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Pathogen invasion indirectly changes the composition of soil
microbiome via shifts in root exudation profile
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Abstract Plant-derived root exudates modulate plant-
microbe interactions and may play an important role in path-
ogen suppression. Root exudates may, for instance, directly
inhibit pathogens or alter microbiome composition. Here, we
tested if plants modulate their root exudation in the presence
of a pathogen and if these shifts alter the rhizosphere
microbiome composition. We added exudates from healthy
and Ralstonia solanacearum-infected tomato plants to an
unplanted soil and followed changes in bacterial community
composition. The presence of pathogen changed the exuda-
tion of phenolic compounds and increased the release of
caffeic acid. The amendment of soils with exudates from the
infected plants led to a development of distinct and less di-
verse soil microbiome communities. Crucially, we could

reproduce similar shift in microbiome composition by adding
pure caffeic acid into the soil. Caffeic acid further suppressed
R. solanacearum growth in vitro. We conclude that pathogen-
induced changes in root exudation profile may serve to control
pathogen both by direct inhibition and by indirectly shifting
the composition of rhizosphere microbiome.

Keywords Amplicon sequencing . Phenolics . Ralstonia
solanacearum . Root exudation . Root-pathogen interaction .
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Introduction

Plants invest a considerable fraction of their photosynthesized
carbon into root exudates, a collection of low-molecular-weight
compounds released into the rhizosphere (Bais et al. 2006).
These exudates mediate complex interactions between plants
and soil microbes and are essential in structuring the composi-
tion of soil microbiome (Carvalhais et al. 2015; Chaparro et al.
2013; Lagos et al. 2014). One key function of root exudates is
to suppress pathogenic microorganisms (Bais et al. 2005),
which is largely mediated by phenolic compounds (Badri
et al. 2013; Lanoue et al. 2009). This function can be direct,
for instance, by inhibiting the growth of pathogen (Ling et al.
2013). Alternatively, phenolic compounds could affect the
pathogen indirectly, for instance, by modulating the expression
of antibiotic-related genes of non-pathogenic soil microbes (de
Werra et al. 2011). Such indirect effects could be very impor-
tant, as the rhizosphere is enriched with mutualistic microbes
that can protect plants against diseases (Li et al. 2015; Qiu et al.
2013; Trivedi et al. 2011) by producing antimicrobial com-
pounds and lytic enzymes, stimulating plant immunity, and
intensifying competition for resources with the pathogen
(Berendsen et al. 2012; Yu et al. 2014).
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Disruption of the pathogen response-related jasmonic acid
pathway alters root exudation patterns and the composition of
rhizosphere microbial communities (Carvalhais et al. 2015) in
Arabidopsis thaliana, confirming that shifts in exudation may
be an integral part of plant response to pathogens. In this
study, we addressed whether challenging plants with a patho-
gen alters the composition of soil microbiome via shifts in root
exudation profile.

Exudation is very dynamic and depends on the plant
growth stage (Chaparro et al. 2013) and the presence of path-
ogen. For example, the presence of the pathogenic fungus
Fusarium graminearum in the rhizosphere of barley triggers
the exudation of many phenolic compounds that prevent spore
germination (Lanoue et al. 2009). Similarly, alterations of
phenolic compound exudation in barley infected with the
oomycete Pythium ultimum induce expression of antibiotic-
related genes in Pseudomonas protegens (Jousset et al. 2011).

In this study, we assessedwhether challenging plants with a
pathogen leads to shifts in exudation patterns. We further
assessed whether pathogen-induced exudates could inhibit
growth of the pathogen and alter microbiome composition.
We challenged tomato plants with Ralstonia solanacearum,
a cosmopolite pathogen which causes bacterial wilt in more
than 200 host species (Salanoubat et al. 2002). In order to
disentangle the plant-mediated effects from pathogen-
induced disturbance, we collected tomato exudates in the ab-
sence and presence of R. solanacearum. We sterilized the
exudates and added them to an unplanted soil to mimic rhizo-
sphere condition without direct pathogen influence. We then
compared the effects of the different exudates on soil
microbiome composition and linked them to changes in exu-
date composition.

