
Predicting Resource Consumption of Higher-Order Workflows

Markus Klinik1 Jurriaan Hage2 Jan Martin Jansen3 Rinus Plasmeijer1

1Institute for Computing and Information Sciences
Radboud University, Nijmegen, The Netherlands

2Department of Information and Computing Sciences
Utrecht University, The Netherlands

3Netherlands Defence Academy (NLDA), The Netherlands
m.klinik@cs.ru.nl j.hage@uu.nl jm.jansen.04@mindef.nl rinus@cs.ru.nl

Abstract
We present a type and effect system for the static analysis of
programs written in a simplified version of iTasks. iTasks is a
workflow specification language embedded in Clean, a general-
purpose functional programming language. Given costs for basic
tasks, our analysis calculates an upper bound of the total cost of
a workflow. The analysis has to deal with the domain-specific
features of iTasks, in particular parallel and sequential composition
of tasks, as well as the general-purpose features of Clean, in
particular let-polymorphism, higher-order functions, recursion and
lazy evaluation. Costs are vectors of natural numbers where every
element represents some resource, either consumable or reusable.

Categories and Subject Descriptors F.3.3 [Semantics of Program-
ming Languages]: Program analysis

Keywords Workflow Systems, Resource Modelling, Type and
Effect Systems

1. Introduction
Workflows are algorithmic descriptions of how to combine basic
tasks in order to achieve some higher-level goal. The reasons to
employ workflows are to understand, define and streamline compli-
cated processes, usually involving many contributing performers. In
other words, it is all about optimizing costs.

The most popular workflow systems come in the flavor of Petri-
net-like box and arrow diagrams. Most notably there is BPMN
(Object Management Group 2009), the Business Process Model
and Notation, which is the de-facto industry standard with dozens
if not hundreds of software tools from different manufacturers for
designing and simulating workflows. From a programming language
design perspective BPMN resembles an imperative programming
language with GOTOs and barely any capability for abstraction.
Control flow is explicit by means of arrows between boxes, but data
flow is implicit.

In contrast, iTasks is a workflow management system in the spirit
of higher-order functional programming. It comes as a Domain Spe-
cific Language embedded in Clean, a lazy functional programming

language. As such, workflows written in iTasks can make use of
mechanisms common to functional programming, such as higher-
order functions, polymorphic static typing, algebraic datatypes and
pattern matching. Furthermore, data flow in iTasks is explicit, as
tasks can return values. In particular, tasks can take other tasks as
input or return them as values, making workflows in iTasks higher-
order.

In this paper we present a static analysis for iTasks programs that,
given costs for basic tasks, calculates the total cost of a compound
workflow. The analysis comes in the form of a type and effect system
with polymorphism, polyvariance and subtyping. The analysis is
parameterized in the types of resources a workflow uses, which
means programmers can define arbitrary units of costs for their
workflows.

1.1 Motivating Example
Let us look at an example to get an impression what the analysis
can do. Consider the following program.

let forever = fix fx.x� fx in

let approve = fn t.use [1 Supervisor] True in

let approved = fn t.approve t fn ok .

if ok then t else (return 0) in

let initialize = use [3 Toolboxes] 0 in

let work = use [1 lFuel + 1 Toolboxes] 0 in

approved initialize� approved (forever work)

The function forever executes its argument task in an endless loop.
Approval of a task is represented by approve. In a real iTasks
program the task t could be presented on screen to a person who
then decides whether it should be executed. In this example, tasks are
always approved. The function approved only executes its argument
if it gets approval. The tasks initialize and work are stand-ins for
some tasks where real work happens. They cost 3 toolboxes, and
1 liter of fuel and a toolbox respectively. The main expression first
runs initialization and then the actual work in an infinite loop, but
only after asking for approval.

The analysis, when run with this program as input, computes
as answer the cost [1 Supervisor +∞ lFuel + 3 Toolboxes]. This is
because in each iteration of the loop more fuel is consumed, while
the toolboxes can be reused. How exactly the analysis computes this
answer is the subject of this paper.

The rest of this paper is organized as follows. In section 2 we
define syntax and operational semantics of a language to specify
workflows. In section 3 we develop the annotated type system that
performs the cost analysis. Section 4 describes an algorithm that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PEPM’17, January 16–17, 2017, Paris, France
c© 2017 ACM. 978-1-4503-4721-1/17/01...$15.00

http://dx.doi.org/10.1145/3018882.3018885

99

computes cost estimations. Section 5 discusses the capabilities of
the method by means of examples.

2. Syntax and Semantics
In this section we define the syntax and operational semantics of a
programming language to specify workflows.

We consider two sorts of resources, consumables and reusables.
Consumable resources are used up when a task that requires them
is executed. Reusable resources become available again upon com-
pletion, and are claimed exclusively during execution of a task. We
assume that it is implicitly understood which resources are consum-
able and which are reusable.

2.1 A Programming Language for Workflows
Our language is a simplified version of Clean and iTasks. It is a
small functional programming language with higher-order functions,
non-recursive let-bindings and a fixpoint combinator. Tasks and
workflows exist as domain-specific constants and combinators in
the language.

e ::= b | i | x | fnx.e | fix fx.e | e1e2 |
if ec then et else ee | let x = e1 in e2 | e1 � e2 |

use [k] e | return e |
e1 & e2 | e1 e2 | e1� e2

k ::= nu | nu+ k

The general-purpose part of the language has Boolean and integer
constants b and i, program variables x, abstraction, application, if-
then-else and let-bindings. The symbol� stands for the usual binary
operators for arithmetic, Boolean connectives and comparison.
There is a fixpoint combinator fix fx.e that defines recursive
functions with one argument.

The domain-specific part of the language has a primitive use
for basic tasks, and task combinators for sequential and parallel
composition. All basic tasks are represented by the use operator,
where k denotes the cost of executing the task. Costs are given in a
polynomial-like syntax where n is a natural number and u the unit
of a resource. For example use [2S + 3B] 5 may denote a task that
when executed uses 2 screwdrivers, 3 bottles of wine, and yields the
value 5. Costs and resources are discussed in more detail in Section
2.2.

Expressions of the form return e denote tasks that have been
executed and return a value e.

Tasks in our language always yield values, but not all real-world
tasks do. In monadic programming one usually uses the unit type
when values do not matter. For simplicity we do not consider the
unit type in our language and just use some integer value that should
be ignored by the rest of the program.

There are three combinators for tasks, the parallel combinator
(&) and two variants of sequential composition. The regular bind
operator () executes its left argument first and passes the resulting
value to its right argument as usual. The sequence operator (�)
ignores the value of its left argument and yields the value of its right
argument. The sequence operator is useful for example programs
where the values of tasks do not matter. We include it in our language
for convenience, being well aware that it can easily be defined
in terms of bind. Since � is a variant of with identical cost
behavior, we ignore it in the formal part of this paper but still use it
in examples.

The parallel combinator executes both its arguments simultane-
ously. In iTasks the result value of parallel composition is a tuple
containing the values of both tasks. Our language does not have
tuples, a deliberate decision because we want to focus more on
side effects than on values. Adding tuples would inflate the various

definitions relating to our language while not providing substantial
new insight regarding cost analysis. We therefore take the liberty
of bending the semantics of the parallel combinator a bit to avoid
tuples. Our parallel composition still executes both tasks simultane-
ously, but it discards the value of the left argument and yields the
value of the right one.

2.2 A Domain for Representing Costs
In order to define the semantics of the language, we need to make
the notions of resource and cost precise.

We define a resource to be a positive integral quantity, possibly
infinite. Every resource has a unit, so we are not just talking about
numbers but about quantities of certain things. Think of liters of fuel
or numbers of first-aid kits.

Definition 2.1. The extended natural numbers are denoted by N
or { 0, 1, 2, . . . ,∞}. The only operations we use are addition and
comparison, which are extended with∞ in the obvious way.

Definition 2.2. Let U be a finite set. A cost over U is a function
γ : U → N. Usually, U is understood from the context and we just
talk about costs.

The set U contains the units of the resources of interest in a
given workflow. A cost can be seen as a U -indexed set of numbers.
For example, let U = {mW, l water/h, Potatoes }. In a situation
like that we are talking about tasks that require any number of these
resources. We can then express that a task uses 5 liters of water per
hour, 2 potatoes, and no power by associating the following cost
to it [mW 7→ 0, l water/h 7→ 5, Potatoes 7→ 2]. We shall adopt a
polynomial-like notation 0mW + 5l/h+ 2P for this.

Examples in this paper do not mention concrete resources. We are
interested in the abstract idea of consumables and reusables, and will
useC andR as stand-ins for some consumable and reusable resource
respectively. Our example tasks will have costs like 5C + 3R.

