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Abstract Determination of carbon sources and

microbial activity in lake sediment is important for

understanding organic carbon preservation and

methane production. This study aimed to determine

the organic carbon sources and microbial activity over

the last 140 years in sediments of methanotrophic Lake

Rotsee (Switzerland). We investigated phospholipid-

derived fatty acid biomarkers and their stable carbon

isotope signatures in the sediments of this eutrophic

lake. Strong bacterial activity in the sediment deposited

during the 1920s–1960s could account for the relatively

low ratio of long-chain to short-chain fatty acid

((C24 ? C26 ? C28)/(C14 ? C16 ? C18), TARFA)

values, which is consistent with low TOC/TN ratios

in the sediment deposited during that interval. The

carbon stable isotope records, both bulk and compound-

specific, showed greater values at such times, although

the offset between the bulk and fatty acids decreased.

This implies that the microbial community residing at

sediment depths deposited in the 1960s preferentially

utilised the compounds derived from the enhanced

surface-water productivity at that time. This observa-

tion contrasts with data from the depth intervals before

and after, when a major portion of the labile organic

matter was derived from methane-sourced production.

In sediments deposited before ca. 1964, the overall very

low fatty acid d13C values suggest that labile carbon

was primarily derived from methanotrophs.

Keywords Biomarker � Phospholipid fatty acids �
Stable isotopic analysis � Methanotrophs

Introduction

Carbon storage in lake sediments plays a major role in

the global carbon cycle because lake sediments

probably sequester 30–60% of the total stored carbon

on only 2% of the Earth’s surface (Cole et al. 2007).

This implies that carbon production and/or preserva-

tion rates (per m2) in lakes are much higher than those

in the marine environment. Even so, organic matter

(OM) degradation in lake sediment accounts for an

appreciable fraction of global methane production
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(Bastviken 2009; Sanseverino et al. 2012). Both the

preservation and degradation of OM in lake sediment

depends on the microbial activity in the water column

and the underlying sediment. The composition of OM

can be altered by microbial activity because of the

variable decomposition rates amongst different types

of OM (Meyers 1994). Heterotrophs in the freshwater

column depend on the supply of carbon from different

sources: (1) local primary production (autochthonous

sources), (2) terrestrial input from plants and soils

(allochthonous sources) and (3) methanotrophic

biomass. As a consequence, unravelling carbon

sources and microbial activity in lake sediment is

important for understanding carbon preservation and

methane production.

During the mid-twentieth century, many European

lakes became eutrophic and thus potentially altered the

corresponding microbial communities and substrates.

Subsequent restoration again modified the trophic

states, but not necessarily to the original state. In many

lakes, the food webs and carbon cycling primarily

depend on autochthonous sources as a supplier of

labile OM (Richardson et al. 2010). Although

allochthonous carbon is generally considered to be

largely refractory, this carbon can still be subjected to

microbiological co-metabolism during the processing

of the autochthonously produced OM (Dalton and

Stirling 1982). Recently, the input of allochthonous

sources has been reported to be important in subsidis-

ing secondary production in lakes (Cole et al. 2006;

Battin et al. 2008). The relative rates of primary and

secondary production and respiration determine the

flux of OM to the sediment (Kritzberg et al. 2004).

Organic carbon derived from different sources ends up

in the sediment and, in turn, provides the substrate for

the sediment microbial community. Degradation of

OM in lake sediments often results in methane

production under anoxic conditions. Most of the

methane produced in lake sediments is, however,

efficiently oxidized by methane-oxidising bacteria in

the subsurface and never reaches the overlying water

column (Bastviken 2009; Sanseverino et al. 2012). In

some lakes with anoxic hypolimnia, however,

methane escapes to the water column and aerobic

methanotrophs thrive at the chemocline (Schubert

et al. 2010). These methanotrophs often play a critical

role in determining carbon production in eutrophic

lakes (Deines et al. 2007). For oceanic ecosystems,

methanotrophs may contribute appreciably to the

carbon turnover in anoxic sediments (Hinrichs and

Boetius 2002). For lakes, the relative contribution of

methanotrophs to secondary productivity is also

important, as methanotrophy is a form of chemosyn-

thetic production (Trotsenko and Murrell 2008; He

et al. 2012; Grey 2016).

