dominant in J if it is not dominated by any triplet τ ∈ J with 
τ �= θ .

The notion of dominance pertains to a single triplet and the triplets that can be derived from it by means of the rules 
G2, G3, G2s and G3s, where the latter two rules incorporate the property of symmetry into the basic rules G2 and G3. 
We observe, from Definition 4, that any triplet θ is dominated by itself but not by the symmetric transpose θ T which is 
obtained from θ by a single application of the symmetry rule G1. The following lemma reviews necessary and sufficient 
conditions for dominance of a triplet in general [13].

Lemma 1. Let θi = 〈Ai, Bi | Ci〉 ∈ S(3) with Xi = Ai ∪ Bi ∪ Ci , i = 1, 2. Then, θ1 ≺ θ2 if and only if the following conditions hold:

• C2 ⊆ C1 ⊆ X2;
• A1 ⊆ A2 and B1 ⊆ B2 .

Informally spoken, the conditions stated in the lemma capture all possible ways in which the triplet θ1 can be derived from 
the triplet θ2 = 〈A2, B2 | C2〉 by means of the rules G2, G3, G2s and G3s. Multiple applications of the decomposition (G2) 
and weak union (G3) rule to θ2 result in triplets θ1 = 〈A2, B1 | C1〉 with B1 ⊆ B2 and C2 ⊆ C1 ⊆ C2 ∪ (B2 \ B1); application 
of their symmetric counterparts G2s and G3s further induce the condition A1 ⊆ A2.

Similar to Studený’s notion of dominance, Baioletti et al. [1] introduced the notion of g-inclusion for describing the 
derivational relation between pairs of triplets.

Definition 5. Let J ⊆ S(3) be a semi-graphoid independency model and let θi ∈ J , i = 1, 2. Then, θ1 is g-included in θ2, 
denoted θ1 
 θ2, if θ1 can be derived from θ2 by finite application of the rules G1, G2 and G3. A triplet θ ∈ J is called 
g-maximal in J if it is not g-included in any triplet τ from J with τ /∈ {θ, θ T }.

Also for g-inclusion necessary and sufficient conditions have been formulated [1], which are summarised in the following 
lemma.

Lemma 2. Let θi = 〈Ai, Bi | Ci〉 ∈ S(3) with Xi = Ai ∪ Bi ∪ Ci , i = 1, 2. Then, θ1 
 θ2 if and only if the following conditions hold:
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• C2 ⊆ C1 ⊆ X2;
• either A1 ⊆ A2 and B1 ⊆ B2 , or B1 ⊆ A2 and A1 ⊆ B2 .

The definitions of dominance and g-inclusion respectively, show that the two notions are closely related. More specifically, 
for any two triplets θ1, θ2 with θ1 /∈ {θ2, θ T

2 }, the following property holds:

θ1 
 θ2 if and only if θ1 ≺ θ2 or θ1 ≺ θ T
2

The main difference between the definitions of the two notions is that, while the notion of dominance incorporates symme-
try implicitly through the symmetrical counterparts of the decomposition and weak union rules, the notion of g-inclusion 
involves symmetry explicitly through the symmetry rule itself. By including the rule of symmetry separately into the deriva-
tional system, any triplet is g-included in its symmetric transpose; we recall that, in contrast, a triplet is not dominated by 
its transpose. These properties are summarised in the following corollary.

Corollary 3. For any triplet θ ∈ S(3) , the following properties hold:

• θ 
 θ and θ ≺ θ ;
• θ 
 θ T , θ T 
 θ and θ ⊀ θ T , θ T ⊀ θ .

For ease of notation in the sequel, we extend the notions of dominance and g-inclusion to apply to triplet sets.

Definition 6. Let J i ⊆ S(3) , i = 1, 2, be sets of triplets. Then,

• J1 is g-included in J2, denoted by J1 
 J2, if for each triplet θ ∈ J1 there exists a triplet θ ′ ∈ J2 such that θ 
 θ ′;
• J1 is dominated by the set J2, denoted by J1 ≺ J2, if for each triplet θ ∈ J1, there exists a triplet θ ′ ∈ J2 such that 

θ ≺ θ ′ .

3.2. Including the contraction rule into the derivational relation

The properties of the derivational relation between triplets reviewed above involve just the derivation rules G1, G2 
and G3. The remaining rule G4 differs from these three rules in that it constructs a triplet by combining information from 
two triplets rather than by building upon a single triplet. We write {θ1, θ2} �G4 θ to denote application of the contraction 
rule G4 to the two triplets θ1, θ2 to yield a third triplet θ . We observe from its definition that the contraction rule cannot 
always be applied to two arbitrary triplets. To accommodate the rule, Studený designed a dedicated operator, called the 
gc-operator [13], which constructs from two triplets θ1, θ2 triplets θ ′

1, θ ′
2 by application of the derivation rules G2, G3, 

G2s and G3s, to which the contraction rule can be applied to yield a possibly new triplet θ . This gc-operator is defined as 
follows.

Definition 7. For all triplet pairs θi = 〈Ai, Bi | Ci〉 ∈ S(3) with Xi = Ai ∪ Bi ∪ Ci , i = 1, 2, such that

• A1 ∩ A2 �=∅,
• C1 \ X2 =∅,
• C2 \ X1 =∅, and
• (B2 \ C1) ∪ (B1 ∩ X2) �=∅,

the gc-operator is defined through:

gc(θ1, θ2) = 〈A1 ∩ A2, (B2 \ C1) ∪ (B1 ∩ X2) | C1 ∪ (A1 ∩ C2)〉
For all pairs of triplets θ1, θ2 for which the four conditions stated above do not hold, gc(θ1, θ2) is undefined.

Studený showed that if the gc-operator is applicable to two triplets θ1, θ2 to result in a valid triplet θ , then this triplet 
θ dominates all elements that can be derived from θ1, θ2 by applying the rules G2, G3, G4, G2s and G3s. A slightly more 
detailed result is stated in the following lemma by Baioletti et al. [1].

Lemma 4. Let J ⊆ S(3) be a semi-graphoid independency model, and let θi = 〈Ai, Bi | Ci〉 ∈ J with Xi = Ai ∪ Bi ∪ Ci , i = 1, 2. Let 
the operator gc be as in Definition 7 and let

HG4(θ1, θ2) = {θ | ∃ θ ′
1 ≺ θ1, θ

′
2 ≺ θ2 ∈ J such that θ ′

1, θ
′
2 �G4 θ and θ is valid}

Then,
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• HG4(θ1, θ2) = ∅ if and only if at least one of the following conditions fails:
C.1 A1 ∩ A2 �= ∅;
C.2 C1 ⊆ X2 and C2 ⊆ X1;
C.3 B2 \ C1 �= ∅;
C.4 B1 ∩ X2 �= ∅;
C.5 |(B2 \ C1) ∪ (B1 ∩ X2)| ≥ 2;

• if HG4(θ1, θ2) �=∅, then gc(θ1, θ2) ∈ HG4(θ1, θ2) and τ ≺ gc(θ1, θ2) for any triplet τ ∈ HG4(θ1, θ2) with τ �= gc(θ1, θ2).

The lemma in essence states that the gc-operator indeed constructs dominating triplets. We observe that the set HG4(θ1, θ2)

includes all triplets which can be derived by applying the contraction rule G4 to the triplet pair θ1, θ2 and to all triplets 
which are pairwise dominated by θ1, θ2. The conditions C1–C5 mentioned in the lemma now are taken as the conditions 
under which the gc-operator can be applied to give a valid, dominating triplet θ .

The notion of g-inclusion introduced by Baioletti et al. is connected with the contraction rule G4 as follows [1].

Lemma 5. Let θ1, θ ′
1, θ2, θ ′

2 ∈ S(3) be triplets such that θ ′
1 
 θ1 , θ ′

2 
 θ2 . If θ ′
1, θ

′
2 �G4 θ ′ and θ1, θ2 �G4 θ , then θ ′ 
 θ .