The analysis is based on generating and solving constraints.
Constraint solving relies on Tarski’s fixpoint theorem, which states
that every monotone function on a complete lattice has a least
fixpoint. In anticipation of that, the domain of costs must be a
complete lattice. We first define the lattice of a single resource.

Lemma 2.3. The structure (N,≤,t,u) is a complete lattice. Joins
are maxima, meets are minima. The top element is∞, the bottom
element is 0.

As said in definition 2.2, a cost is a collection of such numer-
ical quantities. The order on costs comes from the order of the
constituents.

Definition 2.4. The set of all possible costs is defined as the function
space from U to N, extended with a bottom element, written as
[U → N]⊥.

Definition 2.5. Costs are ordered pointwise. That is, for two costs
δ, γ ∈ [U → N]⊥

δ v γ ⇐⇒
{
δ = ⊥ or
∀u ∈ U.δ(u) ≤ γ(u) if δ, γ 6= ⊥

In this paper we define several binary operators on costs. All
of them are non-strict. This means for all op ∈ {t,+,�,∇} we
implicitly have:

γ op δ =

{
γ if δ = ⊥
δ if γ = ⊥

The definitions of these operators cover the cases where both γ and
δ 6= ⊥.

100

Definition 2.6. Joins of costs are defined pointwise. That is, for two
costs δ and γ,

δ t γ = λu.δ(u) t γ(u).

Meets of costs are defined analogously.

In this paper we work with lattices whose relation we denote
by v. This symbol should be read as “below”, which implicitly
includes “or equal”. The inverse relation w should be read as
“above”. Similarly, when comparing tasks the terms “cheaper” and
“more expensive” implicitly include possible equality.

Lemma 2.7. Costs form a complete lattice ([U → N]⊥,v,t,u).
The top element is λu.∞, the bottom element is the artificial ⊥.
Joins are pointwise maxima, meets are pointwise minima.

This structure will serve as the domain for both the operational
semantics and the static analysis. This domain is called D. We use
the letters γ and δ to denote elements of D.

We define three binary operations on D which we use to model
sequential composition, parallel composition, and recursion.

Definition 2.8. Addition of costs is defined pointwise.

γ + δ = λu.γ(u) + δ(u)

Definition 2.9. The combine operator � for costs is defined point-
wise as the maximum of reusables and sum of consumables.

γ � δ = λu.

{
γ(u) t δ(u) if u is reusable
γ(u) + δ(u) if u is consumable

The combine operator implements the idea that consumables are
used up but reusables can be reused. If the left argument already
requires 5 units of a reusable resource R, but the right argument
only requires 3, then the total requirement is 5R.

Definition 2.10. Let γ, δ be costs. The widening of γ by δ, written
γ ∇ δ, is defined as follows.

γ ∇ δ = λu.

{
∞ if δ(u) > γ(u)

γ(u) otherwise

We use widening to guarantee termination of fixpoint iteration
when the analyzed program contains recursion. The asymmetric
definition of widening is intentional. The left argument will always
be the overall cost of a recursion and the right argument will always
be the cost of a single pass. When the cost of a single pass exceeds
the cost of the recursion overall, which means that each iteration
adds to the cost, the widening operator yields infinity. Widening
is used in the implementation in Section 4 and discussed in more
detail in Section 5.

2.3 An Operational Semantics
We split the operational semantics in two parts. Both are call-by-
name small-step structural operational semantics with substitution.
The general purpose part, denoted by a normal arrow→, applies
to non-task expressions. The domain specific part of the semantics
applies to task expressions. It is denoted by a two-headed arrow�
to emphasize its relation with the bind operator .

The general purpose semantics rewrites expressions with rules
of the form e→ e. The domain specific semantics 〈γ, e〉 → 〈γ, e〉
rewrites expressions while recording the resources that are used
during reduction. The names of the rules of the semantics are
prefixed by gs- and ds-, which are to be read as “general purpose
step” and “domain specific step”.

In order to define a small-step semantics for the parallel compo-
sition of tasks, we add a new syntactic form to the language, called
cost closure. When the parallel composition of two tasks needs to
be reduced, a cost closure springs into existence and keeps track
of the costs of the tasks separately, so that no sharing of resources

takes place. Cost closures only exist temporarily during reduction
and disappear once both tasks have been executed. Cost closures
have the form par(e1 & e2, γ1, γ2) where e1 & e2 are two tasks in
progress of being executed, and γ1 and γ2 are their costs so-far.

The general purpose semantics is given in Figure 1. The rule
[gs-fix] states that a fixpoint reduces to a function where every
occurrence of f in the function body is replaced by the fixpoint
itself. The rule [gs-app-cong] states that in an application, the
expression in function position evaluates to a value first. The rule
[gs-app-reduce] implements call-by-name reduction. The argument
is not reduced but substituted as-is. The rule [gs-let] implements
let-bindings in a call-by-name style. The duplication of costs which
results from substituting a task into an expression at several places
is intended, because executing a task multiple times costs more.
The rule [gs-if-cong] states that in a conditional, the condition
is evaluated first. The rules [gs-if-t] and [gs-if-f] reduce to the
respective branch if the condition is True or False.

[gs-fix] fix fx.e→ fnx.e[f 7→ fix fx.e]

e1 → e′1[gs-app-cong]
e1e2 → e′1e2

[gs-app-reduce] (fnx.eb)ex → eb[x 7→ ex]

[gs-let] let x = ex in eb → eb[x 7→ ex]

ec → e′c[gs-if-cong]
if ec then et else ee → if e′c then et else ee

[gs-if-t] if True then et else ee → et

[gs-if-f] if False then et else ee → ee

Figure 1. Small-step semantics for general purpose expressions

The domain specific semantics is given in Figure 2.
The rule [ds-use] stands for the execution of a basic task in a call-

by-name style. On the left hand side, γ is the cost of the program
so far. Executing the task use [k] e uses up the resources k, which
is modelled by adding k to γ on the right hand side. The result
is return e, which indicates that the task has been executed and
yields value e.

The rule [ds-pure] lifts the general purpose semantics into the
domain specific semantics. It is needed for expressions of type task
that must make a normal step. For example,

〈if True then (use [k] 5) else (use [l] 7), γ〉�
〈use [k] 5, γ〉

The rule [ds-bind-ret] implements the bind operator. If the left
argument of the bind is a task that has been executed, then its result
value is passed as an argument to the left argument of the bind.

The rules [ds-bind-cong] and [ds-bind-pure] state that the left
argument of a bind must be reduced first. The cost of the step of e1
is added to the overall cost of the program.

The rest of the rules all deal with parallel task composition.
The only interesting rules are [ds-para-init] and [ds-para-ret]. [ds-
para-init] creates a cost closure in which the parallel composition
is executed. When both tasks are fully reduced, which means they
are of the form return e, [ds-para-ret] calculates the resulting cost
such that no resources are shared between the parallel tasks. The
result value is the value of the right parallel task, a simplification
that, as discussed earlier, saves introduction of tuples to our type
system at the cost of deviating from how iTasks works.

101

The rules [ds-para-cong-l], [ds-para-cong-r], [ds-para-pure-
l], and [ds-para-pure-r] state how subexpressions must be evalu-
ated so that eventually [ds-para-ret] applies.

[ds-use] 〈use [k] e, γ〉� 〈return e, γ � k〉

e→ e′[ds-pure]
〈e, γ〉� 〈e′, γ〉

[ds-bind-ret] 〈return e1 e2, γ〉� 〈e2e1, γ〉

〈e1,⊥〉� 〈e′1, γ′〉[ds-bind-cong]
〈e1 e2, γ〉� 〈e′1 e2, γ � γ′〉

e1 → e′1[ds-bind-pure]
〈e1 e2, γ〉� 〈e′1 e2, γ〉

[ds-para-init] 〈e1 & e2, γ〉� 〈par(e1 & e2,⊥,⊥), γ〉

[ds-para-ret]
〈par(return e1 & return e2, γ1, γ2), γ〉�

〈return e2, γ � (γ1 + γ2)〉

〈e1, γ1〉� 〈e′1, γ′1〉[ds-para-cong-l]
〈par(e1 & e2, γ1, γ2), γ〉�
〈par(e′1 & e2, γ

′
1, γ2), γ〉

〈e2, γ2〉� 〈e′2, γ′2〉[ds-para-cong-r]
〈par(e1 & e2, γ1, γ2), γ〉�
〈par(e1 & e′2, γ1, γ

′
2), γ〉

e1 → e′1[ds-para-pure-l]
〈par(e1 & e2, γ1, γ2), γ〉�
〈par(e′1 & e2, γ1, γ2), γ〉

e2 → e′2[ds-para-pure-r]
〈par(e1 & e2, γ1, γ2), γ〉�
〈par(e1 & e′2, γ1, γ2), γ〉

Figure 2. Small-step semantics for task expressions

3. The Analysis
In this section we present a static analysis that estimates the cost
of executing a workflow. The estimation is conservative, which
means that no execution of a workflow uses more resources than the
analysis predicts.

