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ABSTRACT
In this study, an experiment is conducted to measure the per-

formance in speed and accuracy of interactive visualizations. A

platform for interactive data visualizations was implemented

using Django, D3, and Angular. Using this platform, a ques-

tionnaire was designed to measure a difference in performance

between interactive and noninteractive data visualizations. In

this questionnaire consisting of 12 questions, participants were

given tasks in which they had to identify trends or patterns.

Other tasks were directed at comparing and selecting algorithms

with a certain outcome based on visualizations. All tasks were

performed on high content screening data sets with the help of

visualizations. The difference in time to carry out tasks and

accuracy of performance was measured between a group

viewing interactive visualizations and a group viewing nonin-

teractive visualizations. The study shows a significant advantage

in time and accuracy in the group that used interactive visual-

izations over the group that used noninteractive visualizations.

In tasks comparing results of different algorithms, a significant

decrease in time was observed in using interactive visualizations

over noninteractive visualizations.
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INTRODUCTION

T
he enormous increase in data generation that has

occurred in the last few decades has greatly chal-

lenged researchers. ‘‘Never before in history have

data been generated at such high volumes as it

is today. Exploring and analyzing the vast volumes of data

becomes increasingly difficult.’’1 This statement is as true

today as it was in 2002; more data have been created in the last

2 years than in the entire previous history of human race. The

rate at which data creation is happening is ever increasing and

it is estimated that by the year 2020, about 51 TB of data will

be created per year for every person.2 This may be truer for

biology than for any other branch of science, as with the

advent of Next Generation Sequencing, high content screen-

ing (HCS), and other high-throughput technologies, life sci-

entists are producing more and more data.

HCS is a technology that combines automated fluorescence

microscopy and image analysis to measure phenotypic re-

sponse of cells to bioactive molecules. Using image analysis,

changes in cell morphology are detected. Because multiple

features are measured at the same time, this technique can be

used for complex tasks such as drug candidate target predic-

tion. It has recently been documented, however, that most

HCS experiments do not exploit their full potential, as 60%–

80% of all HCS screens only use one or two measured vari-

ables, even though hundreds of variables can be measured per

individual cell.3 The fact that the larger part of the data gen-

erated with high-throughput technologies (high-throughput

screening) is being produced in an automated manner makes

the analysis of the data even more important.

Usually many features are recorded, leaving the researchers

with highly dimensional data. The data produced in these

experiments are often highly heterogeneous, which adds to its

complexity. Data mining of biological high-throughput data

is therefore much more difficult because prior knowledge is

required to understand the patterns in the data.4

There is a shift in the analysis from classical statistics to

machine learning in high-throughput data, because effec-

tively analyzing all available data though directed statistical

analysis is undoable.5 However, the advanced data mining

knowledge required to analyze these large amounts of data is

often lacking in the toolkit of most life scientists.6 This pushes

the analysis of experimental results away from the life sci-

entist and into the domain of the data scientist, who often

lacks the expertise of the life scientist. Therefore a solution
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should be sought that allows life scientists to analyze their

own experiments.

HC StratoMineR, a tool for the analysis of true multivariate

high content data, was recently published. It is a Web-based

tool for the analysis of HCS data,6 which allows the user to

make use of the full potential of high content (HC) data.

Within the workflow of HC StratoMineR, there are various

opportunities for the user to visualize the data. The visuali-

zations are carried out by R, using the ggplot2 library, gen-

erating noninteractive visualizations.7

Data Visualization
When data are being presented in a textual or tabular form,

the amount of data that can be interpreted by a person is limited

to a couple of hundred records. Beyond that, some way of vi-

sualizing the data is required to understand what information is

hidden in the data.8 Visualization of data is a very powerful way

to show activity or artifacts within data. The visualization of data

is not only important to achieve clear insight into what the data

look like in its raw state but can also trigger new discoveries and

insights.9,10 For example, it is possible to summarize data using

standard deviations, means, medians, and ranges. As interesting

as these summary statistics are, they still do not tell the re-

searcher if the distribution of data is normal or if there are any

outliers in the data. In contrast, a visualization will provide the

researcher with an answer to these questions.11 Visualizations

can thus give the user a better understanding of how the data are

composed and provide a clear overview of its distribution.