Informally spoken, the lemma states that the contraction of two g-included triplets θ ′
1, θ ′

2 is itself g-included in the contrac-
tion of their including triplets θ1, θ2.

3.3. Computing a basis for a semi-graphoid model

For representing a semi-graphoid independency model, it suffices to find a subset of triplets which captures the same 
information as the entire model itself, that is, it suffices to find a basis. Studený designed an algorithm for this purpose 
based upon the observation that dominated triplets do not convey any additional information about a model and thus are 
not required explicitly for its representation [13]. His algorithm generates, from a given set of triplets, all dominant triplets 
of the semi-graphoid model defined by this starting triplet set, thereby establishing a basis for the model. More specifically, 
the algorithm constructs all dominant triplets directly using the gc-operator, without explicitly generating the full closure of 
the starting triplet set.

Studený’s original algorithm takes a starting triplet set for its input and, in a pre-processing step, adds any symmetric 
triplet which is not yet included. It then applies the gc-operator to any pair of triplets for which the conditions C1–C5 from 
Lemma 4 hold, adding the results to the basis under construction. Subsequently, all dominated triplets are removed. These 
steps are re-iterated until the basis no longer changes. Studený’s original algorithm was later improved by Baioletti and 
his co-researchers through the definition of a generalised operator and contraction rule. In the sequel, we will refer to the 
overall improved algorithm as the Studený–Baioletti algorithm.

Given a starting set of triplets, Studený’s original algorithm begins with adding all symmetric transposes, to allow all 
possible applications of the derivation rules G2, G3, G2s, G3s and G4. To forestall the need of having to explicitly add 
symmetric triplets to a basis under construction, Baioletti et al. generalised the gc-operator as defined below [1].

Definition 8. For all triplet pairs θi = 〈Ai, Bi | Ci〉 ∈ S(3) with Xi = Ai ∪ Bi ∪ Ci , i = 1, 2, the GC-operator is defined through:

GC(θ1, θ2) = {θ | θ̂1 ∈ {θ1, θ
T
1 }, θ̂2 ∈ {θ2, θ

T
2 } with gc(θ̂1, θ̂2) = θ a valid triplet}

We note that the GC-operator constructs not just the single triplet from applying Studený’s gc-operator to θ1, θ2, but those 
from applying this operator to all combinations involving symmetric transposes as well. To accommodate application of 
the GC-operator, the contraction rule G4 is generalised to fully integrate the property of symmetry into the derivation. The 
generalised contraction rule G4∗ is as defined below [1].

Definition 9. Let J ⊆ S(3) be a semi-graphoid independency model. Then, G4∗ is the following derivation rule over J :

G4∗ : if θ1, θ2 ∈ J , then GC(θ1, θ2) ∪ GC(θ2, θ1) ⊆ J

Forestalling the pre-processing step of Studený’s original algorithm for basis construction, the Studený–Baioletti algorithm 
now applies the G4∗ derivation rule to any pair of triplets for which the conditions of Lemma 4 hold. After repeated 
application of G4∗ to a starting set J , a triplet set results which is related to the closure of J as stated in the following 
lemma [1].

Lemma 6. Let J ⊆ S(3) and let J be its closure. Let J G4∗
be the set of all triplets that are derived from J by the derivation rule G4∗ . 

Then, J G4∗ ⊆ J and J 
 J G4∗
.

The property J G4∗ ⊆ J mentioned in the lemma states that application of the derivation rule G4∗ does not yield any triplets 
which are not in the closure of the starting set J ; the property J 
 J G4∗

implies that all triplets from J are represented in 
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Basis construction

Input: J ⊆ S(3)

Output: Jk with Jk = J

1: function Basis-Construction( J )
2: J0 ← J
3: N0 ← J
4: k ← 0
5: repeat
6: k ← k + 1
7: Nk ← ⋃

θ1∈ Jk−1,θ2∈Nk−1
(GC(θ1, θ2) ∪ GC(θ2, θ1))

8: Jk ← ( Jk−1 ∪ Nk)/

9: until Jk = Jk−1

10: return Jk

11: end function

Fig. 1. The Studený–Baioletti algorithm for basis construction.

J G4∗
through g-inclusion. The lemma thereby states that finite application of G4∗ serves to generate essentially the same 

information from the set J as finite application of the four semi-graphoid rules G1, G2, G3, and G4, and hence that J G4∗

constitutes a basis for the closure of the starting set J . The triplet set J G4∗
does not necessarily constitute a minimal basis 

for the model however, as it may include various redundant triplets. To reduce the set J G4∗
without losing any information, 

it is restricted to its subset of g-maximal triplets. We define the notion of g-maximal triplet subset for triplet sets in general.

Definition 10. Let J ⊆ S(3) be a triplet set. A g-maximal triplet subset J/
 of J is a set of triplets such that J/
 = {θ ∈ J |
�θ ′ ∈ J with θ ′ /∈ {θ, θ T } such that θ 
 θ ′}.

Given a starting set J , a g-maximal triplet subset of its closure J contains the same independency information as the closure 
itself and hence constitutes a basis for the semi-graphoid model at hand. More formally, the following lemma [1] holds for 
g-maximal triplet subsets of the closure J and of the triplet set J G4∗

constructed from J , respectively.

Lemma 7. Let J ⊆ S(3) be a triplet set, and let J/
 and J G4∗
/
 be g-maximal triplet subsets of J and J G4∗

as defined above. Then, 
J G4∗
/
 
 J /
 and J /
 
 J G4∗

/
 .

The lemma states that any pair of g-maximal triplet subsets, of the closure J and of the set J G4∗
respectively, share exactly 

the same information even though the two g-maximal sets may differ.
From Lemma 7 we now conclude that constructing a basis for a semi-graphoid independency model amounts to taking a 

g-maximal triplet subset J G4∗
/
 from the set of triplets which result from repeated application of the G4∗ derivation rule. The 

overall Studený–Baioletti algorithm for basis construction now is summarised in Fig. 1. Starting with the initial triplet set J , 
the algorithm computes, in each iteration, the triplets which result from all possible applications of the G4∗ derivation rule 
(line 7) and adds these to the triplet set under construction. The g-included triplets are subsequently removed (line 8), and 
the procedure is repeated until the basis under construction no longer changes in the sense that no new g-maximal triplets 
are being added.

In the worst case, the Studený–Baioletti algorithm has a runtime complexity which is exponential in the size of the 
starting triplet set J . The essence of the algorithm is the iterative application of the G4∗ derivation rule in line 7. In the first 
iteration, the GC-operator is applied twice for each pair of triplets from the starting triplet set J0. Each application of the 
GC-operator involves four applications of the gc-operator, each of which requires verifying conditions C1–C5 from Lemma 4
and a (limited) number of set manipulations. With | J0| = n being the number of triplets in J0 = J , the first iteration of 
line 7 of the algorithm thus takes O (n2) time. In the worst case, this iteration may result in a set N1 with O (n2) new 
triplets. Since O (n2) triplets in the constructed set J0 ∪ N1 can be g-maximal, the intermediate basis J1 for the algorithm’s 
next iteration may include O (n2) triplets. In the second iteration, | J1| · |N1| triplet pairs are considered, which amounts 
to O (n4) applications of the gc-operator; in the worst case, these applications may result in an intermediate basis of size 
O (n4). In general, the kth iteration of line 7 may take O (n2k

) time and result in an intermediate basis of size O (n2k
). Each 

iteration of the algorithm thus takes polynomial time, of a power dependent on the iteration. In practical applications, the 
power of the polynomial for the kth iteration is also dependent on the sizes of the triplet sets Ni and intermediate bases 
J i constructed in the earlier iterations. The number of iterations required before meeting the stopping criterion from line 9 
for the algorithm’s main loop, may in the worst case be exponential in the size of the starting triplet set, as the algorithm 
may need to investigate a sizeable part of the closure of this triplet set.