The analysis is realized as a type and effect system with poly-
morphism, polyvariance and subtyping. The type system collects
constraints such that a solution of the constrains gives an estimation
of the cost of executing the program.

3.1 The Annotated Type System
The type system has type variables α, two base types for Booleans
and integers, and two type constructors for functions and tasks.
The only annotated types are tasks, where annotations come in the
form of annotation variables β. Annotation variables will be given
meaning by the solution of constraint sets. Types are formed by the
following grammar.

τ̂ ::= α | bool | int | taskβ τ̂ | τ̂1 → τ̂2

The type system uses type schemes for polymorphism and
polyvariance. Additionally, type schemes are qualified, which means
they include constraints relating bound variables. Type schemes are
formed by the following grammar.

σ ::= τ̂ | ∀~α~β.C ⇒ τ̂

In a type scheme, ~α are bound type variables, ~β bound annotation
variables, andC is a set of constraints that restricts bound annotation
and type variables.

When ~α and ~β are empty, which means there are no bound
variables in τ̂ , C will usually be empty as well. In this case we just
write τ̂ instead of ∀().∅ ⇒ τ̂ .

Definition 3.1. (Free type and annotation variables) We define two
functions on types and type schemes, FTV and FAV . FTV returns
all free type variables of a type scheme, and FAV all free annotation
variables. They are defined by induction on the syntax of types. We
omit the formal definition. For example

FAV (∀α1β1.{β2 w β1 } ⇒ taskβ1 α1 → taskβ2 α2) = {β2 }.
These functions extend pointwise to environments. We also define
them for annotations and constraint sets, where they just return
all occurring variables, because there are no bound variables in
constraints.

Judgements in the type system are of the form C; Γ ` e : τ̂
where Γ assigns types to free program variables in e. C is a set of
constraints that relates free annotation and type variables in τ̂ .

Definition 3.2. (Annotations) Annotations are expressions denoting
costs. They are used in constraints to describe the cost behavior of
programs. Annotations are formed by the following grammar.

ϕ ::= k | β | ϕ1 + ϕ2 | ϕ1 � ϕ2 | ϕ1 ∇ ϕ2

k stands for cost constants like [2C + 7R]. β stands for annotation
variables. The three operators +,�,∇ stand for their respective
operations on D, defined in Section 2.2.

Definition 3.3. (Constraints) Constraints come in two forms, one
that relates types and one that relates costs. Constraints are formed
by the following grammar.

c ::= τ̂1 <: τ̂2 | β w ϕ
A constraint of the form τ̂1 <: τ̂2 is called a subsumption constraint
and records the fact that τ̂1 must be a subtype of τ̂2. A constraint of
the form β w ϕ, called an effect constraint, means that the cost β is
above the cost expressed by ϕ.

Effect constraints β w ϕ use the symbol “above” and always
have a variable on the left, and an annotation on the right hand
side. This is customary in literature on type and effect systems,
and we adopt it here. Please note that the direction of subsumption
constraints is the opposite of effect constraints, again an adoption of
convention in the literature.

Definition 3.4. Given an annotation ϕ, we define the interpretation
of ϕ, written JϕK, as a function from assignments to costs. An
assignment s : AnnVar→ D is a mapping from annotation variables
to costs.

JkKs = k

JβKs = s(β)

Jϕ1 + ϕ2Ks = Jϕ1Ks+ Jϕ2Ks
Jϕ1 � ϕ2Ks = Jϕ1Ks� Jϕ2Ks
Jϕ1 ∇ ϕ2Ks = Jϕ1Ks∇ Jϕ2Ks

Interpretations of annotations are used in the effect constraint solver
in Section 4.

102

To streamline the discussion about constraints and constraint
sets, we introduce the constraint entailment relation, which makes
use of the following fact.

Fact 3.5. Any constraint set C gives rise to a monotone function

FC : (AnnVarC → D)→ (AnnVarC → D).

Monotonicity comes from the fact that the interpretation of
annotations, see Definition 3.4, is monotone. AnnVarC is the set of
annotation variables occuring in C. Our domain D is a complete
lattice, and so is the function space AnnVarC → D. As such, FC

has a least fixpoint which is at the same time the least solution to C.

Definition 3.6. (Constraint entailment) An assignment s satisfies
an effect constraint β w ϕ iff s(β) w JϕKs. Let C be a constraint
set and c a constraint. We writeC c if the minimal solution s ofC
satisfies c. The existence of such a solution is guaranteed by Tarski’s
fixpoint theorem and Fact 3.5. We write C D if every solution
of C is a solution of D. Satisfaction of subsumption constraints is
defined in Definition 3.7.

The typing rules for our annotated type system are given in
Figure 3. The rule scheme [t-const] gives the corresponding types
to pure constants, that is bool to Boolean constants and int to integer
constants. [t-var] looks up the type scheme of a variable in the
environment and instantiates it. [t-op] is a rule scheme for all pure
operators in the language and typechecks them in the obvious way.
Addition takes two integers and returns an integer, comparisons
take two integers and return a Boolean, and so on. [t-fn] typechecks
abstractions in the usual way. The bound variable is put into the
environment and the function body is analyzed in this extended
environment. [t-fix] analyzes recursive functions similarly to [t-fn].
The function body is analyzed under the assumption that f is a
function that takes an argument of the type of x. [t-app], the rule for
function application, requires that the type of the actual parameter
must be a subtype of the type of the formal parameter. The idea
is that a function that expects an expensive argument has enough
resources to also deal with a cheaper argument. For base types
subtyping merely means type equality. [t-if] requires the condition
to be Boolean, as usual. The overall type of the conditional must
be a supertype of the types of both branches. The idea is that if one
branch is more expensive than the other, and the context in which the
conditional is used has enough resources for the expensive one, it
can also deal with the cheaper one. [t-let] implements polymorphism
and polyvariance. It analyzes the defining expression ex, generalizes
its type, and analyzes the body under the assumption that x has the
generalized type. [t-let] plays together with [t-var] to allow every use
of x to have a different type, as far as instantiation allows. [t-return]
states that an expression of the form return e is a task that has no
cost. [t-use] states that basic tasks have the cost that the programmer
gave them. [t-bind] states that two tasks, executed in sequence, have
the combined cost of the left and the right cost, where reusables can
be reused. [t-para] states that the parallel composition of two tasks
costs as much as the sum of the two tasks individually. No sharing
of reusables takes place. [t-cost-closure] states how to calculate
the cost of two parallel tasks e1 and e2, whose execution to the
current form already costed γ1 and γ2 respectively. β1 and β2 are
the predicted costs of e1 and e2. The overall predicted cost of the
cost closure is the sum of the combinations of the actual costs so far
and the predicted rest.

Definition 3.7. (Subtyping) Subtyping is the reflexive transitive
closure of the relation defined by the rules in Figure 4. Reflexivity
in particular means that bool<: bool and int<: int.

Subtyping expresses that if the types of two expressions e1 : τ̂1
and e2 : τ̂2 are in the subtype relation τ̂1 <: τ̂2, then e1 can be used
in all the places where e2 can be used.

