
Refining Types using Type Guards in TypeScript

Ivo Gabe de Wolff
Department of Information and Computing Sciences,

Utrecht University, The Netherlands
i.g.dewolff@uu.nl

Jurriaan Hage
Department of Information and Computing Sciences,

Utrecht University, The Netherlands
J.Hage@uu.nl

Abstract
We discuss two adaptations of the implementation of type guards
and narrowing in the TypeScript compiler. The first is an improve-
ment on the original syntax-directed implementation, and has now
replaced the original one in the TypeScript compiler. It is specifi-
cally suited for the scenario in which an IDE requests the type of
a particular variable in the program. The second implementation
is defined as a whole program analysis, and is therefore able to
compute more precise narrowed types, but at the price of a higher
run-time cost.

Categories and Subject Descriptors F.3.3 [Semantics of Pro-
gramming Languages]: Progam analysis

Keywords type systems, type error diagnosis, TypeScript

1. Introduction
JavaScript is an untyped dynamic language, originally created
to make websites interactive. TypeScript is a language based on
JavaScript, created by Microsoft, that compiles to JavaScript. It is a
superset of JavaScript, adding type annotations that are checked at
compile time. TypeScript is used on a number of large projects,
including Microsoft’s Azure Portal (over one 1 mln lines) and
Shumway (at 170.000 lines) (Turner 2014, 2015).

JavaScript is a dynamic language, so not all constructs can be
easily checked by a classic type checker. One such case is when a
variable has multiple types. For instance, it is possible to write the
following:
function f(x: string | string[]): string {

if (typeof x === "string") { // string }
else { // string[] }

}
in which the variable x may refer to a string or to an array of
strings. The type of such a parameter can be examined at runtime;
we call a condition that does so a type guard.

A classic type checker may not exploit the veracity of the
condition in its type analysis. That means that you still have to cast
the variable after a type guard, although clearly the then-part can
only be reached if x has type string, while in the else-part x must
have type string[].

The TypeScript compiler does exploit type guards. This means
that a type guard, which was originally only a runtime check, is

now used at compile time too. Setting a type to a more specific type
than its declared type is called narrowing or refining. The syntax-
directed implementation in the original TypeScript compiler has
some shortcomings. Consider the following example program:
function f(x: string | string[]) {

if (typeof x === "string") {
return;

}
x;

}
The type of x on the last line as established by the original com-

piler implementation is string | string[], whereas string[]
is desired. The reason for this is that the original implementation
was based on the abstract syntax tree, not on the actual control-flow
graph.

We have constructed two implementations to improve the exist-
ing implementation, each geared to a particular scenario. In the first
scenario, the compiler is used from inside an editor/IDE, often after
a small change to the source file. In that case, we can expect only
few types to be changed whenever something happens. The first im-
plementation we discuss is suitable for this scenario, and fits well
into the architecture of the TypeScript compiler. For example, it can
be used to give type information in editors: for a single position of
a variable, it is able to show the type quickly without analyzing the
whole program.

We have implemented this approach in a fork of TypeScript.
Anders Hejlsberg, one of the core contributors of TypeScript, has
made an (performance) improved implementation based on ours,
which is now part of the TypeScript compiler (Rosenwasser 2016).
The code for the control flow based implementation can be found
in (de Wolff 2016b) and the implementation of Anders Hejlsberg in
(Hejlsberg 2016a). During our research, he has also added checking
for null and undefined, which also benefits a lot from the control
flow based type analysis. This is discussed in section 7 along with
other use cases.

As a second contribution, we have made a second standalone
implementation based on monotone frameworks (Nielson et al.
1999) which can achieve higher precision, but this is a whole pro-
gram analysis. This analysis can be used when the program is com-
piled to JavaScript, after which the incremental implementation can
take over again. The monotone framework implementation can be
found in (de Wolff 2016a).

The previous examples might look theoretical and not realistic.
Section 7 gives some practical use-cases of the feature, including
the narrowing of algebraic data types and the checking of null and
undefined values.

In Section 2 we introduce important parts of TypeScript, dis-
cussing narrowing and type guards in Section 3. Section 4 then dis-
cusses the control-flow based local approach to narrowing, while
Section 5 describes the monotone framework implementation. In
Section 6 we provide some preliminary performance benchmarks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PEPM’17, January 16–17, 2017, Paris, France
c© 2017 ACM. 978-1-4503-4721-1/17/01...$15.00

http://dx.doi.org/10.1145/3018882.3018887

111



for both implementations. Section 7 discusses some use cases in
which our analyses can be employed. Finally, Section 8 discusses
related work, and Section 9 provides some possibilities for future
work and concludes.

This paper describes the state of TypeScript 1.8. Changes made
to the language since then are documented at https://github.
com/Microsoft/TypeScript/wiki/Roadmap.

2. The Types of TypeScript
In this section we shortly introduce TypeScript, in particular the
aspects of its type system relevant to this paper. We have made
some choices in our analysis in relation to the types, which we
document here as well.

TypeScript supports a large number of primitive types: never
denotes the bottom type, any the top of the type lattice. In addition
we have void, undefined, null, number, boolean, and string.

The keyword let can be used to declare a variable, so that let
x : T means that a variable x is declared with T as its type upper-
bound. Variables can also be declared with const and var, but they
all mean the same thing when considering only the types. A small
example follows:
let x: number;
x = 0; // Ok
x = "foo"; // Error

For object types we list a number of properties with their type. A
special aspect is that properties ending in ? are optional; this means
objects do not have to have such a property, but if they do, they
should have the correct type. An example of such an object type is:
interface Foo {

// Properties
x: number;
y: Foo;
// Optional property
z?: boolean;

}
let a: Foo = {

x: 42,
y: undefined

};
let b: Foo = {

x: NaN,
y: a,
z: true

};
An object type can have call signatures, as functions are objects

too. An overloaded function has multiple signatures.
interface Bar {

// Call signature
(x: number): number;
// Optional property
foo?: boolean;
// Optional property, numeric name
0?: boolean;

}
let c: Bar = (x: number) => x * 2;
// Optional properties can be set later.
c.foo = true;
c[0] = true;

Primitive types have properties like toString and
toExponentional making them assignable to object types:

interface HasToString {
toString: () => string;

}
let g: HasToString;
g = 42; // Numbers have a toString property
g = true; // Booleans too

Indexers are wildcard properties; they introduce a set of proper-
ties whose identifier matches the type specified in the indexer:
interface StringIndexer {

[x: string]: boolean;
}
let d: StringIndexer = {};
d[’foo’] = true;
d[’bar’] = false;

interface NumberIndexer {
[x: number]: boolean;

}
Object literals are a notation to create objects. The notation

consists of an opening curly brace, a set of properties separated
by commas, and a closing curly brace. As of TypeScript 1.6, an
object literal may not contain unknown (as in, not defined in the
specified type) properties, which is why the definition of c is illegal.
However, we can assign such a value to a, and then copy it to b.
interface Point {

x: number;
y: number;

}
interface Point3D {

x: number;
y: number;
z: number;

}
let a: Point3D = { x: 1, y: 1, z: 1 }; // Ok
let b: Point = a; // Ok
let c: Point = { x: 1, y: 1, z: 1 }; // Error

These extra, unknown properties are called excess properties in
the language specification (Microsoft 2016c).