4. Revisiting the derivational relation among triplets

Upon revisiting the derivational relation among the triplets of a semi-graphoid independency model, we identified two 
properties which can be exploited for enhancing the Studený–Baioletti algorithm for basis construction. Our first enhance-
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ment is based on the observation that particular elements from a starting triplet set can be excluded from consideration 
during basis computation; we state, in Section 4.1, necessary conditions for identifying such triplets. In Section 4.2, we 
further argue that symmetric transposes need not be added or kept throughout the computations. We will enhance the 
Studený–Baioletti algorithm with these two properties in Section 5. As a preliminary to our enhanced algorithm, Section 4.3
introduces a tailored representation of triplets which supports their efficient manipulation.

4.1. Excluding lonely triplets from consideration

The Studený–Baioletti algorithm for basis construction builds on application of the G4∗ derivation rule, and on using the 
gc-operator more specifically. As we have already mentioned in Section 2, the contraction property underlying this rule does 
not always apply to any arbitrarily chosen pair of triplets. In fact, a starting triplet set may include triplets to which the 
gc-operator can never be applied to yield (potentially) new triplets. The following lemma identifies such lonely triplets.

Lemma 8. Let J ⊆ S(3) be a triplet set and let θ = 〈A, B | C〉 ∈ J with X = A ∪ B ∪ C. If at least one of the following conditions holds 
for all other triplets θ ′ = 〈A′, B ′ | C ′〉 ∈ J , θ ′ /∈ {θ, θ T }, with X ′ = A′ ∪ B ′ ∪ C ′:

E1. C � X ′;
E2. A ∩ (A′ ∪ B ′) =∅ and B ∩ (A′ ∪ B ′) =∅;
E3. (A ∪ B) \ C ′ = ∅ and (A′ ∪ B ′) \ C =∅;
E4. (A ∪ B) ∩ X ′ = ∅ and (A′ ∪ B ′) ∩ X = ∅;

then J G4∗ \ {θ, θ T } = ( J \ {θ, θ T })G4∗
.

Proof. We focus on the triplet θ = 〈A, B | C〉 with X = A ∪ B ∪ C as stated in the lemma, and consider another triplet 
θi = 〈Ai, Bi | Ci〉, θi /∈ {θ, θ T }, from J , with Xi = Ai ∪ Bi ∪ Ci . Application of the G4∗ derivation rule to the pair of triplets θ , 
θi produces the triplet set GC(θ, θi) ∪ GC(θi, θ). We know that this set is non-empty only if applying the gc-operator yields 
at least one valid triplet, that is, only if all conditions C1–C5 from Lemma 4 hold.

We assume that at least one of the four conditions E1–E4 stated above holds for all triplet pairs θ , θi alike. With 
condition E1, that is, with C � Xi , we find that condition C2 from Lemma 4 does not hold as it requires C ⊆ Xi ; the 
triplet set derived from θ , θi by a single application of G4∗ thus is empty. Using analogous arguments with respect to the 
conditions E2, E3 and E4, we conclude that by a single application of the G4∗ derivation rule to any triplet pair involving θ
no valid triplets can result.

It now remains to be shown that application of the G4∗ derivation rule to θ and any triplet that may have been generated 
by applying G4∗ to another triplet pair from J , cannot result in a well-defined, valid triplet. To this end, we consider two 
triplets θ j = 〈A j, B j | C j〉 and θk = 〈Ak, Bk | Ck〉, θ j, θk /∈ {θ, θ T }, from J such that application of G4* to the pair θ j , θk
results in at least one valid triplet θ ′ = 〈A′, B ′ | C ′〉 with X ′ = A′ ∪ B ′ ∪ C ′ . Since a valid triplet is constructed, we know from 
Lemma 4 that, among other properties, C j ⊆ Xk , Ck ⊆ X j must hold; we further know that X ′ ⊆ X j ∪ Xk .

From our assumption, we have that at least one of the conditions E1–E4 must hold for both the triplet pair θ , θ j and the 
triplet pair θ , θk . With each condition therefore, we have to show that application of the G4* derivation rule to θ , θ ′ does 
not yield any valid triplets. We prove the property for the condition E1; the proofs pertaining to the other three conditions 
E2, E3 and E4 are analogous. We assume that the condition E1 holds for both triplet pairs θ , θ j and θ , θk alike. We then 
have that C � X j and C � Xk . We now distinguish between two cases:

• if C � (X j ∪ Xk), then there must be a variable V ∈ C with V /∈ X j and V /∈ Xk . Since X ′ ⊆ X j ∪ Xk , we find that C � X ′ , 
from which we conclude, by Lemma 4, that application of the G4* derivation rule results in an empty triplet set;

• if C ⊆ (X j ∪ Xk), then there must be two variables V , W such that {V , W } ⊆ C , V ∈ X j , V /∈ Xk and W ∈ Xk , W /∈ X j . 
Since C j ⊆ Xk , we know that V /∈ C j and hence that V ∈ (A j ∪ B j); similarly, W ∈ (Ak ∪ Bk). From the construction 
of θ ′ , we observe that {V , W } � X ′ . We thus find that C � X ′ and conclude, by Lemma 4, that application of the G4* 
derivation rule does not result in any valid triplet.

From the above considerations, we have that the triplet set GC(θ, θi) ∪ GC(θi, θ) is empty for all triplets θi which are 
themselves in J or are constructed from triplets in J . We conclude that finite application of the G4* derivation rule to 
a triplet pair involving the triplet θ does not yield any valid triplets, from which we conclude that J G4∗ \ {θ, θ T } = ( J \
{θ, θ T })G4∗

. �
From Lemma 8, we conclude that the lonely triplets from a starting set are not involved in the derivation of any set Nk
of newly constructed triplets in the Studený–Baioletti algorithm and, hence, can be excluded from the computations of the 
algorithm’s main loop. The following lemma now further shows that the lonely triplets are g-maximal in any basis of the 
closure of the starting set.
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Lemma 9. Let J ⊆ S(3) be a triplet set and let J be its closure. Let J− ∪ J∗ , with J− ∩ J∗ = ∅, be a basis of J , such that J∗ contains 
all lonely triplets from J . Then,

• for all triplets θ ∈ J∗ , there do not exist any triplets θ ′ ∈ J− such that θ 
 θ ′;
• for all triplets θ ′ ∈ J− , there do not exist any triplets θ ∈ J∗ such that θ ′ 
 θ .

Proof. From each triplet θ ∈ J∗ being a lonely triplet in the starting set J , we have that at least one of the conditions E1–E4 
from Lemma 8 holds for all triplet pairs θ , θ ′ with θ ′ ∈ J− . It now suffices to show, for each of the four conditions, that if 
it holds, then at least one of the conditions for g-inclusion from Lemma 2 does not hold. We prove this property for the 
condition E3 from Lemma 8; the proofs for the other three conditions are analogous.

We assume that the condition E3 from Lemma 8 holds for each pair θ , θ ′ with θ ∈ J∗ , θ ′ ∈ J− . We then have that 
(A ∪ B) ⊆ C ′ . Since the sets A′ , B ′ , C ′ are disjoint, it follows that A′ � A. Similarly, we find that B ′ � A. We conclude from 
Lemma 2 that the conditions for g-inclusion do not hold, and hence that θ �
 θ ′ . Using the property (A′ ∪ B ′) ⊆ C , we equally 
find that θ ′ �
 θ . �
From the properties stated in the two lemmas above, we have that the lonely triplets from a starting set can be set aside 
throughout the basis computations, only to be added again to the final basis in a post-processing step. We note that by 
doing so, the number of applications of the G4∗ derivation rule is effectively reduced for any triplet set which includes at 
least one lonely triplet; we will return to this observation in our examples in Section 5. We further note that for identifying 
the lonely triplets from a starting set at most (n − 1)2/2 triplet comparisons are required, where n is the size of the starting 
set at hand.