We applied molecular and stable carbon isotopic

analyses to explore past and present-day carbon

cycling in Lake Rotsee, investigating sediments

deposited before, during and after a pronounced

episode of lake eutrophication. Bulk carbon isotopes

were used to reconstruct overall lake productivity,

whereas compound-specific carbon isotopes were used

to infer dietary sources for bacteria. Fatty acids (FAs)

or phospholipid-derived fatty acids (PLFAs) allowed

the identification of microbial communities, including

methanotrophs (Hinrichs et al. 1999; Boschker and

Middelburg 2002). The specific monounsaturated

16:1x8, 16:1x6 and 18:1x8 FAs or PLFAs were

interpreted as being derived from methanotrophs

(Bowman et al. 1991; Boschker and Middelburg 2002).

Environmental setting

Lake Rotsee (47�0401100N, 8�1805100E), located close to

Lake Lucerne in Switzerland (Fig. 1), is 0.48 km2 in

area and has an average depth of 9 m, with a maximum

depth of 16 m. The lake is currently eutrophic and has

high rates of methane production (Kohler et al. 1984;

Schubert et al. 2010). Recently, Naeher et al. (2012)

reported the effects of eutrophication on microbial

community changes using high-resolution lipid bio-

marker and trace metal data from Rotsee sediments.

The authors showed that higher sewage and nutrient

input repeatedly stimulated the growth of diatoms,

other primary producers and methanogens.

Materials and methods

Using a gravity corer, we collected a 55-cm-long

sediment core at a 16-m-deep site at the centre of Lake

Rotsee in November 2010 (Fig. 1). This particular

coring location was chosen because of previous

sampling work in Rotsee in October 2009. Recognis-

able changes in lithology and colour are described as

follows: dark mud with lighter (grey-brown) stains at

54–41 cm; greyish mud, olive green with light brown

stains at 40–21 cm; black mud, leaves and fragments
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from 20 cm depth to the surface. There were abundant

gas bubbles throughout the whole core. The core was

sub-sampled into 1 cm slices. The collected samples

were then stored at -20 �C and freeze-dried in the

laboratory.

Gamma-ray spectroscopy

Activity of the naturally occurring radionuclide 210Pb

was determined on sediment slices using standard

gamma-ray spectroscopy (Canberra BeGe, broad

energy Germanium detector). Before measurement,

sliced samples were freeze-dried and homogenised.

Pre-weighed samples were transferred to and evenly

distributed and compacted in Petri dishes. Immedi-

ately after weighing, the dishes were sealed into

50-lm-thick polyethylene bags and stored for at least

2 weeks. Sediment ages and accumulation rates were

calculated using a model that assumes constant initial
210Pb concentration (Robbins and Edgington 1975).

Lipid extraction and separation

Lipids were extracted by a modified Bligh and Dyer

procedure (Dickson et al. 2009) in a dichloromethane

(DCM)–methanol (MeOH)–phosphate (5:10:4 v/v/v)

Fig. 1 Location map of

Lake Rotsee and adjacent

Lake Lucerne (Switzerland).

Inset map shows location of

Rotsee in Switzerland
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solution and separated by silica gel column chro-

matography (Dickson et al. 2009) into three fractions

as follows: neutral lipids, glycolipids and phospho-

lipids. In organisms, FAs are bound to a polar

headgroup, e.g. a phospho-group function such as

membrane lipids. These polar headgroups, however,

are quickly lost during degradation, leaving free FAs

(FFAs) behind. FFAs can be used to infer past changes

in productivity (Naeher et al. 2012), whereas intact

FAs are used as an indicator for fresh material.

