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Abstract
As a result of the shallow depth of focus of the optical imaging system, the 
use of standard filtered back projection in optical projection tomography 
causes space-variant tangential blurring that increases with the distance to the 
rotation axis. We present a novel optical tomographic image reconstruction 
technique that incorporates the point spread function of the imaging lens in 
an iterative reconstruction. The technique is demonstrated using numerical 
simulations, tested on experimental optical projection tomography data of 
single fluorescent beads, and applied to high-resolution emission optical 
projection tomography imaging of an entire zebrafish larva. Compared to 
filtered back projection our results show greatly reduced radial and tangential 
blurring over the entire 5.2 × 5.2 mm2 field of view, and a significantly 
improved signal to noise ratio.

Keywords: image reconstruction techniques, inverse problems,  
tomographic image processing
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1.  Introduction

Optical tomographic imaging techniques such as optical diffraction tomography (Wolf 1969) 
and optical projection tomography (OPT) (Sharpe et al 2002) are now among the standard 
imaging modalities for the study of cells, tissues and small animals. In OPT, light intensity 
projections of samples, such as zebrafish or (mouse) embryos, are measured in transmission 
or emission (fluorescence). From these projections, images are computed using tomographic 
reconstruction algorithms. OPT is used for in vivo and ex vivo imaging, whereby for ex vivo 
imaging optical clearing techniques are used to suppress light scattering.

In the quest for improved image resolution, high numerical aperture (NA) lenses are used 
to image the transmission or emission of the sample onto the detector. However, high NA 
lenses have a small depth of focus (DOF), which causes light that is emitted or absorbed 
outside of the focal region to be heavily blurred in the detector plane, thereby limiting the 
imaging depth. Moreover, standard reconstruction techniques, such as filtered back projection 
(FBP), are generally based on a straight ray approximation and ignore the diffraction of the 
light by the focusing lens. As a result, reconstructed OPT images can suffer from severe image 
degradation, leading to tangential blurring that increases with the distance to the rotation axis 
in the reconstructed image.

Hardware-based approaches to solve the depth of focus effect are either based on off-center 
focusing (Chen et al 2013) or scanning the focal plane through the sample (Miao et al 2010). 
Although, these techniques can reduce the depth of focus effect in the reconstructed image, 
they are complex to apply and increase the acquisition time.

A sinogram filtering technique using the frequency distance relationship (FDR) was devel-
oped by Xia et al (1995), in which a space-variant inverse filter is applied to process the sino-
gram in Fourier space. The physical PSF of an optical imaging system was used as a filter in 
the FDR reconstruction of OPT data by Walls et al (2007). In this method the image is recon-
structed, after filtering the sinogram, using standard FBP. A weighted FBP for quantitative 
fluorescence optical projection tomography was presented by Darrell et al (2008). They used 
a space-variant weighting in the FBP reconstruction to correct for defocus related blur and 
isotropic emission of the fluorophores. However, this filter was only applied in one direction, 
which resulted in an increased radial full width at half maximum of the point spread func-
tion (PSF). To reduce the effect of the DOF both the radial and tangential direction, various 
processing methods were developed that include the physical PSF. Deconvolution techniques 
with a space-variant PSF have been applied to the reconstructed image (Nagy and O’Leary 
1997, Temerinac-Ott et al 2011, Chen et al 2012, van der Horst and Kalkman 2016). However, 
the quality of this technique depends on the choice of many parameters of the applied recon-
struction algorithm. Furthermore, deconvolution techniques have the disadvantage to amplify 
noise. To our knowledge, the PSF has been used for reconstruction in terahertz and in medical 
tomographic techniques, such as terahertz tomography (Recur et al 2012), PET (Rapisarda 
et al 2010), SPECT (Formiconi et al 1989) and CT (Chen and Ning 2004). Recur et al (2012) 
presented an iterative approach, where the object is reconstructed with the straight ray inverse 
Radon transform and subsequently deconvolved with a Gaussian PSF. For SPECT imaging, 
the system response was taking into account in an iterative conjugate gradient reconstruction 
method by Formiconi et al (1989). They showed that the inclusion of the PSF gives improved 
resolution compared to FBP. An iterative 3D edge-deblurring algorithm for cone-beam CT 
was proposed by Chen and Ning (2004). The PSF was first approximated by a least-squared 
approach and then used for a three dimensions deconvolution. However, the image size used 
by both (Formiconi et al 1989, Chen and Ning 2004) was significantly smaller than the current 
image size used for OPT.
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We present a PSF-based optical tomographic image reconstruction approach, in which 
the PSF of the focusing by the lens is directly included in the tomographic reconstruction, 
instead of filtering the sinogram before or the image after the reconstruction. First, a theor
etical framework is provided that describes the PSF-based reconstruction. The application of 
the theory is demonstrated using numerical simulations of the tomographic imaging process. 
Second, our algorithm is tested under well-controlled experimental conditions. Finally, the 
technique is demonstrated on zebrafish larva imaging.