Materials and methods

Bacterial strain and plant species

The bacterial pathogen R. solanacearum strain QL-Rs1115
(Wei et al. 2011) was routinely cultivated in NB medium
(10.0 g of glucose, 5.0 g of peptone, 0.5 g of yeast extract,
and 3.0 g of beef extract in 1 L of H2O at pH 7.0). Overnight-
grown bacteria were harvested by centrifugation (10,000×g
for 6 min), washed twice with sterile saline solution (0.9 %
NaCl), and diluted to appropriate concentrations based on
their optical density (OD600).

Solanum lycopersicum cv. ‘Micro-Tom’ tomato was used
as a model plant species. Seeds were surface sterilized with
NaClO (3 % v/v) for 10 min and rinsed four times with sterile
distilled water. Surface-sterilized seeds were then plated on
Murashige and Skoog agar medium (Murashige and Skoog
1962) supplemented with 1 % sucrose and incubated in the
dark at 28 °C for 2 days, until the emergence of roots.

Collection of root exudates during the pathogen challenge

Root exudates were collected based on a previously published
methodology (Badri et al. 2009) with minor modifications.
Briefly, 2-day-old tomato seedlings were transferred to six-
well culture plates (Corning, CA, USA); each well contained
two seedlings in 2 ml of liquid Murashige and Skoog medium
amended with 1 % sucrose. Plates were incubated on an or-
bital shaker at 90 rpm and exposed to white fluorescent light
(50 μmol m−2 s−1) with a 16:8-h light/dark photoperiod at 25
± 2 °C. After 10 days, plants were gently washed with sterile
double-distilled water to remove the remaining exudates and
transferred to new six-well culture plates containing 2 ml of
sterile double-distilled water per well. Sterilized double-
distilled water was used to prevent the medium from interfer-
ing with the subsequent high-performance liquid chromatog-
raphy (HPLC) analyses (Badri et al. 2013). We set up three
treatments: (a) R. solanacearum grown alone, (b) tomato
plants grown alone, and (c) tomato plants grown with
R. solanacearum. Plants were inoculated with 20 μl of a bac-
terial suspension (OD600 = 0.5; 2 × 108 CFU ml−1 in 0.9 %
NaCl) or 20 μl of 0.9 % NaCl. To obtain secretion of
R. solanacearum, sterilized double-distilled water was inocu-
lated with 20 μl of a bacterial suspension (OD600 = 0.5; 2 ×
108 CFU ml−1 in 0.9 % NaCl). Each treatment had three rep-
licates, and each replicate contained pooled exudate from 12
wells (i.e., 24 plants). Liquid medium was collected 72 h after
pathogen inoculation, and the pathogen survival was mea-
sured by serial dilution plating on NA medium (10.0 g of
glucose, 5.0 g of peptone, 0.5 g of yeast extract, 3.0 g of beef
extract, and 15 g of agar in 1 L of H2O at pH 7.0). Pooled
samples were centrifuged (10,000×g for 6 min) and sterile-
filtered (0.22 μm) to remove the pathogen and root cells.
Samples were then lyophilized and redissolved in 300 μl of
solvent (methanol/water = 30:70; v/v). Similar to experiments
conducted with A. thaliana (Badri et al. 2013; Rudrappa et al.
2008), the tomato plants incubated in sterile double-distilled
water did not show any visible nutrient deficiency symptoms
or toxicity symptoms during the 3-day sampling period. We
collected exudates over a short time period corresponding to
the latency phase of the infection, during which infection
remained asymptomatic (Jacobs et al. 2012; Milling et al.
2011). This allowed us to measure the plant response while
avoiding biases due to disease onset.

HPLC analyses

In this study, we focused on antimicrobial phenolics present in
the tomato root exudates. An 20μl aliquot of each sample was
injected for HPLC analysis following a previously described
method (Ling et al. 2010). Briefly, separation was performed
by gradient elution using an Agilent 1200 system (Agilent
Technologies, CA, USA) with an XDB-C18 column
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(4.6 mm× 250 mm). The solvent system consisted of aceto-
nitrile and 2 % (v/v) acetic acid. The UV-visible photodiode
detector was set to 280-nm wavelength. Peaks were identified
by comparing their retention times with standards that were
run under the same conditions (Rudrappa et al. 2008). The
standard phenolic compounds used in this study were caffeic
acid, cinnamic acid, coumaric acid, syringic acid, ferulic acid,
β-hydroxybenzoic acid, gallic acid, benzoic acid, phthalic ac-
id, and vanillic acid.

