
Information and Software Technology 87 (2017) 242–258

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Stable and predictable Voronoi treemaps for software quality

monitoring

Rinse van Hees ∗, Jurriaan Hage

∗

Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands

a r t i c l e i n f o

Article history:

Received 2 February 2016

Revised 1 July 2016

Accepted 23 October 2016

Available online 16 November 2016

Keywords:

Software visualization

Voronoi diagrams

Hilbert curves

Software quality monitoring

Stable Voronoi treemaps

a b s t r a c t

Context : Voronoi treemaps can be used to effectively visualize software quality attributes of a given soft-

ware system. Algorithms for computing Voronoi treemaps are non-deterministic making them unsuited

for monitoring the development of such attributes over time.

Objective : We adapt an existing sweep line algorithm to efficiently compute Voronoi treemaps and we

introduce a novel algorithm that adds stability and predictability.

Method : We introduce stable and predictable Voronoi treemaps based on additively weighted power

Voronoi diagrams. We employ scaled Hilbert curves to place Voronoi sites in the plane, retaining the

order in which sites are placed along the curve for easy comparison with revisions of the same software

system.

Results : Our algorithm achieves a predictable first good approximation of the final location of the sites.

We show that our algorithm not only provides more stability, but also that because of better placement it

needs fewer iterations to compute its result. As part of our implementation we introduce a visualization

to show the difference between two versions of a software system. We also present a small case study in

which we use a web based application that implements our work to investigate the usefulness of stability

and predictability of visualizations.

Conclusion : It is possible to achieve stable and predictable visualizations of software system attributes,

while, as a pleasant side effect, decreasing the number of iterations necessary to arrive at the

visualization.

© 2016 Elsevier B.V. All rights reserved.

b

m

m

s

c

h

r

h

s

e

o

i

g

t

v

i
1. Introduction

Many current software visualizations are geared towards a one-

off visualization of a software system. When visualizing multi-

ple versions of the same software system a new set of problems

appears. Consistency of visualizations of different versions of the

same software system is needed to guarantee that the user is able

to take insights from one version and transfer them to another. The

changes between versions should be easy to spot in order to allow

the viewer to update his/her insight instead of having to create it

anew.

Voronoi treemaps are well suited for visualizing attributes of

large software systems. In Fig. 1 , we depict a version of Apache

Jackrabbit Core [1] as generated by our tool. Here each region (at

the deepest level) represents a method, and higher levels represent

the class and package structure. The size of the Voronoi regions is

determined by the lines of code attribute, and color is determined
∗ Corresponding authors.

E-mail addresses: rvanhees@pubpres.net (R. van Hees), J.Hage@uu.nl (J. Hage).

(

(

t

http://dx.doi.org/10.1016/j.infsof.2016.10.003

0950-5849/© 2016 Elsevier B.V. All rights reserved.
y the method’s McCabe’s cyclomatic complexity . The initial place-

ent of vertices (along a Hilbert curve) is governed by yet a third

etric. In all, our pictures incorporate information from three pos-

ibly distinct metrics. The picture clearly shows that the code base

ontains many packages of low complexity, and one package of

igh complexity.

Voronoi treemaps use Voronoi tessellation to build very

eadable and aesthetically pleasing pictorial representations of

ierarchical data. They are well suited for visualizing software

ystems, because these systems often possess such a structure,

.g., inheritance hierarchies and package structures. However, the

riginal Voronoi treemap algorithm is not suitable for visualiz-

ng different versions of the same software system, because it

enerates wildly different visualizations. In Fig. 2 , we illustrate

he non-deterministic nature of the standard algorithm with two

isualizations of the exact same system as generated by the same

mplementation. The problem is even more noticeable when

slightly) different versions of the same system are visualized.

What is needed is an algorithm that is, in a sense, continuous

or non-chaotic): small changes to the structure of a software sys-

em and its attributes should lead to only small changes in the

http://dx.doi.org/10.1016/j.infsof.2016.10.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.10.003&domain=pdf
mailto:rvanhees@pubpres.net
mailto:J.Hage@uu.nl
http://dx.doi.org/10.1016/j.infsof.2016.10.003

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 243

Fig. 1. A Voronoi treemap for Apache Jackrabbit Core 1.4.5.

Fig. 2. Comparison of two Voronoi treemaps of the same system.

V

i

i

t

t

w

b

w

f

b

c

t

o

t

t

a

e

i

f

W

i

t

w

w

a

t

a

W

p

v

v

i

w

V

f

w

f

t

c

o

c

o

2

t

S

l

s

p

s

s

t

a

t

i

p

fi

t

a

c

s

v

o

h

e

p

a

o

t

n
oronoi treemap visualization; in particular, if the software system

s unchanged, the algorithm should generate the exact same visual-

zation. In this paper we show how to extend the original Voronoi

reemap algorithm to produce visualizations in such a fashion.

Our visualization technique has the following characteristics:

• It produces pictorial representations of the structure and at-

tributes of large software systems, allowing the viewer to better

understand the software system, and monitor the changes over

time.

• It is deterministic, producing the same pictorial representation

for multiple runs on the same input data.

• It is versatile enough to allow the creation of pictorial repre-

sentations of different attributes of the same software system

with up to three different attributes in one picture.

• Pictorial representations of slightly different versions of the

same software system should lead to only slightly different vi-

sualizations, so that dissimilarities should be easily identifiable.

Large differences, on the other hand, lead to large differences

in the pictorial representations.

• It is able to create the pictorial representation with reasonable

speed, and needs fewer iterations than previously known algo-

rithms.

In particular, we introduce stable Voronoi treemaps based on

wo distinct algorithms: a sweep line algorithm for additively

eighted power Voronoi diagrams and an algorithm to create sta-

le Voronoi treemaps. Our sweep line algorithm for additively

eighted power Voronoi diagrams is based on Fortune’s algorithm

or Voronoi diagrams [2] extended with weighted Voronoi sites.

To create stable Voronoi treemaps we develop an algorithm

ased on Hilbert curves. We employ a strict order on the data,
hosen by the user, that is to be visualized and use Hilbert curves

o initially place the data points on the visualization in this chosen

rder. We find that points placed in this fashion are much closer to

he final positions as the algorithm converges. This both decreases

he number of iterations of the algorithm to attain convergence,

nd also makes point placement more predictable.

This paper is an extended and modified version of our confer-

nce paper [3] . In Section 5.2 we introduce a new algorithm that

mproves upon our original algorithm. The new algorithm needs

ewer iterations to achieve a more stable and predictable result.

e include this new algorithm in our comparison of speed, stabil-

ty and predictability in Section 5.3 . A completely new addition is

he small case study that we discuss in Section 7 . The case study

as done at a large software development company and uses a

eb application that implements our algorithms. The same web

pplication is used to produce the pictures in this paper. Many of

he pictures are the same as in our original paper because the new

lgorithm produces very similar pictures as the original algorithm.

e have used some of the additional space to show new pictures

roduced by our tool, in particular a set of pictures for a range of

ersions of a software system and the differences between those

ersions. We also present four pictures that show different visual-

zations of the same system based on different sets of metrics.

