
Cost versus Precision for Approximate Typing for Python

Levin Fritz Jurriaan Hage
Universiteit Utrecht, the Netherlands

levinfritz@gmail.com J.Hage@uu.nl

Abstract
In this paper we describe a variation of monotone frameworks that
enables us to perform approximate typing of Python, in particular
for dealing with some of its more dynamic features such as first-
class functions and Python’s dynamic class system. We additionally
introduce a substantial number of variants of the basic analysis
in order to experimentally discover which configurations attain
the best balance of cost and precision. For example, the analysis
allows us to be selectively flow-insensitive for certain classes of
identifiers, and the amount of call-site context is configurable.
Results of our evaluation include that adding call-site sensitivity
and parameterized types has little effect on precision; in terms of
speed call-site sensitivity is very costly. On the other hand, flow-
insensitive treatment of module scope identifiers has a strongly
positive effect, often both in terms of precision and speed.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – soft typing, Python; F.3.3 [Semantics of
Programming Languages]: Progam analysis

General Terms measurement

Keywords approximate typing, Python, data-flow analysis, ab-
stract interpretation, monotone frameworks, performance, preci-
sion, call-site sensitivity

1. Introduction
Our goal in this paper is to arrive at an approximation of the
types of values that variables, methods and other bindings in a
Python [van Rossum and Drake, 2011] program may take. The
results of our work are intended for, e.g., inclusion in an IDE for
Python programming where we want to assist a programmer by
providing a small enough selection of identifiers that fit the context;
in this particular case there is no reason to insist on either soundness
or completeness, but the results should be attained reasonably fast
(at most a few seconds), and be reasonably precise.

The technique we employ to arrive at the types is abstract in-
terpretation by means of a variant of the (well-known) monotone
frameworks [Nielson et al., 2005]. The extensions we make to
monotone frameworks are twofold: First, we have added facili-
ties for dealing with the highly dynamic nature of some aspects of
Python, including its dynamic class system and anonymous func-
tions (Section 2). Second, our formulation and associated imple-
mentation are organised in a way that allows us to experiment

with a substantial number of variants (Section 4): a parameter-
ized widening operator for tuning the size of the type lattice, flow-
insensitive analyses for certain kinds of identifiers (module scope
identifier, class types, instance types), call-site sensitive analysis at
varying levels of precision, parameterized datatypes, and the inclu-
sion of manually specified types.

In order to establish which variants attain the best balance of
cost and precision, we have applied our implementation in all its
variants to five Python applications (Section 5). Some of the re-
sults we have obtained are the following (Section 6): Adding ex-
plicit type information for top-level identifiers increases precision,
but hardly affects speed. Call-site sensitivity is very costly, but
hardly improves precision. The use of parameterized datatypes dur-
ing analysis, e.g., list〈int〉 instead of list, improves precision sub-
stantially in only one case. Flow-insensitivity for module-scope
identifiers (i.e., keeping only one set of types for a module scope
identifier, instead of one or two sets for each statement in the pro-
gram) leads to substantial improvements in speed and precision;
flow-insensitivity for class and instance types improves precision
somewhat, but at a rather high cost. Our experiments also indicate
the “best” settings for the parameterized widening operator that is
employed to both tune precision and guarantee termination.

To summarise, we offer the following contributions:

• We describe an extension of monotone frameworks that is par-
ticularly suited for dealing with the dynamic aspects of Python.
• We have implemented this extension in a way that allows to

tune the precision of the analysis to a large extent, and the
implementation (in Haskell) is publicly available from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Resources.
• We applied our implementation with various levels of precision

to five Python applications to, e.g., discover when additional
precision in the analysis does not lead to more precise results.

Our work was implemented for Python 3.2 (Feb 2011), but
should also work for 3.0 and 3.1. Python has an imperative, object-
oriented core with features from functional and scripting languages,
and is widely used for web development and all forms of scripting.
Our implementation can deal with many of Python’s features such
as higher-order functions and classes. One omission is that we do
not fully support exceptions and generators. Programs may contain
exceptions and yield, but we may loose soundness in their pres-
ence. Repairing these issues is possible, but the cost of implemen-
tation is high: in the case of exceptions we shall have to find out
which exceptions may be generated by which statements, in order
to add only these flows to the control-flow graph. Assuming that
exceptions indeed occur rarely, and if they occur are not used as
a mechanism to define a non-standard control-flow as people do
in some languages, we decided to simply omit such edges from
the graph. Generators, on the other hand, enable a stream-based
way of programming, in which functions yield their results piece
by piece to the caller. It is a feature that is rarely used, and its pre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PEPM’17, January 16–17, 2017, Paris, France
c© 2017 ACM. 978-1-4503-4721-1/17/01...$15.00

http://dx.doi.org/10.1145/3018882.3018888

89

http://www.cs.uu.nl/wiki/bin/view/Hage/Resources
http://www.cs.uu.nl/wiki/bin/view/Hage/Resources

while [x]1:
if [y]2:

[continue]3

elif [z]4:
[break]5

[w = "a"]6

else:

[w = "b"]7

1 2 3

4 5

67

Figure 1. While loop with continue and break statements, and its
associated control-flow graph.

cise implementation is not trivial, which is why we omitted it. An
unavoidable source of unsoundness is when the programmer pro-
vides explicit types for identifiers from, e.g., Python libraries, that
are not sound. Since this typically occurs for identifiers for which
we have no access to the source code, there is no way that this can
be discovered by our implementation. Finally, our implementation
does not include support for eval/exec, metaclasses, and decorators.

Section 3 gives some details of the analysis itself (but given
the size of the language, many details can only be found in [Fritz,
2011]), Section 7 surveys related work, and Section 8 concludes
and provides pointers for future work.

2. Extending Monotone Frameworks
Our analysis and its variants are implemented as a data flow anal-
ysis formulated as a monotone framework with some additions to
allow us to deal with some of the features of Python. Before detail-
ing approximate typing for Python, we first explain these necessary
additions.

As usual, the first step in data-flow analysis is to construct the
control-flow graph of a (Python) program. This is less easy than it
may seem: we have to deal with first-class functions, methods and
inheritance, control-flow internal to an expression, short-circuiting
boolean operators, loop else-clauses, list, set and dictionary com-
prehensions and Python’s with-statement (akin to a try-finally con-
struct). For reasons of space, we give a single example that includes
a loop, break, continue and a loop else-clause in Figure 1 (see Sec-
tion 4.3 of [Fritz, 2011] for the remaining cases). Here the nodes
correspond to blocks in the program, the initial node is 1, and both
5 and 7 are final nodes.

Having constructed a control-flow graph, we can construct a
monotone framework (L,F , F, E, ι, λl.fl) where L denotes the
lattice from which analysis results are taken,F is a set of monotone
functions from which transfer functions are selected, F is the flow
of the program, E contains the vertices from which information
flows (the extremal vertices), ι is the extremal analysis value that is
used to initialize the analysis results for extremal vertices, and the
function λl.fl selects for a given label l the transfer function for the
block(s) labelled with l (see [Nielson et al., 2005] for details).