Visual Data Mining
In data mining, statistical methods and algorithms such as,

Naive Bayes, principal component analysis, square root

transformation, normalization, and other methods are used to

analyze large sets of data. Despite the effectiveness of these

techniques, their complex nature makes the data mining

process difficult to comprehend for nondata scientists. Be-

cause specific skills are required to properly configure these

algorithms and interpret their results, the amount of control a

researcher has over the analysis is diminished.12

It is important to include the flexibility and creativity of the

human mind in the data exploration process to make use of the

cognitive capacity of the human brain. Visual data mining

(VDM) focuses on integrating the user directly into the data

exploration process by presenting the data in some visual form.1

Including VDM into the data exploration process enables users

to explore large volumes of data without having to understand

complex statistical or mathematical methods and algorithms.

VDM can still be used with noisy and heterogeneous data

through the direct involvement of the user. These aspects of

VDM allow for faster data exploration, and it regularly produces

better results than automated methods.1 For example, a visu-

alization may reveal distinct clusters in a data set, while the

automated analysis of the same data set may not be able to

detect these clusters due to the noisiness of the data. In addition

to the detection of clusters, VDM is useful for many other data

analysis tasks, such as the following: outlier detection, feature

importance assessment, and the detection of patterns.11

Even though VDM can be performed without the use of data

mining algorithms, the combination of both VDM and data

mining allows for an even better data analysis solution. For

instance, data mining can be used to provide visualizations

with the simplification needed to make them more compre-

hensible, for example, reducing the number of dimensions in

the data to be visualized by factor analysis. Also, VDM is

useful in exploring the (intermediate) results of data mining

methods or to make the process of a method more clear,11 for

example, a layer-by-layer visualization of k-means cluster-

ing. Usually, data analysis is performed by a workflow con-

sisting of multiple data mining methods. VDM can be used to

explore the results of the entire workflow or to inspect the

(relative) effect of a single method in the workflow.11,13

However powerful, there are certain limitations to the capa-

bility of the human visual system. There is a physical limitation to

a maximum of three axes in a visualization. Also, there is a limit

to the number of preattentive features, such as hue, orientation,

intensity, and size, that can be combined freely.14 If three or more

of such features are used in the same visualization, they can

greatly reduce the comprehensibility of that visualization.

When dealing with large sets of data, misinterpretation,

disorientation, and occlusion of parts of data are prone to

happen.11 Therefore, to optimally use the potential that VDM

has to offer, methods are needed to communicate the main

trends of the data effectively. For instance, visualizing a

random subset of the data can help to increase the readability

of the distribution and the variance. Simplified visualizations

such as a box plot can reduce the number of elements to five

when visualizing a vector, where a scatter plot can contain

thousands of elements (dots) to visualize the same vector.

These simplified visualization methods can support the con-

struction of visualizations that can be interpreted efficiently

by the user, even when dealing with large amounts of data.

Interactive Visualizations
VDM follows the following paradigm: overview first, zoom

and filter, and then details on demand.1 This makes the inter-

activity of the visualization an important aspect of VDM because

it allows users to directly interact with the visualization. A theory

on direct manipulation (DM) was described by Shneiderman15
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within the context of computer applications and graphical user

interfaces. DMendeavors toward an interface such that the object

manipulated by the interface is part of the interface itself.15 Ty-

pical examples of DM are zooming in on a picture using your

fingertips, swiping on a tablet to the next page of a document, or

uploading a file using drag and drop functionality by selecting

and dragging the file to an upload form. Even though DM was

devised in the early 80’s, it still remains one of the standard

doctrines in interface design.16

A good way to combine VDM with automated statistics and

data mining is to provide users with an application that im-

plements DM. Users can explore their data by direct interac-

tion with the visualization. When interesting patterns are

detected, data mining can be used to further investigate the

phenomenon. Because the visualization itself is used as an

interface and is constantly being displayed, users can opti-

mally interact with their data.11

By equipping a visualization with DM, a user is able to di-

rectly manipulate the visualization, aiding in effective data

exploration by focusing on interesting sections. Keim1 divides

the methods of interactivity of visualization into five categories:
. Dynamic projection: Through dynamic projection of a mul-