2.  Image formation in optical projection tomography

In optical projection tomography (OPT), the goal is to determine the spatial distribution of 
absorption or emission strength of an object f (x, y, z) from its projections. In emission OPT, 
the object is assumed to be homogeneously illuminated with light from the excitation source 
resulting in an excitation rate that is constant over the object f. A small fraction of the excita-
tion light is absorbed and emitted isotropically. Hence, it is assumed that variations in local 
emission strength are caused by variations in fluorophore concentration only. The emitted 
radiation is imaged with an imaging system onto the detector, see figure 1(a).

Following (Gu 2000), and assuming a single emitter at location x, y, z, in the 
object coordinate system, the intensity in the image space coordinate system is 
I(s, t, u) = |h(x + Ms, y + Mt, z − M2u)|2, with h2 the incoherent PSF and M the magnifica-
tion of the imaging system. Given the geometry in figure 1(a) with the detector fixed at u = 0 
and since the object can be considered as a sum of incoherent point sources, the measured 
intensity is a convolution of the object emission distribution with the PSF |h(x, y, z)|2. For an 
imaging system with M = −1 and u = 0 the measured intensity on the detector is

I(s, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x − s, y − t, z − u)|h(x, y, z)|2 dx dy dz|u=0.� (1)

In the absence of diffraction, the PSF is |h(x, y, z)|2 = δ(x, y). Under these circumstances the 
convolution in equation  (1) results in a line integral of the object f (x, y, z), similar to the 
Radon transform at zero angle along the propagation direction (Radon and Parks 1986). In 
OPT, diffraction causes the PSF to be non-ideal. The emitted light, originating along a straight 
path through the object, is (unsharply) imaged by a lens onto the detector. The shape of the 
3D PSF can be calculated by Fourier optics, more in particular by Fresnel propagation of the 
emitted field through the lens onto the detector (Goodmann 1996, Gu 2000).

Following the derivation by van der Horst and Kalkman (2016) we assume an integration 
on the detector in the t direction over the entire detector plane, which is a good approximation 
for objects that have optical properties that vary slowly along the y-axis. In this case the meas-
ured intensity in equation (1) becomes proportional to the convolution of the object with a 2D 
cross-section of the 3D PSF. Since the image of a point emitter by a lens results in a complex 
shaped PSF, we describe it here through an analytical formula. In this way we can quantita-
tively validate our approach using simulations and compare our results with theory. We model 
the PSF |h(x, z)|2 as a Gaussian-shaped beam of the wavelength λ and in focus beam waist w0 
(Siegman 1986) as

|h(x, z)|2 =

∣∣∣∣∣∣∣∣
1√

1 +
(

z
zR

)2
exp


− x2

w2
0

(
1 +

(
z

zR

)2
)




∣∣∣∣∣∣∣∣

2

,� (2)
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where zR = πw2
0/λ is the Rayleigh range (half the depth of focus). The numerical aperture is 

given by NA = w0/zR in equation (1). The two-dimensional convolution of the PSF over the 
object is indicated in figure 1(b).

In tomographic imaging, we obtain the projections of the emission as a function of the 
lateral shift s and the rotation angle θ of the object. From equation (1), it can be derived that 
the measured projection at the angle θ and shift s is

p(s, θ) =
∫ ∞

−∞

∫
f [(x − s) cos θ + z sin θ, (x − s) sin θ − z cos θ] |h(x, z)|2 dx dz ,

�

(3)

with the angle θ ∈ [0, 2π]. The projections p(s, θ) are commonly visualized in a sinogram, 
where the convolution in equation (3) describes the blurring in the sinogram due to the tomo-
graphic imaging system.

