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Abstract Transition index maps (TIMs) are key prod-
ucts in urban growth simulation models. However, their
operationalization is still conflicting. Our aim was to
compare the prediction accuracy of three TIM-based
spatially explicit land cover change (LCC) models in
the mega city of Mumbai, India. These LCC models
include two data-driven approaches, namely artificial
neural networks (ANNs) and weight of evidence
(WOE), and one knowledge-based approach which in-
tegrates an analytical hierarchical process with fuzzy
membership functions (FAHP). Using the relative oper-
ating characteristics (ROC), the performance of
these three LCC models were evaluated. The results
showed 85%, 75%, and 73% accuracy for the ANN,
FAHP, and WOE. The ANN was clearly superior

compared to the other LCC models when simulating
urban growth for the year 2010; hence, ANN was used
to predict urban growth for 2020 and 2030. Projected
urban growth maps were assessed using statistical mea-
sures, including figure of merit, average spatial distance
deviation, producer accuracy, and overall accuracy.
Based on our findings, we recomend ANNs as an and
accurate method for simulating future patterns of urban
growth.

Keywords Land cover change . Artificial neural
networks .Weight of evidence . Fuzzy analytical
hierarchical process . Relative operating characteristics

Introduction

Land cover change (LCC) modeling is highly complex
so that non-linear relationships and inter-relations
among driving forces require flexible geospatial models
to precisely enumerate factors influencing urban growth
processes (Almeida et al. 2008; Azari et al. 2016).
Urbanization has been one of the most common forms
of LCC and received considerable attention among
scholars due to its various consequences on the environ-
ment such as biodiversity (Hansen et al. 2012), climate
(Tayyebi and Jenerette 2016), and surface water
(Tayyebi et al. 2015). Thus, a variety of data-driven
and knowledge-based models have been developed to
simulate urban growth (e.g., Sangermano et al. 2010;
Zhu et al. 2010; Lin et al. 2011; Park et al. 2011; Tayyebi
et al. 2014).
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LCC models can be subdivided from different per-
spectives, for example, (a) aspatial and spatial statistical
models, such as logistic regression and weight of evi-
dence (WOE), which use historical data to quantify
relationships between land transformations and their
underlying driving forces (e.g., Tayyebi et al. 2010;
Lin et al. 2011; Shafizadeh-Moghadam and Helbich
2015), (b) dynamic simulation models such as the
rule-based cellular automata and agent-based models,
which capture temporal dimensions and local condi-
tions, and consider spatial interactions among land cov-
er classes (e.g., Ligmann-Zielinska and Jankowski
2010; Munshi et al., 2014; Fathizad et al. 2015; Feng
and Liu 2016; Feng et al. 2016, 2017), and finally (c)
machine learning approaches, like artificial neural net-
works (ANNs), which have the appealing property of
being able to represent non-linear relationships among
input and output variables, without requiring a priori
knowledge of the actual associations involved (e.g., Lin
et al. 2011; Hagenauer and Helbich 2012; Grekousis
et al. 2013; Azari et al. 2016; Tayyebi et al. 2016a).

Central to most LCC models are transition index
maps (TIMs) (Almeida et al. 2008). These maps
indicate the likelihood that the status of cells may
change within a given area. If the model is well
calibrated, the greater the ability of TIMs to identify
the location of change, the more effective the LCC
models will be in simulating future growth. LCC
models produce TIMs with different levels of pre-
dictive power (Tayyebi et al. 2014). Thus, TIMs
generated by various approaches might lead to dif-
ferent growth patterns, meaning that using a TIM
which can robustly capture the influence of under-
lying drivers and precisely assign the most likely
change locations is still a challenge. Therefore, it is
important to evaluate the strengths and weaknesses
of LCC modeling techniques using empirical com-
parative studies to determine the most suitable
technique.