tidimensional data set, multiple dimensions can be viewed in

one visualization. This method allows users to dynamically

change the esthetics of a visualization, such as the ability to

change the variables that are on the axis of a visualization.
. Filtering: Filtering the data to be visualized can also be

very helpful in data exploration, by dividing the data

into interesting subsets. This can be done by querying a

data set for interesting records or by browsing the data

through different subsets. The visualization will be dy-

namically updated according the filtered data.
. Zooming: By zooming, very large amounts of data can be

condensed for an overview of the data, while interesting

parts can be magnified for a more detailed inspection.
. Distortion: Interactive distortion techniques may be used

to focus on a specific section of the data, while pre-

serving the overview of the complete data set, for ex-

ample, fisheye view. An example of interactive distortion

is the blurring of records that are below a certain

threshold, showing only the records that are above that

record. An example of distortion in a heatmap is shown

in the Supplementary Figure S1 (Supplementary Data are

available online at www.liebertpub.com/adt). In this ex-

ample, interactive distortion techniques are used to

‘‘find’’ the top 10% of the data.
. Linking and brushing: Brushing over a visualization al-

lows for the highlighting of sections, aiding in finding

interesting patterns in the data. Linking visualizations to

other visualizations may also provide the user with new

insights. For example, linking a scatter plot to a histo-

gram (Supplementary Fig. S1) combines two different

outlooks over the data in one view.1 By brushing over the

histogram, the data in the scatter graph are updated.

Application of Interactive Methods
There are numerous data cleansing, preparation, and ma-

nipulation methods (algorithms) available that can be applied

to (a part of) the data.13,17 Examples include not only nor-

malization, transformation, and scaling algorithms but also

clustering and classification algorithms. Some of these are

very general, while others are designed for very specific

purposes, for example, the B-score normalization method, a

row and column polish for the correction of plate effects in the

analysis of HCS.18 The majority of these algorithms lack a

description in terms of heuristics or best practices. Moreover,

the best practices that are available are not always fitting for

each situation.12 Consequently, it is not always clear which of

these methods yields the best results. As previously men-

tioned, a visualization of the results can provide the user with

information about the effect of an algorithm on the data.

In a visualization, the interactive categories of Keim, dynamic

projection, filtering, zooming, distorting and linking of the data

or parts thereof, can reveal patterns in the data that are not easily

visible without using other methods. When using noninteractive

data visualization, the application of these methods is not pos-

sible. In information processing, both speed and accuracy play

an important role.19 In the context we investigate, we require

a high accuracy degree and we expect a main difference in

speed. In other words, we primarily expect a difference in speed.

Hypothesis 1a: Patterns in the data can be detected faster

using interactive data visualizations over noninteractive vi-

sualizations.

Hypothesis 1b: Patterns in the data can be detected more

accurately using interactive data visualizations over nonin-

teractive visualizations.

Hypothesis 2a: A faster interpretation can be made about

the output of different algorithms using interactive visuali-

zations over noninteractive visualizations.

Hypothesis 2b: A more accurate interpretation can be made

about the output of different algorithms using interactive

visualizations over noninteractive visualizations.

MATERIALS AND METHODS
Because we are seeking for a way to measure the effects of

multiple data manipulation methods (algorithms) and simul-

taneously provide users with the insight of interactive data

visualizations, we developed a questionnaire that includes the
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ability to create interactive visualizations and noninteractive

visualizations. Each question is supported with one or more

visualizations.