Enum types are very much like their cousins in other languages.
Of note is that for enums the type system behaves nominally, values
of one enum type are not assignable to variables of another enum
type.

TypeScript also supports intersection and union types: a union
type, denoted as A | B, is a type that is assignable to A or B.
The set of assignable values of a union type is the union of the
sets of A and B, hence the name. The type never is defined as an
empty union type. An intersection type, A & B, is assignable to
both A and B. From these definitions it follows that A & (B | C)
is equivalent to (A & B) | (A & C). The set of assignable values
of an intersection type is the intersection of the sets of the parts.

A function type consists of a list of type parameters, a list of
arguments and a return type. Parameters have a name and a type.
The last parameter may be a rest parameter, which is used to define
functions with an arbitrary number of arguments (like Math.max).
let add: (x: number, y: number) => number;
let id: <U>(x: U) => U; // Polymorphic

let a: { (x: number) => number
, property: string };

let b: ((x: number) => number)
& { property: string };

In the definition of a and b, the types are in fact equal, but
written in a different fashion.

As of TypeScript 1.8, users can write a type to which only one
string is assignable. Combined with union types, this can be used

112



to model magic strings. Magic strings, common in JavaScript, are
an alternative to enumerations, as in
type Day = "sat" | "sun" | "mon" | "tue" | "wed"

| "thu" | "fri";
let day: Day;
day = "sat"; // Ok
day = "may"; // Error

Literal types will be extended to number, enum and boolean
types (Hejlsberg 2016b). In our analysis, we support string, number
and boolean literal types.

By default, every type is nullable, which means that undefined
and null can be assigned to variables of every type. With a new
option of TypeScript 2.0, called strictNullChecks, undefined
and null are two new types and no other types can contain these
values. If you want to declare a variable that could be a string or
null, you must annotate it with a union type string | null. We
will do the analysis in this mode.

3. Type Guards and Narrowing
A type guard is a condition that checks whether a value is of a
certain type. If that value references a variable, this, or a property
of one of those, the compiler can change the type of the reference in
the scope of the type guard; this is called narrowing. For example,
let x: string | number | boolean;
if (typeof x !== "string") {

if (typeof x !== "number") {
// x: boolean

}
}
// Or we can write:
if (typeof x !== "string" &&

typeof x !== "number") {
// x: boolean

}
TypeScript has the following type guards built in:

• typeof - narrows to primitive types
• instanceof - narrows a class type to a subclass
• equality checks - intersects the types of both operands
• truthiness checks - narrows to all truthy or falsy types. A type

is truthy if it is true after conversion to a boolean, falsy if it
becomes false.

Additional examples of these type guards are given in Figure 1.
In the monotone framework implementation, we have added

support for comparison type guards for <, >, <= and >=, in case our
types are (unions of) literal types. For a < b, we take the largest
value of b, and remove of subtypes of a that are larger than or equal
to that value. Similarly, the type of b is narrowed. This is not always
precise: the type guard for a < a should preferably yield never,
but in our approach it does not.

A complication for our analysis is that TypeScript allows the
definition of user-defined type guards, as illustrated in Figure 2,
in which the syntax is Cat indicates that the return value of the
function is refined to the Cat subtype.

4. The Local Control-Flow Based Analysis
The original implementation in the TypeScript compiler was syntax
directed, following the shape of the AST. This means for example,
that a node (which should be a type guard of some kind) in the
AST can only narrow the type of its children. However, in some
cases this is not intuitive:

let x: number | Array<boolean> | "foo" = ...;
if (x instanceof Array) {

// x: Array<boolean>
} else {

// x: number | "foo";
}
if (x === "foo") {

// x: "foo"
} else {

// x: number | Array<boolean>;
}
let y: number | string | boolean = ...;
if (x === y) {

// x: number | "foo" y: number | "foo"
} else {

// x: number | Array<boolean> | "foo"
// y: number | string | boolean

}
let z: number | undefined = ...;
if (z) {

// z: number
} else {

// z: 0 | undefined
}

Figure 1. Type guard examples

interface Animal {
name: string;

}
interface Cat extends Animal {

meow(): void;
}

// User defined type guard
function isCat(animal: Animal): animal is Cat {

return animal.name === "Kitty";
}
let x: Animal;
if (isCat(x)) {

// x: Cat
x.meow();

}

Figure 2. A user-defined type guard for cats

let x: string | number = ...;
if (typeof x === "string") {

// x: string
}
if (typeof x === "string") {

// x: string | number
x = "a";
// x: string | number

}
In the latter example, the assignment blocks the refinement for the
whole block, and no advantage of the type guard can be had. This
is something that is hard to explain to a programmer, and one situ-
ation we would like to amend. The syntax-directedness also makes
the original implementation blind to assignments made during a
function call, so sometimes types are narrowed when they should
not be as the following example shows.

113



a b b !== null

c c = c + 1 d

e

true
false

Figure 3. A simple control flow graph

let x: string | number = ...;
function setX() {

x = 42;
}
if (typeof x === "string") {

setX();
// number at runtime, compiler says string

}
The designers of TypeScript decided to accept this unsoundness;
one of the non-goals says: “Apply a sound or ‘provably correct’
type system. Instead, strike a balance between correctness and pro-
ductivity” (Microsoft 2016b).

In the remainder of this section we discuss our improved, incre-
mental control-flow based implementation that has found its way
into the current version of the TypeScript compiler (thanks to An-
ders Hejlsberg). Our implementation shares one property of the
original implementation: it is given the location of a variable, and
will only analyze those parts of the program that contribute to that
type. The idea is that such an analysis is much faster than a whole
program analysis so that it can be used in an IDE. To compile a
whole project from scratch, this process is invoked repeatedly to
compute all types in the project, cleverly keeping parts of the results
of these separate invocations. The approach discussed in Section 5
analyzes the complete project in a single analysis.

The control flow graph can be implemented by giving each node
of the AST an adjacency list containing the prior nodes in the
control flow. Using this representation, the previous occurrences of
a variable can easily be found. However, not all nodes of the AST
have to be in the graph. In our implementation, only identifiers,
type guards, assignments and nodes that can change the control
flow (such as an if- or for-statement) are part of the graph. For the
following code fragment
a();
if (b !== null) {

c = c + 1;
d();

}
e();

our implementation generates the control-flow graph in Figure 3,
where a circle represents an identifier and a rectangle an assignment
or type guard.