In order to handle Python code properly and to support different
variants of the analysis, the embellished monotone frameworks as
described in [Nielson et al., 2005] are extended in two ways.

First, because Python supports first-class functions and late
binding, it is far form trivial to infer which function or method
is called by a particular invocation. Therefore we add a facility
for adding edges dynamically to the control-flow graph to reflect
these dynamics. Our algorithm assigns a unique identifier to each
function in the program under analysis and these identifiers are
included in the types inferred for functions, so which function a
call can refer to can then become apparent during analysis. To be

able to use this information, the monotone framework and worklist
algorithm are extended so that edges for function calls can be
added to the control flow graph during execution of the worklist
algorithm.

Because the analysis has to be aware of the functions defined in
the program, the monotone framework contains one more element:
the function table Λ, which maps function identifiers to labels for
entry and exit nodes. More formally, Λ[f] = (ln, lx), where f is
a function identifier and ln and lx are the labels of the function’s
entry and exit program points. The complete monotone framework
then becomes the eight-tuple (L,F , F, E, ι, λl.fl,Λ). We show
below how the algorithm solves these instances.

Second, because we also want to experiment with partially flow-
insensitive variants of the analysis, and the formulation of [Nielson
et al., 2005] implies a flow-sensitive analysis (analysis results are
indexed by statement/block label), we further extend the worklist
algorithm employed to solve the monotone frameworks, allowing
it to selectively treat identifiers flow-insensitively. Concretely, this
means that these identifiers are associated with one set of types,
instead of a pair of such sets for each program label. This also
implies that once we find that such a set changes, the worklist
algorithm must ensure this change is signalled to all parts of the
program that employ the given identifier.

2.1 Extended Worklist Algorithm
The extended worklist algorithm is given in Algorithm 2; it is a
variation of the Maximal Fixed Point algorithm given in [Nielson
et al., 2005, Chapter 2].

The transfer function for a call (lc) program point must indicate
which functions may be called at that call site. Therefore, there are
two kinds of transfer functions: simple transfer functions, which
are as described above, and call transfer functions, which are used
for function call nodes. In addition to the computed effect value, a
call transfer function returns a set of function identifiers indicating
which functions may be called at that point. The worklist algorithm
looks up these identifier in the function table and, for each of them,
adds two edges: (lc, ln) and (lx, lr). Note that because the number
of such functions and calls is finite, this can only occur a finite
number of times. Also note that the worklist can store nodes and
edges, i.e., pairs of nodes.

The call transfer function also returns a flag to indicate cases
where the analysis cannot identify the function called (e.g., because
it is not part of the source code analyzed). If this flag is set, the
worklist algorithm adds an edge (lc, lr), connecting the call and
return nodes directly.

Each edge added to the graph is also added to the worklist, since,
obviously, at that point the most recent effect value has not been
propagated across the edge.

3. Type Inference for Python
Our analysis aims to infer the types for variables in Python source
code. However, this formulation is not quite right, because in
Python there is really no notion of “types of variables”. A more
precise statement of the goal of the analysis is: for each variable in
a Python program, what are the types of the values it may be bound
to when the program is executed. The term “variable” includes
parameters of functions and methods.

The basic type inference method is a data flow analysis ex-
pressed as a monotone framework and solved by the worklist al-
gorithm (see Section 2.1). It is flow-sensitive, context-insensitive
and path-insensitive. (A path-sensitive analysis computes different
results depending on predicates at nodes where the flow of control
diverges. For example, a path-sensitive analysis could infer that in
the body of the statement if x is None: . . . , variable x has value
None.)

90

Initialization:

A◦[l]←
{

ι for l ∈ E
⊥ otherwise

A•[l]← ⊥
g ← ιg
W ← the set of program labels N
G← ∅

Iteration:
while W not empty do

i← head(W)
W ← tail(W)
if i = l ∈ N then

(t, d, e′, g′, u)← fl(A◦[l])
if g′ 6v g then

g ← g′

for all l ∈ G do
W ← l : W

if u then
G← {l} ∪G

if e′ 6v A•[l] then
A•[l]← e′

for all l′ with (l, l′) ∈ F do
W ← (l, l′) : W

F ′ ←
⋃
{{(lc, ln), (lx, lr)} | (ln, lx)← Λ[f], f ← t}

if d then
F ′ ← F ′ ∪ (lc, lr)

if F ′ 6⊆ F then
for all e ∈ F ′ \ F do

W ← e : W
F ← F ′ ∪ F

else if i = (l, l′) then
if A•[l] 6v A◦[l′] then

A◦[l′]← A◦[l′] tA•[l]
W ← l′ : W

Algorithm 2. Extended worklist algorithm

u ∈ UTy union types u ::= {v} | >
v ∈ ValTy value types v ::= b | f | c | i
b ∈ BuiltinTy built-in type b ::= int | bool | list | . . .
f ∈ FunTy function types f ::= fl
c ∈ ClsTy class types c ::= cl〈l, [c], {n 7→ u}〉
i ∈ InstTy instance types i ::= inst〈c, {n 7→ u}〉
l ∈N label
n ∈ String name

Figure 3. Syntax of the basic type lattice for Python.

Figure 3 defines the syntax for the type lattice we use for
analyzing Python. In the notation used on the right, {ν} stands for
a set of zero or more elements of the form ν, and [ν] stands for an
ordered sequence of zero or more elements of the form ν.

The type assigned to a variable is called a union type: it is either
the set of types of the values that the variable may be bound to at
runtime, or >, which represents the set of all types. Value types
model types of values at runtime. The analysis distinguishes five
kinds of value types. Built-in types are built into Python and rules
to deal with them are built into the analysis. A function type refers
to a function in the source code; these are assigned unique labels
to avoid name clashes. The types for classes defined in the code
under analysis and instances of these are more interesting. Classes
and objects are very dynamic in Python: at runtime, new classes
can be created and attributes can be added to and removed from
classes and objects. Classes may also have multiple superclasses.
This is captured by the definitions in Figure 3: a class type contains
a list of superclasses and a mapping from names to types for
class attributes; an instance type contains the instance’s class and

a mapping for instance attributes. Like functions, classes are also
assigned unique labels. To

3.1 Join Operator
The set UTy becomes a join-semilattice by defining a join operator
t and identifying a bottom element ⊥. For brevity, we call UTy a
lattice in the following.

The bottom element is defined as ⊥ = ∅. The join of two
union types u1 and u2 is > if u1 = > or u2 = >. If neither of
them is >, u1 t u2 is basically the union of the sets. However,
if the set union u1 ∪ u2 contains multiple class types with the
same class identifier, or multiple instance types whose class types
have the same identifier, these are merged. When two class types
are merged, the resulting class type contains the superclasses and
attributes of both class types. Similarly, when two instance types
are merged, the resulting instance type contains the attributes of
both and their class types are merged as well.

Figure 4(left) shows some of the elements of the lattice in the
form of a diagram. In the diagram, a v b is expressed as an edge
from a to b with a being below b.