Effects of root exudates on microbiome composition
in plant-free soil microcosms

The soil used in this assay was collected from a tomato field in
Qilin (118° 57′ E, 32° 03′ N), Nanjing, China, which shows a
high bacterial wilt incidence. The soil is a yellow-brown earth
(Udic Argosol) with the following properties: pH 5.4, organic
matter (OM) content of 24.6 g kg−1, total N of 6.3 g kg−1,
available P of 172.9 mg kg−1, and available K of 178 mg kg−1.
The soil was first cleared of plant debris, sieved (<2 mm),
homogenized thoroughly, and transferred to 24-well culture
plates, with each well receiving 1.8 g of soil (dry weight).
The exudates of 60 plants for each replicate were collected by
the method described above and redissolved in 7.5 ml of sol-
vent (methanol/water = 30:70; v/v) before being used to supple-
ment the soil. We set up four different exudate treatments
(250 μl day−): (a) solvent only (methanol/water = 30:70; v/v;
control), (b) exudates produced in the absence of a pathogen,
(c) exudates produced in the presence of a pathogen, and (d)
caffeic acid (3.6 mM; i.e., 0.5 μmol g−1 day−1). Each treatment
had three replicates, and each replicate well received 250 μl of
exudate solution per day for a total of 30 days. The caffeic acid
treatment was set up to assess its specific role in modulating the
composition of soil bacterial community when tomato roots
were challenged with R. solanacearum. The amount of caffeic
acid entering the soil (i.e., 0.5 μmol g−1 day−1) was based on
previous studies (Eilers et al. 2010; Paterson et al. 2007; Qu and
Wang 2008; Zhou and Wu 2012). The 24-well plates were
weighed each day and were replenished with sterile distilled
water to maintain the soil moisture at 60 % of its maximum
water holding capacity. Plates were incubated in a growth
chamber with a 16:8-h light/dark photoperiod at 25 ± 2 °C to
mimic natural conditions. At the end of the soil microcosm
experiment, all the soils were collected, thoroughly homoge-
nized, and stored at −80 °C.

Total DNA extraction and 16S rRNA gene amplicon
sequencing

To characterize changes in the soil microbiome composition,
soil DNAwas extracted from 300-mg soil using the PowerSoil
DNA Isolation Kit (Mo Bio, Carlsbad, CA, USA) according to
the manufacturer’s instructions. Three DNA extracts of each

replicate were pooled and quantified using a NanoDrop
(Thermo Scientific, Wilmington, DE, USA). The V4 hypervar-
iable regions of the bacterial 16S rRNA gene sequences analy-
sis were PCR amplified using the primer pairs 563F (5′-
AY TGGGYDTAAAGVG - 3 ′ ) a n d 8 0 2 R ( 5 ′ -
TACNVGGGTATCTAATCC-3′) (Cardenas et al. 2010) with
the following PCR conditions: the reaction mix (20 μl)
contained 4 μl of 5× Fast-Pfu buffer, 2 μl of 2.5 mM dNTPs,
0.4μl of each primer (5μM), 0.5μl of DNA sample, and 0.4 μl
of Fast-Pfu polymerase (TransGen Biotech, Beijing, China).
PCR amplification included 30 cycles of 95 °C for 30 s,
55 °C for 30 s, and 72 °C for 30 s in an Applied Biosystems
thermal cycler (GeneAmp PCR system 9700, Applied
Biosystems, Foster City, CA, USA). For each DNA sample,
three independent PCRswere performed and the triplicate prod-
ucts were pooled to minimize the bias of PCR amplification.
The amplicon products were purified using an AxyPrep PCR
Clean-up Kit (Axygen Biosciences, Union City, CA, USA)
before perfoming agarose gel electrophoresis. The concentra-
tions of the purified PCR products were determined with
QuantiFluor™-ST (Promega, WI, USA) before subjecting
them to 250-nucleotide paired-end sequencing using an
Illumina MiSeq platform at Shanghai Majorbio Bio-pharm
Bio-technology Co., Ltd.