It is common that large pieces of the graph are straight-line code
sections, with no branches nor assignments. For instance, a long
expression can contain a lot of variables. Anders Hejlsberg adapted
our implementation in which the graph contains only one node for
these straight lines. For our example, the graph in Figure 4 results.

Our initial implementation was 40 times slower than the original
compiler with the syntax-directed implementation. We reduced this
number to 20 by replacing recursion with a manual stack, tracked
in an array (de Wolff 2016b). The implementation of Anders Hejls-
berg, which has a smaller control flow graph, was approximately
as fast as the syntax-directed implementation. His implementation
does use recursion, but includes explicit tail recursion for nodes
of the control flow graph that have only one antecedent (Hejlsberg
2016a).

1

a

b

b !== null

2

c

c = c + 1 3

d

4

e

true

false

Figure 4. The modified control graph

4.1 Narrowing after Assignments
The type of a variable will be narrowed after an assignment. Con-
sider the assignment x = e. If the type of x were directly narrowed
to the type of the assigned value, you can get unexpected behavior,
as demonstrated by these examples.
let x: { a?: boolean };
x = {};
x.a = true;

class Base { a; }
class Derived extends Base { b; }
let y: Base[];
y = [new Derived()];
y.push(new Base());

If x were narrowed to {}, the empty object type, the assignment
to x.a would be invalid. If y were narrowed to Derived[], it
would be an error to push an object of type Base to the array.
To prevent these issues, only union types will be narrowed: the
resulting type is the union of the parts of the original union type
to which the type of e is assignable. In the following example, x is
narrowed to Base, since Derived is assignable to Base but not to
string.
let x: Base | string;
x = new Derived();

In the next example, x would be narrowed to the empty type
with this rule. Derived | string is assignable to neither Base,
string nor number, so this rule does not work as expected. This
can be fixed by applying the previous rule to each part of an
assigned union type. For this example that would mean that the
filtering on Derived results in Base and the filtering on string
results in string, combined this yields Base | string.
let x: Base | string | number;
let e: Derived | string;
x = e;

4.2 Branches
If code has a lot of branches, the graph can have an exponential
number of paths between two flow nodes. Consider a file with
n consecutive if-statements. Then 2n paths between the top and
bottom of the file exist. When analyzing all paths separately, this
would cost Ωp2n

q, which will be too slow for large code files.
We can improve the performance by storing the type of a variable
before each branching node, such as an if-statement, as a form of
dynamic programming. In the example, this means that for each
if-statement only two nodes should be evaluated, in total 2n.

4.3 Iterations
Iterations can complicate the analysis. Given that the body of a loop
can be evaluated multiple times, the types in the body depend on
themselves. The following example shows such a case.

114



interface A { a; x: B; }
interface B { b; x: C; }
interface C { c; x: A; }
let x: A | B | C = {a: 0; x: ...};
while (true) {

x = x.x;
x;

}
On the last line of the while loop, the type of x should be A

| B | C. Before the loop, x is known to be of type A. In the first
iteration, the type of x will have type B, in the next iteration this
becomes C, and then back to A. This can be implemented with a
least fixed point iteration, starting with A, converging to the type of
x for which x = x.x. This iteration would analyze along the back
edge multiple times until the type stabilizes.

Given that assignments only filter a (finite) union type, this
process will terminate if no type guards are present. However, it is
possible to get an infinite chain of types with type guards. When
a user-defined type guard has both the variable that should be
narrowed as the previous value as arguments, this can lead to an
infinite chain. Imagine that a type guard isOneHigher exists that
checks whether the first argument is one higher than the second
argument. The following code would give an infinite chain of types;
the type of x is ai “ 0|1|...|i when the loop has been analyzed i
times.
let x: number;
while (true) {

const y = x;
x = ...;
if (!isOneHigher(x, y)) return;
// x: 0 | 1 | 2 | ...

}
It is currently not possible to write such a type guard. However,

an infinite chain of types can also be constructed with objects with
generics:
interface Wrap<T> { value: T; }
function wrapContains<U, V extends U>

(w: Wrap<U>, value: V): w is Wrap<V> {
...

}

let x: Wrap<any> = ...;
if (!wrapContains(x, "")) return;
// x: Wrap<string>
while (1) {

const y = x;
x = ...;
if (!wrapContains(x, y)) return;

}
After analyzing the path entering the loop, the type of x after

the last if-statement would be Wrap<Wrap<string>>. When ana-
lyzing the back edge repeatedly, arbitrarily deeply nested objects
will be found. This can be fixed by limiting the number of times
that the back edge is analyzed, and falling back to the initial type of
the variable (Wrap<any> in this case) when that limit is exceeded.
This is not always accurate, but it is sound and can improve the per-
formance. A simpler solution would be to fall back to the declared
type if the type of a variable depends on the type on the same loca-
tion. TypeScript already does something similar for other recursive
constructs. For instance, the return type of a function without a re-
turn type annotation that calls itself recursively cannot be inferred
and falls back to any.

An exception to this rule is the case where the type of a variable
depends directly on the type at that location, or more formally, there
is a path from the location to itself, with no assignments to that
variable. This path can contain type guards. The type for this path

typeof x === "string"

x = 42

Type guard (typeof x === "string") && (x = 42)

then-blockelse-block

true
false

Figure 5. A control-flow graph for assignments in conditions

can only be a subtype of the type at that location. Thus, we may
ignore this path in the analysis.

4.4 Assignments in Type Guards
The control flow based implementation can have issues when a type
guard contains an assignment. Consider the following code:
let x: string | number | boolean = ...;
if ((typeof x === "string") && (x = 42)) {

x;
}

Figure 5 shows the graph that is generated if the condition of the
if-statement is placed directly as one node in the graph. When ana-
lyzing the type of x in the then-block, the path from the assignment
x = 42 contains the type guard (typeof x === "string") &&
(x = 42). Applying it narrows the type of x based on (typeof x
=== "string") and (x = 42). The first of those is a type guard,
which narrows number to never. The second is not a type guard,
and does not narrow. However, at runtime the value of x can only
be a number there.

Expanding these logical expressions does not fix all issues. An
operand of a type guard may modify the value of the variable. If
that operand is evaluated after the getting the value of the variable,
narrowing should be blocked. This may happen when user defined
type guards are employed:
let x: string | number = undefined as any;
function isString(x: any, y: any): x is string {

return typeof x === "string";
}

if (isString(x, x = 4)) {
x;

}
To fix these issues, we must not treat a logical binary expression

(&& or ||) as a type guard, but we must expand it as can be seen in
Figure 6. Note that the same scenario can occur in an instanceof
check, for instance x instanceof (x = 1, Object).