3.2 Widening Operator
To ensure termination of the fixed point computation, the basic
analysis uses a widening operator ∇n,m,o (see [Nielson et al.,
2005, Section 4.2.1]), which is parameterized with three numbers:
n ∈ N is the maximum cardinality of a set of types, m ∈ N is the
maximum number of attributes of a class or instance and o ∈ N is
the maximum nesting depth. Intuitively, the nesting depth of a type
is the depth of the abstract syntax tree that is implicitly defined by
the definitions in Figure 3, and extended for parameterized types in
Section 4.1.

If a union type exceeds one of the limits, it is replaced by >.
The following example illustrates the effect of the n parameter:

{int} ∇2,2,2 {bool} = {int, bool}
{int, bool} ∇2,2,2 {bool, str} = >

The next example shows the effect of the m parameter. Computing

{cl〈1, [], a 7→ {int}〉} ∇2,2,3 {cl〈1, [], b 7→ {str}〉}
gives

{cl〈1, [], a 7→ {int}, b 7→ {str}〉} ,
but

{cl〈1, [], a 7→ {int}〉} ∇2,2,2{cl〈1, [], b 7→ {str}, c 7→ {bool}〉}
results in >. To show the effect of the o parameter:

{cl〈1, [], a 7→ {float, int}〉} ∇2,2,3 ⊥
equals {cl〈1, [], a 7→ {float, int}〉}, and

{cl〈1, [], a 7→ {float, int}〉} ∇2,2,2 ⊥
gives {cl〈1, [], a 7→ >〉}. The types float and int are at nesting
depth 3, so for∇2,2,2 they are too deeply nested, and the union type
is replaced with >.

The value computed for each program point is a mapping from
variables to UTy, called a map lattice. The join operator for this
lattice is defined as follows: a t b contains all mappings present in
either a or b; if a mapping is present in both, its values are combined
by the join operator of the UTy lattice.

3.3 The Analysis
The analysis intuitively proceeds by pushing sets of types over the
control-flow edges. The control-flow graph itself is built by gluing
together the control-flow graphs of the modules that make up the
application or library. The entry point for a single module is that

91

⊥

{bool}{float}{int}

{int, float} {float, bool}

{int, float, bool}

. . .

{cl〈1, [], {a 7→ {int}}〉}

{cl〈1, [], {b 7→ {bool}}〉}

{cl〈1, [], {a 7→ {int}, b 7→ {bool}}〉}

. . .

>

⊥

{dict〈⊥;⊥〉}

{dict〈str; int〉} {dict〈str; float〉}

{dict〈str; int, float〉}

. . .

>

Figure 4. Part of the basic type lattice (left) and an part that includes parameterized datatypes (right).

module’s first statement. These together form the entry points of
the application/library as a whole. This also allows us to analyze
libraries that typically do not have a single point of entry.

An important source of type information comes from various
kinds of assignments in Python. As expected the type of an expres-
sion is computed based on the types of the variables in the expres-
sion. The rules for these can be quite involved (see [van Rossum
and Drake, 2011, Chapter 5]). Python also supports assignments
such as

x, y, *z = [1,2,3,4,5]

This assigns the first element of the list to x, the second to y and
all further elements to z. For a star target, such as *z in the example,
the analysis deletes all non-sequence types, and assigns these to the
variable. The other targets, x and y, are assigned > by the basic
analysis.

Python’s del statement is used to remove an identifier binding,
to remove an attribute from a class or object or to remove one or
several elements from a collection type. In the analysis, if the target
of a del statement is a variable, its type is set to⊥; if it is an attribute
reference, the attribute is removed from class and instance types; if
it is a subscription or slicing, its type is not changed.

For a subscription, such as x[1], the basic analysis removes the
sequence types (strings, tuples, lists) from the types of x. Because
sequence types are not yet parameterized, the type of x[1] will
be >. Better support for these is part of the analysis variant for
parameterized datatypes (Section 4.1).

Functions are handled as usual, except that because of the dy-
namic nature of Python, the edges from the call to the function en-
try points, and the edges from the functions exit points to the return
point in the program are added during analysis, whenever the analy-
sis finds that a call can target a given function (and generally, there
may be more than one such function for a given call). Parameter
passing is essentially the same as performing assignments. Special
attention must be given at this point to local variables that come
into scope, and variables that leave the scope during the call. This
is why for function names we have two additional labels, sn and
sx. In the former we introduce the variables that come into scope
in the map lattice, and at the latter, variables that leave the scope
are removed.

To illustrate the analysis, consider the code in Figure 5, for
which the analysis correctly infers the type float for f. During
analysis, the effect of the various transfer functions, in the order
implied by the control flow graph, is as follows:

[def]1 5
6[toFahrenheit(c)]23:

[return c * (9/5) + 32]4

[f = [toFahrenheit(100)]78]9
1

7
5 2

4

36
8

9

Figure 5. Control flow graph for function definition and function
call.

• For node 1: the type of variable toFahrenheit is set to {f1}, 1
being the identifier assigned to the function.
• For node 7 (lc): the argument variable α0 is set to {int}, which

is the type of the expression 100.
• For node 5 (sn): variable c is set to ⊥.
• For node 2 (ln): the type for variable c is set to that of variable
α0, then α0 is removed from the lattice.
• For node 4: using the current type lattice, the type of the expres-

sion c * (9/5) + 32 is determined to be {float} (the division
9/5 yields a floating-point value); this is assigned as the type of
variable ρ that is allocated to store the types of the return value.
• For node 3 (lx): the transfer function checks if ρ is set, and since

it is, does not change anything.
• For node 6 (sx): the transfer function removes variable c.
• For node 8 (lr): the type ρ is copied to the generated variable
ι1 (which represents the types of the call expression), and ρ is
removed from the lattice.
• For node 9: this is a simple assignment; it sets the type of f to

those in ι1.

4. Analysis Variants
This section presents several extensions and modifications of the
basic analysis which are intended to make it faster or more precise.
Each of these can be enabled independently from the others, so any
combination of variants is possible.

92

4.1 Parameterized Datatypes
One limitation of the basic analysis is that it does not track the
contents of the built-in collection types (lists, sets, dictionaries and
tuples). Whenever values are stored in a collection, their type is
thus lost to the analysis, so that when the contents of a collection
are accessed, e.g. by a for loop or by a subscription, the analysis
has to assign type > to the result.

The solution is to introduce parameterized datatypes such as
list〈int〉 meaning “list containing values of type int”, or, more
concisely, “list of int”.

4.1.1 Extended Type Lattice
To support parameterized datatypes, the type lattice is extended by
adding to the definition of basic types: | list〈u〉

b ::= · · · | list〈u〉 | set〈u〉 |
frozenset〈u〉 | dict〈u;u〉 | tuple〈[u]〉

Each of the new types is parameterized with one or more
union types. The list and set types take one parameter, as does
the frozenset type, which is essentially the same as the set type
except that frozenset objects are immutable. The dict (dictionary)
type takes two parameters: one for the type of keys and one for the
type of values.