[t-const] C; Γ ` c : τc

Γ(x) � D, τ̂ C D
[t-var]

C; Γ ` x : τ̂

C; Γ ` e1 : τ1� C; Γ ` e2 : τ2�[t-op]
C; Γ ` e1 � e2 : τ�

C; Γ[x 7→ τ̂x] ` eb : τ̂b
[t-fn]

C; Γ ` fnx.eb : τ̂x → τ̂b

C; Γ[f 7→ τ̂x → τ̂b][x 7→ τ̂x] ` eb : τ̂b
[t-fix]

C; Γ ` fix fx.eb : τ̂x → τ̂b

C; Γ ` e1 : τ̂1 → τ̂2

C; Γ ` e2 : τ̂3 C τ̂3 <: τ̂1[t-app]
C; Γ ` e1e2 : τ̂2

C; Γ ` ec : bool

C; Γ ` et : τ̂t

C; Γ ` ee : τ̂e

C τ̂t <: τ̂

C τ̂e <: τ̂
[t-if]

C; Γ ` if ec then et else ee : τ̂

C′; Γ ` ex : τ̂x

C; Γ[x 7→ generalize(τ̂x, C
′,Γ)] ` eb : τ̂

[t-let]
C; Γ ` let x = ex in eb : τ̂

C; Γ ` e : τ̂ C β w ⊥
[t-return] β fresh

C; Γ ` return e : taskβ τ̂

C; Γ ` e : τ̂ C β w k
[t-use] β fresh

C; Γ ` use [k] e : taskβ τ̂

C; Γ ` e1 : taskβ1 τ̂1
C; Γ ` e2 : τ̂1 → taskβ2 τ̂2
C β w β1 � β2[t-bind] β fresh
C; Γ ` e1 e2 : taskβ τ2

C; Γ ` e1 : taskβ1 τ̂1
D; Γ ` e2 : taskβ2 τ̂2
C ∪D β w β1 + β2[t-para] β fresh

C ∪D; Γ ` e1 & e2 : taskβ τ̂2

C; Γ ` e1 : taskβ1 τ̂1
D; Γ ` e2 : taskβ2 τ̂2
C ∪D β w (β1 � γ1) + (β2 � γ2)

β fresh
[t-cost-closure]

C ∪D; Γ ` par(e1 & e2, γ1, γ2) : taskβ τ̂2

Figure 3. The annotated type system

103

C β1 v β2 C τ̂1 <: τ̂2[st-task]
C taskβ1 τ̂1 <: taskβ2 τ̂2

C τ̂ ′a <: τ̂a C τ̂r <: τ̂ ′r[st-fun]
C τ̂a → τ̂r <: τ̂ ′a → τ̂ ′r

Figure 4. The subtyping relation

In our system this means that either e1 and e2 are of base types,
which means τ̂1 = τ̂2, or τ̂1 is cheaper than τ̂2. If a context has
enough resources for τ̂2, it also can deal with τ̂1. This is essentially
what the subtyping rule [st-task] says.

Example 3.8. Consider the constraint set C = {β1 w [1C], β2 w
[2C] }. The minimal solution s of C has [β1 7→ [1C], β2 7→ [2C]].
By definition of , this means C β1 v β2. This allows us to form
the following small derivation, which witnesses the fact that the two
task types in the conclusion are in fact in the subtype relation.

C β1 v β2 int<: int
[st-task]

C taskβ1 int<: taskβ2 int

The rule [st-fun] implements subtyping for functions. As usual in
systems with subtyping, functions are contravariant in the argument
type τ̂a and covariant in the result type τ̂r . Covariant means that
the result types of two functions are in the same subtyping order as
the functions overall, while contravariant means that the order of
the argument types is reversed. To understand the latter, consider
two functions f and g with the same result type τ̂r , but with
argument types in relation τ̂f<:τ̂g . In other words f expects cheaper
arguments than g. Then, according to [st-fun], τ̂g → τ̂r<: τ̂f → τ̂r ,
which means g can be used in all contexts in which f can be used
and possibly more. The intuitive reason is that if g can deal with
expensive arguments, it can also deal with the cheaper arguments of
f . The formal reason is that our type system allows any expression
to be considered as more expensive if needed. If the application f e
is well-typed then the type system can make e more expensive so
that g e is also well typed.

In some rules we require a fresh annotation variable β. Fresh
here means that β must not occur in the free annotation variables of
the environment: β 6∈ FAV(Γ). The variable β may however occur
in other branches of the type derivation.

Definition 3.9. (Generalization) Let Γ be an environment, C a
constraint set and τ̂ a type. The generalization of τ̂ with respect to
Γ and C is defined as follows.

generalize(τ̂ , C,Γ) = ∀~α~β.C ⇒ τ̂ where

~α = FTV (τ̂) \ FTV (Γ)

~β = FAV (τ̂) \ FAV (Γ)

Definition 3.10. (Instantiation) Let σ = ∀~α~β.C ⇒ τ̂ be a type
scheme. An instantiation of σ is a type τ ′ and a constraint set
C′ where type variables are substituted by types, and annotation
variables are substituted by fresh annotation variables. As usual, this
substitution respects bound variables and is capture-avoiding. We
write σ � C′, τ̂ ′ if C′, τ̂ ′ is an instantiation of σ.

Example 3.11. Some type schemes and instantiations.

τ̂ � ∅, τ̂
∀α1α2.{α1 <: α2 } ⇒ α1 → α2 � {α3 <: α4 }, α3 → α4

∀α1α2.{α1 <: α2 } ⇒ α1 → α2 � { int<: int }, int→ int

Terminology. Given a program e, an analysis result C; Γ `
e : taskβ τ̂ , and the least solution s of C, we call s(β) the predicted

cost of e. If 〈e,⊥〉 �∗ 〈v, γ〉, we call γ the actual cost of this
reduction. We write s � C for the least solution s of C.

Conjecture 3.12. (Correctness) The analysis is sound with respect
to the operational semantics. In other words, the predicted cost of a
program is always above the actual cost of any possible reduction.
Formally,

assume C; Γ ` e : taskβ τ̂
and 〈e,⊥〉�∗ 〈e′, γ′〉
and C′; Γ ` e′ : taskβ′ τ̂ .
Let s � C

and s′ � C′.

Then s(β) w s′(β′)� γ′.

4. Implementation
This section describes an algorithm that implements the type system.
We implemented the algorithm in Clean, but this paper describes it
in an abstract way that ignores many implementation details. The
source code, together with example programs and unit tests can
be found online1. The implementation is intended to be a proof-of-
concept. No effort has been put into optimization.

The analysis works in three steps. First, there is a modified ver-
sion of algorithmW that infers types and collects constraints about
type and annotation variables. Second, the subsumption constraint
solver decomposes subtype constraints into effect constraints and
unifications. Third, and only if the top-level expression is of type
task, a worklist algorithm calculates a solution of the effect con-
straints. The cost of the analyzed program is the entry in the solution
that corresponds to the annotation variable of the top-level expres-
sion. If the top-level expression is not a task, and therefore does
not have a definite cost, the analysis just reports the type and the
constraints.

Our system deals with two kinds of variables: annotation vari-
ables and type variables. Substitutions θ replace type variables by
types and annotation variables by annotation variables. We take the
liberty to combine type and annotation substitutions for the sake of
brevity. Type and annotation substitutions are denoted by [α 7→ τ̂]
and [β1 7→ β2] respectively. The empty substitution is denoted by [].
Substitutions are applicable to types, type schemes and constraints,
and extend pointwise to environments and constraint sets. When
applied to type schemes, substitutions respect bound variables. Sub-
stitutions can be composed, which is denoted by θ2 ◦θ1, and defined
as (θ2 ◦ θ1)τ̂ = θ2(θ1τ̂).

4.1 Algorithm W
Type inference uses a unification algorithm. Unification takes two
types and returns a substitution if the types can be unified, and
an error otherwise. Figure 5 shows the unification algorithm U .
The difference between unification in textbook Hindley-Milner
algorithms and our algorithm is that ours has to deal with task
types, which carry annotation variables. As such, unification is also
applicable to annotation variables. The relevant clauses are in lines
(1) and (2) in Figure 5. In line (1), tasks are unified by unifying their
annotation variables and their return types. In line (2), annotation
variables are unified by generating a substitution.

The first step of the analysis is a variant of algorithmW . It takes
as input a program e in our language and an environment Γ, and
returns a triple of an annotated type τ̂ , a substitution θ, and a set of
constraints C. The returned results are such that if s is a solution
of θC, and e is of type task, that is θτ̂ = taskβ τ̂1, then s(β) is an
upper bound of the cost of e. AlgorithmW is given in Figures 6 and
7.

1 https://gitlab.science.ru.nl/mklinik/program-analysis

104

https://gitlab.science.ru.nl/mklinik/program-analysis

U(bool, bool) = []

U(int, int) = []

U(α, α) = []

U(α, τ̂) = [α 7→ τ̂] if α 6∈ FTV (τ̂),Error otherwise.
U(τ̂ , α) = U(α, τ̂)

U(τ̂1 → τ̂2, τ̂3 → τ̂4) = θ2 ◦ θ1 where
θ1 = U(τ̂1, τ̂3)
θ2 = U(θ1τ̂2, θ1τ̂4)

U(taskβ1 τ̂1, taskβ2 τ̂2) = θ2 ◦ θ1 where (1)
θ1 = U(β1, β2)
θ2 = U(θ1τ̂1, θ1τ̂2)

U(τ̂1, τ̂2) = Error, cannot unify types.
U(β, β) = []

U(β1, β2) = [β1 7→ β2] (2)

Figure 5. The unification algorithm.

Figure 6 shows type inference for pure expressions. Line (1) and
(2) typecheck Boolean and integer constants. Such expressions are
of type bool and int respectively.