The projection data p(s, θ) is not measured in a continuous way, as defined by equation (3), 
but is sampled at discrete lateral positions for a finite set of angles. Hence, the inverse solu-
tion cannot be determined analytically, but only through a search for the function f (x, z) that 
optimizes an objective function. The projection of equation (3), p(s, θ), is limited to a finite 
integration area D given by D ∈ [−l/2, l/2] for offsets s ∈ [−l/2, l/2] and l is the size of the 
field of view. The projection is then represented by a matrix multiplication with the object 
f discretized by sampling f (x, z) on a regular cell-centered grid, within the square object 
domain D2 at locations xi, zj, with i = 1, 2, . . . , n, j = 1, 2, . . . , n where n is the number of 
pixels in each direction of the object and equal to the number of lateral pixels in the projec-
tion. This leads to an image matrix of f (xi, zi) ∈ Rn×n, which is stacked in a vector f ∈ Rn2

. 
The convolution of equation (3) is discretized into a geometry matrix A ∈ Rm·n,n2

, with m the 

Figure 1.  Schematic overview of the optical project tomography imaging system.  
(a) Optical imaging system consisting of a single lens making a projection of the object 
onto the camera. (b) OPT signal formation for diffractive optical beams (red dashed and 
hatched). The rotation angle is denoted by θ, the shift of the object s, and f (x, z) is a 
slice of the object.

A K Trull et alPhys. Med. Biol. 62 (2017) 7784
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number of projection angles. A row of the matrix A represents a the Gaussian PSF at lateral 
distance si and angle θk. The matrix elements of A are

a(k−1)n+i,: = |h[(xi − si) cos θk + zi sin θk, (xi − si) sin θk − zi cos θk]|2.� (4)

In this way, a shifted and rotated PSF is represented in a single row of the A matrix. First, all 
shifts for one angle are addressed, which is subsequently repeated for all angles. The acquisi-
tion domain of the measured projections are the set of samples (si, θk), with k = 1, 2, . . . , m. 
The discrete projections p(si, θk) ∈ Rn,m are stacked into a vector p ∈ Rn·m,1.

After discretization, the object, f, can be reconstructed by finding a solution to the optim
ization problem

argmin
f

1
2
‖A · f − p‖2

2 ,� (5)

where ‖ · ‖2 denotes the Euclidean norm. Equation  (5) can be solved using a least squares 
optimization method based on conjugate gradients.

3.  Image reconstruction

Tomographic reconstructions are performed on a computer with Intel(R) Xeon(R) CPU 
Processor (E5-1620 v3@3.50 GHz), 32 GB installed memory and a 64-bit operating system. 
The data are processed using software written in the commercial software package MATLAB 
(Mathworks, R2016a). Simulated sinograms are constructed using the discretized version of 
equation (3) for an initial object f. Following the data processing flow chart in figure 2, an 
initial guess of the image is created by filtered back projection (FBP) (input reconstruction). 
An improved estimate for the object is made by least-squares optimization of equation (5) 
using the MATLAB function lsqr (Paige and Saunders 1982, Barrett et al 1994), which uses 
a conjugate-gradient type iterative algorithm on the normal equations. It takes as input the 
projection data, the initial guess of the image (created by FBP), the maximum number of itera-
tions to perform set to 4000, the absolute tolerance, and the geometry matrix A. The absolute 
tolerance of the method is chosen to be 10−6. If the algorithm stops at the maximum number 
of iterations before the absolute tolerance is reached, the reconstruction results are evaluated 
by visual inspection. The PSF-based reconstruction is performed without including any prior 
information or regularization in the optimization of equation (5).

The geometry matrix A is non-sparse and therefore explicitly computing and storing it for 
a realistic image size of 1000 by 1000 would require around 8 terabytes of memory, which 
is infeasible. Instead of requiring a precomputed version of A, the MATLAB function lsqr 
also allows providing a routine that evaluates multiplication by A and its transpose for every 
angle individually. Here, multiplication by A corresponds to (PSF-based) forward projection 
of an input image, and multiplication by the transpose of A corresponds to (PSF-based) back 
projection of an input sinogram. We list the pseudo-code for calculating the forward and back-
ward projection in algorithm 1. It uses the built-in MATLAB function imrotate with bilinear 
interpolation to obtain the object at different angles. For every individual angle, the PSF is 
translated laterally over the sample, so the forward model of the projection has the structure 
of a one-dimensional convolution in the translation direction, followed by a sum in the direc-
tion orthogonal to that. We implement this by a multiplication of the Fourier transform of the 
object and the Fourier transform of the PSF for every column, followed by a sum for every 

A K Trull et alPhys. Med. Biol. 62 (2017) 7784
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row. To perform these operation correctly we zero-pad the sinogram to twice its size in the 
scanning direction. The back projection operator performs the adjoint/transpose variants of 
these steps in reverse order.