Neutral lipids were separated into two fractions

using short columns with activated Al2O3 and subse-

quent solvent mixtures of hexane:DCM (9:1, v/v) and

DCM:MeOH (1:1, v/v) corresponding to apolar and

polar fractions, respectively. The polar fraction,

containing FFAs was derivatised with BF3–MeOH to

transform FAs into methyl esters and with acetic

anhydride to convert alcohols into esters. Short-chain

FFAs (SCFAs) (C14–C20) are the dominant lipids in

bacteria and algae; meanwhile, the FFAs with longer

chain lengths (LCFAs, C20–C30) are derived mainly

from terrestrial higher plants (Volkman et al. 1998;

Millar et al. 1999). Both short-chain and long-chain

FFAs are produced by the other group as well, albeit in

much smaller amounts (Volkman et al. 1980; Cranwell

et al. 1987).

The phospholipid fraction, containing PLFAs, was

derivatised by mild alkaline transmethylation to form

FA methyl esters (FAME) (Boschker et al. 2005).

Concurrently, an internal FAME (19:0) standard was

added to the extracts.

Gas chromatography (GC)/GC mass spectrometry

(MS) analyses

Lipid concentrations were measured with an HP GC–

flame ionisation detection (FID) apparatus. The free

FAs were separated over a CP-Sil 5CB fused silica

capillary column (30 m, 0.32 mm internal diameter

[i.d.]). The oven was programmed starting at 70 �C,

heated up to 130 �C at 20 �C/min and to 320 �C at

4 �C/min, a temperature that was maintained for

20 min. The PLFAs were separated using a DB-5 MS

column. The oven was programmed starting at 80 �C
(2 min), then increased to 290 �C at 4 �C/min, with

the final temperature maintained for 15 min. Helium

was used as the carrier gas, at a flow rate of 1.0 ml/

min. Compounds were quantified by integrating peak

areas of the FID traces in the chromatograms relative

to a co-injected standard (squalane for FFA fractions

and C19:0 for PLFA fractions).

GC–MS (Thermo Finnigan Trace) was used to

identify compounds using the same temperature

program and capillary column, but with constant

pressure instead of constant flow. Identification was

based on comparing retention times to those of a

known mixture and mass spectra.

d13C measurements

Carbon isotope ratios of individual FAMEs of total

FFAs and PLFAs were analysed by GC combustion

isotope ratio mass spectrometry (GC-c-IRMS, using a

Trace GC Ultra GC apparatus, Thermo Finnigan)

coupled to a GC PAL auto-sampler. The Trace GC

Ultra was fitted with an Agilent HP-5 column (50 m,

0.2 mm i.d.). Identification of peaks was based on

retention times. On the basis of FAME carbon number

and known isotopic composition of the derivatising

agent, we corrected the carbon isotope ratios of the

individual FAs for the one introduced carbon atom in

the methyl group during derivatisation, with the

derivation agent being analysed off line. Stable carbon

isotope data are expressed as d13C in % relative to

Vienna Peedee Belemnite (VPDB).

Total organic carbon (TOC) and total nitrogen

(TN) analyses

Aliquots of sediment (1.5 g) were treated with HCl to

remove inorganic carbon. Concentrations of TOC and

TN were subsequently measured using a N, C and S

analyser (Fison NA 1500). Carbon isotope ratios

(d13C) of TOC were determined using a Deltaplus

Advantage isotope ratio mass spectrometer (Finnigan

MAT). Carbon isotope values were expressed in %
relative to VPDB. Analytical precision was ±0.1%.

Results

Age model and average sedimentation rates

210Pb activity values were used to construct an age

model (Fig. 2a). On the basis of the 210Pb record, the

average linear sedimentation was 0.49 cm year-1

(Fig. S1). This value is somewhat higher than the

0.38 cm year-1 reported by Naeher et al. (2012). This
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discrepancy possibly resulted from the lower sample

resolution (5 cm) in our work. Nevertheless, our age

model overall matches well with the age model

constructed by Naeher et al. (2012). They calibrated

their age model with TOC concentrations and derived

a 4-year time resolution for a sampling resolution of

1 cm (Naeher et al. 2012).