The clause for variables in line (3) looks up the type scheme of x
in the environment and instantiates it. Instantiation means that fresh
type- and annotation variables are generated and substituted for all
the bound ones in the type and the constraint set.

The clause for abstractions in line (4) puts the bound variable x
into the environment with a fresh type variable α and typechecks
the function body.

Recursive functions, line (5), are typechecked by putting the
function and the argument with fresh type variables into the environ-
ment and then checking the function body. The resulting constraints
are widened using the function widen .

Definition 4.1. (Widening) The function widen takes a set of
constraints and yields a set of constraints where the variable in each
constraint is widened with its own right hand side. Subsumption
constraints are left untouched. Formally:

widen(C) = {β w β ∇ ϕ | β w ϕ ∈ C }
∪ { τ̂1 <: τ̂2 | τ̂1 <: τ̂2 ∈ C }

Finally, unification of the type of the body and the return type of
the function makes sure that all acquired information is contained in
the result. This clause is the only place where widening is applied,
because it is the main source of recursive constraints. Unfortunately
there are other situations in which recursive constraints can arise, as
discussed in Example 5.10.

The clause for applications, line (6), typechecks function and
argument expressions independently and uses unification to make
sure that the function expression has function type. In contrast to
textbook Hindley-Milner, the clause does not unify the types of
the formal and actual arguments. Instead it generates a subtyping
constraint that requires the actual argument to be a subtype of the
formal argument.

The clause for conditionals, line (7), typechecks the condition
and uses unification to make sure that it is of type bool. It then
typechecks the then- end else-branches independently and generates
two subtyping constraints which make sure that the type of the
conditional is a supertype of both branches.

The clause for let-bindings in line (8) first typechecks the defin-
ing expression of x and then generalizes the type and constraints
resulting from that. The body of the let-binding is then typechecked
in an environment where x maps to its type scheme.

The clause for pure operators, line (9), does not deal with
annotations at all. It typechecks both arguments and uses unification
to make sure that the actual argument types match the formal
argument types of the operator.

The rest of the algorithm is shown in Figure 7.
The clause in line (10) handles task constants. It generates a

constraint that makes sure that the constraint solver takes the cost of
the task into account.

The clause for sequential task composition, line (11), looks
complex but holds no surprises. The left argument must be a task
and the right argument a function that accepts the task’s value. The
function must yield a task. The clause generates a constraint that
ensures that the cost of the overall expression is the combination of
the cost of the left and right arguments.

Parallel task composition, line (12), is simpler than sequential
composition. Both arguments must be tasks. The value of the overall
expression is the value of the right argument. See Section 2.1 for a
rationale. The cost of the overall expression is the sum of the costs
of the arguments.

4.2 Subsumption Constraint Solving
This section motivates and describes the subsumption constraint
solver.

In many type and effect systems, all types are annotated with
effects. An example is exception analysis, where expressions of any
type can throw exceptions. In our case however, only tasks have
annotations because only tasks have costs.

Our algorithmW performs resource analysis by traversing the
abstract syntax tree. This always happens in a particular order, and
as with Hindley-Milner type inference we face the problem that
information about the type of some expressions becomes available
only when the algorithm advances further into the AST.

Hindley-Milner solves this by generating and solving type
equality constraints. Our system features subtyping, which means
that unification would lead to faulty results. Instead of type equality
constraints, we must generate subeffect constraints, but only if the
involved types are tasks. For base types we want regular unification.
If the algorithm cannot immediately determine whether to use
unification or subeffecting, it has to defer the decision until more
information about the types is available.

Generating subsumption constraints, which are later resolved
by either unification or turning them into subeffect constraints,
is conceptually similar to annotating all types and dropping the
annotation when it becomes clear that a type is not a task. We chose
for the former because it allows the implementation of different
forms of subtyping and subeffecting just by modifying the constraint
solver. The constraint solver presented in this paper implements full
subtyping.

Figure 8 shows the subsumption constraint solver. Subsumption
constraint solving happens after algorithm W , and its goal is to
decompose all subsumption constraints as far as possible to extract
effect constraints according to the subtyping rules.

Subsumption solving is a many-pass procedure over the list of
constraints that algorithm W collects. In every pass unification
can take place, in which case the solver learns more about the
type variables in the constraint set. As long as the solver learns
more details, it needs to continue performing passes. The procedure
eventually terminates because the types involved in subsumption
constraints become structurally smaller in each pass, and our system
does not have recursive types.

Figure 8 shows the function solveSubsumption , which handles
a single constraint. This function is repeatedly called in one pass,
and a top-level loop, described but not shown in this paper, performs
as many passes as necessary. The function solveSubsumption gets
a single constraint as input and returns a tuple consisting of effect

105

W(Γ,True) =W(Γ,False) = 〈bool, [], ∅〉 (1)
W(Γ, n) = 〈int, [], ∅〉 (2)
W(Γ, x) = 〈τ̂ , [], C〉 where (3)
〈τ̂ , C〉 = inst(Γ(x))

W(Γ, fnx.eb) = 〈θbα→ τ̂b, θb, Cb〉 where (4)
α fresh
〈τ̂b, θb, Cb〉 =W(Γ[x 7→ α], eb)

W(Γ,fix fx.eb) = 〈(θ2 ◦ θ1)αx → θ2τ̂1, θ2 ◦ θ1, θ2C′1〉 (5)
where αx, α1 fresh
〈τ̂1, θ1, C1〉 =W(Γ[f 7→ αx → α1][x 7→ αx], eb)

C′1 = widen(C1)

θ2 = U(τ̂1, θ1α1)

W(Γ, e1e2) = 〈θ3α2, θ3 ◦ θ2 ◦ θ1, (6)
(θ3 ◦ θ2)C1 ∪ θ3C2 ∪ { θ3τ̂2 <: θ3α1 }〉 where
α1, α2 fresh
〈τ̂1, θ1, C1〉 =W(Γ, e1)

〈τ̂2, θ2, C2〉 =W(θ1Γ, e2)

θ3 = U(θ2τ̂1, α1 → α2)

W(Γ, if ec then et else ee) = 〈θ4α, θ4 ◦ θ3 ◦ θ2 ◦ θ1, (7)
(θ4 ◦ θ3 ◦ θ2)C1 ∪ (θ4 ◦ θ3)C2 ∪ θ4C3

∪ { (θ4 ◦ θ3)τ̂2 <: α, θ4τ̂3 <: α }〉
where α fresh
〈τ̂1, θ1, C1〉 =W(Γ, ec)

〈τ̂2, θ2, C2〉 =W(θ1Γ, et)

〈τ̂3, θ3, C3〉 =W((θ2 ◦ θ1)Γ, ee)

θ4 = U((θ3 ◦ θ2)τ̂1, bool)
W(Γ, let x = ex in eb) = 〈τ̂2, θ2 ◦ θ1, θ2Cg ∪ C2〉 (8)

where
〈τ̂1, θ1, C1〉 =W(Γ, ex)

Γ′ = θ1Γ

〈σ1, Cg〉 = generalize(τ̂1,Γ
′, C1)

〈τ̂2, θ2, C2〉 =W(Γ′[x 7→ σ1], eb)

W(Γ, e1 � e2) = 〈τ�, θ4 ◦ θ3 ◦ θ2 ◦ θ1, (9)
(θ4 ◦ θ3 ◦ θ2)C1 ∪ (θ4 ◦ θ3)C2〉 where
〈τ1, θ1, C1〉 =W(Γ, e1)

〈τ2, θ2, C2〉 =W(θ1Γ, e2)

θ3 = U(θ2τ1, τ
1
�)

θ4 = U(θ3τ2, τ
2
�)

such that τ�, τ1�, τ
2
� match the respective operator:

τ+ = τ1+ = τ2+ = int

τ< = bool, τ1< = τ2< = int
and similar for the other binary operators . . .

Figure 6. The general purpose part of algorithmW .

constraints, unresolved subsumption constraints, freshly generated
subsumption constraints, and a substitution. The effect constraints
are the actual output of the solving process. They are collected and
later passed on to the effect constraint solver.