16S rRNA gene sequencing analysis

The sequence data were processed following the UPARSE
pipeline (Edgar 2013). Briefly, read pairs from each sample
were assembled, low-quality nucleotides (maximal expected
error of 0.25) were removed, and reads shorter than 200 bp
were discarded. After elimination of singletons, sequence reads
were clustered into operational taxonomic units (OTUs) at a
threshold of 97 % similarity, followed by removal of chimeras
using the UCHIME method (Edgar et al. 2011). The represen-
tative sequences and OTU tables obtained using the UPARSE
pipeline were then analyzed using Mothur (Schloss et al.
2009). Sampling depth was equalized to the depth of the
smallest sample (31,200 reads). The taxonomies of each
OTUs were annotated using the RDP 16S rRNA classifier
(Wang et al. 2007) with a confidence threshold of 80 %. The
composition of the bacterial community was clustered based on
unweighted Unifrac distance metrics (Lozupone et al. 2007).

Influence of caffeic acid on the growth of R. solanacearum

Bacteria were grown in 96-well culture plates with each well
containing 188 μl of diluted (1:5) NB medium, 2 μl of bacte-
rial suspension (OD600 = 0.5), and 10 μl of caffeic acid (pre-
pared in pure ethanol; Sigma-Aldrich, St. Louis, MO, USA) at
a final concentration of 0, 5, 10, 20, 40, 80, 120, or 160 μM.
Plates were incubated at 30 °C with shaking (170 rpm).
Bacterial growth was determined by measuring the optical
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density at 600 nm using a SpectraMax M5 (Molecular
Devices, Sunnyvale, CA, USA). The percentage of growth
inhibition was calculated according to the following formula:
Percentage of growth inhibition = (Bacterial growth in the ab-
sence of caffeic acid −Bacterial growth in the presence of
caffeic acid) × Bacterial growth in the absence of caffeic ac-
id−1 × 100 %.

Statistical analysis and sequence accession number

Analysis of variance (ANOVA, Duncan’s multiple range test)
and Student’s t test were used to compare mean differences
between the treatments by using SPSS (v. 19). Redundancy
analysis (RDA) was performed using CANOCO (ETTEN
2005) . Effec t of caffe ic ac id on the growth of
R. solanacearumQL-Rs1115 was assessed with a linear model.
All of the raw sequences have been deposited in the DDBJ
SRA under the accession number SRP068343.

Results

The effect of R. solanacearum presence on tomato root
exudate profile

Redundancy analysis (RDA) showed clearly different root
exudate profiles in the three different treatments (Fig. 1a).
The first two principal coordinates explained 88.9 % of the
total variation of secretions among the individual samples.
RDA and Monte Carlo permutation test (499 unrestricted per-
mutations) were used to identify the HPLC peaks that signif-
icantly influenced the overall chromatographic profile. Our

results revealed that compounds 2 (F = 24.0, p = 0.004), 4
(F = 23.9, p = 0.002), 10 (F = 15.9, p = 0.006), and 13 (F =
21.2, p = 0.002) were found at significantly higher concentra-
tions in the tomato exudates compared to pathogen-only sam-
ples. In contrast, compounds 1 (F = 22.3, p = 0.002), 3 (F =
22.3, p = 0.02), 7 (F = 22.3, p = 0.008) and 12 (F = 5.4, p =
0.016) were more abundant in pathogen-only samples com-
pared to plant-only or plant-and-pathogen samples. Crucially,
pathogen presence changed the tomato root exudate profile by
favoring the secretion of compounds 5 (F = 4.6, p = 0.008)
and 15 (F = 7.5, p = 0.008). The compound 15 was further
determined to be caffeic acid by comparing its retention time
with known standards. Chromatographic profiles revealed a
significant increase (p = 0.002, Student’s t test) of caffeic acid
under pathogen infection (Figs. 1b and S1).While caffeic acid
was also detected from plant-only samples, it was never de-
tected in pathogen-only samples, suggesting that it was pro-
duced by the plant and not the pathogen. Compound 5 was
detected only in the plant-and-pathogen samples.
Unfortunately, we were not able to identify all other com-
pounds except caffeic acid. This could be due to the lack of
suitable reference standards or potentially low compound sol-
ubility in the solvent (Carvalhais et al. 2015).