TOC content and TOC/TN

TOC concentrations (Fig. 2b) range between 3.3 and

7.3 wt%, which is close to values (4.3–6.8 wt%)

previously reported by Naeher et al. (2012). TOC

concentrations are low and relatively stable until ca.

1933, after which they increase to a maximum of 6.1%

in the mid-1960s. Afterwards, concentrations fluctu-

ated further, but did not decrease to previous levels.

This result is in line with previous reports on the

eutrophication history of Rotsee (Naeher et al. 2012).

TOC/TN ratios (Fig. 2c) varied between 3.5 and

6.1. Similar values were found for another eutrophic

Swiss lake, Lake Lugano. The eutrophication in Lake

Lugano began in the second part of the last century,

which led to significantly greater primary productivity

(Bechtel and Schubert 2009). The TOC/TN ratios in

Lake Rotsee show a decreasing trend until ca. 1940,

after which the ratios slowly increased until ca. 1998,

when values subsequently decreased again.

FFAs and terrigenous/aquatic FA ratios (TARFA)

FFAs are a generally highly abundant type of lipid

found in sediment. In this work, FFAs with chain

lengths of 14–30 carbon atoms were found, and

concentrations of SCFAs and LCFAs in this work are

shown in Fig. 3. The amount of SCFAs shows a

pronounced maximum at the top and a period of higher

concentrations between the 1920s and 1960s. The

LCFAs show maximum concentrations between the

1920s and 1960s, but are missing the peak values

observed near the sediment surface for the SCFAs.

SCFAs and LCFAs are largely composed of even-

carbon FAs, i.e. they display remarkable even carbon-

number predominance. The C14, C16 and C18 chain

lengths of SCFAs are highly predominant (Fig. S2).

To further investigate the source of organic carbon

in Rotsee sediments, the TARFA (C24 ? C26 ? C28)/

(C14 ? C16 ? C18) was calculated to determine the

relative contribution of terrigenous versus aquatic FAs

(Bourbonnier and Meyers 1996). The TARFA values

ranged from 0.27 to 19.56 (Fig. 3c). In the 20th century

(1920s–1990s), the TARFA values were fairly constant,

with a minimum of 0.57 during the 1960s, which is still

larger than the TARFA values in oligotrophic Lake

Lugu, China (0.01–0.48) (Zhang et al. 2016). The

strong peak ca. 1880 is likely a mathematical artefact, a

consequence of division of two very low numbers
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(concentrations) leading to a large number, but one

with large uncertainty.

PLFAs

PLFAs are good variables for detecting rapid changes

in microbial communities. Because of their rapid

decomposition after cell death, they are mainly

associated with living biomass (Boschker et al.

2005). In this study, PLFAs are dominated by 16:0

(16:1) and 18:0 (18:1), which are mainly derived from

algal and bacterial biomass and the total concentration

of PLFAs displays a fluctuating distribution (Fig. 4a).

The high concentration at the sediment surface (ca.

2010) declined rapidly down-core to low values at a

depth corresponding to ca. 1975, underlain by two

minor peaks at depths corresponding to ages of ca.

1964 and ca. 1904. The concentration of PLFAs after

ca. 1975 shows a trend different from that of TOC.

Several compounds of PLFAs can be considered

specific biomarkers. The methyl-branched PLFAs

(i14:0, i15:0, a15:0 and i16:0) found in this work

(Fig. 4b) pertain mainly to bacteria (Dijkman and

Kromkamp 2006). The specific monounsaturated

PLFAs (16:1x8 and 16:1x6) detected in this work

(Fig. 4c) are interpreted as methanotrophs I (Bow-

man et al. 1991; Boschker and Middelburg 2002).