Unresolved constraints are constraints about which the current
pass does not yet have enough information. We do have to remember
them, because as subsequent passes solve more constraints, and

W(Γ,use [k]) = 〈α→ taskβ α, [], {β w k }〉 (10)
where α, β fresh
W(Γ, e1 e2) = 〈taskβ ((θ4 ◦ θ3)α2), (11)
θ4 ◦ θ3 ◦ θ2 ◦ θ1,
(θ4 ◦ θ3 ◦ θ2)C1 ∪ (θ4 ◦ θ3)C2

∪ {β w ((θ4 ◦ θ3)β1)� (θ4β2) }〉
where
〈τ̂1, θ1, C1〉 =W(Γ, e1)

〈τ̂2, θ2, C2〉 =W(θ1Γ, e2)

β, β1, β2, α1, α2 fresh
θ3 = U(θ2τ̂1, taskβ1 α1)

θ4 = U(θ3τ̂2, (θ3α1)→ taskβ2 α2)

W(Γ, e1 & e2) = 〈taskβ ((θ4 ◦ θ3)α2), (12)
θ4 ◦ θ3 ◦ θ2 ◦ θ1,
(θ4 ◦ θ3 ◦ θ2)C1 ∪ (θ4 ◦ θ3)C2

∪ {β w ((θ4 ◦ θ3)β1) + (θ4β2) }〉
where
〈τ̂1, θ1, C1〉 =W(Γ, e1)

〈τ̂2, θ2, C2〉 =W(θ1Γ, e2)

β, β1, β2, α1, α2 fresh
θ3 = U(θ2τ̂1, taskβ1 α1)

θ4 = U(θ3τ̂2, taskβ2 α2)

Figure 7. The domain specific part of algorithmW .

possibly learn more about the type variables involved, solving them
might become possible.

Freshly generated subsumptions have been generated in the
current pass. If there are any of those, another pass is required.

A substitution is generated if a pass uses unification to solve
a constraint. The presence of a substitution indicates that a pass
learned more about some type variables. Whenever a pass returns
a substitution, the substitution must be applied to all unresolved
constraints and another pass is required.

The function solveSubsumption handles constrains as follows.
Clause (1) just filters out effect constraints. It is needed because we
mix effect and subsumption constraints in the same set.

Clause (2) handles constraints involving two type variables. They
go immediately to the set of unresolved constraints.

Clause (3) handles constraints involving two task types, ac-
cording to the subtyping rules. Subtyping for tasks taskβ1 τ̂1 <:
taskβ2 τ̂2 requires that the cost for the right task is above the cost
of the left task: β2 w β1, and that the types of the task values are
again in the subtyping relation τ̂1 <: τ̂2.

Clause (4) handles constraints involving two function types. It
implements co- and contravariance of function types.

Clauses (5), (6), (7) and (8) handle constraints where one of
the types is a type variable and the other a type constructor. In all
of these cases the solver learns that a variable must be a task or
a function, respectively, and records this fact by generating a new
constraint involving some fresh type variables.

Clause (9) is the catch-all clause. It handles all other constraints,
in particular those involving base types, and those that cause type
errors.

4.3 Effect Constraint Solving
The effect constraint solver is a translation to functional code of the
worklist algorithm found in chapter 6 in Nielson et al. (1999). The

106

solveSubsumption(β w ϕ) = 〈{β w ϕ }, ∅, ∅, []〉 (1)
solveSubsumption(α1 <: α2) = 〈∅, {α1 <: α2 }, ∅, []〉 (2)
solveSubsumption(taskβ1 τ̂1 <: taskβ2 τ̂2) = (3)
〈{β2 w β1 }, ∅, { τ̂1 <: τ̂2 }, []〉

solveSubsumption(τ̂1 → τ̂2 <: τ̂3 → τ̂4) = (4)
〈∅, ∅, { τ̂3 <: τ̂1, τ̂2 <: τ̂4 }, []〉

solveSubsumption(taskβ1 τ̂1 <: α1) = (5)
〈∅, ∅, { taskβ1 τ̂1 <: θ1α1 }, θ1〉 where
α2, β2 fresh
θ1 = U(α1, taskβ2 α2)

solveSubsumption(α1 <: taskβ1 τ̂1) = (6)
〈∅, ∅, { θ1α1 <: taskβ1 τ̂1 }, θ1〉 where
α2, β2 fresh
θ1 = U(α1, taskβ2 α2)

solveSubsumption(τ̂1 → τ̂2 <: α1) = (7)
〈∅, ∅, { τ̂1 → τ̂2 <: θ1α1 }, θ1〉 where
α2, α3 fresh
θ1 = U(α1, α2 → α3)

solveSubsumption(α1 <: τ̂1 → τ̂2) = (8)
〈∅, ∅, { θ1α1 <: τ̂1 → τ̂2 }, θ1〉 where
α2, α3 fresh
θ1 = U(α1, α2 → α3)

solveSubsumption(τ̂1 <: τ̂2) = 〈∅, ∅, ∅, U(τ̂1, τ̂2)〉 (9)

Figure 8. The subsumption constraint solver.

solver is given in Figure 9. We use set notation for the worklist for
brevity.

The solver takes as input the set of effect constraints generated
by the analysis so far. The output is a mapping from annotation
variables to costs that satisfies the input constraints. Such a mapping
is called a solution.

In line (1) the function solve starts the iteration with initial
parameters. The initial worklist is the set of constraints, which
means every constraint is examined at least once.

The initial solution, line (2), maps every annotation variable to
bottom. The mapping influences , line (3), maps every annotation
variable β to the set of constraints where β occurs on the right hand
side, that is the set of all constraints influenced by β.

Line (4) defines the base case of the iteration. If the worklist is
empty, the algorithm terminates.

Line (5) defines the case where the worklist consists of at least
one constraint β w ϕ and some rest. The new cost of β is calculated
in line (6) by taking the least upper bound of the cost so-far s(β)
and the evaluation of the annotation ϕ under s. The lub with s(β) is
needed because there may be several constraints with β on the left
hand side, and this way the solver keeps track of the most expensive
one. The flag dirty indicates whether β has gotten an increased cost,
in which case all constraints that depend on β must be re-evaluated.

The worklist for the next iteration, line (7), is extended, if
necessary, by all the constraints that β influences. The solution
for the next iteration is updated with the new cost for β.

5. Discussion
In this section we look at example programs, discuss which chal-
lenges they pose to the analysis and explain why our method can
or cannot deal with them. The employment of techniques such as

solve(C) = iterate(influences, C, initSolution) (1)
where
initSolution = [β 7→ ⊥ | β ∈ FAV (C)] (2)
influences = [β 7→ infl ′(β) | β ∈ FAV (C)] (3)
infl ′(β) = {β1 w ϕ | β1 w ϕ ∈ C, β ∈ FAV (ϕ) }

iterate(_ , ∅, s) = s (4)
iterate(influences, {β w ϕ } ∪ rest , s) = (5)

iterate(influences, worklist ′, s′) where
newβ = JϕKs t s(β) (6)
dirty = newβ A s(β)

worklist ′ =

{
rest ∪ influences(β) if dirty

rest otherwise
(7)

s′ = s[β 7→ newβ]

Figure 9. The effect constraint solver.

subtyping and polyvariance to reduce poisoning is state-of-the-art
in program analysis, see for example Gedell et al. (2006). In this
section we explain how our system makes use of these techniques
to increase the precision of the analysis.

A notational abbreviation. In the following examples we talk
about programs of type task. To express the cost of a task, the
analysis generates a type with annotation variable like taskβ int and
some constraint like β w [3C]. Together these indicate that the
task costs 3C to execute. When discussing example programs it is
cumbersome to explicitly mention constraints. We take the liberty
to put costs directly in task types and write task [3C] int.

5.1 Good Examples
Let us first look at some example programs that our analysis can deal
with nicely. The subsequently described features all solve different
kinds of problems, but often their uses overlap. This means there
are programs that can be analyzed precisely by more than one of
them. Nonetheless, there are corner cases that can only be solved by
one of them.

Subtyping. There are two precursors to proper subtyping. A sim-
ple form of subtyping, called creation-site subeffecting, is necessary
for type and effect systems to be conservative extensions of their
underlying type systems. Being a conservative extension means that
all programs typeable in the underlying type system can be analyzed.
Creation-site subeffecting in our system means that tasks with cost
k can always be considered to cost more. The prime example where
this is necessary is the typing rule for conditionals. The underlying
type system requires the types of the branches to be identical, which
means that their costs must be identical. Creation-site subeffecting
allows the cost of the cheaper task to be increased to match the cost
of the more expensive one.

Creation-site subeffecting while sound, however, leads to poor
results in certain situations. This effect is called poisoning, and
happens when the same task t is used in different contexts. The cost
of t is increased to match the requirements of the most expensive
context, raising its cost in the other contexts as well, where it could
be taken as cheaper.

107

Example 5.1. Consider the following program in a system without
polymorphism but with creation-site subeffecting.

let t = use [1C] 0 in

let s = use [3C] 0 in

let u = if True then s else t in

t

The conditional in the unused u forces the costs of the defining
expressions of s and t to be identical, 3C. The overall expression
evaluates to just t, which actually costs 1C but is analyzed as costing
3C.