We set the maximum number of lsqr iterations to different hand-picked numbers depend-
ing on the convergence of the algorithm, which depends on the data that is to be reconstructed. 
In the current implementation one iteration of the lsqr algorithm, for one slice of 1000 by 1000 
pixels, takes approximately two minutes.

To enable a qualitative comparison of the reconstructed images, the FBP reconstruction is 
scaled in the following way. The reconstructed FBP image is forward projected to obtain its 
sinogram. The scaling factor αopt is then given by

αopt = argmin
α

‖αAf1 − Af2‖2
2,� (6)

where f1 is the FBP reconstructed image and f2 the PSF-based reconstructed image. The scal-
ing factor αopt is then given in closed-form by

αopt =
(Af1)

T(Af2)

‖Af1‖2
2

.� (7)

Subsequently, the FBP reconstruction is scaled with αopt to obtain an image intensity distribu-
tion in the reconstruction that corresponds to equal projection data4.

Figure 2.  Schematic illustration of the data analysis algorithm for the PSF-based 
reconstruction. The input reconstruction is only used in the first iteration.

4 Our code to perform these calculations can be made available on request.

A K Trull et alPhys. Med. Biol. 62 (2017) 7784
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Algorithm 1  . Calculate p = Af or f = ATp

Require: f, mode, beam parameters
  1: �Notation: Denote by (I)FTC taking an (inverse) 1D Fourier transform of every
   �   column of an image, by (I)FT1 taking the (inverse) 1D Fourier transform, by SumR

      taking the sum of every row of an image, and by pi the ith row of a sinogram p.
  2: Pre-compute the 2D beam shape of a horizontal beam and FTC(Beam)

  3: if mode  =  ‘not transposed’, then                                � Forward operator, p = Af

  4:    for i = 1 : anglecount do
  5:      fr = f rotated by the current angle

  6:      pi = IFT1(SumR(FTC(fr) · FTC(Beam)))

  7: else                                                        � Backward operator, f = ATp
  8:    f = the zero image
  9:    for i = 1 : anglecount do
10:        t = Multiply each column of FTC(Beam) by FT1(pi)

11:        u = IFTC(t) rotated by the reverse angle
12:        f = f + u
13: return p or f

4.  Results

4.1.  OPT simulations

The original object for the simulation is given in figure 3(a). The object, with a size of 15 × 15 
mm2 (100 × 100 pixels), consists of isolated point sources, with a peak emission strength of 
100 in the center pixel of the source and an emission strength set to 50 for the eight pixels 
around the center of the source. The object is blurred by convolving it with a Gaussian PSF 
for an emission wavelength of 514 nm with a waist w0 = 10 μm, DOF= 1.2 mm, NA= 0.016, 
see figure 3(b). Figure 3(c) shows the same simulation for w0 = 100 μm, DOF  =  122 mm, 
NA= 0.0016. The object data is processed following the flowchart in figure 2. The maximum 
number of iterations is set to 200.

The reconstruction results using filtered back projection (MATLAB function iradon) and 
the proposed method are depicted in figure 3. Figures 3(d) and (e) show the FBP reconstructed 
images, which is based on straight parallel rays, for the two Gaussian PSFs. In figure 3(d) it is 
clearly visible that, compared to the original object, the emission contrast is much lower due to 
the small DOF. Moreover, the reconstructed image shows that the emitters are strongly blurred 
in the tangential direction due to the strong divergence of the Gaussian PSF, as shown in fig-
ure 3(b). The tangential resolution deteriorates with increasing distance to the center of rota-
tion whereas the radial resolution is slightly deteriorated, but does not depend on the distance 
from the center of rotation. The insets show this in more detail for two emitters. For a PSF 
with a larger beam waist, modeling a low NA, large DOF, imaging system, figure 3(e) shows 
that there is some blurring in the reconstructed image. However, for this larger beam waist 
this effect depend very weakly on the distance to the center of rotation since the Gaussian PSF 
has much lower divergence, as shown in figure 3(c). Figures 3(f) and (g) show our PSF-based 
reconstruction. In figure 3(f) the contrast is completely restored, the strong tangential blurring 
is absent, and the reconstructed image is identical to the input image. Figure 3(g) shows that 
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also for a larger beam waist, the blurring of the emitter is fully corrected for by our PSF-based 
reconstruction method.