We found that the methanotrophs were dominated

by the type I group (c-Proteobacteria), consistent

with the finding of Schubert et al. (2010). Biomark-

ers 16:1x7c and 18:1x9c (Fig. 4d) also indicate the

presence of bacterial PLFA (Boschker and Middel-

burg 2002).

d13C of PLFAs and FFAs

Total FFAs of 16:0, 16:1, 18:0, 18:1 and 18:2 and

PLFA of 16:0 were sufficiently abundant for isotope

analyses. Most d13C values of PLFAs and FFAs

increased before decreasing with age (Fig. 5). Gener-

ally, i ? a15:0 PLFAs are representative bacterial

biomarkers (Boschker et al. 2005). In this work, 16:0

PLFA instead of i ? a15:0 was employed to charac-

terise bacterial PLFAs because the former is present at

higher concentrations and could hence be analysed

with better precision for its d13C values, and eukaryote

biomass is likely small in these sediments. The values

of d13C for 16:0 PLFA remained high during ca.

1904–1975 (-29.1 to -34.4%), but low d13C values

appeared from ca. 1998–2010 (-41.1 to -45.8%)

(Fig. 5a). These d13C values are within or close to the

typical range of C3 plant lipids (-34 * -23%)

(Cifuentes and Salata 2001). The top three and the

bottom values of the record are less than -40% and
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seem to indicate bacteria that utilized a carbon source

strongly depleted in 13C.

The d13C values of 16:0 PLFA increased from ca.

1880–1939 and decreased from ca. 1939–recent,

suggesting that the stable isotope composition of the

carbon sources for heterotrophs changed. To highlight

the impact of such a change, we plotted the correla-

tions between d13C and TOC for the periods

1939–2010 and 1880–1939. A positive correlation

was also observed between the d13C values for 16:0

PLFA and TOC (Fig. 5b). The relatively high corre-

lation (r = 0.84) after ca. 1939 suggests that the

isotopic ratio of bacterial biomass varied with that of

the carbon source. The d13C values of 16:0 PLFA were

depleted compared to that of the bulk TOC isotope

values after ca. 1939. Afterwards, the d13C values of

TOC decreased again in the 1960s/1970s. This result

was likely caused by an effective recovery from

eutrophication leading to a decrease in primary

production and consequently a proportional decrease

of atmospheric carbon input typically enriched in 13C.

Otherwise, the relatively weak correlation (r = 0.67)

before ca. 1939 suggests that the carbon source and

metabolic pathway of bacteria differed from that

during the later years.

The concentrations and d13C values of FAs of

methanotrophs are presented in Fig. 5c to investigate

the potential role of methane as a carbon source for the

bacterial community in Lake Rotsee. Besides the

16:1x6 FA of methanotroph I, the 18:1x8 FA of

methanotroph II was detected, albeit unexpectedly.

This type II methanothroph was not detected before in

the water column of Lake Rotsee (Schubert et al.

2010). The highest concentration of 16:1x6 and

18:1x8 FAs were found in the top of the sediment

column, and were 523.0 and 992.6 lg/g TOC, respec-

tively. Concentrations rapidly declined with depth in

the sediment. The decreasing pattern observed for the

16:1x6 and 18:1x8 FAs deeper in the sediment is in

line with the notion that methanotrophs grow mainly

near the top of the sediment, with activity decreasing

deeper in the sediment, as suggested by the pattern of

16:1x6 and 16:1x8 PLFA (Fig. 4c).
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The d13C for 16:1x6 FA (Fig. 5c) shows a bimodal

distribution, with a minimum value at ca. 1892

(-58.4%), but much higher values at ca. 1915

(-37.2%) and ca. 1951 (-36.8%). Meanwhile, the

d13C for 18:1x8 FA shows relatively enriched values

compared to 16:1x6 FA, with a peak value of -26.8%
at ca. 1927 and a minimum of -39.9% at ca. 2008.