The tuple type takes a list of parameters, so that each position
is assigned a separate type. A parameterized tuple type could be
defined more simply with only one parameter for all positions, but
the form chosen here should give better precision in many cases.

To avoid visual clutter we write list〈int, float〉 instead of
list〈{int, float}〉. Where a type has multiple parameters, they are
separated by semicolons, while the elements of a union type are
separated by commas, so that no ambiguity arises.

The join operator treats parameterized types specially, similar
to the way it treats class and instance types. For example, if union
types a and b contain types list〈ua〉 and list〈ub〉, respectively, then
a t b contains only one parameterized list type list〈ua t ub〉. Set
and dictionary types are handled analogously. For parameterized
tuple types, only those of the same length are combined. Figure
4(right) shows some of the elements of the lattice with parameter-
ized datatypes.

The widening operator ∇n,m,o described in Section 3 can be
used unchanged for parameterized datatypes. Its parameter n was
defined to limit the size of sets of types, so that it also applies to
type parameters, as in the following examples:

set〈int〉 ∇2,2,2 set〈bool〉 = set〈int, bool〉
set〈int, bool〉 ∇2,2,2 set〈bool, str〉 = set〈>〉

4.1.2 Use of Parameterized Datatypes
Parameterized datatypes are used in a number of circumstances to
improve analysis results. One, list, set, dictionary and tuple liter-
als are assigned parameterized types. For example, the expression
(1, 1.5) is assigned type tuple〈int; float〉. Two, expressions that
involve a subscription or slicing make use of parameterized types.
For example, assuming type {dict〈int; str〉} has been inferred for
variable a, type {str} is inferred for the expression a[1]. Three,
when the target of an assignment is a subscription or slicing, the
parameters of parameterized types are modified correctly. Four, pa-
rameterized types are assigned to the results of list, set and dictio-
nary comprehensions. Finally, in for loops, parameterized types are
used to assign the most precise type possible to the loop variable.
The following code illustrates several of these uses:

def g(x):

return ("square", x*x)

def h(x):

return ("half", x / 2)

functions = [g, h]

results = [f(1) for f in functions]

The basic analysis assigns type {list} to both functions and
results. Using the variant with parameterized datatypes, however,
the analysis infers type {list〈f1, f2〉} for functions (1 and 2 being
the unique identifiers assigned to g and h), which enables it to add
the edges for the function call inside the list expression and infer
the precise type {list〈tuple〈str; int, float〉〉} for results.

4.2 Context-Sensitive Analysis
The second analysis variant implements a context-sensitive anal-
ysis as described in [Nielson et al., 2005, Section 2.5]. The type
inference method uses call strings containing the labels of function
calls as the context ∆. In other words, we analyze call-site sensi-
tively.

In the implementation, context-sensitivity is incorporated into
the worklist algorithm, so that no changes are necessary in the
type lattice or the transfer functions. This helps keep the analysis
implementation maintainable by keeping different aspects separate.

The worklist algorithm tags the edges in the control flow graph
according to their function: edges in the monotone framework are
tagged as “regular”, while those added for function calls are tagged
with “call” and “return”. Each kind is then treated accordingly.

Instead of the lattice L specified by the monotone framework,
the mapping ∆ → L is used for context and effect values (though
not for the global value for flow-insensitive analysis). The complete
lattice for the analysis is thus ∆ → (V ar → UTy), where V ar
means variables in Python code. However, because the V ar →
UTy mapping is not visible to the worklist algorithm (it only deals
with the opaque lattice type) and the call strings are not visible to
its users, no part of the implementation actually has to deal with
this “double mapping” directly.

The empty call string [] is used as initial value for ∆. When
processing a call edge (taken from the worklist), the label lc of the
call program point is added to the end of each call string; when
processing a return edge, the worklist algorithm selects only those
results where the last element of the call string matches the lc label
of the call site, and removes this element from the call string.

To ensure termination, the worklist algorithm takes a parameter
k, which is the maximum length of a call string. This parameter can
also be used to trade off precision for speed: depending on the pat-
terns of function calls in the program code, a small value of k can
lead to imprecise results, but it also reduces the number of separate
results that are maintained by the analysis, which should make it
faster (a thorough discussion of this aspect is outside the scope of
this paper, but some researchers have observed the opposite to hap-
pen, e.g., [Smaragdakis et al., 2011]). In the modified worklist algo-
rithm, a context-insensitive analysis is treated as a context-sensitive
analysis with k = 0.

4.3 Flow-Insensitive Analysis
Data flow analysis is basically flow-sensitive, but in some cases
flow-insensitive analysis may be more logical. The analysis there-
fore includes three variants that use the extension for flow-insensitive
analysis described in Section 2, which adds a “global value” with
flow-insensitive results to the worklist algorithm’s state. In each of
these variants, the types a for certain class of variables are stored
globally, while for other types it still uses context and effect values.

Support for flow-insensitive analysis affects practically all
transfer functions. When a transfer function looks up the type in-
ferred for a variable, it first determines if flow-insensitive analysis
should be used for that variable and, if so, looks it up in the global

93

value instead of the context value and signals to the worklist algo-
rithm that it used the global value. Similarly, when a transfer func-
tion modifies the type for a variable for which flow-insensitive anal-
ysis is used, it modifies the variable’s entry in the global value and
returns the new global value. As described above, the worklist algo-
rithm then ensures that transfer functions that use that global value
will be reconsidered. Three analysis variants for flow-insensitive
analysis are described below.

4.3.1 Flow-Insensitive Analysis for Module-Scope Variables
The first variant uses flow-insensitive analysis for module-scope
variables, that is, variables whose scope is not limited to a function
or class definition. A module-scope variable can be modified by
every function in its module, as well as other modules in which it
is imported. Unlike variables with function scope, which are reset
every time the function is executed, module-scope variables are
essentially global variables. It makes sense, then, for the analysis
to also treat their types as global.

4.3.2 Flow-Insensitive Analysis for Class Types
Classes in Python are very flexible. It is possible, for example,
for a function to add an attribute to a class defined elsewhere,
carry out its task using the extended class and remove the attribute
afterwards. However, this would be seen as poor programming style
by Python programmers. Because there is only one class object for
each class, a modification of a class (adding, removing or changing
an attribute) affects all of the class’s users. Therefore, this variant
treats classes as global.

This is not quite as simple as for module-scope variables, how-
ever, because class types occur not only as the types of variables,
but more often as part of other types, in particular as part of instance
types.

The solution is to use a two-step process for looking up or
modifying class types. Where a class type would be used in the
basic analysis, a class reference type, which contains only the class
identifier, is used instead. The actual class type is put in the global
value as the type for a special class identifier variable containing
the identifier of the class. When a transfer function looks up a type
and finds a class reference type, it looks up the corresponding class
identifier variable and uses that type instead.