The effect of tomato exudates and caffeic acid on the soil
microbiome composition

At the end of the experiment, soils inoculated with the solvent
(control) had the highest bacterial OTU richness (Fig. 2a).
B a c t e r i a l OTU r i c h n e s s o f s o i l t r e a t e d w i t h
R. solanacearum-infected plant root exudates was signif-
icantly (p = 0.007, Student’s t test) lower than samples

Fig. 1 Variation in the composition of exudates originating from
pathogen-only (RS), plant-only (tomato), and plant-and-pathogen (toma-
to + RS) treatments as detected by HPLC. a The relationship between
individual exudate compounds and root exudate composition as deter-
mined by RDA. The percentage of the explained variation is indicated

on X and Y axes. Individual exudate compounds that were significantly
(p < 0.05) correlated with the exudate composition are presented as
arrows. Numbers indicate peaks on the HPLC chromatogram. b The
difference in the caffeic acid exudation in the absence and presence of
R. solanacearum. Bars show mean values ± SE (n = 3). **p < 0.01
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treated with non-infected plant exudates. Cluster analyses
based on the unweighted Unifrac metrics showed that
bacterial community replicates from the same treatment
clustered together (Fig. 2b). Non-infected plant exudate
treatment clustered with the control (soil treated with
30 % methanol), and R. solanacearum-infected plant root
exudate treatment clustered with the caffeic acid treat-
ment, suggesting that addition of caffeic acid could mimic
the effects of pathogen-induced shifts in root exudates.
We further classified the soil bacterial communities into
phylotypes consisting of eight major bacterial phyla
(Fig. S2). In contrast to non-infected plant exudate treat-
ment, R. solanacearum-infected plant exudate treatment
was assoc ia ted wi th an increase abundance of
Proteobacteria and Actinobacteria and reduced abun-
dance of Firmicutes, Acidobacteria, Verrucomicrobia,
Bacteroidetes, Gemmatimonadetes, and Candidatus
Saccharibacteria (Fig. 2c). Caffeic acid and infected plant
exudates had fairly similar effects on microbial community
composition. For example, caffeic acid treatment was also

associated with an increased abundance of Proteobacteria
and Actinobacteria and reduced abundance of Firmicutes,
Acidobacteria, and Verrucomicrobia compared to control
(Fig. 2d).

Correlation between bacterial community composition
and root exudates

Changes in the abundance of 20 major bacterial genera
(47.9 % by average relative abundance) were associated with
changes in the concentration of specific exudates (Fig. 3).
RDA ordination by vector fitting revealed compound 5 (F =
13.4, p = 0.002, Monte Carlo) and caffeic acid (F = 12.5, p =
0.002, Monte Carlo) as significantly correlated exudate com-
ponents. For example, positive correlations were observed
between caffeic acid; the unidentified compound 5; and the
genera Brachybacterium, Janibacter, Dyella, Rhodanobacter,
and Intrasporangium, and these bacterial genera showed
higher abundances in the plant-and-pathogen exudate treat-
ment. In contrast, negative correlations were observed

Fig. 2 The effect of plant exudates and caffeic acid on the soil
microbiome composition. a Bacterial OTU richness in control, caffeic
acid, plant-only (tomato), and plant-and-pathogen (tomato + RS) treat-
ments. Different letters indicate significant differences. b Community
similarity based on the cluster analysis of unweighted Unifrac metrics. c

The fold change of bacterial phyla in the plant-and-pathogen exudate
treatment relative to the plant-only exudate treatment. d The fold change
of bacterial phyla in caffeic acid treatment relative to the control. Bars
show mean values ± SE (n = 3)
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between caffeic acid or unidentified compound 5 and the gen-
era Saccharibacteria, Arthrobacter, Phycicoccus, Gaiella,
and Subdivision 3, and these bacterial genera showed higher
abundance in the plant-only exudate treatment.