WOE is one of the well-known approaches to mod-
el LCC (Thapa and Murayama 2011). WOE is a
statistical approach with a straightforward interpreta-
tion of the produced weights, as well as mapping the
uncertainty of the posterior probability as a result of
uncertainty in weights and missing data (Bonham-
Carter et al. 1994). Almeida et al. (2003), for example,
coupled CA and WOE to calculate the suitability of
change occurring among different land cover classes.
Their approach was to identify major drivers and

enumerate their influence to predict the suitability of
change among land cover types. Since each input
variable should be presented to WOE in a binary
format (Bonham-Carter et al. 1994; Agterberg and
Cheng 2002), the conversion of continuous variables
to binary maps is still challenging.

As an alternative to WOE, TIMs can be generated by
coupling multi-criteria evaluation (MCE) and fuzzy
membership functions (Mitsova et al. 2011;
Shafizadeh-Moghadam and Helbich 2013). While
MCE techniques such as the analytical hierarchical pro-
cess (AHP) is used to determine the relative importance
of driving forces and the precedence weighting, fuzzy
membership functions can be utilized to transform ex-
planatory variables from different scales into compara-
ble units (FAHP) (Park et al. 2011). Inadequate experts’
knowledge and subjectivity in the weighting process are
the main limitations relevant to the FAHP. Another
shortcoming of MCE is that the transition suitability
changes in a linear fashion and, thus, assumes linear
trends among the underlying spatio-temporal processes
(Kamusoko 2012). In contrast, ANNs do not face this
limitation and also have the following advantages: (a)
the ability to deal with Bnoisy^ and incomplete data
(Tayyebi et al. 2014, 2016a, b), (b) the ability to detect
potential inter-dependencies among the underlying driv-
ing forces, (c) provision of non-linearities (Pijanowski
et al. 2002, 2014), and (d) less distributional assump-
tions regarding the input data than basic regression (e.g.,
Hagenauer and Helbich 2012; Tayyebi et al. 2014). This
suggests ANN as a powerful technique when projecting
urban growth. For instance, Tayyebi et al. (2011) devel-
oped an integrated framework using ANNs, GIS, and
remote sensing to simulate the urban boundary in Teh-
ran, Iran, to protect environmentally sensitive areas in
rural landscapes. However, ANN gives fewer clues
about how to interpret the interactions among variables
compared to WOE and FAHP.

Despite the large body of studies in the field of LCC
modeling, the application and evaluation of LCC
models in different geographical regions will make the
strengths and weaknesses of each model more evident.
For example, Park et al. (2011) analyzed TIMs created
by means of frequency ratios, AHP, logistic regression,
and ANN models. Their results using relative operating
characteristic (ROC) showed the highest and lowest
values for logistic regression and ANN, respectively.
On the contrary, the ANN achieved the highest overall
accuracy among the four approaches. When compared
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to MCE, ANNs do not provide straightforward mea-
sures able to reflect the relative importance of factors
(Hagenauer and Helbich 2012). Tayyebi and Pijanowski
(2014) contrasted the predictive abilities of ANNs, clas-
sification and regression trees, and multivariate adaptive
regression splines. Confirming Park et al. (2011), ANNs
provided the best predictive accuracy.

To conclude, despite these first attempts at
conducting LCC model assessments, studies regarding
the comparison of the models from the knowledge-
based and data-driven perspectives for creating TIMs
are still limited and not conclusive. Therefore, this paper
aims to compare the performance of three approaches to
derive TIMs, including WOE, MCE coupled with
FAHP as well as ANNs using the rapidly growing mega
city of Mumbai, India, as a case study. Mumbai is an
excellent study area as the city experienced extensive
urban expansion in the last decade (Shafizadeh-
Moghadam and Helbich 2013).