Writing class reference types as cl〈l〉, the type lattice defined in
Figure 3 can be adapted for this variant by adding an alternative to
the definition of ClsTy:

c ::= cl〈l, [c], {n 7→ u}〉 | cl〈l〉

4.3.3 Flow-insensitive Analysis for Instance Types
Unlike classes, class instances are not global, and each instance has
its own set of attributes independent of other instances. However,
in a well-designed program, the instances of a class will tend to
have the same attributes with the same types – otherwise the class’s
methods will not be able to make use of the instance attributes. The
analysis therefore contains a variant that assigns the same type to
all instances of a class.

The method used for flow-insensitive analysis of instance types
is similar to the one described above for class types. Instance
reference types are used, which only contain the class identifier,
and the actual instance types are stored in the global value under
an instance identifier variable. When an instance reference type is
encountered, the instance identifier variable is looked up and its
type is used instead.

Just like the previous variant modifies the definition of ClsTy,
this one adds a clause for InstTy:

i ::= inst〈c, {n 7→ u}〉 | inst〈l〉

4.4 Manually Specified Types
For some modules, type inference cannot be used, either because
their source code is not available, because they are implemented
in C or, for modules in the standard library, because they are
implemented as part of the Python interpreter. For these cases, it is
possible to specify their types manually using a plain-text format.

The following example gives types for two identifiers from the
standard-library math module:

math.pi : {float}
math.sqrt : {lambda {bool, int, float} -> {float}}

Each line contains an identifier and a union type, separated by
a colon. The second type is for a function that takes one argument
of type bool, int or float and returns a float; the syntax used here is
based on Python’s syntax for anonymous functions.

Manually specified types are always treated as global (flow-
insensitive). There is a special syntax for classes and instances: an
identifier of the form

classl.x : type

specifies the type of an attribute of the class with identifier l. The
syntax class<l> is then used to assign the corresponding class
reference type to a variable, as in the following example:

class1.write : {lambda {bytes} -> {int}}
class1.flush : {lambda -> {NoneType}}
io.FileIO : {class<1>}

The syntax for instance types is the same, with the keyword
instance instead of class.

4.4.1 Polymorphic Function Types
The syntax for manually specified types also allows for polymor-
phic function types. For example, the identity function:

def id(x):

return x

can be provided with a suitable type by the following specification:

m.id : {lambda !a -> !a}

The exclamation mark indicates a type variable. During the
analysis, type variables are instantiated to the types of function
arguments.

5. Evaluation Method
We have implemented all the variants discussed in Section 4 in
Haskell (obtainable from http://www.cs.uu.nl/wiki/bin/
view/Hage/Resources) and applied them to a number of real-
world Python programs. The main focus of our study is to discover
the right balance of cost and precision. In particular, we wanted
to discover when increased precision stops paying off in terms of
results, and how increased precision affects run-time performance.
We first describe the method used to measure precision and speed
and the projects the analysis was applied to before presenting the
results of the experiments. The raw data of the experiments can be
found in [Fritz, 2011].

The evaluation was carried out by applying the implementation
to all of a project’s Python source code and measuring the precision
of the results as well as the time needed for type inference. This
was repeated for different variants and parameter settings, for each
of five projects.

5.1 Measuring Precision
The output of the method consists of mappings from identifiers to
union types. For each program point, there are two such mappings,

94

http://www.cs.uu.nl/wiki/bin/view/Hage/Resources
http://www.cs.uu.nl/wiki/bin/view/Hage/Resources

for context and effect, and there is one global mapping for variables
inferred flow-insensitively. Ideally, an evaluation of this output
would compare it to a ground truth, which means results known
to be correct. Such a ground truth could be obtained by careful
manual inspection of the source code, but because this would take
a long time for all but the simplest programs, it would restrict the
evaluation to a small sample of Python source code. Therefore, an
algorithm was developed that automatically judges precision.

In order to focus on those analysis results that are relevant to
a user, the algorithm starts from the control flow graph. For each
node in the graph, it determines the identifiers used in the statement
corresponding to the node. For example, for the statement

a = f(x + 1)

this would yield the identifiers f and x (but not a). The types for
these identifiers are, presumably, the ones that a user would be
interested in, since they determine the effect of the statement. The
algorithm then looks up the type inferred for each of the variables
in the context or global lattice value and adds the types to a list.

In the next step, the types in this list are classified in two groups:
⊥ and> types are classified as “not useful”, all others are classified
as “useful”. The score is calculated as the ratio of “useful” types to
all types in the list. Note that in an IDE that lists all the possible
identifiers that may fit a particular context, variables that were
assigned type>will be suggested by the IDE for any context. If the
precision of an analysis is so low that many variables are assigned
to > by the analysis (while another variant may find that a smaller
set will suffice), then together these will drown out those identifiers
that actually fit the context. Therefore, for our aims, our score is
a reasonable approximation that avoids a detailed manual study of
the Python applications themselves.

This method also gives appropriate weights to types of identi-
fiers for which flow-insensitive analysis is used: because the analy-
sis infers only one type for each of these, but one type per program
point for others, they might have a disproportionally small influ-
ence on the results of a simpler algorithm.

5.2 Measuring Speed
To measure speed, the implementation records the time just before
and just after running the analysis, and prints the difference in
microseconds (µs). The time measured is CPU time (the amount
of time that the program has run on the CPU), which makes it less
likely that the results are influenced by other factors such as the
operating system’s activities.

Haskell, the language that the implementation is written in,
uses lazy evaluation: expressions are not evaluated before they
are needed. This makes it difficult to measure the runtime of
part of a program, because execution of different parts can be
finely meshed together at runtime. To avoid this, the implementa-
tion uses the DeepSeq library (http://hackage.haskell.org/
package/deepseq) to force evaluation of the analysis’s input be-
fore taking the start time and of its output before taking the end
time.

The experiments were done on a MacBook with 2.4 GHz Intel
Core 2 Duo processor and 2 GiB of main memory.

5.3 Example Projects
In order to have a variety of Python source code represented in the
experiments, five project were used, which are briefly presented
here. These projects in particular were selected because they are
compatible with Python 3.2 and they do not use modules written
in C, which the analysis would not be able to process. The projects
are ordered here from most to least self-contained, so the later ones
are likely to be more problematic for type inference:

Modules Lines of code
euler 5 110
adventure 6 2211
bitstring 6 4299
feedparser 2 4454
twitter 13 1868

Table 6. Projects used as input for the evaluation.

euler This codebase consists of solutions to five mathematical
problems from the Project Euler website (http://projecteuler.
net/) written by the first author. This is very straightforward
code.

adventure The interactive Adventure (https://bitbucket.
org/brandon/adventure/overview) project is a fairly self-
contained program; having a text-based interface means it does
not depend on a large GUI library.

bitstring The bitstring library (http://code.google.com/p/
python-bitstring/) provides an interface in Python for the
creation and manipulation of binary data.

feedparser The Universal Feed Parser (http://feedparser.
org/) is a library for parsing RSS and Atom feeds implemented
in Python. It consists of only two modules, but there is quite a
bit of nested code to handle all the details of various versions
of the two standards.

twitter The Python Twitter Tools (http://mike.verdone.ca/
twitter/) contains a library, a command-line program, and an
IRC bot to access the Twitter web site’s public API.