The syntax of a typeof type guard is too restrictive to deal
with these cases. The value of typeof may only be compared with
a string literal, so typeof x === "str" + "ing" does not nar-
row. Our monotone framework implementation does allow more
freedom here. For instance, a typeof check may be compared
to any value. Thus, typeof x === (x = 1, "string") is al-
lowed. The comma operator evaluates the first and the second
operand and returns the second operand. The assignment to x is
executed after retrieving the value of x for the typeof, so the type
guard works on the old value of x. Narrowing should be blocked in
this case.

115



typeof x === "string"

x = 42

then-blockelse-block

true

false

true
false

Figure 6. A fixed control-flow graph

4.5 Algorithm
The compiler performs a bind step in a single pass over the AST set-
ting the scopes of all variables, and reporting errors for unreachable
code. We have adapted this traversal by replacing the reachability
checks by the creation of the control flow graph.

To avoid confusion, a node from the AST is called a node and a
node from the control flow graph a flow node. The function union
takes the union of several types, typeNever represents the type
never, initialType the initial type of the analyzed variable and
node the location of the variable. The function narrow narrows the
type of a variable based on a type guard and that function should
check whether the type guard contains an assignment.

As discussed before, iterations can be handled in two ways.
When analyzing a loop, the body of the loop can cause recursion. A
simple implementation falls back to the initial type in these cases;
it can be implemented based on the pseudo-code in Figure 7.

An implementation using a least fixed point iteration is more
accurate for loops. The pseudo code in Figure 8 demonstrates
such an implementation, which limits the number of iterations to
guarantee termination. The code uses typeUsedRecursively and
typesCache, which are two dictionaries that store for each node a
type and a boolean whether the type was used recursively. The latter
is used to prevent starting a least fixed point iteration in cases where
this iteration is not needed. This means that this implementation is
only slower if a least fixed point iteration could give more accurate
types. The constant maxIterations is the maximum number of
times that the least fixed point iteration may be executed before
falling back to the initial type.

4.6 Limitations
The implementation still has a few limitations. It is not interpro-
cedural, which means that assignments in other functions are not
handled. Moreover, it will also analyze code that could be known
to be unreachable.

5. Monotone Framework Implementation
Our second implementation is based on the concept of monotone
frameworks (Nielson et al. 1999). This implementation gives more
accurate type information. Consider the following example: let x
= 0; x = 1.

The standard TypeScript compiler will infer the type of x based
on its initializer. If the compiler would treat that as 0, the second
line would be invalid. If it were treated as number, accuracy is lost.
The creators of TypeScript have chosen the second option, since
the first would require the programmer to write a lot more type
annotations and it would be a breaking change from the previous
versions. With a monotone framework, we can infer the type to be
0 first, and after the second line we can set it to 1. If a variable
has a type annotation, we can use it as an upper bound: we take

if node is already being analyzed
return initialType

end

path := []
cache := {}

return typeAt(node.flowNode)

function typeAt(flowNode)
if cache contains flowNode
return cache[flowNode]

end
if flowNode is assignment to this variable
return narrowByAssignment(initialType,

flowNode)
end
if path.contains(flowNode)
return typeNever

end
path.push(flowNode)
type := typeNever
for antecedent of flowNode.antecedents
type := union(type, typeAt(antecedent))
if type equals initialType

break
end

end
if flowNode is type guard for this variable
type := narrow(type, flowNode)

end
path.pop()
cache[flowNode] := type
return type

end

Figure 7. The algorithm without fixed point iteration

the meet of the declared and assigned types. If that is not equal to
the assigned type, the assignment is invalid and an error should be
shown.

Another advantage of this implementation is that it can ignore
code that is unreachable based on type information. This can be
useful for a function that is polymorphic, in combination with an
interprocedural analysis.

A monotone framework consists of a lattice L, a set of mono-
tone transfer functions F , the program flow F , a set of extremal
program points E, an extremal value ι P L and a mapping from
program points to transfer functions λl.fl. An element of the lattice
L is the state of the analysis at a certain program point. The bottom
element K P L means that the program point is unreachable. Any
other element contains the types of all variables at that location.
The extremal program points are the first nodes of all files. Entry
points of functions are added later in the inter-procedural analysis
(Nielson et al. 1999; Fritz and Hage 2014).

To reduce complexity, we will not support the full TypeScript
language. We will restrict the JavaScript features to the EC-
MAScript 5 specification and thus not support features like classes
and destructuring from later ECMAScript versions. The implemen-
tation will only resolve types and will not check the types.

In the next sections we will discuss the type lattice and the
transfer functions.

116



if node in typesCache
typeUsedRecursively[node] := true
return typesCache[node]

end
visited := []
cache := {}
type := typeAt(node.flowNode)
if !typeUsedRecursively[node]
return type

end
i := 0
do
i := i + 1
if (i > maxIterations) return initialType
previous := type
cache := {}
type := typeAt(node.flowNode)

while previous not equals type

function typeAt(flowNode)
if cache contains flowNode

return cache[flowNode]
end
if flowNode is assignment to this variable

return narrowByAssignment(initialType,
flowNode)

end
if path.contains(flowNode)

return typeNever
end
path.push(flowNode)
type := typeNever
if flowNode equals node.flowNode

typesCache[node] := type
typeUsedRecursively[node] := false

end
for antecedent of flowNode.antecedents

type := union(type, typeAt(antecedent))
if flowNode equals node.flowNode
typesCache[node] := type

end
if type equals initialType
break

end
end
if flowNode is type guard for this variable

type := narrow(type, flowNode)
end
path.pop()
cache[flowNode] := type
return type

end

Figure 8. The algorithm with fixed point iteration

5.1 Type Lattice
The type lattice is defined by defining the subtype relation. For this
we employ the subtype definition from the 1.8 language specifica-
tion with some modifications, as explained below.

5.1.1 Subtype Relation
The subtype relation is defined in the language specification ver-
sion 1.8 as follows (Microsoft 2016c, as reproduced from section
3.11.3):

S is a subtype of a type T, and T is a supertype of S, if S has
no excess properties with respect to T (3.11.5) and one of
the following is true:

i. S and T are identical types.

ii. T is the any type.

iii. S is the undefined type.

iv. S is the null type and T is not the undefined type.

v. S is an enum type and T is the primitive type number.

vi. S is a string literal type and T is the primitive type
string.

vii. S is a union type and each constituent type of S is a
subtype of T.

viii. S is an intersection type and at least one constituent type
of S is a subtype of T.

ix. T is a union type and S is a subtype of at least one
constituent type of T.

x. T is an intersection type and S is a subtype of each
constituent type of T.

xi. S is a type parameter and the constraint of S is a subtype
of T.

xii. S is an object type, an intersection type, an enum type,
or the number, boolean, or string primitive type, T is
an object type, and for each member M in T, one of the
following is true:
• M is a property and S has an apparent property N

where

M and N have the same name,

the type of N is a subtype of that of M,

if M is a required property, N is also a required
property, and

M and N are both public, M and N are both private
and originate in the same declaration, M and N are
both protected and originate in the same declara-
tion, or M is protected and N is declared in a class
derived from the class in which M is declared.