The paper is organized as follows. We introduce general related

ork on software visualization in Section 2 . Our work builds upon

oronoi diagrams, so we devote a special section to background in-

ormation on Voronoi tessellation: Section 3 . We discuss additively

eighted power Voronoi diagrams and provide our novel algorithm

or computing them in Section 4 . In Section 5 we consider how

o place the initial locations of the Voronoi sites along a Hilbert

urve. We discuss the freely available implementation (in Java) of

ur work in Section 6 . In Section 7 we discuss a small informal

ase study on the use of our implementation in a software devel-

pment company. Section 8 concludes this paper.

. Related work

Balzer et al. [4] introduce a variation on traditional treemaps

hat is more suited for software visualization: Voronoi treemaps.

oftware systems usually have a rich hierarchical structure; twenty

evels deep is not unthinkable. Traditional treemaps are then not

o suited, resulting in thin, elongated rectangles with a high as-

ect ratio. Using general polygons instead of plain rectangles can

olve this issue. Using Voronoi tessellation to divide the available

pace for the top-level and recursing into the other levels leads to

reemaps that are easier to read. Like us, Hahn et al. [5] discuss

 method to achieve stable Voronoi diagrams, using a determinis-

ic initial distribution that reduces the variation in node position-

ng if changes occur in the hierarchy. However, they employ the

ath in the source repository tree, which is subject to change if

les are added, deleted or renamed. Moreover, in their placement

hey do not take the target weight of the node into account. Their

lgorithm is a variation on the work of Nocaj and Brandes [6] . Ac-

ording to the authors of [5] the implementations show the same

peed and both are not ready for interactive use.

Steinbrückner’s EvoStreets [7] uses the concept of city maps for

isualizing aspects of software. He labels continuous understanding

f evolving data sets with the term “consistency”, and the topic of

is thesis is to add consistency to software cities. As his extensive

mpirical study shows this comes at the price of lowering com-

actness. Note that Voronoi treemaps are 100% compact: all avail-

ble space is used.

Hierarchies are widely used as models of the (static) structure

f software systems. Visualizing these hierarchies poses some in-

eresting problems though. For example, how do we position the

odes in two- or three-dimensional space? Noack and Lewerentz

244 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

s

a

h

i

p

m

s

c

(

h

d

v

V

a

o

s

f

s

c

s

d

i

m

J

c

t

t

f

3

3

p

c

s

t

a

t

a

r

s

f

w

t

t

s

S

f

p

o

l

o

v

l

h

t

s

s

d

o
[8] tackle this layout problem. For a variety of analyses of the

static structure of software systems they derive the requirements

for graph layouts that support those analyses. Because no single

layout can satisfy all requirements, they introduce a space of lay-

out styles. In this space, the layout styles are organized along the

following three dimensions: degree of clustering, degree of hier-

archicalness, and degree of distortion. By extending the minimiza-

tion of energy function, a widely used method for computation of

graph layouts, with these dimensions, they allow for the automatic

computation of layouts for analyses.

The SHriMP (Simple Hierarchical Multi-Perspective) tool of

Storey and Michaud [9] visualizes the static aspects of Java appli-

cations including Javadoc, package structure and source code. Op-

erations such as zooming and filtering are supported to enhance

the visualizations, while the visualizations themselves are largely

based on graph layout algorithms.

Software visualization is intrinsically suited for observing the

evolution of software systems. Showing the visualization of two

versions of the same software system next to each other allows

the viewer to determine where things have changed and what has

stayed the same. The challenge is to ensure that the visualizations

are easily comparable, meaning that objects should be in approxi-

mately the same place. Pinzger et al. [10] achieve this by superim-

posing the metrics and relations of multiple versions on a single

Kiviat diagram.

Gîrba et al. [11] use historical information to show how a soft-

ware system evolved. Since the history of a large software system

can be very large, they developed ways to effectively summarize

this information. This is very different from our work in which we

visualize different snapshots of a system in a way that makes it

easy to compare them pairwise, but does not try to capture multi-

ple revisions in one picture. The visualizations themselves are so-

called polymetric views [12] . A polymetric view is, like the name

says, a view that incorporates information from multiple metrics.

In our work, we can take at most three metrics into account (ini-

tial location along the Hilbert space curve, color and size). They

can handle up to five metrics at once, in some cases only three.

Their work has been implemented in the CodeCrawler tool.

The open visualization toolkit introduced in [13] is a toolkit

geared towards visualizing graphs to facilitate the reconstruction

of the architecture of a large software system. The toolkit takes a

graph that can have values associated with the nodes as input. The

scripting language TCL can be used to make selections and map-

pings on the graph. The transformed graph is then visualized. Later

work by one of the authors [14] uses a pixel-oriented approach, in

which 2D dense pixel orthogonal layouts are used to visualize vari-

ous kinds of software entities: code in a single source file and mul-

tiple versions of the same file. Textures, color and shading are used

to visualize all kinds of aspects of the software, both attributes and

structure. An important quality aspect for their work was scala-

bility, while at the same time keeping things simple and easy to

learn.

EVolve [15] is a visualization framework that is not tailored to

one specific language, algorithm or analysis, but allows one to plu-

gin new data sources and visualizations. This is realized by provid-

ing an API to specify visualizations and manipulate data, so that

it can be used by the framework. The framework handles all user

interaction and the communication between data source and visu-

alizations.

Recent work on software visualization, particularly for the evo-

lution of software systems, includes [16] which discusses a tool for

visualizing software clones using hierarchical edge bundles. In this

work, removed elements are retained, reducing compactness par-

ticularly when a long evolution is visualized. Also, [17] discusses

evolution at a rather high level. Visual animations are employed

in [18] to show how a software system evolves over time. The vi-
ualizations are meant to be easily explored. A complication that

rises is how to improve coherence: if conceptually small changes

appen to the system, how does one guarantee that the visual-

zation also changes little? In other words, they tackle the same

roblem as we do. The work discussed in [19] also has many com-

onalities with our own, in the sense that they seek to achieve

mall changes in the visualization when the underlying data only

hanges little. In their paper, they discuss a new layout approach

based on software cities) which explicitly takes the development

istory of software systems into account, increasing stability across

ifferent revisions, but also makes the revision history itself clearly

isible in the visualizations. Note that none of these works use

oronoi treemaps.

There also exists a large body of work that visualizes dynamic

spects of a system, i.e., its execution. This in contrast with our

wn work that looks at the dynamics of the structure of the

oftware. For example, Cornelissen et al. [20] developed the SDR

ramework to visualize JUnit test execution traces, that can be

hown at different levels of abstraction. Dynamic execution traces

an generally be useful to understand the internals of a complex

oftware system. Holten [21] introduced hierarchical edge bun-

les to visualize the large and many traces of a software system

n a manageable way. The Java Interactive Visualization Environ-

ent (JIVE) [22] is an online visualization and analysis system for

ava supporting both forward and reverse execution, and graphi-

al queries over program execution. Recent work [23] , combines

he dynamics of execution and the dynamics of software evolu-

ion within a single framework, based on the VERSO visualization

ramework for constructing heat maps.