Setup of the Experiment
The questionnaire contains 12 questions (Supplementary

Appendix S1) with two additional test questions. The test

questions are used to train the participant in the look and feel

of the interface and the format of the questionnaire. The

questionnaire is carried out with a control and an experi-

mental group. In the control group, noninteractive visuali-

zations are shown and interactive visualizations are shown in

the experimental group. The same questions and visualiza-

tions are presented to both groups. See the visualizations of-

fered with the questions in Figure 1. The questions are offered

in a random order to take the user’s attention and learning

curve into account. This is to avoid the possibility that certain

questions are always first or last, which might affect the

representativeness of the given answers. The two measured

constructs are accuracy and the time required to answer the

questions. For each question, the time is measured indepen-

dently and the time measured starts when the visualization is

fully loaded; so the loading time and the speed of each user’s

computer do not affect the time to answer the question.

A classroom was prepared for participation. There were 33

students instructed to bring a laptop with an external mouse

and headphones to watch the instruction video carefully. They

were asked to fill in the questionnaire as accurately and as

quickly as possible, with a reward of e50 for the fastest student

with the least number of wrong answers. The focus is con-

centrated on the accuracy over speed to avoid participants

clicking through the questionnaire as quickly as possible and

have a few correct answers by chance. The participants were

instructed not to ask any questions during the questionnaire.

In total, 79 students, including computer science, information

science, and bioinformatics students, from Leiden and Utrecht

participated, whereof 46 people with various backgrounds

participated over the Web.

Materials
The questionnaire was conducted in a Web-based envi-

ronment. The interactive and noninteractive versions were

performed similarly. The participants were asked to visit a

Web site (http://interactiveplotting.stratominer.com/survey)

to participate in the questionnaire (see screenshot in the

Supplementary Fig. S2). Participants were randomly assigned

to the experimental or control group.

The back end of the questionnaire was built using the Py-

thon Django framework, which used MySQL for data storage.

The Django framework was not only responsible for the ran-

dom allocation of participants to a group but also for the

random ordering of questions in the questionnaire. To com-

municate with the frontend of the questionnaire, Django ex-

posed a RESTful api.

The front end of the questionnaire was built using the

Angular framework, which was responsible for the rendering

of the interface. The Angular framework had an asynchronous

connection with the Django backend through observables.

The (interactive) visualizations are all generated using D3.js,

with the exception of the 3D scatter graphs, which were

constructed by the Vis.js library. The answering time was

measured by the front end of the application. The answering

time was measured from the moment that visualizations were

loaded; so loading time of the visualization does not affect the

answering time. However, in the noninteractive version, the

switching of visualizations is artificially delayed, to simulate

the time it takes to render a noninteractive visualization in

ggplot2. Both the interactive and the noninteractive ques-

tionnaires are built using exactly the same engine and

framework to avoid other external factors of influence.

Data Analysis Methods
The data set contains 79 records. Each record contains

metadata about the participant’s age, gender, and educational

level. Computer literacy, Excel, data mining, and English

proficiency are also measured in a Likert Scale from 1 to 5, to

discover any relationship to these proficiencies or demo-

graphical properties. To measure the construct accuracy, the

total number of incorrect answers per participant was mea-

sured. To measure the construct time, the sum of time for each

individual question per participant was measured. To measure

the construct time to compare different algorithms, the total

time of the questions related to the construct was measured

(Supplementary Table S1). To measure the construct accuracy

to compare different algorithms, the total number of incorrect

answers of the questions related to the construct was mea-

sured (Supplementary Table S1).

Students who did not finish the questionnaire completely

were left out, which results in a dataset of 68 students. To

measure a difference in time and accuracy between the con-

trol and experimental group, a one-tailed independent sample

t-test is used. To measure a difference in the accuracy of

detection of patterns in the data between the control and ex-

perimental group, a chi-square test was used.