Discussion

Change of abundance and OM sources over time

Eutrophication is a paramount, widespread environ-

mental problem for lakes in recent decades (Carpenter

et al. 1999). Eutrophication has a major effect on lake

ecosystems by fueling primary productivity and

altering amounts and composition of OM (Naeher

et al. 2012). Lake Rotsee is one of the best-character-

ized eutrophic lakes and can be considered a model

system for eutrophic pre-alpine lakes. At the begin-

ning of the 1960s, peak eutrophication occurred in

Lake Rotsee, and a decrease in productivity ensued

after the construction of a sewage treatment plant in

1974 (Naeher et al. 2012). The lack of a dramatic

decrease in TOC accumulation after that period was

attributed to continued, non-point-source input of OM

from agriculture or internal loading of nutrients from

the lake sediment (Matzinger et al. 2010; Naeher et al.

2012). Such a non-linear response of lakes to

environmental management efforts is a commonly

observed phenomenon and important to understand for

planning future restoration projects.

The ratio of TOC/TN in lake sediments is com-

monly used to infer the biological source of the carbon

(Meyers 1994). Generally, TOC/TN ratios of higher

terrestrial plants vary in the range of 14–23, whereas

the ratio is about 6–7 for plankton (Müller and

Mathesius 1999) and 4–6 for bacteria (Goñi and

Hedges 1995). In addition, soil OM can have a wide

range of TOC/TN ratios (5–10.7), which generally

tend to be lower than those of the overlying vegetation

(Goñi et al. 1998; Holtvoeth et al. 2016). TOC/TN

ratios in the core (Fig. 2c) fall into the range of

bacteria, plankton and soil, implying a mixed source

for the organic carbon in Rotsee sediments, with a

relatively large contribution from bacterial biomass

with low TOC/TN ratios in the sediment deposited

between the 1920s and 1960s. Naeher et al. (2012) also

indicated that higher bacterial activity during Lake

Rotsee eutrophication, especially from the 1920s to

1960s, could be inferred from epicholestanol, which is

an indicator of bacterial alteration. This might be a

consequence of superior preservation of N-containing
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d13C values for 16:0 PLFA and TOC; and c d13C values and

concentrations of 16:1x6 and 18:1x8 FFAs derived from

methanotrophs. Profiles of a, c are plotted versus date
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OM and/or increased amounts of inorganic N in the

sediment deposited in the 1920s–1960s. It was

observed that there was a small peak of methan-

otrophic-related FFA or PLFA compounds during the

1920s–1960s, indicating relatively high methanotroph

biomass. Methanotrophs can oxidize ammonia in

addition to methane (O’Neill and Wilkinson 1977;

Megraw and Knowles 1989; Bodelier and Frenzel

1999). Therefore, it is possible that there was a high

concentration of inorganic nitrogen (ammonium) at

the time, which results in a low TOC/TN ratio.

Numerous studies proved that TOC/TN ratios in lake

sediment are associated with human activities (Routh

et al. 2004; Bragée et al. 2013). A canal construction

from the Reuss River to Lake Rotsee started in 1922

(Kohler et al. 1984). Afterwards, construction of an

interceptor sewer in 1969 and a sewage treatment plant

in 1974 were completed (Stadelmann 1980). Increasing

sewage supply and soil erosion along the canal may have

delivered a large amount of nutrients into this lake

during the 1920s–1960s. In addition, animal waste could

have been transferred by runoff from surrounding

livestock farms into the lake and become another source

of nutrients before construction of the sewage treatment

plant (Naeher et al. 2012). Hence, low TOC/TN ratios in

the 1920s–1960s may result from both changes in the

microbial community structure and human activities in

the catchment. Increasing values for TARFA indicate

increased terrigenous input relative to aquatic produc-

tion. Conversely, this parameter can indicate the

degradation of aquatic FAs relative to land-derived

components (Bourbonnier and Meyers 1996). In Lake

Rotsee, lower values for TARFA were found during the

1920s–1960s, which is in agreement with the low TOC/

TN ratios observed for this period. The fact that these

variables changed at the same time is in line with the

eutrophication and resulting high productivity that

occurred during this period. Nevertheless, even in the

1920s–1960s, TARFA values are not 0, i.e. some

terrestrial OM with higher TOC/TN ratios must have

been supplied.