4.2. Maintaining a non-symmetric basis

We recall from Section 2 that Studený’s original algorithm for basis construction included a pre-processing step which 
served to add all symmetric transposes to a starting set to allow all possible applications of the G4 derivation rule. In the 
reformulation of Studený’s algorithm by Baioletti and his co-researchers, these applications are covered through the G4∗
derivation rule, as a consequence of which the original pre-processing step is no longer required. Now, upon constructing 
the sets GC(θ, θ ′) ∪GC(θ ′, θ) of potentially new triplets by means of the gc-operator, symmetric transposes may arise and be 
included in a basis under construction. Upon taking a g-maximal subset of such an intermediate basis, both a triplet θ and 
its transpose θ T may be included. Once introduced therefore, transposes may be carried throughout all further computations 
and end up in the final basis. Since a triplet θ is g-included in its symmetric transpose θ T and vice versa, however, it is not 
necessary to include both triplets in the final basis. We now show that symmetric transposes also need not be retained in 
the intermediate bases constructed in the algorithm’s successive iterations. In fact, by removing symmetric transposes from 
an intermediate g-maximal triplet set, a set of triplets results which shares the same information as the full closure of the 
starting set and hence still constitutes a basis. We begin by defining the notion of maximal non-symmetric triplet subset.

Definition 11. Let J ⊆ S(3) be a triplet set. A maximal non-symmetric triplet subset J/
n of J is a g-maximal triplet subset of 
J which satisfies the following property:

if θ ∈ J/
n, then θ T /∈ J/
n

From the definition, we note that a maximal non-symmetric subset of a starting set J can be constructed from a g-maximal 
subset of J by removing one triplet from each pair of symmetric transposes; the resulting maximal non-symmetric set then 
is a subset of this g-maximal triplet set. This property is stated more formally in the following lemma.

Lemma 10. Let J ⊆ S(3) be a triplet set, and let J/
n be a maximal non-symmetric triplet subset of J . Then, there exists a g-maximal 
triplet subset J/
 of J such that J/
n ⊆ J/
 ⊆ J .

Proof. The property follows immediately from Definition 11. �
In the following lemma, we further show that, given a starting set J , any maximal non-symmetric subset of J and any 
g-maximal subset of J share the same information.

Lemma 11. Let J ⊆ S(3) be a triplet set. Let J/
 be a g-maximal triplet subset of J and let J/
n be a maximal non-symmetric subset 
of J . Then, J/
n 
 J/
 and J/
 
 J/
n.

Proof. We consider a triplet θ ∈ J/
n . Since both J/
 and J/
n are g-maximal subsets of J , at least one of θ and θ T need 
be included in J/
 . Since θ 
 θ and θ 
 θ T , we find that J/
n 
 J/
 . By a similar argument, we find that J/
 
 J/
n . �
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We recall that constructing a basis for a starting set J by the Studený–Baioletti algorithm in essence amounts to computing a 
g-maximal subset of the set J G4∗

of all triplets that are derived from J by the G4* derivation rule. The following lemma now 
relates the notion of maximal non-symmetric subset to the basis construction by showing that a maximal non-symmetric 
subset of the set J G4∗

carries the exact same information as a maximal non-symmetric triplet subset of the closure of the 
starting set J .

Lemma 12. Let J ⊆ S(3) be a triplet set and let J be its closure. Let J G4∗
/
n be a maximal non-symmetric subset of the set J G4∗

and let 
J /
n be a maximal non-symmetric subset of J . Then, J G4∗

/
n 
 J /
n and J /
n 
 J G4∗
/
n.

Proof. From Lemma 11, we have that J G4∗
/
n 
 J G4∗

/
 and J /
 
 J /
n . Since J G4∗
/
 
 J /
 , it follows that J G4∗

/
n 
 J /
n . By a 
similar argument, we find that J /
n 
 J G4∗

/
n . �
From the previous two lemmas we conclude that a maximal non-symmetric subset of the set J G4∗

of G4*-derived triplets 
constitutes an appropriate basis for the semi-graphoid model defined by the triplet set J . We now argue that the property 
that this basis will not include any symmetric triplet pairs, can be exploited already during its construction. Let Jk =
( Jk−1 ∪ Nk) ⊆ J be an intermediate basis computed in the kth iteration of the Studený–Baioletti algorithm, from which we 
are about to remove any g-included triplets. If the set Jk includes triplets θ , θ T and θ ′ with θ 
 θ ′ , then both triplets θ , θ T

will be removed from Jk by the algorithm upon taking the g-maximal triplet subset of Jk . If Jk includes the two triplets 
θ , θ T and no other triplet θ ′ with θ 
 θ ′ , then both θ and θ T are retained in the g-maximal triplet subset taken from Jk . 
Since the two triplets are mutually g-included however, one of them can safely be removed without losing any information. 
For the (k + 1)st iteration of the algorithm therefore, it suffices to take the maximal non-symmetric subset of Jk .

4.3. Representing triplets for enhanced basis construction

Exploiting the properties described in the Sections 4.1 and 4.2, Section 5 will detail our enhanced algorithm for basis 
construction. Like the Studený–Baioletti algorithm, our algorithm builds in essence on application of the G4∗ derivation rule. 
To reduce the computational burden involved however, our algorithm employs a tailored representation of pairs of triplets 
and an accordingly adapted derivation rule. We begin by defining our representation of triplet pairs.

Definition 12. Let θi = 〈Ai, Bi | Ci〉 ∈ S(3) , i = 1, 2. The triplet pair θ1, θ2 is in normal form if θ1, θ2 can be written as

θ1 = 〈A A ∪ AB ∪ AC ∪ A X , B A ∪ B B ∪ BC ∪ B X | C A ∪ C B ∪ CC ∪ C X 〉
θ2 = 〈A A ∪ B A ∪ C A ∪ AY , AB ∪ B B ∪ C B ∪ BY | AC ∪ BC ∪ CC ∪ CY 〉

with A A = (Ai ∩ A j), AB = (Ai ∩ B j), AC = (Ai ∩ C j), A X = (Ai \ X j), AY = (A j \ Xi) and with the other subsets defined 
analogously. The pair θ1, θ2 is in strong normal form if it is in normal form and C X = CY =∅.

We recall that the Studený–Baioletti algorithm computes the triplet set GC(θ1, θ2) ∪ GC(θ2, θ1) for all pairs of triplets θ1, θ2
from an intermediate basis. Upon doing so, the basic gc-operator is applied eight times, and for each application the five 
conditions from Lemma 4 are evaluated. We observe from our definition above that, if a pair of triplets θ1, θ2 is written in 
(strong) normal form, then each of the eight potential triplets for the set GC(θ1, θ2) ∪ GC(θ2, θ1) can be generated simply 
by manipulating the subsets identified in the representation; for example, the potential triplet gc(θ1, θ2) is constructed to 
be 〈A A, AB ∪ B B ∪ BY ∪ B A ∪ BC | C A ∪ C B ∪ CC ∪ C X ∪ AC 〉. We note that formulating a pair of triplets in (strong) normal 
form amounts to establishing the various subsets involved. Through this representation therefore, we forestall any duplicate 
evaluations of the conditions from Lemma 4.