• M is a non-specialized call or construct signature and
S has an apparent call or construct signature N where,
when M and N are instantiated using type any as the
type argument for all type parameters declared by M
and N (if any),

the signatures are of the same kind (call or con-
struct),

M has a rest parameter or the number of non-
optional parameters in N is less than or equal to
the total number of parameters in M,

for parameter positions that are present in both
signatures, each parameter type in N is a subtype
or supertype of the corresponding parameter type
in M, and

the result type of M is void, or the result type of
N is a subtype of that of M.

• M is a string index signature of type U, and U is the
any type or S has an apparent string index signature
of a type that is a subtype of U.

117



• M is a numeric index signature of type U, and U is
the any type or S has an apparent string or numeric
index signature of a type that is a subtype of U.

When comparing call or construct signatures, parameter
names are ignored and rest parameters correspond to an un-
bounded expansion of optional parameters of the rest pa-
rameter element type. Note that specialized call and con-
struct signatures (section 3.9.2.4) are not significant when
determining subtype and supertype relationships. Also note
that type parameters are not considered object types. Thus,
the only subtypes of a type parameter T are T itself and other
type parameters that are directly or indirectly constrained to
T.

For our analysis, we need to make a few adjustments to
this specification. First, the definition above does not deal with
strictNullChecks, since this is the specification of TypeScript
1.8, because the specification for 2.0 was not yet available at the
time of writing. Therefore, we must remove the third and fourth
point, which prevent that null is a subtype of string for instance.
In our analysis, we will also use number and boolean literal types.
Similar to the sixth rule, we add two rules:

• S is a number literal type and T is the primitive type number.
• S is a boolean literal type and T is the primitive type boolean.

We will not consider excess properties, as these could be added
in a type-checking phase. To reduce complexity, we do not sup-
port access modifiers (private, protected). We do not handle
Symbol indexers (which are not part of specification of TypeScript
1.8 anyway). We also do not handle optional properties explicitly:
an optional property of type T is modeled as T | undefined.

When comparing function types, all type parameters are re-
placed by any. That means that <U, V>(u: U, v: V) => U is
assignable to <U, V>(u: U, v: V) => V, for instance. Even
though this may give unexpected behavior, we use this definition
in the analysis since it is easy to implement. Functions are bivari-
ant, which means that (a: "x") => void is a subtype of (a:
string) => void, which is a subtype of (a: "y") => void.
However, (a: "x") => void is not a subtype of (a: "y") =>
void. We must change the subtype rules and require that the types
of the arguments are supertypes (instead of subtypes or supertypes).

Types can have different representations. For instance, { x:
number; } & { y: number; } is equal to { x: number; y:
number; }. We say that two notations T and U represent the same
type if T Ď U Ď T.

We add a new type, which represents a reference to a function
with never as its only subtype, except for intersection types. It does
not have supertypes, except for union types.

5.1.2 Lattice Definition
Definition 1 (Lattice). A lattice is a partially ordered set, where
every two element have a unique least upper bound (join) and a
unique lower bound (meet) (Nielson et al. 1999). For the ordering,
Ď, these axioms should hold for all x, y, z in the set:

Reflexivity:
x Ď x (1)

Antisymmetry:

if x Ď y and y Ď x then x “ y (2)

Transitivity:

if x Ď y and y Ď z then x Ď z (3)

A lattice is bounded iff a greatest (J) and least (K) element exist
such that:

@x : K Ď x Ď J (4)

5.1.3 Lattice Axioms
The definition of the subset relation, yields a partial ordering on the
set of types. We will prove the axioms here.

Lemma 1. The subtype relation is reflexive.

Proof. Reflexivity holds because of the first condition in the defini-
tion of the subset relation.

Lemma 2. The subtype relation is antisymmetric.

Proof. We defined that the same type can have different notations.
When T Ď U Ď T, we say that T and U represent the same type.
This is the exact condition for antisymmetry.

We will now prove that the relation is transitive for non-
recursive types. We will first do that for primitive types, literal
types and enum types. Afterwards we extend that with induction
for union types, intersection types, object types and function types.
In the following lemmas, T Ĺ U Ĺ V will be three types.

Lemma 3. The subtype relation is transitive for all primitive types,
literal types and enum types.

Proof. Let T, U, V be three types from the set of primitive types,
literal types and enum types. If T is never or V is any, transitivity
holds trivially. So, we may assume that T ‰ never and V ‰ any

The only supertype of any is any. Given that V is not any,
the other types will also not be any. By analogous reasoning,
the same applies to never. Thus, we may assume that T, U, V R
tnever, anyu.

If T is number, boolean and string, the only supertypes are T
and any. Given that U is not any nor T, this case does not occur.

If T is a literal or enum type, then the only supertypes are
number, boolean and string, other than any, union and inter-
section types. Thus, U is one of those. The only supertypes of U are
U itself and any, thus this does not occur.

We have now considered all possibilities for T and we conclude
that the subtype relation is transitive for all primitive types, literal
types and enum types.

Lemma 4. Let L be a set of type on which the transitivity axiom
holds and K a type parameter constrained by a type in L. Then the
subtype relation is transitive on LY tKu.

Proof. If neither T, U nor V is the new type parameter K, this
is trivial. Thus we assume that at least one of them is K. The
supertypes are K and any. Thus, T and U cannot be a type parameter.
Thus, V “ K. The subtypes of K are the type parameter itself and
subtypes of its constraint. Let C be the constraint, which is in L.
Then T Ď U Ď C. Given that T, U, C P L, we know that T Ď C.

Lemma 5. Let L be a set of types for which the transitivity axiom
holds. Then the subtype relation is transitive for all types in L
combined with object types and function types whose members have
types in L.

Proof. We can compare the subtype relation for all properties and
indexers of objects, since these are in L. Recall from the 1.8 lan-
guage specification (Microsoft 2016c, as reproduced from section
3.11.3) the following about functions and call signatures:

i. the signatures are of the same kind (call or construct),
ii. M has a rest parameter or the number of non-optional

parameters in N is less than or equal to the total number
of parameters in M,

118



iii. for parameter positions that are present in both signa-
tures, each parameter type in N is a subtype or supertype
of the corresponding parameter type in M, and

iv. the result type of M is void, or the result type of N is a
subtype of that of M.

The first condition holds here. The second too because “less than
or equal” is reflexive too. The last two points can again be proven
because the parameter types and return type are in L.

Lemma 6. Let L be a set of types for which the transitivity axiom
holds. Then the subtype relation is transitive for all types in L
combined with intersection types whose parts are in L.