. Background: Voronoi diagrams and Voronoi treemaps

.1. History

In the early 1990’s, Ben Shneiderman wanted to create a com-

act visualization of directory structures showing where his pre-

ious hard disk space went. He decided to divide his computer

creen into rectangles, in alternating horizontal and vertical direc-

ions as you descend down the directory tree. The size of the rect-

ngles reflected the size of the directories or files on the file sys-

em. This solution made optimal use of the limited screen space

vailable in the 1990’s. The first publication discussing this algo-

ithm was published in 1992 [24] . The original algorithm has one

hortcoming, one that most extensions inherit: it divides the space

or each step in one dimension only. If many objects or objects

ith a big difference in size on the same tree level are visualized,

his can result in thin elongated rectangles with a high aspect ra-

io. Comparing the size of such elongated rectangles and other, not

o elongated, rectangles is hard for users.

To alleviate the problem, [25] introduced ordered treemaps.

quarified treemaps, an evolution of ordered treemaps. use a dif-

erent division algorithm, resulting in rectangles that have an as-

ect ratio close to one [26] . This division algorithm places in order

f size which means that the original order of the data is always

ost.

A remaining problem is that of hierarchy visualization: in the

riginal treemap implementation hierarchy was reasonably well

isible, by alternating the horizontal and vertical division at each

evel. In the new algorithms this was lost, and hierarchy became

ard to discern. Van Wijk and Van de Wetering [27] therefore in-

roduced cushioned treemaps, adding shading to each rectangle in

uch a way that it is easier to distinguish the parent-child relation-

hips in the tree.

Voronoi treemaps are another way of solving both the space

ivision problem and the hierarchy visibility problem [4] . Instead

f using rectangles, Voronoi treemaps use polygons to divide the

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 245

Fig. 3. Voronoi diagram.

s

b

T

o

b

r

o

s

b

s

m

t

i

s

t

F

3

t

p

d

p

a

s

s

p

(

p

d

T

E

d

T

e

t

b

p

c

p

u

a

t

t

p

c

l

t

Fig. 4. Fortune’s sweep line algorithm.

t

p

t

f

s

n

e

F

c

b

a

V

S

4

t

(

d

h

o

p

r

n

S

c

4

i

S

a

t

q

d

h

i

o

a √

t

r

b
creen space. Voronoi treemaps allow for easy distinction of level,

ecause the edges that bound an object in the tree do not line up.

his means that an edge of a parent object will not line up with

ne of its children, or even with the edges of any of its neigh-

ors. Because of the way the polygons are constructed, the aspect

atio approaches one. This makes it easy to compare the size of

bjects. Another big advantage is that the Voronoi treemap divi-

ion algorithm does not enforce an order in which nodes need to

e visualized. This means that we can decide on the order our-

elves and use this to enhance our visualizations. They do have one

ajor drawback: because the algorithm is based on a random ini-

ialization, each visualization is very different. This means that in

ts current form Voronoi treemaps cannot be used to visualize the

ame data set multiple times. We also cannot use these Voronoi

reemaps to visualize different versions of the same system, see

ig. 2 .

.2. Algorithms and terminology

To make sense of our later discussion, we introduce some of the

erminology pertaining to Voronoi tessellation and treemaps, and

rovide some high-level details of the algorithms involved. More

etails can be found in [28] .

A Voronoi diagram of a set of points, called sites, divides a

lane into regions. Each region corresponds to one of the sites

nd consists of all points closer to its site than to any other

ite. Formally, consider a set of sites S{ s 1 , s 2 , . . . , s n } , with each

 i a (distinct) point in the plane. The Voronoi diagram of S is the

artitioning of the plane into n Voronoi regions and their edges

illustrated in Fig. 3). The (Voronoi) region of site s i consists of all

oints q ∈ R

2 where

ist(q, s i) < dist(q, s j) for each s j ∈ S with j � = i .

he function dist (p , q), where p = (p x , p y) and q = (q x , q y) , is the

uclidean distance function

ist(p, q) =

√

(p x − q x) 2 + (p y − q y) 2 .

wo adjacent regions belonging to sites s i and s j share a (Voronoi)

dge that is equidistant from s i and s j . This edge is a segment of

he perpendicular bisector of the line segment s i s j . An edge can

e bounded at both ends, bounded at one end or unbounded. A

oint on the plane that is equidistant from three or more sites is

alled a vertex .

Fortune introduced an efficient sweep line algorithm for com-

uting the Voronoi diagram of a set of points [2] . Conceptually it

ses a horizontal sweep line that traces out the Voronoi edges for

 given set of points as it moves from top to bottom. In addition

o the sweep line, the algorithm continually updates what is called

he beach line . These two lines divide the plane into three distinct

arts (see Fig. 4): everything above the beach line has been fully

omputed and can no longer change, everything below the sweep

ine is not yet visible to the algorithm, and everything in between

he two is still in limbo. The beach line is equidistant from the site
hat is bounds and the sweep line, tracing out the curve as dis-

layed in Fig. 4 .

While the sweep line moves from top to bottom conceptually

here are only two events that change the beach line and there-

ore influence the Voronoi diagram. The first of these events is the

ite event (see Fig. 5): when the sweep line encounters a site a

ew beach arc is introduced in the beach line which adds a new

dge in the Voronoi diagram. The second is the circle event (see

ig. 6): when the sweep line touches the lowest point of a cir-

le that is tangent to three sites, a beach arc is removed from the

each line. At this point, a beach arc shrinks to a point and its two

djacent beach arcs will meet. This corresponds to a vertex in the

oronoi tessellations. A more detailed explanation is given in [28,

ection 3.2] .

. Creating Voronoi treemaps

In this section we give a novel algorithm for creating Voronoi

reemaps based on additively weighted power Voronoi diagrams

AWP Voronoi diagrams for short) [30] . AWP Voronoi diagrams

iffer from traditional Voronoi diagrams in that the Voronoi sites

ave an associated weight. Weights can be used to encode yet an-

ther metric into a single Voronoi diagram; in most of the exam-

les in this paper generated by our tool, we use weights to rep-

esent the lines of code attribute. In Section 4.1 we introduce our

ovel sweep line algorithm to compute AWP Voronoi diagrams. In

ection 4.2 we show how AWP Voronoi diagrams can be used to

reate Voronoi treemaps.

.1. Additively weighted power Voronoi sweep line algorithm

Our novel algorithm for computing AWP Voronoi diagrams

s based on Fortune’s sweep line algorithm as presented in

ection 3.2 . Here we extend Fortune’s algorithm to take a weight

ssociated with Voronoi sites into account by using the power dis-

ance function.

The power distance function for point p and site q with weight

 w

is shown in Eq. (1) .

ist(p, q, q w

) = (p x − q x)
2 + (p y − q y)

2 − q w

(1)

The weight added to a Voronoi site for AWP Voronoi diagrams

as one restriction: it has to be greater than or equal to zero. This

s explained by the fact that the weight can be seen as the radius

f a circle squared. When we talk about the circle corresponding to

 Voronoi site q , we mean the circle with center point q and radius

q w

. We also refer to this circle as “the circle of Voronoi site q ”.