The effect of caffeic acid on R. solanacearum growth

To validate the role of caffeic acid in plant-pathogen interac-
tions, the effects of pure caffeic acid on the growth of
R. solanacearum QL-Rs1115 were measured in vitro. Caffeic
acid moderately reduced the growth of R. solanacearum QL-
Rs1115 in a dose-dependent way that could be well modeled
with Michaelis-Menten kinetics (R2 = 0.66, p < 0.001; Fig. 4).
At concentrations above 80 μM, the effects of caffeic acid on
the growth of R. solanacearum QL-Rs1115 reached plateau.

Discussion

Root exudates are crucial for modulating the interactions be-
tween plants and soil microbes (Bais et al. 2006). One of the
main functions of these exudates is to directly suppress soil-
borne pathogenic microorganisms (Bais et al. 2005). However,
root exudates may also have indirect negative effects on the
pathogens via changes in commensal rhizosphere microbiome
composition. Here, we demonstrated shifts in root exudate pro-
file and an elevated secretion of caffeic acid triggered by
R. solanacearum invasion (Figs. 1 and S1). The shifts in root
exudate profile further affect the composition of soil bacterial
community (Figs. 2 and 3). We found that increased caffeic
acid directly inhibited the growth of R. solanacearum QL-
Rs1115 (Fig. 4). Together, these results suggest that pathogen

invasion can activate plant defenses that inhibit pathogen
growth directly and change the composition of soil
microbiome indirectly via shifts in root exudation profile.

Correlation analyses have revealed close relationship be-
tween root exudate profiles and the activity, biomass, and com-
position of the rhizosphere microbiome (Badri et al. 2009;
Haichar et al. 2008; Paterson et al. 2007). For example, an
ATP-binding cassette transporter mutant of Arabidopsis, which
increased the secretion of phenolics while reducing sugars

Fig. 3 RDA ordination
summarizing the correlations
between the top 20 genera of soil
bacterial communities and selected
exudate compounds in the plant-
only (tomato) and plant-and-
pathogen (tomato +RS) treatments
(superimposed as fitted vectors).
The red arrows show the magni-
tude (length) and correlation
(angle) of individual exudate
components that were significantly
(p < 0.05) correlated with the ordi-
nation (Color figure online)

Fig. 4 The effect of caffeic acid on the growth of R. solanacearum.
Growth of R. solanacearum QL-Rs1115 in 20 % NB media (after 24 h
at 30 °C) was determined by measuring the absorbance at 600 nm
(OD600). The regression curve is based on Michaelis-Menten fitting.
Bars show mean values ± SE (n = 3)
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secretion, showed changes in the composition of rhizosphere
bacterial and fungal communities compared to the wild type
(Badri et al. 2009). Other studies have directly demonstrated
that root exudates can considerably mediate the activity, bio-
mass, and composition of soil microbiome through the applica-
tion of artificial or natural blends of root secretions to soil sam-
ples in the absence of plants (Badri et al. 2013; Eilers et al.
2010; Paterson et al. 2007). In this study, we added exudates
from healthy and R. solanacearum-infected tomato plants to a
reference soi l . Root exudates f rom heal thy and
R. solanacearum-infected tomato plants can help to assemble
distinct soil microbiomes (Fig. 2b).