Materials and methods

Study area

Mumbai is the capital of the state of Maharashtra in
western India that is located between the latitudes 18°
53′ to 19° 16′ N and longitudes 72° to 72° 59′ E (Fig. 1).
With a population of approximately 11.8 million people,
Mumbai is the largest city in India (Patel et al. 2014).
Along with natural population growth and high rates of
immigration, the city is characterized by the relocation of
industries to urban peripheries and the subsequent migra-
tion of employees into those areas, as well as the growth
of a significant slum population. As a result, Mumbai’s
administrative boundary has been extended twice, first in
1950 and again in 1957 (Pacione 2006). A retrospective
LCC analysis of Mumbai conducted by Shafizadeh-
Moghadam and Helbich (2013) confirmed that the city
underwent fast-paced physical growth between 1973 and
2010. Monitoring how Mumbai is physically expanding
and simulating how it will continue to spread, therefore,
is crucially important for local urban planners and the
authorities there (Tayyebi et al. 2016a).

Data sources and pre-processing

The database was constructed from a range of sources
(Table 1), including Landsat images from 1990 (TM),

2001 (ETM), and 2010 (ETM+) with a spatial resolution
of 30 m. The remote sensing images were provided by
the US Geological Survey. Moreover, a digital elevation
model (DEM) with a cell size of 30 m was acquired
from the US Shuttle Radar Topography Mission
(SRTM) website and a transportation network layer
extracted from OpenStreetMap (Helbich et al. 2012).

Utilizing Landsat data, land cover classes were classi-
fied (Fig. 2) using a supervised maximum likelihood
algorithm (Tayyebi et al. 2016a). Accuracy assessments
of the classified maps were carried out using reference
data including topographic maps as well as Google Earth
and OpenStreetMap data. Statistical assessments were
conducted using the Kappa index based on 250 randomly
selected points for each land cover category (van
Genderen and Lock 1977; Azari et al. 2016). Different
approaches have been proposed for the determination of
sample size (Foody 2009) that most often it depends on
the purpose and the intended accuracy of the produced
maps. Van Genderen and Lock (1977) suggested to take
at least 20 sample points per class for 85% accuracy.

In phase of prediction, urban growth during 2001 and
2010 was considered as dependent variable and several
driving forces as explanatory variables with the initial
timestamp of 2001. However, the determination of po-
tential drivers is still inconclusive and varies between
studies (Pijanowski et al. 2014). The complexity of
drivers involved, local characteristics within geographic
regions and a lack of access to data, particularly in
developing countries, give rise to the issue of how to
select variables. As guided by previous studies (e.g.,
Thapa and Murayama 2011) and by expert knowledge,
the variables shown in Table 2 were prepared in a GIS
environment.

The distance-based variables were created by comput-
ing the Euclidean distance and the density-based variables
by using a neighborhood function as frequently done (e.g.,
Hu and Lo 2007). Distance-based variables include the
distance to built-up areas, water bodies, railway lines, main
roads, wetlands, forested areas, and central business dis-
tricts (CBD). Density-based factors were obtained using a
7 × 7 neighborhood filter (e.g., Shafizadeh-Moghadamand
Helbich 2015; Tayyebi et al. 2016a), accounting for the
density of built-up areas and the availability of both open
land and crop land. This filter provides the total number of
cells, which represent the investigated variable within a
specified radius of the central cell, and yields a value
between 0 and 49. To match the spatial resolution of the
Landsat data and to avoid inconsistency among the

Environ Monit Assess (2017) 189: 300 Page 3 of 14 300



variables, explanatory factors were prepared with a 30m
cell resolution (see Figure S1 in the supplemental informa-
tion). Slope and height were computed on the basis of the
DEM. Finally, water bodies, wetlands, national parks, and
built-up areas in 2001 were not further considered in
subsequent analyses andwere labeled as Bexcluded areas,^
indicating physical or legal restrictions to further growth.

Land cover change models

Weight of evidence

Weight of evidence (WOE) is a Bayesian approach that
examines the probability of an event occurring, here,

urban growth (U) in relation with specific factors (F),
based on prior and posterior probabilities. The prior
probability, P{U}, is the probability of a built-up area
occurring across the entire region, which is obtained by
dividing the ratio of the area or total number of built-up
cells N{U}, by the area or number of all cells (built-up
and non-built-up) T{U} (Eq. 1).