Proof. We will now consider intersection types. Let T, U, V be
intersection types of at least one part. Types that are not intersection
types can be represented as an intersection of only one type. We
denote the parts as Ti. The subtype relation has two rules where
the right side is an intersection type. The first says that each part
of the intersection should be a supertype of the type on the left; the
second says that the left side is an object type whose properties are
present in the intersection type. The second rule is used to establish
that { a, b } Ď { a } & { b }. Consider that only the first rule
is used. Following the subtype rules:

T Ď U

ðñ @j : T Ď Uj

ðñ @j : Di : Ti Ď Uj

(5)

Given that i depends on j, we will write it as ipjq. Using a
similar derivation, it follows that @l : Ukplq Ď Vl and that we must
show that @q : Tppqq Ď Vp. Notice that @l : Tipkplqq Ď Ukplq Ď Ul.
Because the parts of the intersection types are in L, we know that
@l : Tipkplqq Ď Ul. Thus we choose p “ k ¨ l and the theorem holds
for intersection types.

If T Ď U uses the second rule for intersection types, then T is an
intersection type of only one part. Given that a supertype will have
at least all properties of the subtype, V will have all properties of U
and the types of the properties of V will be supertypes of those of
U. Thus, T Ď V. The same can be shown for the case where U Ď V
uses the second rule.

Lemma 7. Let L be a set of types for which the transitivity axiom
holds. Then the subtype relation is transitive for all types in L
combined with union types whose parts are in L.

Proof. The theorem can be proven in almost the same way as for
intersection types. We can expand the subtype relation for union
types:

T Ď U

ðñ @i : Ti Ď U

ðñ @i : Dj : Ti Ď Uj

(6)

This gives that for each i, we can find j and k such that Ti Ď

Uj Ď Uk, thus Ti Ď Uk (using that the union parts are in L).

We conclude that the subtype relation is transitive for all non-
recursive types. Given that the analysis does not support recursive
types, we do not have to consider those.

Lemma 8. The subset relation gives a partial ordering on the set
of non-recursive types.

Proof. The previous lemmas are sufficient to show that the subtype
relation is transitive on the set of all non-recursive types.

We define the join (least upper bound, _) as follows:

a_ b “ a | b “ aY b (7)

We define the meet (greatest lower bound, ^):

a^ b “ a & b “ tu & v : u P a, v P bu (8)

The join and meet are per definition of intersection and union
types the least upper bound and greatest lower bound. To reduce the
size of intersection and union types, we apply subtype reduction.
We replace a union T | U by T if U Ď T and we replace T & U by T
if T Ď U. This means that any disappears in an intersection type and
never in a union type. A union type that includes any becomes any
and an intersection with never is replaced by never. Furthermore,
an intersection type that has no assignable values, such as string
& number, is replaced by never.

Lemma 9. The type lattice is bounded

Proof. Since any is a supertype of all types except for function
references and the program can contain only a finite number of
function declarations, J “ any|f0|f1|...|fn is a supertype of
all types, where f0...fn represent the function references in the
program. Given that never is an empty union type, it is the subtype
of all types, so K “ never. Thus, the lattice is bounded.

When combining the lemmas in this section, we find that the
subtype relation on the set of types yields a bounded lattice.

5.1.4 Ascending Chain Condition
To have termination guarantees for our monotone framework our
lattice should satisfy the ascending chain condition. The condition
says that for each chain a0 Ď a1 Ď a2 Ď ..., there exists an
n P N, such that an “ an`1 “ an`2 “ .... The definition of the
type lattice does not satisfy this condition. For instance, the chain
ai “ 0 | 1 | 2 ... i will never terminate to a fixed point. Therefore,
we apply widening to guarantee termination of the analysis.

We add three restrictions to our types: we restrict the size of
union type, the number of properties, and the depth of nesting of
object types (including arrays) (Fritz and Hage 2014). Let k be the
chosen maximum size of a union type. Given that a finite number
of function references exist, we can ignore these references in the
widening of a union type. If a union type has a larger size, we widen
in two phases: first, we replace all literal types by their primitive
type. If the resulting union type is still larger than k, we replace
it with any. That means that in the following example, the type of
i in the body of the loop would be 0 | 1 | 2 ... n if n ď k,
otherwise number:
for (let i = 0; i <= n; i++) { i; }

The two other restrictions are simpler to enforce: an object that
is nested too deeply, or that has too many properties is replaced by
any.

5.2 Transfer Functions
For each program point l, a monotone function exists that maps the
incoming environment (A˝) to the output environment (A‚):

A‚ “ flpA˝q (9)
Below we discuss the transfer functions for various kinds of

program points.

5.2.1 Assignments and Variable Declarations
The transfer function for assignments replaces the previous type
of the assigned variable with the type of the assigned value. The
transfer function of a variable declaration sets the type of the
variable to the initializer if present. If no initializer is present, it

119



sets the type to undefined if the variable was block-scoped. A
function-scoped variable may be used before its definition and the
declaration does not change its value, so no type should be changed.

5.2.2 Type Guards
The transfer function for a type guard changes the type of a vari-
able, similar to an assignment. The location of a type guard is
defined as a tuple consisting an expression, and a flag that says
whether it flows to the true- or false-branch. It will resolve the type
of the expression and narrow it to a truthy (true when coerced to a
boolean) or falsy (false when coerced) value. If that type is never,
the following code is unreachable. Otherwise, if the expression is a
reference to a variable, the type of the variable is narrowed to the
calculated type. If the expression contains some other type guard,
the referenced value is narrowed by the type guard.

5.2.3 Accessing Identifiers
In other transfer functions, the type of a variable is needed. In
these cases, the type of the variable in a previous environment
is needed instead of the current one. Assignments or type guards
could exist between the previous and current environment. In let
x = 1; let y = x + (x = 2). When analyzing the type of y,
the desired type is 3. This can be implemented by desugaring the
program to static single assignment (SSA) form. An alternative is
to take this into account in the control flow graph and to store the
types of previous occurrences of a variable in the environment. We
have implemented the latter. The transfer function for identifiers
stores the type of the variable at that location in the environment.
As an optimization, the type of a non-live variable could be cleared;
otherwise it may propagate uselessly through a big part of the
program.

5.2.4 Function Calls and Return Statements
When a call expression invokes a function reference, a new edge is
inserted from the call expression to the entry point of the function
and for each exit point of the function, an edge is created back to
the call site. The function is analyzed for each calling site. This
means that the analysis is context-sensitive. E.g., when an identity
function is called from multiple locations, their return types are
kept separately.

The transfer function for a return statement sets the type of the
related call expression in the environment. It joins the environment
before the call expression and the return statement, since a part of
the variables in scope might originate from a different function call.