4.2.  Fluorescent bead OPT imaging

The PSF-based reconstruction method is tested with experimental OPT imaging of a sample 
with fluorescent bead emitters embedded in an agarose emulsion. The experimental set-up 
is described in more detail in van der Horst and Kalkman (2016), the main parameters of 
importance are briefly discussed. The experimentally determined Gaussian PSF has a beam 
waist in focus of w0 = 6 μm with the measured beam shape used in the PSF-based reconstruc-
tion. Emission from the center of the object is focused onto the camera plane by the imaging 
lens. The field of view of the experimental data is 5.2 × 5.2 mm2. In the lateral direction, the 

Figure 3.  Simulation of the FBP and PSF-based image reconstruction. (a) Input image, 
(b) Gaussian PSF for w0 = 10 μm. (c) Gaussian PSF for w0 = 100 μm. ((d) and (e)) 
Reconstruction using FBP for the two Gaussian PSFs. ((f) and (g)) Reconstruction 
using the PSF-based approach for the two Gaussian PSFs. The scale bar is 2.5 mm.

A K Trull et alPhys. Med. Biol. 62 (2017) 7784
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detector has 1344 pixels per projection and 360 projections are acquired over 360 degrees with 
a one degree spacing. The total dataset consist of 1024 sinograms covering a length of 4 mm 
along the rotation axis. The NA of the system is 0.05.

The measured data is pre-processed as follows. First, photo bleaching is corrected with 
a characteristic e−1 timescale of 798 seconds. Second, a constant background emission is 
removed from the sinogram. Third, the center of mass for each projection is estimated from 
the ratio of the integral of the projection times its transverse coordinate to the integral of the 
projection. Fourth, the center of rotation is determined from the centers of mass for all acquisi-
tion angles. Fifth, the center of rotation of the object is aligned with the center of the detector 
rows by shifting the data along the lateral dimension (Azevedo et al 1990). Subsequently, 
the 1024 sinograms are combined into 32 averaged sinograms. The averaged sinograms are 
further pre-processed. The noise is reduced by applying a non-local means de-noising algo-
rithm as described by Buades et al (2004). The half size for the de-noising window is chosen 
to be 9 pixels. The width of the Gaussian filter relative to its maximum intensity is set to 0.5, 
the search width is set to 10 pixels and the limited number of dimensions for the principal 
component analysis is 20. Prior to the reconstruction, the FBP sinogram is scaled to achieve 
a quantitative comparison of the image quality of the two methods. Subsequently, PSF-based 
reconstruction of the data is performed up to the maximum number of 4000 iterations and 
visually inspection confirmed the convergence.

Figure 4(a) shows the reconstruction of an averaged sinogram of the experimental data 
using FBP. Similar to the simulations, the single point emitters appear blurred in the FBP 
reconstruction. In figure 4(b) this is more clearly demonstrated by the zoom-in on the indi-
vidual beads and the normalized cross-sections of the emitters. The cross sections show that 
the emission profiles in the reconstruction are broad and have a Gaussian-shape. Figure 4(c) 
shows the same emitters, but reconstructed with our PSF-based approach. The emitters are 
brighter in comparison to the background and an improvement of the resolution is visible 
compared to the reconstruction using FBP. The quality of the reconstruction is analyzed by 
estimating the full width at half maximum (FWHM) of the Gaussian function fitted to each 
peak and is summarized table 1. Our PSF-based reconstruction shows a significant reduction 
of the FWHM in both axial and tangential direction. Figure 4(d) shows the same slide as in 
figure 4(a) reconstructed with the PSF-based reconstruction. The side lobes of the single bead 
1 are ’Gibbs’ like artefacts (Rapisarda et al 2010). The relative large distant to the center of 
rotation makes it difficult to correctly reconstruct the image of this bead.