P Uf g ¼ N Uf g
T Uf g ð1Þ

The posterior probability is the probability that
urban change will take place in the presence or
absence of a particular factor. As described in Lee
and Choi (2004), utilizing an existing factor, the

Fig. 1 The study area

Table 1 Data description

Data Source Date Spatial resolution

Landsat (TM, ETM, ETM+) US Geological Survey, German Aerospace Centre 1990, 2001, 2010 30 m

Digital elevation model ASTER (NASA) 2009 30 m

Transportation network OpenStreetMap 2011 –
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Fig. 2 Urban growth from 1990
to 2010

Table 2 Explanatory variables of urban growth in 2001

Covariates Range Mean SD

Distance to the CBD (m) 0–33,000 18,069 7482

Distance to main roads (m) 0–4330 597 748

Distance to built-up areas (m) 0–4300 536 764

Distance to water bodies (m) 0–23,000 2636 2150

Distance to wetlands (m) 0–22,000 4188 3775

Distance to forests (m) 0–16,000 2793 2698

Density of built-up areas (cells per area) 0–49 29 15

Density of avail. Open/arable land (cells per area) 0–49 24.8 16.8

Height (m) 0–487 39 60

Slope (degree) 0–60 5.86 6.01
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posterior probability can be calculated as follows
(Eq. 2):

P U jFf g ¼ P U∩Ff g
P Ff g ¼ P Uf g P FjUf g

P Ff g ð2Þ

and when the factor is absent as (Eq. 3)

P U jF
n o

¼
P U∩F
n o

P F
n o ¼ P Uf g

P FjU
n o

P F
n o ð3Þ

P{U|F} and P Uf jFg are respectively the posterior
probability of U based on the presence (F) and the

absence of a factor (F). Similarly, P{F} and P F
� �

are
the prior probabilities of being inside or outside the
predictor domain. Figure 3, for example, illustrates the
spatial relationship between the occurrence of built-up
areas in the presence of height variable. Each predictor
variable yields both a positive and negative weighting.
The positive weighting in the presence of a factor (Eq. 4)
and negative weighting (Eq. 5) in the absence of a factor
can be calculated as follows:

Wþ ¼ loge
P FjUf g
P FjU
n o ð4Þ

W− ¼ loge
P FjU
n o

P FjU
n o ð5Þ

The positive weight of a factor is the logarithmic ratio
of the probability of F (presence of the factor) if urban
change occurs (U) to the probability of F if no urban

change occurs (U ). The negative weight of evidence is
the logarithmic ratio of the probability of not F (absence
of the factor) in the presence of urban change to the
probability of not F when the event (urban change) is
absent (U).

Since WOE was developed for binary assess-
ments, each factor is classified based on the stan-
dard deviation (SD) criterion, which is based on the
data distribution and prevent arbitrary classification
schemes. The number of SDs here is assigned
based on the range of factors. The correlation be-
tween sub-classes (number of SDs) for each factor
and an urban occurrence is measured using the
contrast index (C = W+ − W−). The maximum

contrast is used as a cut-off point. Finally, all the
weighted factors are combined as follows (Eq. 6):

PC ¼ ∑Fw ð6Þ

where Fw is W+ and W− for each binary map. For
WOE, binary maps were created after conducting a
conditional independence test (Bonham-Carter et al.
1994; Lee and Choi 2004) (see Figure S2 in the
supplemental information). Once the variables ful-
filled the condition of being independent in a
pairwise comparison, they were entered into the
WOE model and considered for inclusion in the
final combination to create the TIM. All the WOE
calculations were performed using Microsoft Excel.