The radical axis gives all points from which the power distance

o the Voronoi sites of the corresponding circles is equal. The

adical axis is a straight line perpendicular to the line segment

etween two Voronoi sites. This means that similar to Voronoi

246 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

Fig. 5. Site event: a new arc is added to the beach line (adapted from [29]).

Fig. 6. Circle event: an arc is removed from the beach line (adapted from [29]).

Fig. 7. Voronoi diagram (left) and AWP Voronoi diagram (right) of the same set of sites.

4

t

c

c

i

T

t

d

c

4

c

t

m

i

b

W

s

t
diagrams the Voronoi regions created using the power distance

function are convex polygons. Fig. 7 shows a Voronoi diagram and

an AWP Voronoi diagram for the same set of sites; the difference

that the distance function and the weights (indicated here by

green circles inside the rightmost picture) make is clearly visible.

Our algorithm for computing AWP Voronoi diagrams is a sweep

line algorithm based on Fortune’s algorithm, but there are major

differences. When moving the sweep line over a set of weighted

sites, and the sweep line touches the top of the corresponding cir-

cle, the power distance from the sweep line to the Voronoi site is

zero. Originally we thought that this should introduce a new beach

arc into the beach line, but that turned out to be wrong: Voronoi

sites that are encountered later by the sweep line than the top of

the circle of a Voronoi site with a large weight can influence the

beach line before the big weighted Voronoi site influences it. This

means that the order of site events remains the same as in the

original algorithm, and we simply insert a new beach arc into the

beach line when the site itself is encountered. However, for cir-

cle events we have to diverge from the original algorithm. A new

event and an updated sweep line are also necessary for our algo-

rithm. We describe our extensions for the new algorithm in 4.1.1 –
4.1.3 . t
.1.1. Updated circle event

Our treatment for circle events does change. Originally, they

ook place when three Voronoi sites were lying on the same cir-

le. Now, we should consider the radical center of the three circles

orresponding to three Voronoi sites. The radical center can eas-

ly be found by intersecting the radical axes of each pair of circles.

he circle with its center at the radical center and orthogonal to all

hree circles, is now the circle for our circle event for AWP Voronoi

iagrams. When the sweep line encounters the bottom of this cir-

le, an arc disappears from the beach line.

.1.2. New event: top site circle event

For our algorithm we need to introduce a third event. The lo-

ation of the new event is where the sweep line encounters the

op of the circle of a site; we call this a top site circle event . We

ark the beach arc that lies directly above the site, because it is

nfluenced by this site. We found that the marked arc should not

e at equal power distance from the sweep line, but from this site.

hen one of two arcs is marked, we calculate the bisectors of this

ite and the sites corresponding to the arcs. We then intersect the

wo bisectors, and check if the power distance from the intersec-

ion to the sweep line is smaller than to the sites. If it is closer to

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 247

Fig. 8. Updated beach line with bisectors.

Fig. 9. Updated sweep line with a site that is yet to be encountered.

t

w

u

4

w

p

t

a

s

a

t

t

c

i

a

t

w

b

a

a

f

h

4

p

e

v

r

v

k

s

c

g

t

f

a

e

s

m

V

4

4

f

f

t

d

i

h

w

t

c

f

o

a

4

g

b

s

a

d

t

w

e

c

n

b

g

s

5

V

m

i

d

i

i

F

2
he sweep line, we use the normal intersection calculation. Other-

ise, we use the intersection of the bisectors. Fig. 8 illustrates this

pdated beach line with bisectors.

.1.3. Extended sweep line

There is another problem that the weighted sites introduce:

hen the site event of a site with a large weight has not hap-

ened yet, circle events that have an event location lying within

he circle of the site may happen. This means that we remove an

rc from the beach line while this should in fact not yet happen. To

olve this, we change the sweep line from a simple straight line to

 line that “follows” the circles of sites that are yet to be encoun-

ered, see Fig. 9 for an illustration. We use this new sweep line

o check whether circle events may happen, based on whether a

ircle event location is above or below the sweep line.

We remove a circle from the sweep line when its correspond-

ng Voronoi site has entered the beach line. This means that on

 site event we can remove the circle from the sweep line. When

he sweep line has not fully passed through the circle of a site, it

ill still produce a useful parabola that we can use to calculate the

each arc intersections. At this point, it may be that the parabolas

re not correct below the sweep line, but as we make no claims

bout anything below the sweep line, this is not a problem. We

orego a more detailed explanation of how our algorithm precisely

andles these issues, but see [28] for more details.

.2. Voronoi treemap algorithm

Having discussed how to construct AWP Voronoi diagrams, one

iece is still missing: (recursively) building a Voronoi treemap. For

ach node in a graph we create an AWP Voronoi diagram that di-

ides the Voronoi region of its parent. The root node has a Voronoi

egion equal to the area that the complete visualization has to fill.
In Voronoi treemaps the size of a Voronoi region represents a

alue of a (leaf) node in the data we are visualizing. Because we

now what size a Voronoi region has to have to correctly repre-

ent the value we can create AWP Voronoi diagrams and iteratively

hange the weights of Voronoi sites to grow or shrink their re-

ion. To ensure that no two Voronoi regions overlap we also move

he location of the Voronoi site in each iteration. The algorithm

or recursively constructing Voronoi treemaps and iteratively cre-

ting AWP Voronoi diagrams was first described in [4] . It was later

xtended in [6,31] ; in this paper we follow [6] . A part of the in-

tability of Voronoi treemaps is caused by these algorithms: the

ovement of sites is hard to predict and between visualizations

oronoi sites can end up on very different locations.

.3. Limitations

.3.1. Additively weighted power Voronoi diagrams

Where Fortune’s algorithm is proven to be an optimal solution

or calculating Voronoi diagrams we have not tried to prove this

or our algorithms. The additional complexity introduced by ex-

ending each step of Fortune’s algorithm to deal with the power

istance function and the weight of the Voronoi sites has a large

mpact on the complexity of the algorithm.

Especially the calculations for the intersections of beach arcs

as become more computationally expensive. For each intersection

e not only have to check the influence of the sweep line, but also

he influence of all the Voronoi sites that have a corresponding cir-

le that intersects with the sweep line. This is exacerbated by the

act that in our implementation circles of sites generally grow to

nly a little smaller than the Voronoi region. This means that there

re many circles intersecting with the sweep line.

.3.2. Voronoi treemap algorithm

The iterative algorithm used to create the AWP Voronoi dia-

rams for Voronoi treemaps converges to a reasonable solution,

ut still results in some Voronoi regions that are too large or too

mall. In Section 5.3 we will show that the algorithm converges to

 lower bound, but never reaches the perfect solution. A more in-

epth explanation on why there are sites that remain too big or

oo small can be found in [6] .

Another limitation that is inherent to AWP Voronoi treemaps:

hen a smaller site is sandwiched between a large site and the

dge of the polygon that is being divided, it is limited when in-

reasing its size. It can only increase its size by pushing its other

eighbors out, but those can only move when pushing their neigh-

ors out. This means that it can take many iterations to reach a

ood approximate size, especially if the other neighbors are in the

ame situation. In Fig. 10 an example is shown.