4.3.  Zebrafish larva OPT imaging

The proposed PSF-based reconstruction is applied to an OPT scan of a 10 d old transgenic 
zebrafish larva to illustrate the performance on biological samples. The zebrafish cellular 
membranes are labeled with green fluorescent protein. The zebrafish larva is euthanized in 
ice water at the Erasmus Medical Center, Rotterdam according to animal welfare regulations. 
Animal experiments are approved by the Animal Experimentation Committee of the Erasmus 
MC, Rotterdam.

The zebrafish is mounted in agarose in our OPT system. The same experimental param
eters are used as for the fluorescent bead data, but for the zebrafish imaging a total of 1791 
sinograms are acquired covering a distance of 6.9 mm along the rotation axis. The NA of 
the system is 0.02. For all 1791 slices, the tomographic image is reconstructed using FBP 
and the PSF-based approach (no slice averaging). Prior to the reconstruction, the sinograms 
are scaled to achieve a better quantitative comparison of the two methods. The number of 

A K Trull et alPhys. Med. Biol. 62 (2017) 7784



7793

iterations is evaluated for one slide and is set to two, for which good convergence of the 
reconstruction is visually observed. Afterward this number of iterations is applied to the whole 
dataset. The reconstruction of the zebrafish larva is depicted in figure 5. Figure 5(a) shows 
the reconstruction of a single transverse slice of the data using FBP. Although the zebrafish 
structure is visible, the reconstruction is corrupted by radial streak artifacts, shows significant 
blurring, and has limited image contrast. Figure  5(b) shows our PSF-based reconstruction 
of the same transverse slice. Figure 5(c) shows the anatomy of an optical cleared zebrafish 
larva, of similar age, in transverse view obtained from transmission OPT from the zebrafish 
anatomy portal (Salgadob et al 2012) and is used for anatomical reference. The quality of 
the reconstructed image is significantly improved in terms of contrast, artifact removal, and 
resolution. Figures 5(d) and (e) show two cross sections through the data that illustrate the 
large improvement in image contrast and resolution. In our PSF-based reconstructed image 
the major anatomical parts are much better resolved compared to the reconstruction using FBP 
(see figures 5(a) and (b)). Similar effects are visible in figure 6, which shows a coronal cross-
section through the same data. Figures 6(a) and (b) show the reconstruction using FBP and the 
PSF-based reconstruction. Figure 6(c) shows a transmission OPT image of the anatomy of a 
7–13 d old, optically cleared, zebrafish larva in coronal view (Salgadob et al 2012). An even 
better view on the obtained image improvement achieved by our PSF-based reconstruction 
can be seen in a video (visualization 1) (stacks.iop.org/PMB/62/7784/mmedia), which shows 

Figure 4.  Comparison of the FBP and PSF-based reconstruction for a single averaged 
sinogram. (a) FBP image reconstruction of fluorescent bead data. The circle denotes 
the center of rotation. (b) Zoom in on reconstructed points of (a). (c) PSF-based 
reconstruction of the same points as in (b). (d) PSF-based reconstruction.

Table 1.  FWHM resolution (μm) in axial and tangential direction for the FBP and the 
PSF-based reconstruction for four fluorescent beads. Each row corresponds to the beads 
indicated in figure 4. The errors indicate 95 % confidence intervals.

Method
Bead #

FBP PSF-based

Radial  
FWHM

Tangential 
FWHM

Radial  
FWHM

Tangential 
FWHM

1 22.3 ± 0.6 50.1 ± 1.3 16.2 ± 0.6 30.0 ± 1.0
2 9.6 ± 0.3 18.0 ± 0.5 7.1 ± 0.3 10.0 ± 0.4
3 10.7 ± 0.13 42.1 ± 0.6 8.3 ± 0.2 24.9 ± 0.5
4 8.3 ± 0.2 34.9 ± 0.9 6.3 ± 0.2 24.0 ± 0.6
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Figure 5.  Transversal slice through the OPT reconstruction of a zebrafish larva. (a) 
FBP reconstruction with anatomical structures indicated. (b) PSF-based reconstruction.
(c) Anatomy of a 7–13 d old optical cleared zebrafish larva (Salgadob et al 2012), with 
anatomical features: (1) myotome, (2) spinal cord, (3) precaudal vertebra, (4) pectoral 
fin, (5) anterior chamber swim bladder, (6) pancreas, (7) intestinal bulb and (8) liver. (d) 
Cross-section in horizontal direction at line indicated in ((a) and (b)). (e) Cross-section 
in vertical direction at line indicated in ((a) and (b)). In ((d) and (e)) the green dashed 
line indicates the FBP and the blue solid line indicates the PSF-based approach.