Fuzzy multi-criteria evaluation

An alternative to compute a TIM is to couple MCE and
fuzzy membership functions (Eastman 2006). Fuzzy
membership functions were utilized to make the vari-
ables comparable and dimensionless, while MCE was
employed to assess the suitability of locations based on
the predefined criteria. Appropriate fuzzy membership
functions, including monotonically increasing and de-
creasing S-shaped, J-shaped, and linear functions, were
employed (Mitsova et al. 2011). For example, in the
model using a J-shaped membership function, areas
within 50-m buffer of roads are assumed to be the most
appropriate for urban growth, and beyond this buffer
zone, suitability decreases until 1 km but never reaches
zero (Araya and Cabral 2010). After that, relative im-
portance of each criterion was determined by expert
knowledge and experimental LCC analysis.

Belonging to the MCE methods, using analytic hier-
archy process (AHP), the relative importance of factors
were assigned and weighted in a pairwise comparison
manner. In doing so, all the factors were compared using
a pairwise matrix, then using a numerical scale ranging
from 0 to 9, the factors were assessed with respect to
each other. Next, using the pairwise matrix, the weight
of each factor is calculated. Finally, consistency ratio
between the factors and the obtained weights were cal-
culated (Chowdhury and Maithani 2014). By overlying
the weighted factors, a suitability map was generated
showing the potential of each cell for future urban
growth. For the implementation of FAHP, we used the
IDRISI Taiga software.
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Artificial neural networks

ANNs are machine learning techniques capable to cap-
ture non-linear associations between urban change and
the underlying drivers (Bishop 1995; Pijanowski et al.
2002, 2014; Shafizadeh-Moghadam et al. 2015). This is
done using non-linear functions and weightings that are
applied to units within the network (Pijanowski et al.
2009; Tayyebi and Pijanowski 2014). The multi-layer
perceptron, as used in this paper, typically includes three
different layers, the input, hidden, and output layer.
These three layers are connected to each other in a
feed-forward manner (Hagenauer and Helbich 2012;
Azari et al. 2016). A suitability map is then produced
using an activation function that applies a neuron which
receives the weighted output from connected neurons of
the preceding layers. Back propagation is a commonly
applied training algorithm (Bishop 1995). ANNs start
by randomly assigning the weightings and calculating
the model error, after which the cycle continues until a
terminating criterion is met (Bishop 1995). If the level of
performance is not attained, the error is distributed back
to the neurons in the hidden layer, thus allowing them to
update the weightings and mitigate the error. Once the
training step is successfully completed through valida-
tion runs (e.g., using a dataset exclusively set aside), the
model can be generalized for other data sets.

To set up the ANNmodel, the urban growth map was
coded as 1 if the cells from any other land cover classes
had become built-up, or otherwise as 0. The explanatory
variables were standardized between 0 and 1 using

maximum values. The data set was split into a training
set (70%) and a testing set (30%). The former was used
to train the ANN model, represented as a feed-forward
multi-layer perceptron. The latter was used to evaluate
the model performance. We applied a sigmoid function
for the hidden layer and a linear function for the output
layer as an activation function (Pijanowski et al. 2000;
Lin et al. 2011; Bagheri et al. 2015). The best transfer
function for the hidden layer is hyperbolic tangent sig-
moid function while the best transfer function for the
output layer is a linear one. These functions are well
established in the literature (e.g., Bagheri et al. 2015).

Model evaluation

Assessing model performance is a critical task in LCC
modeling (Tayyebi et al. 2014). Observed maps of 1990
and 2001 were used for model calibration, while the
year 2010 was used for validation. One of the most
common assessment metrics used to evaluate LCC
models is ROC (Pontius and Schneider 2001). ROC
compares transition index maps with the observed bina-
ry map, accounting for coincidences among the ob-
served changes and their locations in the index maps
(Mas et al. 2013). Furthermore, we used figure of merit
(FOM), producer accuracy (PA), overall accuracy (OA),
as well as the average spatial deviation distance (ASDD)
index for accuracy assessment (Pontius et al. 2008).
Formulas and description of these metrics are furnished
in Table 3.