Table 6 lists the number of modules and lines of code for each
of the projects. In tables following Table 6, we write adven for
adventure, bits for bitstring, and feedp for feedparser, in order to
be able to format the result tables in a single column.

6. Evaluation Results
The results of the experiments, in the form printed by the imple-
mentation program, can be found in the Appendix of [Fritz, 2011].
This section presents various aspects of the results and uses them to
evaluate the analysis variants, the influence of parameters and the
general suitability of the method.

6.1 Variants
Tables 7–10 show the effect that the analysis variants have on preci-
sion and time. Results of each variant are compared here to the anal-
ysis with default parameters; the numbers shown are differences
in percent. Thus, in the precision rows, positive numbers indicate
better results; in the time rows, positive numbers indicate slower
operation. The mean column contains the arithmetic mean of the
values.

As can be seen in Table 7 and Table 8, parameterized datatypes
and context-sensitive analysis did not improve the results by much.
Parameterized datatypes did improve results significantly for the
euler example code, but not for the larger projects. Context-
sensitive analysis, which was tested for different values of the pa-
rameter k (maximum length of call strings) did not significantly
improve the results in any of the cases.

The results of flow-insensitive analysis, shown in Table 9, are
more encouraging. The first column of the table indicates what
flow-insensitive analysis was used for. It contains the parameters
passed to the implementation’s command-line interface (see Ap-
pendix A.3 of [Fritz, 2011]): f means flow-insensitive analysis is
used for module-scope variables, g means it is used for class types,

95

http://hackage.haskell.org/package/deepseq
http://hackage.haskell.org/package/deepseq
http://projecteuler.net/
http://projecteuler.net/
https://bitbucket.org/brandon/adventure/overview
https://bitbucket.org/brandon/adventure/overview
http://code.google.com/p/python-bitstring/
http://code.google.com/p/python-bitstring/
http://feedparser.org/
http://feedparser.org/
http://mike.verdone.ca/twitter/
http://mike.verdone.ca/twitter/

euler adven bits feedp twitter mean
precision 11.54 0.00 0.00 1.01 0.00 2.51
time -9.63 0.64 31.58 3.88 2.55 5.80

Table 7. Effects of parameterized datatypes on experiment results,
relative to the default parameter setting.

k euler adven bits feedp twitter mean

1 p 0.00 0.00 0.00 0.25 0.00 0.05
t 36.91 67.92 0.26 117.14 0.16 44.48

2 p 0.00 3.21 0.00 0.25 0.00 0.69
t 102.61 236.74 0.47 429.76 0.14 153.95

4 p 0.00 -9.55 0.00 0.25 0.00 -1.86
t 295.61 505.51 0.47 420.43 0.17 244.44

8 p 0.00 -10.00 0.00 0.25 0.00 -1.95
t 971.09 1395.62 0.46 420.33 0.16 557.53

16 p 0.00 -10.00 0.00 0.25 0.00 -1.95
t 3577.37 4123.39 0.52 420.40 0.16 1624.37

Table 8. Effects of context-sensitive analysis on experiment re-
sults, relative to the default parameter setting.

euler adven bits feedp twitter mean

f p 5.05 73.13 48.23 10.37 -11.13 25.13
t -42.76 18.14 -22.92 12.70 -65.07 -19.98

g p 0.00 20.90 55.77 0.17 0.00 15.37
t -0.01 1.87 -8.91 1356.03 -24.58 264.88

h p 0.00 0.00 0.00 0.00 0.00 0.00
t -2.35 -0.09 0.10 -1.62 -0.02 -0.79

fg p 5.05 78.19 48.23 7.58 -11.13 25.58
t -42.87 10.57 -46.50 938.19 -68.37 158.20

fh p 5.05 78.19 48.23 6.58 -11.13 25.38
t -42.80 78.11 -22.35 339.55 -63.57 57.79

gh p 0.00 20.90 55.77 0.17 0.00 15.37
t 0.68 13.43 -9.55 796.72 -24.71 155.31

fgh p 5.05 78.19 48.23 7.58 -11.13 25.58
t -42.45 31.86 -46.48 536.35 -67.02 82.45

Table 9. Effects of flow-insensitive analysis on experiment results,
relative to the default parameter setting.

euler adven
precision 70.16 39.01
time 1.81 6.81

Table 10. Effects of manually specified types on experiment re-
sults, relative to the default parameter setting.

and h means it is used for instance types. All seven possible com-
binations were used.

The best way to use flow-insensitive analysis appears to be to
use it only for module-scope variables. Enabling it also for class or
instance types or both improves the results in some cases, but not
by much and at a large cost in speed.

For the last set of experiments, types were specified manually
for identifiers not in the code under analysis (from the standard li-
brary or third-party libraries). Because of time constraints, this was
only done for the two smallest projects. Table 10 shows the results;
not surprisingly, they indicate that specifying types manually im-
proves precision at a moderate cost in runtimes.

euler adven bits feedp twitter mean

n = 1
p -23.08 0.00 -5.77 -0.25 0.00 -5.82
t -0.43 -0.12 0.35 0.14 0.06 -0.00

n = 2
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.36 -0.16 0.28 0.25 -0.05 0.13

n = 4
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.16 -0.33 0.17 0.18 -0.01 0.03

n = 8
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.08 -0.12 0.26 -0.03 -0.00 0.04

n = 16
p 0.00 0.00 0.00 0.25 0.00 0.05
t -0.00 -0.09 0.23 -0.30 -0.03 -0.04

m = 1
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.26 -0.25 0.20 -0.28 0.04 -0.01

m = 2
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.28 -0.23 0.32 -0.34 -0.02 0.00

m = 4
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.05 -0.32 0.25 -0.33 0.06 -0.06

m = 8
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.42 -0.26 0.42 -0.22 -0.05 0.06

m = 16
p 0.00 0.00 0.00 0.00 0.00 0.00
t -0.08 0.01 0.25 -0.39 0.05 -0.03

o = 4
p 0.00 0.00 -1.92 -1.14 -21.62 -4.94
t 0.00 -15.10 -9.61 -4.61 -12.47 -8.36

o = 8
p 0.00 0.00 0.00 -0.25 0.00 -0.05
t 0.16 -6.27 -5.39 -2.68 0.09 -2.82

o = 16
p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.51 -0.08 0.32 -1.88 -0.08 -0.24

o = 32
p 0.00 0.00 1.92 1.06 0.00 0.60
t 0.34 -0.10 9.58 13.97 -0.09 4.74

o = 64
p 0.00 0.00 3.85 -2.20 0.00 0.33
t 1.00 -0.25 30.14 2267.87 0.25 459.80

Table 11. Effects of parameters of widening operator on experi-
ment results.

6.2 Parameters for Widening Operator
Table 11 shows the results of different values for the parameters
of the widening operator ∇n,m,o (see Section 3), compared to the
default settings n = 3, m = 3, o = 20. As may be expected, very
small values for any of the parameters lead to poor precision and
very large values lead to long runtimes. Other than that, the results
indicate that the default values are actually good choices.