We now further observe that a pair of triplets θ1, θ2 can be brought in strong normal form only if the conditions C1 ⊆ X2
and C2 ⊆ X1 are satisfied. As these conditions constitute also a necessary condition for generating a valid dominating triplet 
upon applying the gc-operator to the pair, we are guaranteed that if two triplets cannot be represented in strong normal 
form, they cannot yield any dominating triplets by using the operator. For constructing new triplets from an intermediate 
basis therefore, we need to consider pairs of triplets in strong normal form only. Still, for a pair of triplets in strong normal 
form, the conditions from Lemma 4 may not all hold. The following lemma shows that application of the gc-operator to 
such a pair would not result in a triplet which is not included in the closure of the basis at hand.

Lemma 13. Let J ⊆ S(3) be a triplet set, and let θi = 〈Ai, Bi | Ci〉 ∈ J with Xi = Ai ∪ Bi ∪Ci , i = 1, 2, such that C1 ⊆ X2 and C2 ⊆ X1 . 
Let the gc-operator be defined as in Definition 7. Then, if at least one of the conditions from Lemma 4 fails, the triplet gc(θ1, θ2) is either 
undefined or g-included in θ1 or θ2 .

Proof. We consider the triplet 〈A1 ∩ A2, (B2 \ C1) ∪ (B1 ∩ X2)|C1 ∪ (A1 ∩ C2)〉 which results from applying the gc-operator 
to the triplet pair θ1, θ2. It now suffices to address each of the four conditions C1, C3, C4 and C5 of Lemma 4 separately, 
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and show that, if the condition fails, the triplet gc(θ1, θ2) is either undefined or g-included in θ1 or θ2; we note that the 
condition C2 always holds by the precondition of the current lemma. We prove the stated property for the condition C5; 
the proofs for the other conditions are analogous.

We assume that the condition C5 from Lemma 4 fails and, hence, that |(B2 \C1) ∪ (B1 ∩ X2)| < 2. We distinguish between 
the two cases where |(B2 \C1) ∪(B1 ∩ X2)| = 0 and |(B2 \C1) ∪(B1 ∩ X2)| = 1. In the first case, we observe that the generated 
‘triplet’ gc(θ1, θ2) = 〈A1 ∩ A2, ∅ | C1 ∪ (C2 ∩ A1)〉 is invalid because its second component is empty. In the second case, we 
find that ((B2 \C1) ∪(B1 ∩ X2)) = B1 ∩ B2, and that the generated triplet equals g(θ1, θ2) = 〈A1 ∩ A2, B1 ∩ B2 | C1 ∪(C2 ∩ A1)〉. 
As C1 ⊆ C1 ∪ (C2 ∩ A1), A1 ∩ A2 ⊆ A1 and B1 ∩ B2 ⊆ B1, this triplet is g-included in θ1 and therefore does not convey any 
new information. �
From the lemma we conclude that for a triplet pair in strong normal form it is not necessary to evaluate the four conditions 
C1, C3, C4 and C5 from Lemma 4 explicitly before applying the gc-operator: if we would apply the operator to the pair 
in case at least one of the conditions fails, the result would be either undefined or g-included. We note that verifying 
g-inclusion of the resulting triplet in the two defining triplets θ1 and θ2 would be no more demanding than verifying the 
conditions from Lemma 4.

5. Revisiting basis computation

Exploiting the properties detailed in the previous section, we formulate in Section 5.1 our enhanced algorithm for basis 
construction. We will show that our algorithm never results in a larger basis for a given triplet set, and in fact never 
constructs larger intermediate bases than the Studený–Baioletti algorithm. The practicability of our enhanced algorithm will 
be demonstrated in Section 5.2 by means of various example independency models.

5.1. The enhanced algorithm for basis construction

Like the Studený–Baioletti algorithm, our enhanced algorithm for basis construction builds in essence on iterated appli-
cation of the G4∗ derivation rule. Building upon our new triplet representation however, we re-formulate the operator and 
define an associated derivation rule. Our enhanced operator GC+ is defined as follows.

Definition 13. For all triplet pairs θi = 〈Ai, Bi | Ci〉 ∈ S(3) with Xi = Ai ∪ Bi ∪ Ci , i = 1, 2, in strong normal form, the GC+-
operator is defined through

GC+(θ1, θ2) = {θ | θ ∈ J∗ is a valid triplet with θ �
 θ1 and θ �
 θ2}
where the set J∗ is composed of the following potential triplets:

θ1 = 〈A A, AB ∪ B A ∪ B B ∪ BC ∪ B D ′ | AC ∪ C A ∪ C B ∪ CC 〉
θ2 = 〈AB , A A ∪ B A ∪ B B ∪ BC ∪ AD ′ | AC ∪ C A ∪ C B ∪ CC 〉
θ3 = 〈B A, A A ∪ AB ∪ AC ∪ B B ∪ B D ′ | BC ∪ C A ∪ C B ∪ CC 〉
θ4 = 〈B B , A A ∪ AB ∪ AC ∪ B A ∪ AD ′ | BC ∪ C A ∪ C B ∪ CC 〉
θ5 = 〈A A, AB ∪ B A ∪ B B ∪ B D ∪ C B | AC ∪ BC ∪ C A ∪ CC 〉
θ6 = 〈B A, A A ∪ AB ∪ AD ∪ B B ∪ C B | AC ∪ BC ∪ C A ∪ CC 〉
θ7 = 〈AB , A A ∪ B A ∪ B B ∪ B D ∪ C A | AC ∪ BC ∪ C B ∪ CC 〉
θ8 = 〈B B , A A ∪ AB ∪ AD ∪ B A ∪ C A | AC ∪ BC ∪ C B ∪ CC 〉

We note that the set J∗ introduced in the definition above includes all triplets which potentially result from applying the 
GC-operator to the triplet pair θ1, θ2. The GC+-operator takes from this set all valid triplets which are not g-included in θ1
or θ2. To accommodate application of the GC+-operator, the G4∗ derivation rule used in the Studený–Baioletti algorithm is 
enhanced to the generalised contraction rule G4+ defined below.

Definition 14. Let J ⊆ S(3) be a semi-graphoid independency model. Then, G4+ is the following derivation rule over J :

G4+ : if θ1, θ2 ∈ J are in strong normal form, then GC+(θ1, θ2) ∪ GC+(θ2, θ1) ⊆ J

Our enhanced algorithm for basis construction now builds upon application of the G4+ derivation rule introduced above 
and is summarised in Fig. 2. The algorithm takes a starting triplet set J for its input, from which it identifies, through a call 
to the function Lonely in a pre-processing step, all triplets which can be safely set aside during the basis computation, as 
described in Section 4.1. It then starts the basis construction with the (possibly reduced) initial basis J0. In each iteration, 
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Enhanced basis construction

Input: J ⊆ S(3)

Output: J+ with J+ = J

1: function Enhanced-Basis-Computation( J )
2: A ← Lonely( J )
3: J0 ← J \ A
4: N0 ← J \ A
5: k ← 0
6: repeat
7: k ← k + 1
8: Nk ← ⋃

θ1∈ Jk−1,θ2∈Nk−1
(GC+(θ1, θ2) ∪ GC+(θ1, θ2))

9: Jk ← ( Jk−1 ∪ Nk)/
n

10: until Jk 
 Jk−1
11: return J+ = Jk ∪ A
12: end function

Fig. 2. Our enhanced algorithm for basis construction.

it computes the triplets which result from all possible applications of the G4+ derivation rule (line 8) and adds these 
to the current triplet set. The algorithm establishes the intermediate basis for the next iteration by taking a maximal 
non-symmetric subset of the just constructed triplet set (line 9). The algorithm then continues iteratively, until the newly 
established basis is g-included in the intermediate basis from the previous iteration (line 10). We would like to note that for 
deciding upon stopping the main iterative loop it no longer suffices to verify equality as in the Studený–Baioletti algorithm: 
since taking a maximal non-symmetric subset involves a random choice among a triplet and its transpose, two successive 
intermediate bases Jk−1 and Jk may differ by just symmetric transposes. In its final step, the algorithm includes the lonely 
triplets which were set aside before the actual basis construction commenced (line 11).