Fig. 3 Spatial relationship between the occurrence of built-up areas in the presence of height variable in a WOE model
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Results

Model evaluation of transition index maps

The classification of the Landsat images resulted in five
classes including built-up areas, water bodies, wetlands,
forest and green spaces, and open land and crop lands.
Accuracy assessment of the classified maps using the
Kappa index showed 84% and 86% agreement. As seen
from Table 4, net change exploration of the land cover
classes shows a gain for the built-up class and a loss for
the remaining classes. From 1990 to 2010, built-up areas
doubled while the least affected land cover class was
forest and green spaces with a loss of 9.5%. Water
bodies, wetlands, and open land and croplands decreased
by 14.5%, 15.9%, and 36.8%. The classified maps were
aggregated to a binary map (i.e., 1 for built-up areas and
0 for other classes). This binary map together with the
explanatory variables (Table 2) was considered for the
training of ANN, WOE, and FAHP models.

The outcome of ANN, WOE, and FAHP was a TIM,
indicating the suitability of future urban growth. Figure 4
shows the TIMs generated by the three models; the
brighter colors refer to a higher suitability of change to
built-up areas. To allocate the amount of cells that were
going to change, we used a top-down procedure (e.g.,
Pijanowski et al. 2002; Tayyebi et al. 2014; Shafizadeh-
Moghadam et al. 2017a, b). The top-down approach
starts by searching for the highest values in the transition
probability map and stops when the aggregate number
of cells that should change had been allocated
(Pijanowski et al. 2002). Cells that converted to urban
between 2000 and 2010 were allocated to the cells with
the highest value from the TIM. As a result, three
simulated maps were generated and to assess how accu-
rate each map could correctly allocate the spatial loca-
tion of changes, all the maps were overlaid with the
observed maps. Figure 5 provides a visual assessment
of how well the selected models performed in simulat-
ing urban growth. Visual interpretation indicates that the
ANN model was able to generate more accurate and
spatially explicit simulations while the other twomodels
resulted in less accurate simulated maps.

Model performance was carried using (i) the ROC
statistic, (ii) a set of statistical measures (Table 3), and
(iii) by overlaying the simulated and reference maps to
quantify the amount of correctness and erroneous pre-
dicted cells. The area under the ROC curve was 85% for
ANN, 75% for FAHP, and 73% for WOE. From 2001 to

2010, a total amount of 8323 ha converted to the built-
up class. The implemented ANN model correctly pre-
dicted the largest amount of spatial location of these
changed cells (60.62%), while FAHP had the lowest
accuracy (41.93%). From the remaining 35,744 ha, the
number of correctly predicted unchanged cells was
90.84% for the ANN while FAHP had the lowest accu-
racy with 84.05%. Figure 5 shows the locations where
the simulated map matches observed changes during
2001–2010, and also areas in which the model fails to
classify changes correctly. True positive refers to cells
classified as Bchanged^ in both the reference and simu-
lated maps. False positives indicate cells that wrongly
predicted as changed by the model. Similarly, false
negatives indicate locations classified as unchanged
when they were found in the reference map to have
actually changed. True negatives refer to locations
where both the simulated and observed maps classify
as places that remained unchanged. These changes were
obtained by overlaying the simulated map of 2010 with
a reference map of 2001 and 2010.

Following Pontius et al. (2008), we considered refer-
enced maps in 2001 and 2010 as well as a predicated
map for 2010, to characterize the dynamics of change,
model behavior, and spatial prediction accuracy. The
FOM, which ranges from 0% (no overlap) to 100% (full
match between observed and predicted changes), indi-
cates the amount of spatial overlap between the predict-
ed model and the observed change. The FOM was
43.5%, 25.8%, and 32.5% for the ANN, FAHP, and
WOE. The PA was 60.6%, 41.9%, and 48.9% for the
ANN, FAHP, and WOE. The OA was 85.1%, 75.9%,
and 78.1% for the ANN, FAHP, and WOE. The ASDD
was 20.1%, 29.2%, and 24.2% for the ANN, FAHP, and
WOE, respectively. Figure 6 depicts the statistics for the
selected measures. In conclusion, the model assessment
indicated that the ANN performed best and thus we used
the ANN to simulate future growth patterns for the years
during 2010–2020 and 2020–2030.