In contrast to non-infected plant exudate treatment,
R. solanacearum-infected plant exudate treatment was as-
sociated with an increase abundance of Proteobacteria
and Act inobac ter ia and reduced abundance of
F i rm i cu t e s , Ac i dobac t e r i a , Ve r rucom i c rob i a ,
Bacteroidetes, Gemmatimonadetes, and Candidatus
Saccharibacteria (Fig. 2c). Crucially, the effects of infect-
ed plant exudates on the composition of soil bacterial
community could be mimicked by adding pure caffeic
acid to the soil (Fig. 2b): even though the effect of caffeic
acid was not identical, it was also associated with an in-
creased abundance of Proteobacteria and Actinobacteria
and reduced abundance of Firmicutes, Acidobacteria, and
Verrucomicrobia compared to the control (Fig. 2d). In
addition, changes in the concentration of caffeic acid
and unidentified compound 5 were also significantly (pos-
itively or negatively) correlated with changes in the abun-
dances of several major bacterial genera (Fig. 3). These
observations are in agreement with the results of Badri
et al. (2013) where phenolic-related compounds were
found to significantly (positively or negatively) correlate
with a higher number of OTUs when compared with other
classes of compounds such as sugars, amino acids, and
sugar alcohols. These results thus suggest that caffeic acid
may have played an important role in modulating the
composition of soil bacterial community when tomato
roots are challenged with R. solanacearum and phenolics
in exudates may be the predominant modulators of soil
bacterial community composition.

In this study, we show that the presence of different
exudates can act as a filter and decrease the bacterial
OTU richness of the soil bacterial community (Fig. 2a).
Previous studies showed similar results that plant roots
drive a reduction in the bacterial richness of the rhizo-
sphere (Peiffer et al. 2013; Shi et al. 2015). In contrast
to bulk soil, rhizospheric soil is generally considered to be
enriched in fast-growing microbes, which respond posi-
tively to carbon sources (Fierer et al. 2007; Peiffer et al.
2013). Reductions in bacterial community diversity in our
work may due to the selection or enrichment of specific
fast-growing taxa. For example, Proteobacteria and

Actinobacteria, which have generally been characterized
as fast-growing phyla (Goldfarb et al. 2011), respond pos-
itively to caffeic acid addition compared to control
(Fig. 2d). However, we still do not know whether reduc-
tions in OTU abundance correspond to reductions in bac-
terial functional diversity.

Accumulating evidence suggests that plant roots can se-
crete diverse protective metabolites upon pathogen infec-
tion, and phenolics in root exudates may function as general
antimicrobial agents (Bais et al. 2004; 2005; Ling et al.
2010). For instance, barley, when challenged with the path-
ogen F. graminearum, rapidly induces the de novo synthe-
sis of phenolic compounds that inhibit the germination of
F. graminearum (Lanoue et al. 2009). Caffeic acid secreted
by grafted watermelon is associated with resistance to
Fusarium oxysporum (Ling et al. 2013). On the other hand,
many phenolics in the root exudates can act as metal chela-
tors and may change the availability of metallic soil
micronutrients (Bais et al. 2006). For example, caffeic acid
can chelate Cu(II) and alleviate its phytotoxicity (Garau
et al. 2015), while the possibility remains that pathogenic
bacteria use chelators as a strategy to acquire micronutrients
essential for virulence and pathogenicity (Hood and Skaar
2012; Oide et al. 2006). Therefore, the complex impacts of
root exudates and caffeic acid on the pathogen might have,
in turn, multiple effects on plant health.

In this study, we only concentrated on bacterial inter-
actions in this study. This excludes many other important
soil microbial interactions with protist predators, phages,
nematodes, and fungi (Berendsen et al. 2012). For exam-
ple, mycorrhizal fungi have been shown to also affect the
composition of rhizosphere bacterial community
(Lioussanne et al. 2010), having effects on the functioning
of the soil ecosystem (Van der Heijden et al. 1998;
Vogelsang et al. 2006). As a result, we still need a better
understanding of plant-pathogen interactions inmore complex
soil microbial communities. This information would be espe-
cially helpful from the applied perspective to guide how to
manipulate the soil microbiome composition in order to im-
prove the plant health and the crop yield (Chaparro et al. 2012;
Xue et al. 2015). For example, in addition to adding artificial
plant exudates, one could apply symbiotic mycorrhizal fungi
into the soil to increase the suppression of pathogens
(Borowicz 2001; Rodriguez and Sanders 2015).

In conclusion, here, we show that pathogen invasion causes
clear changes in tomato root exudation profile by specifically
increasing the secretion of phenolic compounds. This change
had important effects on the composition of soil microbial
community. The increased release of caffeic acid in root exu-
date had negative effect on the pathogen growth. Together,
these results suggest that pathogen-plant interactions can have
community-wide effects on the composition of soil microbial
communities.
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