Building upon the correctness of the Studený–Baioletti algorithm for basis construction, we prove correctness of our 
enhanced algorithm through the following lemma.

Lemma 14. Let J ⊆ S(3) be a starting triplet set and let J be its closure. Let J G4∗
/
 be the basis for J constructed by the Studený–Baioletti 

algorithm and let J+ be the basis yielded by our algorithm. Then, J+ 
 J G4∗
/
 and J G4∗

/
 
 J+ .

Proof. From Lemmas 8 and 9 we know that the lonely triplets from a starting set can always be set aside from the iterative 
computations and be added after the basis construction has finished, regardless of the algorithm used. For the remainder of 
the proof, we can thus assume without loss of generality that the starting triplet set J does not include any lonely triplets.

Starting with the triplet sets J0 and N0, our enhanced algorithm constructs, in each iteration k ≥ 1, a triplet set Nk of 
(potentially) new triplets through application of the G4+ derivation rule; it then selects a maximal non-symmetric subset 
Jk from the triplet set Jk−1 ∪ Nk . Similarly, the Studený–Baioletti algorithm constructs, in each iteration, a triplet set N ′

k
through application of the G4∗ rule and selects a g-maximal subset J ′

k from the triplet set J ′
k−1 ∪N ′

k . We now first prove that 
J G4∗
/
 
 J+ . To this end, we show by induction that, for any i ∈ N, we have that N ′

i 
 Ni and J ′
i 
 J i . Clearly, the two stated 

properties hold for i = 0. For our induction hypothesis, we suppose that the two properties hold for all i = 0, . . . , k − 1. We 
show that the properties then also hold for i = k. By the induction hypothesis, we have that for all pairs θ ′

1 ∈ J ′
k−1, θ ′

2 ∈ N ′
k−1, 

there exists a pair θ1 ∈ Jk−1, θ2 ∈ Nk−1 such that θ ′
1 
 θ1 and θ ′

2 
 θ2. Now, let τ ′ = gc(θ ′
1, θ

′
2) and τ = gc(θ1, θ2). We then 

find from Lemma 5 that τ ′ 
 τ . We thus have that GC(θ ′
1, θ

′
2) 
 GC(θ1, θ2). We similarly find that GC(θ ′

2, θ
′
1) 
 GC(θ2, θ1)

from which we have that N ′
k 
 Nk . By the induction hypothesis, we also have that J ′

k−1 
 Jk−1, from which we find that 
( J ′

k−1 ∪ N ′
k) 
 ( Jk−1 ∪ Nk) and, by Lemma 11, that

J ′
k = ( J ′

k−1 ∪ N ′
k)/
 
 ( J ′

k−1 ∪ N ′
k)/
n 
 ( Jk−1 ∪ Nk)/
n = Jk

From the induction, we conclude that, for any i ∈ N, we have N ′
i 
 Ni and J ′

i 
 J i .
Now suppose that the iteration of the main loop of the two algorithms was to continue until both algorithms had halted. 

Since the starting set J is finite, there must be an integer n such that J ′
n = J ′

n−1 = J G4∗
/
 and Jn 
 Jn−1 with Jn = J+ . 

From J ′
k−1 
 Jk−1 for all iterations k, we conclude that J G4∗

/
 
 J+ . To complete the proof, we recall from Lemma 7 that 
J /
 
 J G4∗

/
 . Since J+ 
 J , we find that J+ 
 J 
 J /
 
 J G4∗
/
 . �

In Section 3 we briefly discussed the worst-case runtime complexity of the Studený–Baioletti algorithm for basis con-
struction and argued that this algorithm can take exponential time in the size of the starting triplet set. As it builds upon 
essentially the same principles, our enhanced algorithm shares this high worst-case complexity with the Studený–Baioletti 
algorithm. We further argued that each iteration of the Studený–Baioletti algorithm takes polynomial time and that, in prac-
tical applications, the power of the polynomial involved is dependent on the sizes of the intermediate bases constructed in 
earlier iterations. By the following lemma, we will now show that all intermediate bases constructed by our enhanced algo-
rithm cannot be larger in size than those constructed by the Studený–Baioletti algorithm. As a consequence, each iteration 
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of our algorithm takes at most the same runtime as the matching iteration of the Studený–Baioletti algorithm. Without any 
loss of generality, we consider in the following lemma only starting sets without any lonely triplets,

Lemma 15. Let J ⊆ S(3) be a triplet set without lonely triplets. Let J ′
k be the intermediate basis constructed by the Studený–Baioletti 

algorithm and Jk be the intermediate basis constructed by our algorithm, in the kth iteration of the respective algorithm. Then, Jk ⊆ J ′
k

for all k ≥ 0.

Proof. For the first iteration, our algorithm starts with the triplet sets J0 and N0 = J0; similarly, the Studený–Baioletti 
algorithm starts with the sets J ′

0 = J0 and N ′
0 = N0. We now consider the triplet sets

N1 =
⋃

θ1,θ2∈ J0

(GC+(θ1, θ2) ∪ GC+(θ2, θ1))

N ′
1 =

⋃

θ1,θ2∈ J ′0

(GC(θ1, θ2) ∪ GC(θ2, θ1))

constructed by the two algorithms, respectively. For any valid triplet θ ∈ N1 ∪ N ′
1 constructed by applying the GC-operator 

or the GC+-operator to the triplet pair θ1, θ2 ∈ J0, either one of the following two properties holds:

• if θ is not g-included in θ1 or θ2, then θ ∈ N1 and θ ∈ N ′
1;

• if θ is g-included in either θ1 or θ2, then θ /∈ N1 and θ ∈ N ′
1.

We now distinguish between the following three subsets of the set N ′
1 constructed by the Studený–Baioletti algorithm:

Eg
1 =

⋃

θ1,θ2∈ J ′0

{θ | θ ∈ GC(θ1, θ2) ∪ GC(θ2, θ1) and θ 
 θ1 or θ 
 θ2}

Et
1 = {θ | ∃θ ′ ∈ ( J ′

0 ∪ N ′
1) \ {θ} such that θ = θ ′ T }

M ′
1 = N ′

1 \ (E g
1 ∪ Et

1)

We note that the two sets Eg
1 and Et

1 may be empty and may overlap. We further note that the set E g
1 includes only triplets 

θ which are constructed through application of the GC-operator to a triplet pair θ1, θ2 and are g-included in either one of 
these triplets. Such triplets θ are not generated by our algorithm, by the definition of the GC+-operator. All other triplets 
constructed through application of the GC-operator to a pair of triplets from the starting set J ′

0 = J0 are also constructed 
by the GC+-operator. We conclude that N1 = M ′

1 ∪ Et
1 ⊆ M ′

1 ∪ E g
1 ∪ Et

1 = N ′
1.

We now observe that the Studený–Baioletti algorithm constructs an intermediate basis J ′
1 by taking a g-maximal subset 

of the set J ′
0 ∪ N ′

1 as follows:

J ′
1 = ( J ′

0 ∪ N ′
1)/
 = ( J ′

0 ∪ M ′
1 ∪ E g

1 ∪ Et
1)/
 = ( J ′

0 ∪ M ′
1 ∪ Et

1)/


that is, by taking a g-maximal subset, the Studený–Baioletti effectively removes the g-included extra triplets of the set E g
1

from the intermediate basis being constructed. We note that the extra symmetric transposes of the set Et
1 may not be all 

removed from the intermediate basis under construction by taking a g-maximal subset of J ′
0 ∪ N ′

1.
If the triplet set Et

1 is non-empty, then we know by its definition that each triplet θ in the set is one of a pair of 
transposed triplets θ , θ T with θ T ∈ J ′

0 ∪ N ′
1. We now distinguish between two types of such triplets:

• for each triplet θ ∈ Et
1 which is g-included in a triplet θ ′ ∈ J ′

0 ∪ N ′
1 with θ ′ /∈ {θ, θ T }, we have that both θ and θ T are 

removed from the intermediate basis under construction by taking the g-maximal subset ( J ′
0 ∪ N ′

1)/
;
• for each triplet θ ∈ Et

1 which is g-maximal in the set J ′
0 ∪ N ′

1, we find that taking a g-maximal subset of J ′
0 ∪ N ′

1 will 
retain both θ and θ T .