Autochthonous and allochthonous subsidies could

contribute to sustenance of bacterial carbon biomass,

although selective degradation and/or diagenesis

could overprint primary FA source signatures. Gener-

ally, SCFAs tend to be preferentially degraded by

microbes during early diagenesis (Ho and Meyers

1994), and this phenomenon may lead to higher

TARFA values. Low TARFA values during the 1920s–

1960s, however, may have two explanations: (1) both

aquatic and terrestrial inputs were similarly important,

or (2) microbial recycling of sedimentary OM over-

printed the FA source signatures. We observed that the

abundance of SCFAs was relatively high during this

period, which caused the low TARFA values during the

1920s–1960s. This is possibly related to higher

bacterial biomass, as supported by low TOC/TN ratios

of sediment from that period. To evaluate the second

possibility, we used PLFAs to explore in situ produc-

tion and the consumption of available food sources.

In situ production and the consumption

of available OM sources

Microbial biomass reconstruction can be ascertained

using PLFA biomarkers combined with other sedi-

ment variables (Naeher et al. 2012). The PLFAs in the

top few cm of sediment from Lake Rotsee may be

related to export from the water column and growth of

heterotrophs on detritus. At these sediment depths,

algal and bacterial PLFAs can be derived from the

water column (sinking and re-working of the sedi-

ment) and in situ production, whereas bacterial PLFAs

present at greater depths in the sediment are likely

derived from in situ production because of rapid

degradation of recently settled biomass. Within the

sediment, the anoxic and dark conditions prevent

in situ production of algal PLFAs. As shown by the

total PLFA concentration (Fig. 4a), high bacterial

biomass at 20–40 cm in the sediment deposited during

the 1920s–1960s is consistent with the high SCFA

concentrations during this period.

Inferred bacterial biomass in the sediment is,

surprisingly, relatively low at 5–15 cm (after the

1970s), with the exception of the very top, where there

is export from the water column. Besides, high TOC

contents and low PLFA concentrations during ca.

1975–1998 (Fig. 4a) may indicate that the carbon

accumulation resulted in weak microbial activity. The

microbial growth does not appear to follow regular

patterns. Bacterial growth is usually controlled by

multiple environmental factors, such as pH, temper-

ature and oxygen. Under stable conditions, growth rate

depends primarily on the amount of substrate avail-

able. The amount of carbon available to microbes can,

however, change abruptly under unstable conditions.

For instance, when the micro-ecological environment

is unsuitable or less suited for growth of the bacterial
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population, microbial activity will be inhibited and

accumulation of refractory substances will ensue

(Wardle 1992).

Relation between methanotrophs and OM

in sediment

The contribution of methanotrophic PLFAs to total

PLFAs ranged from 0.47 to 4.88%. Methanotrophic

PLFAs constituted a greater contribution at 20 cm (ca.

1964) and at the core bottom than at other levels, with

a similar trend being observed for the PLFA 16:0,

likely derived primarily from bacteria. This suggests

fairly high methane concentrations, resulting in high a

contribution to PLFAs at these two depths, related to a

high methanotrophic biomass and probably high

methanogenesis (Amaral and Knowles 1995).

Methane-oxidising bacteria are currently classified

into the Phyla Proteobacteria (methanotroph I) and

Verrucomicrobia (methanotroph II) (Bowman 2006;

Bodelier et al. 2009; Op den Camp et al. 2009). The

predominance of methanotrophs of the type I group (c-

Proteobacteria) observed in this work is reflected in

the more depleted d13C values. The Lake Rotsee

sediment has been shown to experience anoxic

conditions year-round, with high production of

methane throughout the entire year as well (Schubert

et al. 2010). Methane concentrations on the sediment

surface were found to reach 0.7–4.1 mmol/L, with a

maximum value of 5.9 mmol/L observed ca. 1975

(Schubert et al. 2010). High production of phyto-

plankton in monomictic and eutrophic Lake Rotsee

during the spring and summer results in anoxic

conditions in the bottom waters and sediment.