. Hilbert space filling curves for better initial site placement

We now consider how to place the initial locations of the

oronoi sites in order to obtain

• a more predictable placement, and

• a smaller number of iterations before the iterative site place-

ment stabilizes.

The two are not unrelated: if you start out with a better place-

ent, Voronoi sites will need to move around less before end-

ng up in a convergent solution, making the placement more pre-

ictable.

Our goal is therefore to choose a deterministic and reasonable

nitial placement for Voronoi sites, and our solution to achieve this

s by placing the Voronoi sites along a space-filling Hilbert curve.

ig. 11 shows three superimposed Hilbert curves of order 1 (dark),

 (lighter) and 3 (light). We start by dividing up a square area into

248 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

Fig. 10. Two versions of the same module visualized at the same zoom level. On the right it is sandwiched between a very large neighbor and an edge, on the left this is

not the case and the correct size is shown.

Fig. 11. Three superimposed Hilbert curves of order 1, 2 and 3 (reproduced from

[33]).

Fig. 12. A Hilbert curve intersected with a polygon and four Voronoi sites placed

at equal intervals.

s

o

c

p

o

o

T

p

f

5

b

t

o

f

i

t

c

e
so called cells , these cells themselves are also squares. For a Hilbert

curve of order 1, the area is divided up into four equal sized cells,

and each time we increase the order by 1, all cells are similarly

subdivided. So the grid of cells for a Hilbert curve of order 3, con-

sists of 8 by 8 cells. The Hilbert curve is then constructed by vis-

iting every cell in a square grid. The order in which each cell is

visited is based on a simple recursive algorithm that is described

in Chapter 14 of [32] . When we visit a cell we add the center point

of the cell to a list of points on the Hilbert curve. This list of points

is what we are interested in. In our implementation, the user can

elect the order in which Voronoi sites are placed on the curve. The

same placement will then be used for revisions of the same soft-

ware system, guaranteeing that the more similar revisions are, the

more likely the resulting pictures are visually comparable, provid-

ing the necessary stability to our algorithms.

When creating Voronoi sites we have to place them within the

convex polygon that we are dividing. We place a Hilbert curve over

the polygon, but a Hilbert curve, by definition, lies in a perfect

square and the polygon most likely will not be a square at all. We

solve this by aligning the Hilbert square with the oriented axis-

aligned bounding box of the polygon. We then scale the Hilbert
quare to cover the complete polygon. By intersecting the points

n the Hilbert curve with the polygon, we get the set of points we

an use to create Voronoi sites. When creating Voronoi sites, we

ick points from this set at regular intervals. We pick them in the

rder that they occur on the Hilbert curve, see Fig. 12 .

In this paper, we show Hilbert curves of at most order 4, but in

ur actual implementation we also use higher order Hilbert curves.

his gives us a greater number of points in case the shape of the

olygon is very elongated and would otherwise intersect with very

ew points.

.1. Variably spaced Voronoi sites

Although the above serves to illustrate the general idea, it can

e improved. Instead of placing the points uniformly, we decided

o take the desired area of the Voronoi region into account. In

ther words: if a Voronoi site has a large weight, we place it

urther away from its predecessor along the curve. This simple

dea is, however, still not good enough. The Hilbert curve has a

endency of turning back on itself, so that points later on the

urve can accidentally be only a small distance from points very

arly on the curve. This means that if we place a Voronoi site

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 249

Fig. 13. A heat map of the Euclidean distance between any two points on a Hilbert

curve of order 8 (reproduced from [34]).

w

s

F

o

n

p

v

t

o

H

a

w

c

t

c

c

n

o

l

c

s

c

d

e

n

o

c

c

s

T

s

a

a

b

o

s

fi

e

g

n

o

f

a

l

V

a

h

p

V

t

s

a

t

a

5

j

w

a
ith a large desired area close to the center of the Hilbert curve

quare, it is very likely that another site will be placed close by.

ig. 12 shows that even though the intervals between the sites

n the Hilbert curve are equal, the distance between the sites is

ot. When we visualize the Euclidean distance between any two

oints on a Hilbert curve of order 8, using a heat map, we get the

isualization as shown in Fig. 13 . This heat map can be seen as

he matrix of distances with at the top-left corner the first point

n the Hilbert curve. As we move to the right we move along the

ilbert curve until we reach the last point on the Hilbert curve

t the top-right corner. The same happens moving down until

e reach the last point on the Hilbert curve at the bottom-left

orner. The brightness of the color shows the distance between

wo points; the brighter the color the larger the distance. We can

learly see that we might place sites closer together than intended.

We solve this problem by using one of four different Hilbert

urves instead of the same one for every site. When we create a

ew Voronoi site we determine which Hilbert curve to use based

n the desired size of the region. The larger the desired area, the

ower the order of Hilbert curve we use. This ensures that the lo-

ation of new Voronoi sites will not accidentally lie close to other

ites. In Fig. 11 , we can see that the lower the order of a Hilbert

urve, the more guaranteed space each point has. It is okay to use

ifferent order Hilbert curves for different sites, because the gen-

ral location of points in relation to each other is preserved. In this

ew variation of our algorithm we do not first find all the points

n the Hilbert curves that lie within a convex polygon, but we

heck each point we intend to use. Our algorithm uses the Hilbert

urves of order 1, 2, 3, and 8. We chose these orders because large

ites are the most troublesome to place with enough room to grow.

he orders 1, 2 and 3 ensure that the sites with the largest de-

ired region size will have enough room. For all other sites we use

n Hilbert curve of order 8 to ensure that we have enough points

vailable. For each site, we determine which of the curves to use

ased on the percentage of the bounding square the desired area

f a Voronoi site takes up. We then use the chosen curve to find a

uitable point that lies within the bounding polygon. If we cannot
nd such a point we try a higher order curve. Once we reach the

ighth order we keep trying until we find a suitable point. This

ives us the algorithm as described in Algorithm 1 . We should

Data :

The polygon P that has to contain the Voronoi sites

The node r with associated metric m that is represented by P

A hierarchical graph H with nodes with associated metric m

Result : A set S = { s 1 , ..., s j } of Voronoi sites

begin

N ← ordered child nodes of r in H;

S ← empty collection of Voronoi sites;

B ← the bounding perfect square of P ;

areaF raction ←

P area
B area

;

i ← 0 ;

foreach n ∈ N do

f raction ←

n m
r m

× areaF raction ;

if f raction < = 0 . 05 then

(p, i) ← F indPoint on Hilbert curve of order 8 for n

at i ;

end

if f raction > 0 . 05 and f raction < = 0 . 10 then

(p, i) ← F indPoint on Hilbert curve of order 3 for n

at i ;

end

if f raction > 0 . 10 and f raction < = 0 . 225 then

(p, i) ← F indPoint on Hilbert curve of order 2 for n

at i ;

end

if f raction > 0 . 225 then

(p, i) ← F indPoint on Hilbert curve of order 1 for n

at i ;

end

Create Voronoi site s at p;

Add s to S;

end

return S;

end

Algorithm 1: Variably spaced Hilbert curve Voronoi site

placement.

ote that in our implementation we use a modified Hilbert curve

f order 1 that has three additional points halfway in between the

our existing ones to give us a little more choice when looking for

 location for a new Voronoi site.