Due to the complexity of the questionnaire and the fact that

participants would be using the Web-based environment for the

first time, introductory material was provided to the participants

in advance. Each group was provided with their own relevant
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Fig. 1. Visualizations of the questionnaire. (A) A scatter plot with the well locations (discrete variable) on the x-axis and the variable
TargetActivationV3WellRESPONDERAvgIntenCh2 on the y-axis. Question 1: What is the number of records where TargetActivationV3WellRE-
SPONDERAvgIntenCh2 is 50 or higher? (B) A correlation matrix showing the similarity of the well locations on the x-axis and y-axis in green.
Question 2: See the correlation matrix below. Select the pair that correlates between 0.999999 (99.999%) and 1 (100%). (C) A scatter plot
showing MorphologyV3CellAvgIntenCh2_MEDIAN on the x-axis and MorphologyV3CellAvgAreaCh2_MEDIAN on the y-axis. Question 3: In the
scatter plot below, MorphologyV3CellAvgIntenCh2_MEDIAN(X-axis) contains an outlier of 825. What is the plateName of this outlier? (D) A
scatter plot showing the well location (discrete variable) on the x-axis and TargetActivationV3WELLRESPONDERAvgIntenCh2_MEDIAN on the y-
axis. Question 4: What happens to the variance of the data when it is log2 transformed? (E) A polar plot showing the variables at the x-axis and
the factor loading on the radius in a range from -1 to 1. Question 5: Select the variable that shows a loading of 0.82 on Factor01. (F) A line plot
showing the well locations on the x-axis (discrete variable) and Factor 01 on the y-axis. Question 6: In the line plot below, 12 lines are shown.
Each line represents a different microplate. Select the microplate that is most similar to microplate 2. (G) A scatter plot showing Factor01 on the
x-axis and Factor05 on the y-axis. Question 7: In the dataset provided, there are two variables that result in a cross using a scatter plot. What is
the combination of variables that produces a cross? (H) A scatter plot showing an Euclidean distance score on the x-axis and Factor01 on the y-
axis. Question 8: In this dataset, there is a record that contains a distance value of 9039.15 and a Factor01 value of 1.33. On what wellLocation is
this record located? (I) A scatter plot showing Factor02 on the x-axis and Factor01 on the y-axis. Question 9: The scatter plot below contains one
red dot. Select the Factor01 value of the record closest to the red dot. ( J) A bar plot showing an id number of the x-axis and Factor03 on the y-
axis. Question 10: Select the IdNumber of the record with the lowest value for Factor03. (K) A box plot showing the plate name on the x-axis
and a variable named currentVariable on the y-axis. Question 11: Select the two normalization methods that align the medians of the box plots
on the Y-axis. (L) A scatter plot showing the well locations on the x-axis and a variable called currentVariable on the y-axis. Question 12: Select
the group that contains the record with the highest value. For ease of reading, the figure can be viewed online at www.liebertpub.com/adt
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introductory material. The introductory material consists of two

test questions, each one accommodated by an explanatory video.

Also, the questionnaire was provided with question-specific

textual information and informa-

tion to use the interface.

RESULTS
Table 1 shows the results of the

questionnaire performed in this

study. The first result is the time in

seconds (total time) to complete the

questionnaire. On average, it took

students more time to complete

the questionnaire in the nonin-

teractive group (M = 1338.58,

SD = 662.91) than the interactive

group (M = 867.01, SD = 372.79);

t(66) = 3.726, P < 0.001 (Fig. 2A). A

second result is the number of

wrong answers given in the ques-

tionnaire (Total Wrong Answers).

Fig. 1. (Continued).

Table 1. The Statistical Summary of Time Comparing Methods, Total Time,
and Wrong Answers in Both Conditions

Metric Condition N Mean SD

Standard

Error

One-Tailed

P Value

Total time (s)

Interactive 39 867.01 372.79 59.69

<0.001
Noninteractive 29 1338.58 662.91 123.10

Total wrong answers

Interactive 39 2.38 2.68 0.43

<0.001
Noninteractive 29 4.41 2.24 0.42

Time comparing algorithms (s)

Interactive 39 138.56 75.86 12.15

<0.05
Noninteractive 29 176.57 90.95 16.89

Wrong answers comparing algorithms

Interactive 39 0.67 0.701 0.148

>0.05
Noninteractive 29 0.93 0.799 0.112

Interactive and noninteractive, including the one-tailed P value.
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The questionnaire in total contains 12 questions (excluding test

questions). On average, students had more wrong answers in the

noninteractive group (M = 4.41, SD = 2.24) than the interactive

group (M = 2.38, SD = 2.68); t(66) = 3.303, P < 0.001 (Fig. 2B). A

third result is the time in seconds that was required to compare

multiple algorithms (time comparing algorithms). On average, it

took students more time to compare algorithms in the non-

interactive group (M = 176.57, SD = 90.95) than the interactive

group (M = 138.56, SD = 75.86); t(66) = 1.877, P < 0.05 (Fig. 2C).