Simulating urban growth using the ANN

As displayed in Fig. 7, most urban growth will occur
within the vicinity of existing areas. Between 2020 and
2030, Mumbai is expected to experience an increase in
built-up density towards its eastern and northern re-
gions, where less developed, open, and agricultural land
will be more available than in other parts. Moreover,
developments in the middle and northern half of
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Mumbai will occur around environmentally sensitive
areas including the national park which will be increas-
ingly surrounded by buildings. Considering the relation-
ship between physical growth and environmental issues
(e.g., Mumbai is among the world’s most polluted cit-
ies), continuous urban growth processes can be seen as a
serious threat potentially having disastrous conse-
quences for the entire region.

Discussion

Accuracy assessment of LCC models has great impor-
tance (Pontius et al. 2008). It is critical for environmen-
tal modelers that couple their models with LCC models
to assess the future consequence of LCC on other envi-
ronmental dimensions. For example, Tayyebi et al.
(2015) assessed the future consequence of agriculture
expansion and urbanization on water quality. However,

LCC models can be clustered and compared from dif-
ferent perspectives. For example, from the viewpoint of
the role of expert knowledge, the LCC models can be
considered as data-driven and knowledge-based ap-
proaches, while from the view point of statistical as-
sumptions, they could take either the class of parametric
or non-parametric methods (Tayyebi et al. 2014). Fur-
thermore, the simulated maps created by each model are
different. Thus, the models should be compared and
evaluated from the side of spatial accuracy of the simu-
lated maps. Different pattern of simulated maps could be
attributed to the integrated functions of eachmodel, their
associated assumptions, and the type of cell allocation
strategies (Shafizadeh-Moghadam et al. 2017b).

This paper showed that the ANN was the most accu-
rate, and the WOE was the least accurate model for
simulating urban growth. WOE has a major drawback
that the model requires each input layer to be presented
as a binary map to the model. As described in data

Table 3 Spatial metrics for model evaluation (Pontius et al. 2008)

Metrics Formula Description

Figure of merit (FOM) FOM ¼ B
AþBþCþD

FOM is the intersection of the observed and
predicted change divided by the union of
the observed and predicted change.

Producer accuracy (PA) PA ¼ B
AþBþC

PA indicates the proportion of pixels that the
model predicts accurately as change, given
that the reference maps indicate observed
change.

Overall accuracy (OA) OA ¼ BþE
AþBþCþDþE

OA provides the overall agreement between
the reference and predicted maps.

Average spatial deviation distance (ASDD)
ASDD A;Pð Þ ¼ 1

K ∑
K

k¼1
D Ak ;Ak :nearest Pð Þð Þ ASDD measures Euclidean distance between

the locations of observed and predicted
changes.

For the FoM, PA, and OA, A is the proportion of error cells due to the observed change—predicted as persistence, B is the proportion of
correct cells due to observed change—predicted as change,C is the proportion of error cells due to observed change modeling—predicted as
a wrong gaining category, D is the proportion of error cells due to observed persistence—predicted as change, and E denotes the area of
correct cells due to observed persistence—predicted as persistence. Also for ASDD, Ak is the observed built-up cell, P is the map layer of
predicted built-up areas, and Ak.nearest(P) denotes the nearest predicted location to Ak, and K is the number of actual built-up cells.

Table 4 LCC in Mumbai between 1990 and 2010 (in ha and %)

Land cover class 1990 (ha) 2001 (ha) 2010 (ha) 1990–2001 (%) 2000–2010 (%)

Built-up areas 18,455 25,498 35,607 38.2 39.7

Water bodies 8271 7805 7100 −5.6 −9.0
Permanent wetlands 9734 9086 8187 −6.7 −9.9
Mixed forest and green spaces 11,418 11,057 10,329 −3.2 −6.6
Open land and cropland land 39,682 34,124 26,353 −14.0 −22.8
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section, some of our driving forces (input layers) were
continuous that was required to be discretized before-
hand. Optimum discretization of input layers is not an
easy task. In this paper, we simply considered the sta-
tistical distribution of the layers and used standard de-
viation for layer discretization. Integration of the

optimum discretization algorithms might heavily in-
crease the quality of the TIM produced by the WOE
and finally could boost the positional accuracy of the
simulated maps.