Based upon these observations, we now write the set Et
1 of extra transposes as Et

1 = Eti
1 ∪ Etm

1 , where Eti
1 consists of the 

g-included triplets mentioned above and Etm
1 consists of the g-maximal triplets from Et

1. We then find that

J ′
1 = ( J ′

0 ∪ M ′
1 ∪ Et

1)/
 = ( J ′
0 ∪ M ′

1 ∪ Etm
1 )/


for the intermediate basis with which the next iteration of the Studený–Baioletti algorithm will commence.
Our enhanced algorithm constructs its intermediate basis J1 by taking a maximal non-symmetric subset of the set 

J0 ∪ N1 as follows:

J1 = ( J0 ∪ N1)/
n = ( J0 ∪ M ′
1 ∪ Etm

1 )/
n
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k Jk−1 Nk Jk

1 3 1 3
2 3 3 2
3 2 3 2

Our enhanced algorithm

k Jk−1 Nk Jk

1 3 1 3
2 3 1 2
3 2 0 2

Fig. 3. Some statistics from running the Studený–Baioletti algorithm and our enhanced algorithm for basis construction, for the starting set from Example 1.

By taking a maximal non-symmetric subset of the set J0 ∪ M ′
1 ∪ Etm

1 , our algorithm effectively removes one triplet from 
each pair of transposed triplets θ , θ T . As it randomly chooses the triplet to be removed from each pair, we may assume 
without loss of generality that it removes all triplets from the set Etm

1 . We can thus conclude that

J1 = ( J0 ∪ N1)/
n = ( J0 ∪ M ′
1)/
n

From the observation that J1 ⊆ J ′
1 we have that the intermediate basis J1 with which our algorithm will commence the 

next iteration, cannot be larger in size than the intermediate basis J ′
1 used in the Studený–Baioletti algorithm.

For the next iteration, our algorithm starts with the triplet sets J1 = ( J0 ∪ M ′
1)/
n and N1 = M ′

1 ∪ Et
1; similarly, the 

Studený–Baioletti algorithm starts with the sets J ′
1 = ( J ′

0 ∪ M ′
1 ∪ Etm

1 )/
 and N ′
1 = M ′

1 ∪ E g
1 ∪ Et

1. The Studený–Baioletti 
algorithm thus (possibly) includes extra symmetric transposes in its set J ′

1 when compared to the set J1 used by our 
algorithm; it further (possibly) includes extra g-included triplets in its set N ′

1. Since these extra triplets are all g-included 
in the set J1, we know that the extra applications of the GC-operator by the Studený–Baioletti algorithm cannot produce 
any new triplets which are not yet covered by application of the GC+-operator in our enhanced algorithm. Since the same 
argument holds for all subsequent iterations by the two algorithms, we conclude that the property stated in the lemma 
holds. �
From the previous lemma, we have that all intermediate bases constructed by our enhanced algorithm cannot be larger 
in size than those constructed by the Studený–Baioletti algorithm. More specifically, the proof of the lemma provides the 
necessary ingredients to demonstrate that the basis resulting from our enhanced algorithm is minimal in the sense that it 
no longer includes any redundant triplets. The basis constructed by our algorithm not necessarily is a basis of minimum 
size, however; we will return to this latter observation in our examples in the next section.

5.2. Examples

We detail three examples to illustrate the differences and similarities between the two algorithms for basis construction 
discussed in the present paper. For ease of presentation, the examples are kept small and simple. From the illustrated 
differences between the two algorithms however, the potential of our enhancements is readily envisioned for examples of 
more realistic size.

Our first example serves to illustrate that the two algorithms can yield the exact same basis for a starting triplet set.

Example 1
We consider a starting set J = J0 composed of the following three triplets:

〈{1,2}, {4} | {3,5}〉, 〈{2}, {4} | {3}〉, 〈{1}, {5} | {2,3}〉
and compute a basis for the semi-graphoid independency model J of J , by means of both algorithms.

From the starting set, the Studený–Baioletti algorithm constructs the set N1 of newly generated triplets, which is com-
prised of just a single element:

〈{1}, {4,5} | {2,3}〉
Since this triplet g-includes the triplet 〈{1}, {5} | {2, 3}〉 from the starting set, the algorithm constructs the intermediate 
basis J1 = ( J0 ∪ N1)/
 to include the following three triplets:

〈{1,2}, {4} | {3,5}〉, 〈{2}, {4} | {3}〉, 〈{1}, {4,5} | {2,3}〉
In the next iteration, the algorithm generates the triplet set N2 with the following three elements:

〈{4}, {1,2} | {3,5}〉, 〈{1}, {4,5} | {2,3}〉, 〈{4}, {1,2} | {3}〉
The algorithm continues and, after the third iteration, returns a basis for J consisting of the following two triplets:

〈{4}, {1,2} | {3}〉, 〈{1}, {4,5} | {2,3}〉
Fig. 3 summarises, on the left, the numbers of triplets included in the sets Jk−1, Nk and Jk after each iteration k of the 
Studený–Baioletti algorithm.
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k Jk−1 Nk Jk

1 3 2 5
2 5 4 6
3 6 4 6

Our enhanced algorithm

k Jk−1 Nk Jk

1 3 2 5
2 5 3 5

Fig. 4. Some statistics from running the Studený–Baioletti algorithm and our enhanced algorithm for basis construction, for the starting set from Example 2.

Our enhanced algorithm returns the same basis for the model J defined by J , and in fact constructs the same interme-
diate basis in each iteration. The sets N2 and N3 constructed by our algorithm are smaller than those constructed by the 
Studený–Baioletti algorithm, however. In the second iteration for example, the Studený–Baioletti algorithm constructs a set 
N2 of three triplets, while the set N2 constructed by our algorithm includes just a single triplet. We note that the triplet 
θ = 〈{4}, {1, 2} | {3, 5}〉, for example, from the set N2 constructed by the Studený–Baioletti algorithm is the result of applying 
the GC-operator to the two triplets θ T

1 and θ T
2 where θ1 = 〈{1, 2}, {4} | {3, 5}〉 ∈ J1 and where θ2 = 〈{1}, {4, 5} | {2, 3}〉 ∈ N1; 

as the triplet θ is g-included in the triplet θ T
1 , it is not added to the set N2 by our algorithm. Fig. 3 summarises, on the 

right, the numbers of triplets included in the sets Jk−1, Nk and Jk after each iteration k of our enhanced algorithm. We note 
that since the starting triplet set does not include any lonely triplets, our algorithm involved all starting triplets throughout 
the computations. �
Our second example serves to show that our enhanced algorithm can in fact return a smaller basis than the Studený–
Baioletti algorithm for basis construction.

Example 2
We now consider a starting set J = J0 composed of the following triplets:

〈{1}, {2,5} | {3,4}〉, 〈{1}, {4} | {5}〉, 〈{1,2}, {4} | {3,5}〉
and again compute a basis for the model J of J , by means of both algorithms.