At this point, our algorithms do indeed start with pretty good

ocations for the Voronoi sites when creating a single level of the

oronoi treemap. By also giving a good starting weight we can do

 bit better. Instead of starting our algorithms with sites that all

ave a weight of 1, we introduce an extra step in which we com-

ute a good starting weight. We do this by creating a traditional

oronoi diagram. Using this Voronoi diagram we check the area of

he current Voronoi region of each site, and compare it with its de-

ired area. We then change the weight based on the current area

nd how much the area needs to grow or shrink. When changing

he weight we ensure that the circle of the site does not enclose

nother site.

.2. Scaled Hilbert curve site placement

In our variable Hilbert curve site placement algorithm, we used

ust four orders Hilbert curves which meant that we almost al-

ays had to choose a Hilbert curve that did not ensure the right

mount of distance to the neighboring sites. In cases of Voronoi

250 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

Fig. 14. A site that has a smaller area because it lies too close to the border (purple)

of the bounding polygon.

t

e

B

f

s

o

A

5

r

t

o

V

W

o

a

w

i

f

H

I

c

e

a

o

s

t

a

d

c

t

f

a

t
sites with a large desired region size they were most often too

close together and in the case of Voronoi sites with small desired

regions they were too far apart. This mismatch in desired region

size and Hilbert curve order meant that there was more movement

than necessary. We realized that we could use any order Hilbert

curve by using the weight of a site and the distance between two

consecutive points on a Hilbert curve. If we see the desired area

size of a region as the area of a circle, we can compute the cor-

responding radius. We then use the distance between two consec-

utive points on Hilbert curves for different orders to find the one

that has a distance just smaller than the radius. We use the Hilbert

curve we found to try to find a good starting position. If we cannot

find a good starting position we fall back to a higher order Hilbert

curve until we do find a good starting position. In Algorithm 2 we

Data :

The polygon P that has to contain the Voronoi sites

The node r with associated metric m that is represented by P

A hierarchical graph H with nodes with associated metric m

Result : A set S = { s 1 , ..., s j } of Voronoi sites

begin

N ← ordered child nodes of r in H;

S ← empty collection of Voronoi sites;

B ← the bounding perfect square of P ;

areaF raction ←

P area
B area

;

totalF raction ← 0 ;

foreach n ∈ N do

f raction ←

n m
r m

· areaF raction ;

radius ←

√

f raction
π ;

p ← nul l ;

hilber tCur v eOrder ← log 2
(

1
radius

)
;

while p == null do

(p, totalF raction) ← find point on curve, see

Algorithm 3 ;

hilber tCur v eOrder ← hilber tCur v eOrder + 1 ;

end

Create Voronoi site s at p;

Add s to S;

end

return S;

end

Algorithm 2: Scaled Hilbert curve Voronoi site placement.

show our solution that introduces scaled Hilbert curves.

With this new algorithm we found that we not only improved

the starting positions of Voronoi sites, but we also found that we

improved the predictability. In Algorithm 1 we still had to change

the weight of Voronoi sites a lot during the first few iterations.

During these weight changes, sites move in relation to the loca-

tion and weight of their neighbors. Both weight and location can

change and cause a site to move in an unpredictable manner. By

minimizing the amount of weight changes we also minimize the

movement of Voronoi sites, which means that Voronoi sites stay

closer to their initial location.

Using scaled Hilbert curve site placement and computing good

starting weights does improve the running time of the Voronoi

treemap algorithm, but we found that we could still improve upon

the starting position of the Voronoi sites. We noticed that sites

that were close to a border of the bounding polygon had a smaller

size region, during the first few iterations of the algorithm, than

we expected with the starting weight they had. If we look at the

weight of a Voronoi site as a circle with a radius of
√

weight , we

can clearly see in Fig. 14 that a large part of the circle of a site
hat is close to a border lies outside of the bounding polygon. This

xplains why the starting location could still be improved upon.

y making sure that the initial location of a site is far enough

rom a border, by computing a smaller bounding polygon, we en-

ure that we reserve enough room for the Voronoi region. For each

rder Hilbert curve we use a different size bounding polygon. In

lgorithm 3 we give our implementation.

.3. Performance and stability

To verify the performance and stability of our algorithms we

ecreated the test setup from Nocaj and Brandes [6] . In their test

hey measured the total difference in desired area and actual area

f the Voronoi regions. The test was repeated 250 times, using 50

oronoi sites placed in a bounding box with an aspect ratio of 2: 1.

e used the original Voronoi treemap algorithm as benchmark for

ur own algorithms. The results we obtained for our benchmark

re similar to the results obtained by Nocaj and Brandes (note that

e do not have their numbers, only what they displayed in a figure

n their paper, so an exact comparison is not possible).

We tested both the variable spaced Hilbert curve algorithm

rom Section 5.1 (from the conference paper [3]) and the scaled

ilbert curve algorithm from Section 5.2 that is new in this paper.

n Fig. 15 the total area error is shown for all three algorithms. We

an clearly see that both our algorithms reach a lower bound area

rror in less iterations than the original algorithm does. We can

lso see that the scaled Hilbert curve algorithm is an improvement

n the variable spaced Hilbert curve algorithm.

Using the same test setup we also compared the movement of

ites in each iteration. In Fig. 16 we show the comparison of the to-

al movement between the three algorithms for every second iter-

tion. We can clearly see that using random starting positions pro-

uces much more movement than using variable or scaled Hilbert

urves. Even when using variable Hilbert curves and a good ini-

ial starting weight there is still a lot of movement during the first

ew iterations. This is due to the fact that small sites start with

n area that is too large and large sites start with an area that is

oo small. This means that all sites move a little. With the scaled

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 251

Fig. 15. Boxplot showing the total area error for every second iteration. Visualized 250 sample instances with random ordered sites, 50 sites placed in a rectangle with

aspect ratio 2: 1, and target areas drawn from a power-law distribution with f (x) =

1
x 4

.

Fig. 16. Boxplot showing the total movement of all sites every second iteration. Visualized 250 sample instances with random ordered sites, 50 sites placed in a rectangle

with aspect ratio 2: 1, and target areas drawn from a power-law distribution with f (x) =

1
x 4

.

H

p

c

t

fi

t

s

p

m

s

ilbert curve algorithm there is less movement, resulting in a more

redictable final location of the Voronoi sites.

For random and non-scaled Hilbert curve site placement we

annot compute a better starting weight, because sites are often

oo close together to give a good relative weight. As a result, the

rst few iterations are spent moving sites to a more even distribu-
ion. When a more or less even distribution is reached the weights

tart to have an impact and we see more movement until a stable

oint is reached. We conclude that a good starting weight reduces

ovement and we can only use a good starting weight when using

caled Hilbert curve initial site placement.