6.3 Evaluation
Table 12 shows the results in absolute numbers for the configu-
ration that, according to the experiments, works best: using flow-
insensitive analysis for module-scope variables, but none of the
other variants. The analysis inferred a useful type for variables in
the source code in between 45 and 91 percent of cases. When it was
supplied with types for identifiers in external libraries, this number
increased further (by 6 and 27 percent for the two projects used).

To do this, it needed between 0.014 and 23 seconds. The dif-
ferences are in part explained by the size of the projects, but not
entirely. For example, the analysis took 9.1 times longer for the
feedparser project than for the bitstring project, but the difference
in lines of code is only about 4 percent.

7. Related Work
For reasons of space we restrict our discussion here to work that
involves a dynamically typed language. A more extensive discus-
sion, and more references can be found in [Fritz, 2011]. The works
discussed here provide additional pointers to related work.

Cartwright and Fagan introduce the concept of soft typing as
a way to combine the advantages of static and dynamic typing
[Cartwright and Fagan, 1991]. A soft type system accepts all pro-

96

euler adven bits feedp twitter
precision 0.45 0.75 0.91 0.53 0.75
time 14 981 2,531 22,929 3,114

with user- precision 0.72 0.81
defined types time 18 1,075

Table 12. Precision and runtime (in ms) using flow-insensitive
analysis for module-scope variables.

grams in a dynamically typed language and inserts dynamic checks
in places where it cannot statically infer provably correct types.
The programmer can then inspect the places where the checker
failed and decide if the code should be changed. Flanagan intro-
duces hybrid type checking, which is a synthesis of static typing
and dynamic contract checking [Flanagan, 2006]. Dynamic con-
tract checking can support more precise specifications than type
checking, for example range checks and aliasing restrictions, but
the propositions are not checked until runtime. With hybrid type
checking, very precise interface specifications are possible. As in
soft tpying, these are checked at compile time where possible and
at runtime where necessary. Gradual typing, see, e.g., [Siek and
Taha, 2007, Ina and Igarashi, 2011] allows mixing static and dy-
namic typing within one program: program elements with type an-
notations are checked statically, others are checked dynamically.

Agesen introduced the Cartesian Product Algorithm (CPA) in
his PhD thesis [Agesen, 1996]. The algorithm infers types for pro-
grams written in the Self language, and is based on an algorithm in-
troduced by Palsberg et al. that uses constraint-based analysis to de-
termine types in object-oriented programs [Palsberg and Schwartz-
bach, 1991]. The algorithm assigns a type variable to each vari-
able and expression and relates these by a set of constraints, that
is solved by fixpoint iteration. Agesen duplicates the subgraph of
variables and constraints for each monomorphic use of a polymor-
phic method.

Aycock developed a method for Python called “aggressive type
inference” [Aycock, 2000]. It is flow-insensitive and does not use
union types, assuming that most Python code does not make use of
the dynamic features of Python’s type system. Salib’s master the-
sis describes a type inference method called “Starkiller” which is
part of a Python-to-C++ compiler [Salib, 2004], loosely based on
CPA. It can handle first-class functions and classes and objects, and
supports parametric polymorphism as well as data polymorphism.
Exceptions and generators are not supported, and the analysis is
flow-insensitive. Cannon’s master thesis presents a method to im-
prove performance of Python programs which uses type inference
and optional type annotations [Cannon, 2005]. The method for type
inference is rather limited. Gorbovitski et al. describe a method for
type inference for Python programs (called “precise type analysis”)
which they employ in their alias analysis when they construct the
program’s control flow graph [Gorbovitski et al., 2010]. Their al-
gorithm is based on “abstract interpretation over a domain of pre-
cise types”, in which types such as “bool true” and an “int between
1 and 10” can be represented. The analysis is flow-sensitive and
context-sensitive. A downside is that it seem to be rather slow.

More recent work on type inference for Python includes [Tu],
[Lehtosalo, 2014] and [Maia et al., 2011]. The latter of these imple-
ments a type inferencer that supports constructs sometimes going
beyond what we do. On the other hand, they do demand that, for
example, the type of a variable is never changed. These restrictions
are necessary to come up with a type system specification. We, on
the other hand, simply collect sets of types following a data-flow
approach. The MyPy system [Lehtosalo, 2014] is an implementa-
tion of a type inferencer for Python, for a version of Python that
supports type annotations, analogous to a move from Javascript to

Typescript, and from PHP to Hack. The work by Stephen Tu, takes
a different take on type analysis for Python, by employing a ma-
chine learning approach. The focus of this work is not a verifiable
sound analysis, but to employ various indicators of the type of a
variable, like its name, to decide on its type.

Jensen et al. [Jensen et al., 2009] presents a static program
analysis to infer detailed and sound type information for Javascript
programs by means of abstract interpretation, using a monotone
framework based implementation to deal with the dynamic aspects
of the language that turns out to be quite similar to ours. Their
analysis is both flow and context sensitive and supports the full
language, as defined in the ECMAScript standard, including its
prototypical object model, exceptions and first-class functions.

Camphuijsen et al. employ an analysis similar to ours to de-
tect “suspicious” PHP code [Camphuijsen et al., 2009]. The anal-
ysis is flow-sensitive and context-sensitive, and it supports union
types and polymorphic types for arrays. A widening operator is
used to ensure termination. The user can manually supply poly-
morphic type signatures for functions. Classes and objects and ex-
ceptions are not supported. Type analysis plays an important role
in reducing run-time overhead in HipHop, a PHP compiler devel-
oped by Facebook Zhao et al. [2012], and which has later led to the
Hack language that seamlessly integrates with PHP and adds type
annotations Verlaguet et al..

Closest in spirit to our work is research reported in [Van der
Hoek and Hage, 2015]. Like us the relation between performance
and precision is the main target of research. The main differences
are that the language they consider is PHP, and the comparison
is for various forms of object-sensitivity (as originally devised by
[Milanova et al., 2005]), while we consider call-site sensitivity.

Pluquet et al. present a method for type inference for Smalltalk,
which they describe as “extremely fast [. . .] and reasonably pre-
cise” [Pluquet et al., 2009]. Fast execution is achieved in two ways:
the analysis is local in the sense that, to infer the type of a variable,
it uses only information found in the methods of the class it is de-
fined in and it uses a number of heuristics rather than a theoretical
model of program execution. The authors validate the method by
applying it to three Smalltalk applications. To evaluate precision,
they monitored the execution of the programs, and recorded the
types stored in each variable. The (incomplete) type information
retrieved this way was then compared to the inferred types. Mad-
sen et al. developed a type inference tool for Ruby based on CPA
[Madsen et al., 2007]. An interesting aspect is that the tool auto-
matically extracts types for functions and methods in Ruby’s stan-
dard library from the documentation. Furr et al. present a system
called Diamondback Ruby (DRuby), which includes union types,
intersection types and parametric polymorphism [Furr et al., 2009].
Types are inferred by a method based on constraint-based analysis;
however, not all code can be typed with this method. Intersection
types cannot be inferred automatically, and type annotations must
be used. PRuby is an extension of DRuby that uses dynamic analy-
sis to deal with highly dynamic constructs such as eval [Furr et al.,
2009a]. An et al. present constraint-based dynamic type inference
where they collect all constraints at runtime [An et al., 2010]. The
constraints are solved afterwards to find a valid typing, if one ex-
ists. For code that cannot be analyzed, the user can supply type
annotations manually.