A final result is the number of wrong answers given in the

questionnaire related to the comparison of algorithms. There was

no significant association between the visualization group and

the accuracy of the comparison of algorithms, P > 0.05 (Fig. 2D).

The results contain relatively high

standard deviations because some

of the students were done ex-

tremely fast, for example, 91 s,

while others took over 59 min to

complete the questionnaire.

Learning Effect
The questions built in the

questionnaire were presented in a

randomized manner to take the

user’s attention and learning

curve into account. This is to

avoid that certain questions are

always first or last, which might

affect the representativeness of

the given answers. Although

there is a difference in time one

question requires to be answered,

there is still a learning curve

present that can be explained by

the fact that the interface is

completely new and possibly a

new way to visualize data. We

took the questions in the real

order and took the median of

time across the two conditions:

interactive and noninteractive.

Figure 3 shows a curve for both

conditions, summarizing the

median of time required to an-

swer the first until the last ques-

tion in the order the questions

were offered to the participants,

hence allowing to study this

learning effect directly. For ex-

ample, it is expected that the time to answer the questions

decreases after the first few questions. As can be seen in

Figure 3, we indeed clearly see that there is an initial

peak in answering times for the first few questions, after

which it seems to decrease to some plateau. We see that,

despite the graph being quite noisy due to the smaller

sample size and outliers, the curves both demonstrate

a reduction in answering time throughout the test and in-

deed become more stable after about four items. Although

the gap reduces, the interactive condition seems to remain

somewhat faster. The last questions seem somewhat slower,

which might be an indication of testing tiredness of the

group of students.

Fig. 2. Bar charts, including error bars, showing differences between interactive and noninter-
active visualizations. (A) Total time indicates the time to complete the questionnaire, excluding the
loading time of the visualizations (significant difference, one-tailed P < 0.001**). (B) Total wrong
answers indicate the number of wrong answers of the questionnaire (significant difference, one-
tailed P < 0.001**). (C) Time comparing algorithms indicates the time to compare algorithms in
seconds (significant difference, one-tailed P < 0.05*). (D) Wrong answers comparing algorithms
(result not significant).
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Expertise
In the questionnaire, data mining expertise was measured in

a Likert scale, by asking participants to rate themselves from 1

to 5 in data mining expertise, as shown in Figure 4. To show if

there is a relationship with time/accuracy, we calculated

Spearman correlations. Data mining expertise against the total

time that was required to carry out the

questionnaire shows a Spearman’s rho

coefficient of r= -0.082, NS. Data

mining expertise against the total

number of wrong answers shows a

Spearman’s rho coefficient of r=
-0.293, NS. Hence, no significant

monotone relationship was found be-

tween self-reported data mining exper-

tise and response time, nor between data

mining expertise and accuracy.

DISCUSSION
Visualizations with interactive meth-

ods are shown to provide better com-

prehensibility than noninteractive data

visualizations. The overall time to per-

form 12 assignments was significantly

decreased in the interactive group. The

number of wrong answers given by

the interactive group also showed a significantly lower number.

The time that was required for comparing the output of algo-

rithms was significantly decreased in the interactive group, al-

though the number of wrong answers given by the interactive

group to compare the output of algorithms did not show a sig-

nificant result. Because we stressed the importance of accuracy

Fig. 3. The learning curve of the interactive and noninteractive versions by time
taken per question. The x-axis shows the question in the order they were shown to
the participants. The y-axis shows the median of the time of the ith question. We regard
only the ordering of questions. First question clearly takes more time, later questions
less time.