5.3 Standard Library
The definitions from the standard library are already written as
TypeScript definitions, since the standard TypeScript compiler uses
them. My implementation based on monotone frameworks can
import this file too. However, since this file is approximately 19000
lines long and contains a lot of definitions, it was necessary to store
this information outside of the environment. Declarations of the
standard library could also be narrowed or reassigned and in these
cases, the declaration is moved to the environment.

6. Benchmarks
In this section we provide some preliminary benchmarks of the
performance and precision of our analysis.

For our benchmarks we have used a machine with the follow-
ing specifications: MacBook Pro (Retina, 13-inch, Mid 2014), 2,8
GHz Intel Core i5, 16 GB 1600 MHz DDR3. We have run our im-
plementations on two systems: timeago.js (339 lines of code)
and mustache.js (625 lines).

We measured the running time of the implementations and the
percentage of types that are any, as an indication of the precision.

The types of identifiers, property access with dot or brackets and the
this keyword were used in the measurements. Note that the used
examples are JavaScript, thus lacking type annotations. For a fair
comparison, we used the types from the TypeScript compiler only
from code sections that were reachable according to the monotone
implementation, such that the same code sections were analyzed.
The full sources and resolved types can be found in (de Wolff
2016a) in the directory cases.

For the smaller of the two applications we see a large discrep-
ancy in the timings: the interprocedural version is much, much
slower. This seems to be due to a large number of function calls.
Indeed, if we turn context-sensitivity off, the time is much reduced.
The inter-procedural analysis does seem to give more accurate re-
sults. We analyzed the testcase with one library call (first table) and
with tens of different calls (second table).

Implementation % any time
Inter-procedural monotone 11% 26.77s
Context insensitive monotone 15% 3.30s
TypeScript Compiler (2.0) N/A 1.17s
TypeScript Compiler (2.1RC) 55% 1.11s

Inter-procedural monotone 28% 256.35s
Context insensitive monotone 36% 42.11s
TypeScript Compiler (2.0) N/A 1.11s
TypeScript Compiler (2.1RC) 65% 1.14s

For the larger project, mustache.js the timings and precision
measurements are very close to each other:

Inter-procedural monotone 21% 2.29s
Context insensitive monotone 21% 2.28s
TypeScript Compiler (2.0) N/A 1.56s
TypeScript Compiler (2.1RC) 63% 1.13s

We note that we have also compiled the programs with Type-
Script 1.8. That compiler is faster than the one for 2.0, but it is im-
possible to tell to which extent our control-flow based implementa-
tion is responsible, since many more things have changed between
the two compilers. This is why we have left them out at this time. A
nice additional result of the research was that we found two issues
in the code of timeago.

7. Use Cases
Type guards have several use cases. They give more accurate types,
which gives advantages in several scenarios. This section will
demonstrate some of them.

7.1 Function Overloading
TypeScript does not support compile time function overloading. It
is possible to create a function that has different signatures, but the
types of the arguments have to be checked by the programmer. He
can use type guards to do that. It is common in JavaScript to write
a function that accepts either one value, or a list of values. Gulp, a
build system for JavaScript, has a function that takes either one or a
list of file names or patterns, and returns a stream of matched files.
Such a function can be defined as follows:
function src(files: string | string[]) {
if (typeof files === "string") {

files = [files];
}
// files: string[];

}
Our monotone framework implementation can determine that at
the end of src, files can only contain a value of type string[].

120



type Tree<T, S> = Leaf<S> | Node<T, S>;
class Leaf<S> {
constructor(public data: S) {}

}
class Node<T, S> {
constructor(

public item: T,
public left: Tree<T, S>,
public right: Tree<T, S>) {}

}
function map<T, S, U, V>(

tree: Tree<T, S>,
mapLeaf: (data: S) => V,
mapNode: (item: T) => U

): Tree<U, V> {
if (tree instanceof Leaf) {

return new Leaf(mapLeaf(tree.data));
} else {

const { item, left, right } = tree;
return new Node(mapNode(item),
map(left, mapLeaf, mapNode),
map(right, mapLeaf, mapNode));

}
}

Figure 9. Type guards to mimick pattern matching on ADTs

7.2 Alternative to ADT and Pattern Matching
TypeScript does not have algebraic data types (ADT) nor pattern
matching. Type guards offer an alternative to pattern matching. The
code in Figure 9 demonstrates this. Note that prefixing a constructor
argument with public makes it available as a property.

The Leaf class can also be replaced by null or undefined if
a leaf contains no data. If another function only works on a Node,
there is no need to create another type for it. For instance, a function
that returns the leftmost element of a tree, can take Node<T, S> as
argument. As an alternative it could also return T | undefined.
This example can also be written with strings as tags, as shown in
Figure 10.

Another use case is the return type of a generator. JavaScript
supports generator functions which can stream results instead of
returning a single value: multiple values can be pushed with yield
and the final return value comes from a return statement. When
consuming a generator, you get objects that have the yielded or
returned value. These objects have a done property that is false
if this value originates from a yield expression, and true if it
originates from a return statement. TypeScript did not consider
return values originally, since these are typically not used. This
type can now be defined using a union type, which can be narrowed
based on discriminated union types.
type IteratorResult<TYield, TReturn>
= { done: false; value: TYield }
| { done: true; value: TReturn };
In a strongly typed functional language like Haskell, the func-

tions head and tail are not defined for empty lists, causing the
functions to crash with a run-time error when you call them with
an empty list. In TypeScript, the parts of a union type are types too,
so these can be used in the signature of these functions. Type guards
can then be used to call the function safely. The compiler can check
this and prevent runtime errors.

7.3 Null and Undefined Checks
When we were working on the control flow based implementation,
Anders Hejlsberg of the TypeScript team was working on nullable
types. Since version 2.0, null and undefined have become two

type Tree<T, S> = Leaf<S> | Node<T>;
interface Leaf<S> {

kind: "leaf";
data: S;

}
interface Node<T, S> {

kind: "node";
item: T;
left: Tree<T, S>;
right: Tree<T, S>;

}
function map<T, S, U, V>(

tree: Tree<T, S>,
mapLeaf: (data: S) => V,
mapNode: (item: T) => U

): Tree<U, V> {
if (tree.kind === "leaf") {
return { kind: "leaf",

data: mapLeaf(tree.data) };
} else {
const { item, left, right } = tree;
return { kind: "node",

item: mapNode(item),
left: map(left, mapLeaf, mapNode),
right: map(right, mapLeaf, mapNode) };

}
}

Figure 10. Distinguishing node types by string tags

new types, and other types do not contain these values any more.
Using the control flow based type analysis, the compiler can give
accurate warnings when a variable can be null or undefined.
A variable that contains a string or null can be annotated with
string | null. For cases where the compiler is too restrictive, a
new type cast was introduced: x! removes null and undefined
from the type of x.