To alleviate this problem, one can allow the costs of task expres-
sions to be adjusted not at the places where they are defined, but
where they are used. This technique is called use-site subeffecting,
and allows the cost of a task to be adjusted in each context indi-
vidually. In the above example this would mean the cost of t only
increases in its use in the conditional, while the use in the main
expression is unaffected.

Use-site subeffecting is achieved in a type system by moving the
subeffect conditions from the axioms for constants to all the rules
where unification happens.

Subeffecting only applies to the annotation of the top-level type
constructor of a type. It does not apply to annotations deeper in
compound types. In our case such annotations occur in functions
that have tasks as arguments or return values, or tasks that return
tasks as values. This is where subtyping comes in. Subtyping allows
subeffecting at any place in a compound type, which is important
for lambda-bound higher-order functions and higher-order tasks.

Let-polymorphism. Our system features polymorphism in the
usual Hindley-Milner style. When the type of a let-bound variable
is not fully determined, remaining type variables are generalized.
When the variable is used, the type variables get instantiated to
match the type required by the context. This way the same identifier
can have many types that do not influence each other.

Example 5.2. The classical example for polymorphism is the
identity function. Consider the following program in our system.

let id = fnx.x in

id(use [1C] (id 0))

The function id has type ∀α.α → α, which can be instantiated
differently in the body of the let. The outer occurrence of id
gets type task [1C] int → task [1C] int and the inner occurrence
int→ int.

Let-polyvariance. Polyvariance is needed when the types of
let-bound identifiers are not general enough for polymorphism to
apply. Polyvariance is similar to polymorphism but binds annotation
variables instead of type variables.

Example 5.3. In the following example, the function twoTimes
runs a given task two times in sequence. In the body of the let it is
applied to tasks with different costs.

let twoTimes = fnx.x� x in

twoTimes (use [2C] 0)� twoTimes (use [1C] 0)

In order to get the expected analysis result, 6C, twoTimes needs
the following types in the first and second call respectively.

task [2C] int→ task [4C] int (1)
task [1C] int→ task [2C] int (2)

Polymorphism does not help because the sequence operator in the
definition of twoTimes forces its type to be a function from tasks
to tasks, hence there is no type variable that can be instantiated to
task types with different costs.

Without polyvariance the type system must give twoTimes the
more expensive type (1) for both calls, leading to a result of 8C.

With polyvariance the type system can assign the following type
to twoTimes .

∀β.taskβ int→ task (β � β) int

This type can be instantiated to the types (1) and (2) above.

Example 5.4. In Example 5.1 we argued that subtyping prevents
poisoning. In fact, because the identifiers in that example are let-
bound, polyvariance also prevents poisoning. In the following
program however, polyvariance does not apply because s and t
are lambda-bound instead of let-bound.

(fn t.fn s.const t (if True then s else t))

(use [1C] 0)(use [3C] 0)

Only subtyping can prevent poisoning so that the expression has
cost 1C.

Recursion. To analyze recursive functions, the algorithm makes
use of a technique called widening. Widening solves the problem that
recursion depth, or termination for that matter, is Turing complete.
A recursive function that uses some resource in each iteration
could potentially require an infinite amount of resources. A naive
implementation using constraints leads to recursive constraints, that
is, a group of constraints where an annotation variable occurs on
both the left and the right-hand side of constraints. In the simplest
case this happens in the same constraint, for example:

{β w β � β, β w [1C] }.
This constraint set has a solution in our domain, namely [β 7→ ∞].
Kleene-style fixpoint iteration however cannot compute this solution,
because starting at [β 7→ ⊥] the iteration diverges.

Widening guarantees that fixpoint iteration terminates in the pres-
ence of recursive constraints. The widening operator ∇, formally
defined in Definition 2.10, takes two arguments and yields infinity
if the right argument is above the left one.

Our algorithm applies widening to all constraints coming from
the bodies of recursive functions. See Definition 4.1. The above
constraint set becomes:

{β w β ∇ β � β, β w β ∇ [1C] }.
This causes the fixpoint iteration to stepwise calculate the following
values for β. After the third step, the value for β no longer changes
and the process terminates.

β = ⊥
β = 1C

β = 1C ∇ (1C � 1C) = 1C ∇ 2C =∞C
Example 5.5. The following program is an infinite recursion where
each iteration costs one unit of a consumable resource C and one
unit of a reusable resource R. The algorithm estimates the cost of
the program as expected with∞C + 1R.

(fix fx.x� (fx))(use [1C + 1R] 0)

Example 5.6. In the following program, the function doubles
its argument in each recursive call. The parameter costs 1R, but
reusables cannot be shared between parallel tasks. The cost of
each iteration is twice the cost of the previous one. Our algorithm
estimates the cost of the program with∞R.

(fix fx.x� (f(x& x)))(use [1R] 0)

Higher-order tasks. Tasks not only consume resources, they
also produce values. These values can be of any type, in particular
they can be tasks. This is useful because in the world of iTasks,
managing tasks is a task. Think about a person deciding which task

108

to execute. The task of making the decision itself has a cost, as does
the resulting task. Another example could be that the procedure
of investigating the nature of a fire has as result the corresponding
firefighting task.

Example 5.7. In the following program, decide is a task whose
result is a task. The expression c is some condition whose details
are not important.

let decide = use [1C] (if c then

use [3R] 0 else use [4R] 0) in

let execute = id in

decide execute

The task decide has type task [1C] (task [4R] int). The overall
program has predicted cost 1C + 4R, because first the decision is
made and then the resulting task is executed.

5.2 Challenging Examples
The analysis always gives safe approximations, which means the
cost of actually running a program is never higher than what the
analysis predicts. In the examples so far the predicted costs match
what a programmer would reasonably expect by inspecting the
programs. In the following examples we look at programs where the
analysis gives results that are unexpected unless the programmer is
familiar with the specifics of the analysis algorithm.

Widening. The widening operator yields infinity immediately
when its right-hand side is above the left-hand side. This is a quite
aggressive strategy which gives bad results for constraint sets where
iteration would otherwise stabilize after a finite number of steps.

Example 5.8. The following program uses the fixpoint combinator
but has no recursive calls. This causes the constraints from the
function body to be unnecessarily subjected to widening. Solving
the constraints involves an intermediate solution where one of the
widened constraints goes to infinity, whereas without widening,
iteration would stabilize at a finite value after a couple of rounds.

(fix fx.if True then x else (x� x))(use [1C] 0)

The analysis outcome we would like to have is 2C because that is
the worst case of the conditional. The prediction our algorithm gives
is∞C, for the reasons described above.

Lambda-bound functions. Polymorphism and polyvariance
only apply to let-bound variables. Lambda-bound variables are still
subject to subtyping, which allows good results if they are used as
arguments in function calls. If a lambda-bound variable is used in
the function position in a function call, neither polymorphism nor
subtyping applies, which can result in poisoning.

Example 5.9. In the following example, the identity function is
lambda-bound to f . There are two applications of f , of which the
second is ignored.

(fn f.const (f(use [1C] 0))

(f(use [3C] 0)))(fnx.x)

The second application nonetheless contributes to the type of f :

task [3C] int→ task [3C] int

The analysis result of this program is 3C, whereas a programmer
might expect 1C.

There are more problems with lambda-bound functions. The
inability to give different types to different uses of a function can
cause non-termination of the fixpoint iteration.

Example 5.10. In the following program, the argument f of twice
is applied to its own result. In our current implementation, the

worklist algorithm diverges when trying to analyze this program.
The actual cost when running the program is [4C].

let twice = fn f.fnx.f(f x) in

let g = fn t.t� t in

twice g (use [1C] 0)

Let us hand-wave our way through the type inference algorithm
to understand the cause of the problem. f is a function, so it must
have type α1 → α2. Furthermore, f is applied to its own result, so
[t-app] generates a subtype constraint α2 <: α1. The fact that twice
is let-bound and therefore α1 and α2 are generalized does not help,
because the problem emerges when the type and the constraint of
twice get instantiated in the second let body. In the second let body,
g has type taskβ int→ task (β � β) int, with constraint β w [1C].
Instantiating the type of twice for g, we get α1 = taskβ int and
α2 = task (β�β) int. Instantiating the constraint of twice for g, we
get task (β�β) int<: taskβ int. According to the rules of subtyping
this gives the constraint β w β � β.

In the actual analysis algorithm, there are many more interme-
diate type- and annotation variables with trivial constraints like
β7 w β8 that connect them. The details do not matter. What matters
is that the resulting constraint set essentially looks like this:

{β w [1C], β w β � β }
This constraint set has a solution in D, namely [β 7→ ∞]. This
solution cannot be computed by fixpoint iteration.