Fig. 4. Box plots showing data mining expertise in relationship to total time and total wrong answers. (A) The x-axis shows the data
mining Likert scale from 1 to 5. The y-axis shows the box plot of the total time in seconds required to complete the questionnaire. (B) The
x-axis shows the data mining Likert scale from 1 to 5. The y-axis shows the box plot of the total wrong answers of the questionnaire.
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over time toward the participants, we influenced their speed and

accuracy trade-off described by Wickelgren,19 and hence

mainly expected a reduction in time for the interactive condi-

tion. However, when using the right visualization tools, it was

demonstrated that both accuracy and speed can be improved at

the same time. From the 79 participants, 46 participants who

performed the questionnaire over the Web did not have affinity

with data analytics perse. The students who conducted the

questionnaire in a classroom were students in either bioinfor-

matics, information science, or computer science. So one might

expect some diversity in knowledge of data analytics among

the participants. We noticed, during the experimental setup,

that random people joined and tried to fulfil the questionnaire.

The majority of those people gave us feedback in that they had

absolutely no idea what they were doing and were quitting the

questionnaire after one or two questions. To keep our results

relevant and to reduce noise, we tried to include participants in

this study through a classroom session that do have more

knowledge about fields related to data analytics, but have less

domain knowledge as life scientists have.

The questionnaire contained 12 questions, including two

test questions, to get familiar with the visualization platform.

The questions that we designed cover all five categories of

Keim1 and are questions relevant to the analysis of HCS data,

for example, ‘‘what is the number of data points’’ or ‘‘what is

the plate name of this outlier.’’ The 12 questions also include

two questions covering the comparison of the output of al-

gorithms. When we would have implemented questions that

were always immediately clear, one would not perform better

using interactive visualizations and there would not be a true

incentive to use interactive visualizations. We believe that

questions or challenges regarding data analysis can be effi-

ciently supported by the right visualizations. Interactive

visualizations can add extra value by speeding up the

analysis process because of its flexible nature and decrease

the user’s cognitive load because of the lower burden of re-

calling visualization objects.

There are certain problems associated with data visualization

in general. Visualizations have their limitations when dealing

with large data sets, since occlusion of (parts of) the data, dis-

orientation, and misinterpretation can occur.11 The visualization

of large data sets can also lead to the problem of overplotting,

producing a visualization in where individual data points are

coerced into a single solid object. Minor differences between data

points are not observable in these situations, and only the trend

(e.g., linearity) of the data can be derived from these visualiza-

tions. With interactive data visualization, it is still possible to

view these minor relationships between data points, as a result of

a zoom event. The visualization of large data sets also leads to the

problem that visualizations take a long time to render. Through

the survey, we found an expected result that the visualization of

a random sample of a large data set is informative enough to

observe the trend (e.g., the distribution) of the complete data set.

With a sample, the rendering time of the visualization can be

reduced, improving the responsiveness of the visualization

process. The cognitive load can thus be reduced, when the

waiting time is decreased between the inspection of different

data visualizations. This leads to the next problem in data vi-

sualization: the comparison of the output of algorithms. Usually

when a researcher wants to visually compare the output of

multiple algorithms, there is a delay between different visuali-

zations that represent the output of different algorithms. The data

need to be manipulated by another algorithm and a new visu-

alization needs to be created for each comparison. In this project,

a platform was designed that optimizes the comparison of vi-

sualizations. Because the delay between viewing different visu-

alizations is minimized, different visualizations can be compared

faster than using regular visualization platforms. Keim1 reported

five categories of interactivity. We propose the addition of a sixth

category: the interactive comparison of the output of algorithms

(data manipulations). A possible side effect of this interactive

method is the bias that may be introduced as researchers will set

out to ‘‘find’’ the data algorithm that makes their data look best.

At the same time, we also stress that the proposed sixth category

could be part of the other methods described by Keim. For ex-

ample, when linkage is used, two visualizations are interactively

connected; thus they can be compared. A side note here is that,

there should be a possibility to compare them side by side instead

of swiping through the various visualizations that one would

compare.
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