From the starting triplet set, the Studený–Baioletti algorithm constructs the set N1 with the following two triplets:

〈{1}, {2,4} | {3,5}〉, 〈{2}, {1,4} | {3,5}〉
Since the set J0 ∪ N1 does not include any g-included triplets, the new basis under construction equals J1 = J0 ∪ N1 with 
| J1| = 5. In the next iteration, the algorithm constructs the set N2 to include the four triplets:

〈{1}, {2,5} | {3,4}〉, 〈{1}, {2,4} | {3,5}〉,
〈{2}, {1,4} | {3,5}〉, 〈{4}, {1,2} | {3,5}〉

from which it finds a basis of size 6 which is returned after the third iteration:

〈{1}, {4} | {5}〉, 〈{1,2}, {4} | {3,5}〉, 〈{1}, {2,5} | {3,4}〉,
〈{2}, {1,4} | {3,5}〉, 〈{4}, {1,2} | {3,5}〉, 〈{1}, {2,4} | {3,5}〉

In Fig. 4, we report, on the left, the numbers of triplets included in the sets Jk−1, Nk and Jk for each iteration k of the 
Studený–Baioletti algorithm.

Our enhanced algorithm finds a smaller basis, of size 5, which it returns after the second iteration. Close inspection 
of the result returned by the Studený–Baioletti algorithm shows that the final basis includes a triplet and its symmetric 
transpose, that is, it includes both 〈{1, 2}, {4} | {3, 5}〉 and 〈{4}, {1, 2} | {3, 5}〉. Our algorithm forestalls the generation of the 
transpose in the second iteration by constructing a set N1 of size 3: compared to the set generated by the Studený–Baioletti 
algorithm, the g-included triplet 〈{1}, {2, 5} | {3, 4}〉 is not added to N1. Since now no additional g-maximal triplets are 
generated, our algorithm terminates after the second iteration. In Fig. 4, we report, on the right, the numbers of triplets 
included in the sets Jk−1, Nk and Jk for each iteration k of our enhanced algorithm. We note that since the starting triplet 
set does not include any lonely triplets, the algorithm could not set aside any triplets during the computations. We further 
note that both algorithms return a basis for the model J which is larger in size than the original starting set J0 defining the 
model. The example thereby demonstrates that also the basis returned by our enhanced algorithm may not be of minimum 
size. �
Our final example demonstrates the effect of lonely triplets in a starting triplet set.

Example 3
We consider a starting set J = J0 composed of the following four triplets:

〈{5}, {6} | ∅〉, 〈{2,3}, {1,4} | {5}〉,
〈{1,2}, {3,4} | {5}〉, 〈{3}, {1,4} | {2,5}〉

and compute a basis for the semi-graphoid model J of J , by means of both algorithms.
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k Jk−1 Nk Jk

1 4 8 8
2 8 13 11
3 11 13 11

Our enhanced algorithm

k Jk−1 Nk Jk

1 3 5 6
2 6 12 7
3 7 13 7

Fig. 5. Some statistics from running the Studený–Baioletti algorithm and our enhanced algorithm for basis construction, for the starting set from Example 3.

From the starting triplet set, the Studený–Baioletti algorithm constructs the set N1 with the following eight triplets:

〈{2}, {1,3,4} | {5}〉, 〈{1}, {2,3,4} | {5}〉, 〈{1,4}, {2,3} | {5}〉,
〈{3}, {1,4} | {2,5}〉, 〈{4}, {1,3} | {2,5}〉, 〈{1}, {3,4} | {2,5}〉,
〈{3}, {1,2,4} | {5}〉, 〈{4}, {1,2,3} | {5}〉

The set J0 ∪ N1 now includes several g-included triplets; more specifically, the triplets 〈{3}, {1, 4} | {2, 5}〉 (with two oc-
currences), 〈{1}, {3, 4} | {2, 5}〉 and 〈{4}, {1, 3} | {2, 5}〉 are g-included in the triplets 〈{3}, {1, 2, 4} | {5}〉, 〈{1}, {2, 3, 4} | {5}〉
and 〈{4}, {1, 2, 3} | {5}〉, respectively. The intermediate basis J1 is constructed to include eight triplets as a consequence. In 
the next iteration, the algorithm constructs the set N2 to include the following 13 triplets:

〈{3,4}, {1,2} | {5}〉, 〈{2,4}, {1,3} | {5}〉, 〈{1,4}, {2,3} | {5}〉,
〈{2}, {1,3,4} | {5}〉, 〈{1,3}, {2,4} | {5}〉, 〈{1}, {2,3,4} | {5}〉,
〈{2,3}, {1,4} | {5}〉, 〈{1}, {3,4} | {2,5}〉, 〈{4}, {1,3} | {2,5}〉,
〈{3}, {1,4} | {2,5}〉, 〈{3}, {1,2,4} | {5}〉, 〈{4}, {1,2,3} | {5}〉,

〈{1,2}, {3,4} | {5}〉
from which it finds a basis of size 11, which is returned after the third iteration:

〈{5}, {6} | ∅〉, 〈{2,4}, {1,3} | {5}〉, 〈{1,4}, {2,3} | {5}〉,
〈{2}, {1,3,4} | {5}〉, 〈{1,3}, {2,4} | {5}〉, 〈{1}, {2,3,4} | {5}〉,
〈{2,3}, {1,4} | {5}〉, 〈{3}, {1,2,4} | {5}〉, 〈{3,4}, {1,2} | {5}〉,
〈{1,2}, {3,4} | {5}〉, 〈{4}, {1,2,3} | {5}〉

In Fig. 5, we report, on the left, the numbers of triplets included in the sets Jk−1, Nk and Jk for each iteration k of the 
Studený–Baioletti algorithm.

Our enhanced algorithm starts with identifying the lonely triplet 〈{5}, {6} | ∅〉 and setting it aside from its iterations. It 
then computes a basis of size 7 from the reduced starting set and returns a final basis of size 8 after including the lonely 
triplet. Closer inspection of the final basis returned by the Studený–Baioletti algorithm shows that it includes several pairs 
of symmetric transposes; in fact, the triplets 〈{1, 4}, {2, 3} | {5}〉, 〈{2, 4}, {1, 3} | {5}〉 and 〈{3, 4}, {1, 2} | {5}〉 are symmetric 
transposes of the triplets 〈{2, 3}, {1, 4} | {5}〉, 〈{1, 3}, {2, 4} | {5}〉 and 〈{1, 2}, {3, 4} | {5}〉, respectively. Our algorithm identi-
fies these transposed pairs during its computations and removes one triplet from each such pair. As a consequence of the 
incorporated enhancements, our algorithm constructs and employs smaller triplet sets in the various iterations of its main 
loop than the Studený–Baioletti algorithm. These smaller set sizes translate into a smaller computational burden for our 
algorithm. Focusing on just the computation of the three sets Ni , i = 1, 2, 3, for example, the Studený–Baioletti algorithm 
investigates as many as 223 pairs of triplets, while 123 triplet pairs are investigated by our enhanced algorithm for basis 
construction. Fig. 5 reports, on the right, the numbers of triplets included in the sets Jk−1, Nk and Jk , after removal of the 
single lonely triplet from J0, for each iteration k of our enhanced algorithm. �
6. Conclusions and further research

We revisited the representation of semi-graphoid independency models and identified properties which we exploited 
for enhancing currently existing algorithms for basis construction. Our first enhancement is based on the observation that 
particular elements from a starting triplet set can be excluded from consideration during basis computation; we stated 
necessary conditions for identifying such lonely triplets. We further introduced the notion of maximal non-symmetric triplet 
subset, which allowed the removal of symmetric transposes of triplets from a basis under construction. Building upon these 
properties, we presented an enhanced algorithm for computing a non-symmetric basis for a closure defined by a starting 
set of triplets. By means of several examples, we illustrated the potential of our enhancements by comparing the bases 
constructed by our algorithm with the results obtained from currently existing algorithms.

In our future research, we will study the representation of other established families of independency models, such as 
the family of graphoid models and the family of models with identified stable independencies. We will also investigate 
the potential of our notions of lonely triplet and non-symmetric basis for the construction of graphical representations of 
independency models.
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