252 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

Data :

totalF raction

areaF raction

radius

hilber tCur v eOrder

boundingPolygon

Result : Point p that lies within boundingPolygon or null

totalF raction updated to the current location on the Hilbert

curve

begin

lineSectionLength ←

1
2 hilber tCur v eOrder

;

index ← totalF raction · 4 hilber tCur v eOrder +

radius
lineSectionLength

;

testPolygon ← create new polygon by moving the borders

of boundingPolygon lineSectionLength closer to the center

of weight;

tries ←

1
areaF raction

;

if lineSectionLength < radius then

t ries ←

radius
lineSectionLength

· t ries ;

end

while tries > 0 do

p ← find point at index on Hilbert curve of order

hilber tCur v eOrder ;

if p lies in testPolygon then

return (p,
index + radius

lineSectionLength

4 hilber tCur v eOrder
) ;

end

index ← index + 1 ;

tries ← tries − 1 ;

end

return (nul l , total F raction) ;

end

Algorithm 3: Algorithm to find a point on a Hilbert curve.

fi

c

g

o

6

i

t

p

t

s

a

v

e

i

p

f

b

t

c

d

v

V

6

t

a

o

o

(

C

p

V

l

c

p

l

d

t

d

6

s

a

r

a

r

l

h

t

t

t

T

d

a
5.4. Limitations

When creating a stable Voronoi treemap we have to keep in

mind that Voronoi sites are ordered using the value of an attribute

of the nodes. If this value changes between versions this will have

the visual representation as the deletion of a node and the intro-

duction of a new node. If the values of the attributes do not have

a strict order we cannot guarantee stability; even when visualizing

the same version the visualizations will be different.

When visually comparing Voronoi treemaps of different ver-

sions and their differences in the underlying data (Table 1), we can

clearly see that the stability introduced by our algorithm maintains

the changes between visualizations in relation to the changes in

the underlying data. However, we have not formally proven that

this property always holds.

6. Implementation

To be able to inspect the visualizations obtained from our

optimized stable Voronoi treemap algorithm, as described in

Section 5.2 , an application with a web interface was built. The ap-

plication allows a user to interactively create visualizations. To al-

low the users to get a complete overview of the visualizations, sev-

eral example cases are provided. In this section an overview of the

web interface and the example cases are given. The implementa-

tion is available for download from http://foswiki.cs.uu.nl/foswiki/

Hage/Downloads .

The software systems we use were taken from a large online

repository that stores both source code and a number of source

code complexity measures [35] . For each method in each source
le in the data set various pieces of information are stored in-

luding McCabe’s cyclomatic complexity, LOC, the number of ar-

uments to the method, and its label, i.e., the path from the root

f the package to the source file and method.

.1. Application

We have built an application with a web interface to ver-

fy that our algorithms in fact produce reasonable results. To ac-

ually create Voronoi treemaps, the implementation needs to be

rovided with software analysis results; the application organizes

hese analysis results by software project and release. For a given

oftware system, multiple versions of the system may be present,

nd the web application allows for the easy comparison of these

ersions.

The algorithms should be supplied with a hierarchy in which to

ach node a number of values is associated; the web application

tself is not able to compute a graph and metrics. The web ap-

lication has a facility for uploading this information in the GEXF

ormat (Graph Exchange XML Format). GEXF is an extensible XML-

ased file format that can describe complex network structures,

heir associated data and their dynamics. The format has a spe-

ial construct to accommodate hierarchies. Also, attributes can be

efined and added to the nodes at will. These two constructs pro-

ide the algorithms with enough of the right structure to create

oronoi treemaps.

.2. Creating a Voronoi treemap

After uploading the data for a given software system revision,

he user needs to select a number of attributes. First, there is the

ttribute that governs the relative size of the Voronoi regions (in

ur examples we use LOC). Second is the attribute that governs the

rder in which nodes in the graph are placed on the Hilbert curve

in our examples we use the fully qualified class name attribute).

learly, the availability of these depends on what attributes are

rovided in the uploaded data set. By default, the colors of the

oronoi treemap represent McCabe’s cyclomatic complexity of each

eaf node. This can be changed by selecting another attribute in the

olor attribute drop-down.

The treemap is rendered as a Scalable Vector Graphics (SVG)

icture, implying that zooming in does not result in artifacts and

oss of detail. Fig. 17 shows a part of the same Voronoi treemap at

ifferent zoom levels. When hovering over an area in the Voronoi

reemap the corresponding label is shown. Clicking on an area will

isplay the attributes with their values.

.3. Comparing Voronoi treemaps

The application also supports an easy comparison of two revi-

ions of the same system. The difference with the ordinary visu-

lization lies in the use of colors: the color of the leaf nodes now

epresents the difference between the two Voronoi treemaps for

 selected attribute. We make a distinction between comparing a

evision with a previous and with a next revision.

When comparing a revision with a previous revision we high-

ight the new leaf nodes in green. The intensity of blue shows by

ow much the value of the selected attribute has decreased since

he previous revision. The intensity of red shows the increase of

he value of the selected attribute since the previous revision.

When comparing a revision with a future revision we highlight

he leaf nodes that will disappear in the future revision in purple.

he nodes that are colored blue have an attribute with a value that

ecreases in the future revision. Nodes that are colored red have

n attribute with a value that will increase in the future revision.

http://foswiki.cs.uu.nl/foswiki/Hage/Downloads

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 253

Table 1

Several versions of Apache Jackrabbit Core visualized. The differences in the attribute used to compute Voronoi region are also shown.

Version No. Visualization old vs new new vs old

1.4.5

1.4.9

1.5.0

1.5.3

1.6.0

1.6.2

1.6.4

2.0.0-BETA6

T

m

A

s

v

s

6

J

r

c

o
he intensity of the color indicates the amount of change; white

eans no change at all.

In Fig. 18 we show the differences between two versions of

pache Jackrabbit Core. Fig. 18 shows the difference between ver-

ion 1.5.3 and the future revision 1.6.0. In Fig. 18 we show the re-

erse: the difference between version 1.6.0 and the previous revi-

ion 1.5.3.
.4. Apache Jackrabbit Core

Apache Jackrabbit Core is the core component of the Apache

ackrabbit project. Apache Jackrabbit is a fully featured content

epository that implements the entire JCR API. With 90,0 0 0 lines of

ode, Apache Jackrabbit Core is a large software system, and with

ver 35 snapshots in the data set [35] , a good fit for our valida-

254 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

Fig. 17. Voronoi treemap at several zoom levels.

Fig. 18. The difference between Apache Jackrabbit version 1.5.3 and 1.6.0.

p

a

I

g

a

p

V

c

w

V

w

V

t

s

p

7

V

w

d

o

m

a

a

H

a

u

t

a

a

p

t

tion. The snapshots range from version 1.0.0 to 2.2.7 and there is a

significant amount of change between those versions.

In Table 1 we show visualizations of eight versions of Apache

Jackrabbit Core and the differences between consecutive versions.

The value of the attribute Lines of Code (LOC) is used to compute

the size of the Voronoi regions and the attribute value for the Mc-

Cabe’s complexity is visualized by the color. We show both the

difference between a version and the next version, and the differ-

ence between a version and the previous version (as described in

Section 6.3 .)