In a comparative view, each of the utilized models
exhibited specific strengths and limitations. ANN is an

Fig. 4 TIMs produced by ANN, WOE, and FAHP

Fig. 5 Spatial overlay of the ANN, WOE, and FAHP model predictions and observed changes between 2001 and 2010
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appropriate machine learning model for simulating ur-
ban growth, in which various spatial drivers stimulate

land transformation in a non-linear way (Tayyebi et al.
2014). ANN relaxes the statistical assumptions and

Fig. 6 Comparing the accuracy
of ANN, FAHP, and WOE

Fig. 7 Observed and predicted
urban growth using the ANN
model from 2001 to 2030
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properly handles data with any distribution (Xie et al.
2008). Paliwal and Kumar (2009) highlighted the ad-
vantages of ANN over the statistical models which
automatically approximated any non-linear function.
FAHP, on the other hand, relies heavily on expert
knowledge regarding the nature and importance of the
drivers. Due to the complexity of land transformations
taking place in cities, it seems doubtful that experts
would have a detailed enough understanding of the
underlying spatial processes to effectively apply FAHP
(i.e., the selection of the membership function and factor
weighting), which further supports the application of
ANN. In addition, data-driven approaches reduce the
likelihood of biased or incorrect decisions being made
by experts (Hosseinali and Alesheikh 2008), while the
knowledge-based systems such as MCE can explicitly
reveal the magnitude and relationship between each
driver causing change in urban areas, by allowing ex-
perts to contribute.

Findings of this paper correspond to those reported
by Lin et al. (2011), who observed a higher ROC for the
ANN, when compared to logistic and auto-logistic re-
gression models. Similar conclusions were drawn by
Tayyebi and Pijanowski (2014) and Tayyebi et al.
(2014), who also reported more effective prediction
capabilities for ANN than for tree-based models and
multivariate adaptive regression splines.

This study can be improved in the future by using
additional socio-economic data, including population
density and other indicators on the microscale. It is
expected that such drivers would increase the models’
performances. However, such a lack of data is common
in most developing countries, where fine resolution
census data are often unavailable. Future research can
also develop hybrid models on the basis of knowledge-
based and data-driven approaches, which benefit from
the complementing advantages of different models
(Azari et al. 2016). Such integrations would allow cap-
turing various drivers and dynamics behind urban trans-
formations, as well as to set up more precise urban
growth simulation models. Finally, the incorporation
of the spatio-temporal variability of land cover drivers
might also improve the models’ spatial accuracy.

Conclusion

This study compared three TIMs produced from data-
driven models (i.e., ANN and WOE) and knowledge-

based approaches (i.e., FAHP). On the one hand, the
ROC value indicated that the ANN has the ability to
generate a more accurate TIM for urban growth than
WOE and FAHP. On the other hand, the statistical
measures quantifying the spatial accuracy of the simu-
lations clearly confirmed the suitability of ANN. Using
the most accurate approach, ANNwas then calibrated to
simulate urban growth for the years 2020 and 2030 in
Mumbai. The projected maps generated by the ANN
were indicative of continuous urban growth through
both infilling of the already built-up areas and rapid
expansion to the north and east, into new areas. In this
case, the simulated maps are beneficial for urban plan-
ners and decision makers by knowing how the extent
and pattern of urban development in Mumbai would be
expected in the next two decades for directing future
urban development, environment-oriented plans. In
conclusion, due to their high accuracy and their robust-
ness, ANNs are recommended for future studies to
generate TIMs instead of WOE and FAHP.
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