8. Related Work
Considerable work has been done on refinement types. Guha et
al. (Guha et al. 2011) have investigated refinement types in script-
ing languages, including JavaScript, Python and Ruby. They ana-
lyzed a code base of 617,666 lines of code, which contained 3,298
undefined and null checks, 17 instanceof checks and 474
typeof checks. (Actual numbers can be higher because of conser-
vative checks in their analysis. For more recent code, these num-
bers might be different since the 2016 release of ECMAScript adds
classes.) They introduce a core calculus λS to model scripting lan-
guages, including JavaScript, with type checking using type guards.

Chugh et al. (Chugh et al. 2012) have introduced another core
calculus, System D, supporting nested refinement types and have
proven its soundness. Their analysis supports higher-order func-
tions, polymorphism and dictionaries.

Only few research projects related to TypeScript are available
at the moment. Bierman et al. (Bierman et al. 2014) give an in-
troduction to TypeScript and its type system. However, because of
the rapid development of TypeScript, this overview is somewhat
out-dated. Rastogi et al. (Rastogi et al. 2015) give an overview of
Safe TypeScript, a fork that adds runtime checks in the generated
JavaScript code, to overcome the unsoundness of TypeScript.

More information on the TypeScript language can be found
in the TypeScript Documentation (Microsoft 2016a). TypeScript
Blueprints (de Wolff 2016c) gives a practical introduction to Type-
Script for JavaScript programmers.

121



Flow (Facebook 2016) is a static type checker for JavaScript. It
only functions as a type checker and not as a complete compiler.
Flow focuses more on soundness, whereas TypeScript focuses on
developer tools such as editor support.

9. Conclusion
This paper presents two distinct implementations of type guards in
the context of TypeScript. We started by elucidating the shortcom-
ings of the existing syntax-directed implementation, and discussed
a control flow based implementations that has approximately the
same performance, but better accuracy. Both versions are suitable
for real-time usage in editors, since they do not require a whole
program analysis. The control flow based implementation has re-
placed the syntax directed implementation in the TypeScript com-
piler, thanks to additional work by Anders Hejlsberg. Type guards
facilitate the checking of nullable types; the analysis can give accu-
rate information whether a variable might be undefined or null
(Rosenwasser 2016).

An implementation based on monotone frameworks is dis-
cussed for cases where a whole program analysis is appropriate.
This gives more accurate types. Type guards can increase the accu-
racy of the types when a program has polymorphic functions.

9.1 Future Work
All discussed implementations cannot see dependencies between
types. The standard library of JavaScript has a dictionary class,
Map, which has a function has to check whether a key binding
exists, and a function get to retrieve the associated value. If get
is called with a key that does not exist, it returns undefined. The
return type of get on a Map<T, V>, where T is the type of the key
and V the type of the value, is defined as V | undefined. Ideally,
the call to has would be a type guard for get. The following code
block demonstrates this:
const map: Map<string, number> = ...;
const key: string = ...;
if (map.has(key)) { const value = map.get(key); }

According to our implementations, the type of value is number
| undefined. The type guard map.has(key) creates a depen-
dency between the types of map and key, which cannot be tracked
by these implementations; this is by no means the only such case.

Another idea is to compute a greatest fixed point for the mono-
tone framework. One advantage is that a greatest fixed point com-
putation starts with a sound solution working towards a more pre-
cise one. In a real-time setting this may be advantageous, improving
the approximations with a given upper bound to the time we may
spent doing so, to guarantee responsiveness. Moreover, for vari-
ables that have an annotation, we can start the analysis by setting
the type of that variable to the annotation, instead of any.

References
G. Bierman, M. Abadi, and M. Torgersen. Understanding typescript. In

R. Jones, editor, ECOOP 2014 – Object-Oriented Programming: 28th
European Conference, Uppsala, Sweden, July 28 – August 1, 2014.
Proceedings, pages 257–281, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg. ISBN 978-3-662-44202-9.

R. Chugh, P. M. Rondon, and R. Jhala. Nested refinements: A logic for
duck typing. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’12, pages
231–244, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1083-
3. doi: 10.1145/2103656.2103686. URL http://doi.acm.org/10.
1145/2103656.2103686.

I. G. de Wolff. Monotone type checker. https://github.com/ivogabe/
monotone-type-checker, 2016a. Accessed: 20-7-2016.

I. G. de Wolff. Control flow based type guards - pull request 6959. https:
//github.com/Microsoft/TypeScript/pull/6959, 2016b. Ac-
cessed: 20-7-2016.

I. G. de Wolff. TypeScript Blueprints. PACKT Publishing, 2016c.
Facebook. Flow — a static type checker for javascript. https://

flowtype.org, 2016.
L. Fritz and J. Hage. Cost versus precision for approximate typing for

python. Technical Report UU-CS-2014-017, Department of Information
and Computing Sciences, Utrecht University, 2014.

A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state
using flow analysis. In G. Barthe, editor, Programming Languages
and Systems: 20th European Symposium on Programming, ESOP 2011,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2011, Saarbrücken, Germany, March 26–April 3,
2011. Proceedings, pages 256–275, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. ISBN 978-3-642-19718-5.

A. Hejlsberg. Control flow based type analysis - pull request 8010. https:
//github.com/Microsoft/TypeScript/pull/8010, 2016a. Ac-
cessed: 20-7-2016.

A. Hejlsberg. Number, enum, and boolean literal types - pull re-
quest 9407. https://github.com/Microsoft/TypeScript/pull/
9407, 2016b. Accessed: 6-7-2016.

Microsoft. Quick start - typescript. https://www.typescriptlang.
org/docs/, 2016a. Accessed: 28-9-2016.

Microsoft. Typescript design goals. https://github.com/Microsoft/
TypeScript/wiki/TypeScript-Design-Goals, 2016b. Accessed:
12-7-2016.

Microsoft. Typescript language specification version 1.8.
https://github.com/Microsoft/TypeScript/blob/
29985f33b7cabf9f549721c368ba2118d147779f/doc/
TypeScriptLanguage\%20Specification.pdf, 2016c. Accessed:
4-7-2016.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe & ef-
ficient gradual typing for typescript. In Proceedings of the 42Nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’15, pages 167–180, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2676971. URL
http://doi.acm.org/10.1145/2676726.2676971.

D. Rosenwasser. Announcing typescript 2.0 beta, 2016.
J. Turner. Typescript and the road to 2.0. https://

blogs.msdn.microsoft.com/typescript/2014/10/22/
typescript-and-the-road-to-2-0/, 10 2014. Accessed:
6-7-2016.

J. Turner. Angular 2: Built on typescript. https://
blogs.msdn.microsoft.com/typescript/2015/03/05/
angular-2-built-on-typescript/, 3 2015. Accessed: 6-7-
2016.

122