8. Conclusion
We have presented an extension to monotone frameworks to per-
form soft typing for Python, so that edges for function calls can
be added to the control flow graph during the analysis. The analy-
sis can deal with first-class functions and Python’s dynamic class
system. The method was implemented in a proof-of-concept imple-
mentation, which includes six variants that extend or modify the ba-

97

sic method. Our experimental evaluation of these variants show that
the method can infer types with reasonable precision fairly quickly.

As future work, we may extend the monotone framework to sup-
port an object-sensitive analysis, instead of plain call-site sensitiv-
ity. For OO languages like Java, object creation points seem to be a
better choice for context than call-sites [Smaragdakis et al., 2011],
but does this also hold for languages like Python? A limitation of
our work is that we do not treat exceptions and generators as well
as is possible. Finally, it may be useful to include more, and larger,
applications in our case study.

References
O. Agesen. Concrete type inference: Delivering object-oriented applica-

tions. Dissertation, Jan 1996.

J. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic inference of static
types for Ruby. Technical Report, University of Maryland, Jul 2010.

J. Aycock. Aggressive type inference. 8th International Python Conference,
Jan 2000.

P. Camphuijsen, J. Hage, and S. Holdermans. Soft typing PHP. Technical
Report UU-CS-2009-004, Department of Information and Computing
Sciences, Utrecht University, 2009.

B. Cannon. Localized type inference of atomic types in Python. Master
Thesis, Jun 2005.

R. Cartwright and M. Fagan. Soft typing. PLDI ’91: 1991 Conference on
Programming Language Design and Implementation, pages 278–292,
Jun 1991.

C. Flanagan. Hybrid type checking. In POPL ’06: Conference record of the
33rd ACM symposium on Principles of programming languages, pages
245–256, New York, USA, 2006. ACM.

L. Fritz. Balancing cost and precision of approximate type infer-
ence in Python, 2011. http://www.cs.uu.nl/wiki/pub/Hage/
MasterStudents/thesis.pdf.

M. Furr, J. An, J. S. Foster, and M. Hicks. Static type inference for Ruby. In
Proceedings of the 2009 ACM symposium on Applied Computing, SAC
’09, pages 1859–1866, New York, USA, 2009. ACM.

M. Furr, J. An, and J. S. Foster. Profile-guided static typing for dynamic
scripting languages. OOPSLA ’09: 24th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
283–300, Oct 2009a.

M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and K. T. Tekle.
Alias analysis for optimization of dynamic languages. DLS ’10: 6th
Symposium on Dynamic Languages, pages 27–42, Oct 2010.

L. Ina and A. Igarashi. Gradual typing for generics. In Proceedings of the
2011 ACM international conference on Object oriented programming
systems languages and applications, OOPSLA ’11, pages 609–624, New
York, NY, USA, 2011. ACM.

S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In
Proc. 16th International Static Analysis Symposium (SAS), volume 5673

of LNCS. Springer-Verlag, August 2009.

J. Lehtosalo. The mypy system, 2014. http://www.mypy-lang.org.

M. Madsen, P.Sørensen, and K. Kristensen. Ecstatic – type inference for
Ruby using the cartesian product algorithm. Technical report, Aalborg
Universitet, 2007. https://services.cs.aau.dk/public/tools/
library/details.php?id=1181807983.

E. Maia, N. Moreira, and R. Reis. A static type inference for Python. In
Proc. of DYLA, 2011.

A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering
and Methodology (TOSEM), 14(1):1–41, 2005.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer Verlag, 2005.

J. Palsberg and M. Schwartzbach. Object-oriented type inference. OOPSLA
’91: 6th Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications, pages 146–161, 1991.

F. Pluquet, A. Marot, and R. Wuyts. Fast type reconstruction for dynam-
ically typed programming languages. DLS ’09: 2009 Symposium on
Dynamic Languages, pages 69–78, Oct 2009.

M. Salib. Starkiller: A static type inferencer and compiler for Python.
Master Thesis, May 2004.

J. Siek and W. Taha. Gradual typing for objects. ECOOP ’07: 21st
European Conference on Object-Oriented Programming, Jul 2007.

Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well:
understanding object-sensitivity. In Proceedings of the 38th annual ACM
Symposium on Principles of programming languages, POPL ’11, pages
17–30, New York, USA, 2011. ACM.

S. Tu. Mino: Data-driven approximate type inference for python.
http://www.cs.berkeley.edu/ sltu/papers/mino.pdf.

H. E. Van der Hoek and J. Hage. Object-sensitive type analysis of PHP. In
Proceedings of the 2015 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’15, pages 9–20, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3297-2. doi: 10.1145/2678015.2682535. URL
http://doi.acm.org/10.1145/2678015.2682535.

G. van Rossum and F. L. Drake. The Python language reference, release
3.2, Mar 2011.

J. Verlaguet, J. Beales, E. Letuchy, G. Levi, J. Marcey, E. Meijer,
A. Menghrajani, B. O’Sullivan, D. Paroski, J. Pearce, J. Pobar, and J. Van
Dyke Watzman. The Hack language. http://hacklang.org, con-
sulted Oct. 2014.

H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao, G. Ottoni,
A. Paroski, S. MacVicar, J. Evans, and S. Tu. The HipHop compiler for
PHP. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA
’12, pages 575–586, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1561-6. doi: 10.1145/2384616.2384658. URL http://doi.
acm.org/10.1145/2384616.2384658.

98

http://www.cs.uu.nl/wiki/pub/Hage/MasterStudents/thesis.pdf
http://www.cs.uu.nl/wiki/pub/Hage/MasterStudents/thesis.pdf
https://services.cs.aau.dk/public/tools/library/details.php?id=1181807983
https://services.cs.aau.dk/public/tools/library/details.php?id=1181807983
http://doi.acm.org/10.1145/2678015.2682535
http://hacklang.org
http://doi.acm.org/10.1145/2384616.2384658
http://doi.acm.org/10.1145/2384616.2384658

	Introduction
	Extending Monotone Frameworks
	Extended Worklist Algorithm

	Type Inference for Python
	Join Operator
	Widening Operator
	The Analysis

	Analysis Variants
	Parameterized Datatypes
	Extended Type Lattice
	Use of Parameterized Datatypes

	Context-Sensitive Analysis
	Flow-Insensitive Analysis
	Flow-Insensitive Analysis for Module-Scope Variables
	Flow-Insensitive Analysis for Class Types
	Flow-insensitive Analysis for Instance Types

	Manually Specified Types
	Polymorphic Function Types

	Evaluation Method
	Measuring Precision
	Measuring Speed
	Example Projects

	Evaluation Results
	Variants
	Parameters for Widening Operator
	Evaluation

	Related Work
	Conclusion