The problem here is not the absence of widening. In fact
applying widening, say after some fixed number of iterations, would
lead to overly pessimistic results in other cases. These are cases
where non-recursive constraints would reach a stable solution after
many iterations. Example 5.8 demonstrates what can happen when
widening is applied unnecessarily.

The real problem here is the emergence of recursive constraints
in the first place. Because f is lambda-bound, it gets the same type
in both occurrences in f(f x). The problem would not occur if we
were able to give f a polymorphic type. This would require higher-
ranked polymorphism, which could be a topic for future work. With
higher-ranked polymorphism, the resulting constraint set would look
as follows.

{β1 w [1C], β2 w β1 � β1, β3 w β2 � β2 }
The second and third constraint come from the different instantia-
tions of f ’s type. The least solution to this constraint set would have
β3 7→ [4C], which is the result a programmer would expect for the
program in this example.

6. Future Work
There are three directions in which we would like to extend the
system. They all revolve around making the analysis accessible to
iTasks programmers.

First, we need a solution to the non-termination issue of Example
5.10. A pragmatic approach, which is acceptable to programmers, as
various discussions have suggested, is artificially limiting the height
of the lattice D. This can be done by parameterizing the analysis with
a finite upper bound for each resource. Fixpoint iteration terminates
when this upper bound is reached, which always happens in finitely
many steps. In the real world any resource is only available in a
limited quantity anyway, otherwise cost analysis would be pointless.
For a programmer it conveys the same information whether a task
uses n+ 1 or infinite units of a resource of which there are only n
units.

Limiting the height of the domain furthermore allows us to re-
move widening altogether, which also solves the problem that widen-
ing unnecessarily overestimates costs in situations like Example 5.8.

109

Second, we would like to make the analysis applicable to real
iTasks programs. As it stands, the analysis takes as input programs
written in the language described in this paper. The language has
been designed to be a minimal variant of Clean and iTasks, but there
are some features missing that are essential to everyday functional
programming, most notably algebraic data types, pattern matching,
and mutual recursion.

Part of this second point is integration with Tonic (Stutterheim
et al. 2014), the system that can visualize iTasks programs and
inspect them at run time. In particular, we would like Tonic to display
predicted costs in static blueprints and actual costs in dynamic
blueprints.

The third direction needed for real-world application is a concept
for error reporting. The current implementation reports the overall
cost of a program, but a programmer needs more information when
that cost exceeds the available limit. This information is not as
simple as pointing to an ill-typed expression in the program, because
if there are many tasks whose costs together exceed the limit, there
is not one obvious culprit. There is a technique called error slicing
which identifies all parts of a program that contribute to an error
message. Type error slicing (Haack and Wells 2004) looks promising
for our purpose from what we have seen so far, but further study is
needed.

7. Related Work
For readers familiar with program analysis, and in particular type
and effect systems, it should be obvious that we are following in
the footsteps of Nielson and Nielson and their various coauthors. In
particular, there is the textbook on program analysis (Nielson et al.
1999), and their triptych on polymorphic subtyping with Amtoft
(Amtoft et al. 1997; Nielson et al. 1996b,a).

The paper on the IO monad in Haskell (Peyton-Jones 2001)
served as inspiration for various aspects of our dynamic semantics.

Other papers whose approach to type and effect systems influ-
enced our work are Gedell et al. (2006), the work on exception
analysis by Koot and Hage (2015), the usage analysis by Hage et al.
(2007), and the security analysis by Weijers et al. (2014).

The distinction between consumable and reusable resources is
common practice in the field of artificial intelligence and automated
planning (Ghallab et al. 2004).

Papers that deal with the analysis of resource consumption of
programs often focus on computational resources of the program
itself like memory usage and execution time. Notable examples are
Vasconcelos and Hammond (2003) and Jost et al. (2010).

Kersten et al. (2014) have a resource analysis similar in spirit to
ours. They focus on a single resource however, energy consumption
of hardware components, and their language is imperative with
first-order functions.

The programming language Clean and the iTasks system, for
which our analysis is ultimately designed, are described in the Clean
language report (Plasmeijer and van Eekelen 2002) and the paper
by Plasmeijer et al. (2011).

Acknowledgments
We would like to thank Ruud Koot, Jurriën Stutterheim, Tim
Steenvoorden, Terry Stroup, Chris Elings, Fok Bolderheij, Marko
van Eekelen, and Adelbert Bronkhorst for many hours of fruitful
discussion.

This research is funded by the Royal Netherlands Navy and
TNO.

References
T. Amtoft, F. Nielson, H. R. Nielson, and J. Ammann. Polymorphic subtyping

for effect analysis: The dynamic semantics. Lecture Notes in Computer

Science, 1192, 1997.

T. Gedell, J. Gustavsson, and J. Svenningsson. Polymorphism, subtyping,
whole program analysis and accurate data types in usage analysis. In
Programming Languages and Systems, 4th Asian Symposium, APLAS
2006, Sydney, Australia, pages 200–216. Springer, 2006.

M. Ghallab, D. S. Nau, and P. Traverso. Automated planning - theory and
practice. Elsevier, 2004. ISBN 978-1-55860-856-6.

Haack and Wells. Type error slicing in implicitly typed higher-order
languages. SCIPROG: Science of Computer Programming, 50, 2004.

J. Hage, S. Holdermans, and A. Middelkoop. A generic usage analysis with
subeffect qualifiers. In R. Hinze and N. Ramsey, editors, Proceedings
of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages
235–246. ACM, 2007.

S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. Static determination
of quantitative resource usage for higher-order programs. ACM SIGPLAN
Notices, 45(1):223–236, Jan. 2010.

R. Kersten, P. Parisen Toldin, B. van Gastel, and M. van Eekelen. A
Hoare logic for energy consumption analysis. In Proceedings of the
Third International Workshop on Foundational and Practical Aspects of
Resource Analysis (FOPARA’13), volume 8552 of LNCS, pages 93–109.
Springer, 2014.

R. Koot and J. Hage. Type-based exception analysis for non-strict higher-
order functional languages with imprecise exception semantics. In K. Asai
and K. Sagonas, editors, Proceedings of the 2015 Workshop on Partial
Evaluation and Program Manipulation, PEPM, Mumbai, India, January
15-17, 2015, pages 127–138. ACM, 2015.

F. Nielson, H. R. Nielson, and T. Amtoft. Polymorphic subtyping for effect
analysis: The algorithm. In M. Dam, editor, LOMAPS, volume 1192 of
Lecture Notes in Computer Science, pages 207–243. Springer, 1996a.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

H. R. Nielson, F. Nielson, and T. Amtoft. Polymorphic subtyping for effect
analysis: The static semantics. In M. Dam, editor, LOMAPS, volume
1192 of Lecture Notes in Computer Science, pages 141–171. Springer,
1996b.

Object Management Group. Business process model and notation (BPMN)
version 1.2. Technical report, Object Management Group, 2009.

S. Peyton-Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in haskell. In C. A. R.
Hoare, M. Broy, and R. Steinbrueggen, editors, Engineering Theories of
Software Construction, NATO ASI Series, pages 47–96. IOS Press, 2001.
Marktoberdorf Summer School 2000.

R. Plasmeijer and M. van Eekelen. Clean language report (version 2.1).
http://clean.cs.ru.nl, 2002.

R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. van Noort, and J. van
Groningen. iTasks for a change: Type-safe run-time change in dynami-
cally evolving workflows. In S. Khoo and J. Siek, editors, Proceedings of
the PEPM ’11, Austin, TX, USA, pages 151–160. ACM Press, 2011.

J. Stutterheim, R. Plasmeijer, and P. Achten. Tonic: An infrastructure to
graphically represent the definition and behaviour of tasks. In J. Hage
and J. McCarthy, editors, Trends in Functional Programming, volume
8843 of Lecture Notes in Computer Science, pages 122–141. Springer,
2014.

P. B. Vasconcelos and K. Hammond. Inferring cost equations for recursive,
polymorphic and higher-order functional programs. In P. W. Trinder,
G. Michaelson, and R. Pena, editors, IFL, volume 3145 of Lecture Notes
in Computer Science, pages 86–101. Springer, 2003.

J. Weijers, J. Hage, and S. Holdermans. Security type error diagnosis for
higher-order, polymorphic languages. Sci. Comput. Program, 95:200–
218, 2014.

110

http://clean.cs.ru.nl

	Introduction
	Motivating Example

	Syntax and Semantics
	A Programming Language for Workflows
	A Domain for Representing Costs
	An Operational Semantics

	The Analysis
	The Annotated Type System

	Implementation
	Algorithm W
	Subsumption Constraint Solving
	Effect Constraint Solving

	Discussion
	Good Examples
	Challenging Examples

	Future Work
	Related Work