Accordingly, OM degradation relies on anaerobic

processes, which lead to methane formation by

methanogenesis (Conrad 1989). The anaerobic oxida-

tion of methane is an essential, but poorly understood

process in methane-rich sediments. Previous research

showed that methanogenic archaea contributed 98% to

the archaeal community in Lake Rotsee (Zepp Falz

et al. 1999). Such high methane production supplies

carbon with low d13C values for methanotrophs and

stimulates their growth.

Notably, the maximum difference between the d13C

of 16:0 PLFA and TOC reached around 7.6% (ca.

1904) (Fig. 5b). This can be explained by: (1) anoxic

conditions, (2) relatively negative d13C values of more

easily degradable substrates (such as methanol and

acetic acid), and (3) existence of methanotrophs in the

anaerobic environment (Cifuentes and Salata 2001). In

addition, the d13C values of the 16:0 PLFA were

particularly low compared with those of the 16:0 FA

after ca. 1975 (Fig. 5a). The low d13C values of the

16:0 PLFA suggests utilisation of an OM source with
13C-depleted values in the upper layer, such as is

typical of 13C-depleted methane values. In contrast,

the d13C value of the 16:0 FA denotes a source from

ordinary heterotrophic bacteria and algae. Meanwhile,

coincident low d13C values for the 16:0 PLFA and

16:0 FA in deeper sediments indicates a major

contribution of methanotrophs/methanogens to 16:0

FA and 16:0 PLFA. During ca. 1927–1975, the d13C

values of PLFA 16:0 (-34.4 to -31.1%) and FA 16:0

(-31.9 to -29.4%) were similar. This implies a

greater contribution of ordinary heterotrophic bacteria

to 16:0 PLFA because methanotrophs/methanogens

usually show more negative d13C signatures (-60 to

-35%) (Nusslein et al. 2003), although they probably

make a contribution to PLFA 16:0 as well.

In Lake Rotsee, diatom blooms support bacterial

biomass accumulation in the sediment (Naeher et al.

2012). The trend in d13C for the algal 18:2x6 is very

similar to that of the 16:0 PLFA, but shows more

negative values than the latter. Furthermore, the

isotopic fractionation between d13C values of

18:2x6 and 16:0 PLFA was mostly [1%, with the

maximum offset being 11.2%. This result suggests

that the algae may partly utilise 13C-depleted CO2 and/

or dissolved inorganic carbon produced by methane

oxidation (van Winden et al. 2010). Other hetero-

trophic processes that employ different metabolic

pathways could result in similar isotopic patterns, but

this is less likely in a lake that is known to be strongly

affected by methane production and oxidation.

Methanotrophs play a major role in the methane cycle

and provide C1 intermediates and various metabolites

to other members of microbial communities in

ecosystems (Trotsenko and Khmelenina 2002).

Conclusions

We demonstrated the application of lipid biomarkers

in investigating organic carbon sources and microbial

processing in core sediment from Lake Rotsee

(Switzerland). As shown by the total PLFA concen-

tration, strong bacterial activity in the sediment
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deposited during the interval from the 1920s to 1960s

may explain the relatively low TARFA values, which is

consistent with the observed low TOC/TN ratios in the

sediment deposited during that period. High methane

production in Lake Rotsee supplied carbon for

methanotrophs, stimulating their growth. The low

d13C of PLFA 16:0 suggests the strong bacterial

utilisation of OMs with 13C-depleted values in the

surface layer of sediments (depth\ 15 cm), such as

methane, which is highly 13C-depleted. The simulta-

neous decline in d13C values for the 16:0 PLFA and

16:0 FA in deeper sediments indicates a major

contribution of methanotrophs/methanogens to 16:0

FA and 16:0 PLFA. During the period ca. 1927–1975,

the d13C values of 16:0 PLFA and 16:0 FA were

similar, but the values of the former were slightly more

negative. This suggests a greater contribution of

ordinary heterotrophic bacteria to 16:0 PLFA because

methanotrophs/methanogens usually show more neg-

ative d13C signatures (-60 to -35%).
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