Figure 6.  Coronal slice through the OPT reconstruction of a zebrafish larva (excluding 
the tail). (a) FBP reconstruction with anatomical structures indicated. (b) PSF-based 
reconstruction. (c) Anatomy of a 7–13 d old optical cleared zebrafish larva (Salgadob 
et al 2012), with anatomical features: (1) intermandibularis, (2) ceratohyal, (3) opercular 
cavity, (4) opercle, (5) pectorial fin, (6) liver and (7) intestinal bulb.
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a side by side comparison of transverse, coronal, and sagittal planes of the zebrafish using 
both reconstruction techniques.

5.  Discussion and conclusion

We present a tomographic image reconstruction algorithm, where the physical PSF is included 
in the reconstruction. Our PSF-based image reconstruction approach shows a significant 
improvement in OPT image quality compared to standard FBP reconstruction. In contrast to 
other approaches, our method incorporates the imaging geometry in the tomographic image 
reconstruction. As such we do not rely on filtering or deconvolution methods applied in the 
sinogram or image domain. A quantitative comparison of the quality of our image recon-
struction algorithm with other state-of-the-art image reconstruction techniques is currently 
in progress (Trull 2017). The presented reconstruction method employs a 2D reconstruction, 
processing the data volume slice by slice. Despite this simplification, excellent image qual-
ity is obtained. We attribute this to the fact that the zebrafish has structures that, in general, 
vary slowly along the length of the zebrafish. In principle our PSF-based approach could be 
extended to three dimensions, however, this would significantly increase the memory require-
ments of the routine that performs the multiplication with the system matrix and its transpose, 
as well as the computation time. For the full image size of 1344 by 1024 pixels, this 3D imple-
mentation is currently not feasible.

The reconstruction time for one slice using the PSF-based algorithm is currently about 
two minutes for one iteration. This potentially can be reduced by converting the presented 
algorithm from MATLAB to another programming language, such as C++, or using a GPU. 
Moreover, for a slice-based reconstruction of three-dimensional objects, the reconstruction of 
different slices can be parallelized. A speed-up by a factor of 200 has been observed by Leeser 
et al for parallel slice processing in CT reconstruction (Leeser et al 2014). Finally, since the 
PSF is varying slowly over many of the grid-points, relatively few grid points sample the 
beam at its narrow waist in the focal area. Hence, by representing the reconstruction problem 
in a different set of basis functions, potentially the size of the reconstruction problem can be 
reduced while obtaining the same reconstruction result.

In the reconstructions we observed that the convergence of the algorithm is strongly related 
to the noise level in the projections. The presented fluorophore bead data had an SNR, aver-
aged over all the sinograms, of 31 ± 3 dB, whereas the zebrafish data had an average SNR 
of 67 ± 10 dB. Moreover, the zebrafish data is non-sparse compared to the bead data, which 
promotes convergence. As a result, the reconstruction of the fluorophore beads needed 4000 
iterations, whereas the reconstruction of the zebrafish needed only 2 iterations to convergence.

In its current implementation, the PSF-based reconstruction is without including any prior 
information or regularization. Improvement of the convergence of the optimization possibly 
can be achieved by masking the data or by applying regularization methods. For example, 
for the sparse bead sample reconstruction, sparsity promoting �1 norm regularization, can aid 
in the reconstruction accuracy as well as in the convergence rate as was shown by Kim et al 
(2007).

The proposed reconstruction technique can be extended to even higher NAs, potentially 
further improving the image resolution. Besides the significantly improved image quality, our 
PSF-based reconstruction has the advantage that arbitrary beam shapes can be incorporated 
in the reconstruction. In addition, other physical processes, such as refraction or scattering, 
can be included in the PSF-based reconstruction (Haidekker 2005). The presented PSF-based 
reconstruction is useful in other fields of optical tomographic imaging where beam propagation 
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deviates from the ideal straight ray such as in optical diffraction tomography, transmission 
OPT, electron tomography, terahertz tomography, and (phase-contrast) x-ray tomography.
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