The Voronoi treemaps in Table 1 clearly show that the stabil-

ity introduced by our algorithms keeps the amount of changes be-

tween visualizations in relation to the amount of changes in the

visualized data. The changes between versions 1.4.5, 1.4.9 and 1.5.0

are large, but we can still recognize the different Java packages and

their location is still relatively the same. The amount of changes

between versions 1.5.3 and 1.6.0 are very large, because in version

1.6.0 Apache Jackrabbit Core introduces a large set of generated

Java classes (the large green area in the fourth column). The gen-

erated classes replace functionality that originally was located all

over the software system (the purple classes in the third column).

The difference between the visualization of versions 1.6.2 and

1.6.4 is larger than the difference in the data would indicate. This

can happen when a site is almost directly below one of its neigh-

bors and switches sides. If it previously was on the right side it

would be pushed left and in the new situation it is pushed to the

right. This is especially noticeable when the neighbor site is very

large and sandwiches the site between the neighbor and a border.

Even though the change is larger than expected we can still relate

all the classes between the two versions.

6.5. Performance

We have used the web application we build to visualize

many software systems. With approximately 270,0 0 0 lines of code

Apache Jackrabbit is the largest system we have visualized. Com-
uting a Voronoi treemap of a version of Apache Jackrabbit takes

 little over 30 s on our five year old laptop with an Intel Core

7 processor and plenty of memory. We found this performance

ood enough to use the system for online exploration. While we

re happy with the current performance, by parallelizing the com-

utation of the different AWP Voronoi diagrams needed for one

oronoi treemap, we can easily improve the performance. We

an also improve the performance of the comparison visualization

hich is very slow, around 20 s, for what it does. We reuse the

oronoi treemap that was used to visualize one of the versions

e are comparing, so there is no cost incurred for creating the

oronoi treemap. But the calculation of the difference between the

wo systems is done brute force. For each node in one graph we

earch for a node with the same id in the other graph and com-

are the selected attribute value. This could be improved.

. A small informal case study

As part of our effort to validate the usefulness of stable

oronoi treemaps, we did a small comparative study. The study

as conducted with ten volunteer employees of a large software

evelopment company. All the volunteers had at least five years

f programming experience and an interest in software quality

onitoring. They were also familiar with source code analysis

nd metrics. We recognize that this is a very small sample size

nd that we cannot draw definitive conclusions from the study.

owever, we do feel that the study is valuable because, as far

s we know, there has been no other study on the value and

sefulness of Voronoi treemaps.

As part of our study, there were two main aspects we wanted

o consider. First, we wanted to know if Voronoi treemaps have

ny benefit over software quality visualizations that are readily

vailable today. Second, are stability and predictability useful im-

rovements on traditional Voronoi treemaps? To find the answers

o these questions we used the tool described in Section 6 .

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 255

Fig. 19. The SonarQube treemap view for Apache Jackrabbit Core (reproduced from [37]).

w

s

a

a

a

7

s

c

S

t

t

a

I

l

e

g

d

r

g

C

s

d

c

a

O

b

e

W

f

d

e

w

o

l

e

a

T

v

q

n

o

a

h

l

a

s

l

l

t

w

v

v

w

“

g

X

s

w

g

e

s

g

t
Our study was done by providing each volunteer a computer

ith the required software installed and asking them to find an-

wers to the following list of questions.

• Which five classes have the worst quality?

• Which package has relatively the most classes with low qual-

ity?

• Can you find an explanation for the larger number of low qual-

ity classes in this package?

• What is your opinion on the overall quality of the system? Give

a grade between 1 and 10.

• If you were asked to improve the quality of the software, where

would you start?

We observed how they came to the answer for each question

nd how long it took to find it. After all volunteers had answered

ll questions, we discussed the results in a group setting to evalu-

te the given answers, and to discuss any differences.

.1. The value of Voronoi treemaps

To find out whether Voronoi treemaps have any benefit over

oftware quality visualizations that exist today, we elected to

ompare Voronoi treemaps against the visualizations available in

onarQube. SonarQube [36] is a widely used open source project

hat provides a platform for source code analysis and presenting

he results. SonarQube was familiar to all of the participants: they

ll used the web interface to monitor the quality of their software.

n SonarQube most of the analysis results are presented as simple

ists and tables, but SonarQube does offer a few visualizations. For

xample, SonarQube offers a squarified treemap with the aggre-

ate of several quality metrics. The SonarQube project has a public

emo instance of their software where they publish the analysis

esults of several open source programs. One of the analyzed pro-

rams is Apache Jackrabbit [37] , in Fig. 19 the Apache Jackrabbit

ore treemap view is shown. Because we also have analysis re-

ults for Apache Jackrabbit that can be visualized with our tool we

ecided to do our comparison using Apache Jackrabbit. We have

hosen to use the analysis results for version 2.0.0 as we had the

nalysis results for that version available in both tools.

We split the group of volunteers into two equal sized groups.

ne group would be using SonarQube and the other group would

e using our tool to answer the five questions listed above. For
ach question we measured the time it took to find the answer.

e also discussed the effort it took to find the answers and asked

or an overall experience of using either SonarQube or our tool. We

iscussed the results with all volunteers as a group.

During the case study we found that the time needed to answer

ach question varied widely within the two groups, which is why

e decided that the timing was of little to no value. We therefore

nly focused on the answers and the conclusions that were drawn.

The five classes with low quality that were found largely over-

apped between all the volunteers. The users of SonarQube had an

asy time: they could use a sorted list with the worst offenders

t the top. This sorted list used the aggregate of several metrics.

he users of our tool had it somewhat harder: they had to create

isualizations with the metrics that they believed best show the

uality of a class. Most users of our tool used the visualization of

umber of lines as size and McCabe’s complexity as color. One user

pted to use number of parameters as size and McCabe’s complexity

s color. The consensus was that a class with many methods with

igh complexity is bad.

When trying to find the package that has the most classes with

ow quality in relation to the total number of classes in the pack-

ge, the SonarQube users had a harder time, because all the lists

how either only a single package or the complete system. When

ooking at the complete system it is hard to find all classes be-

onging to a package. When looking at a single package it is hard

o compare it to other packages in the system. Using our tool this

as easier, even though you still had to count classes by hand. The

isualizations easily showed the worst offender and a quick count

erified it.

The explanation for the larger number of low quality classes

as easily found. The name of the package gave it away, having

generated”, “xml” and “parser” in its name. The package contains

enerated code for an XML parser and the complexity of parsing

ML documents results in complex code that is hard to under-

tand.

The question about the overall quality of the system is where

e found the first major difference in opinion between the two

roups of volunteers. We asked both groups to not take the gen-

rated code into account when evaluating the quality of the whole

ystem. The group that was using SonarQube had to use the ag-

regated overview page, the squarified treemap with little de-

ail or had to go into the detailed listings. This meant that they

256 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

w

o

o

s

r

t

W

s

b

v

c

W

i

r

c

e

e

g

u

i

w

Q

e

t

e

i

t

S

n

c

T

t

f

w

t

o

t

p

b

g

m

i

p

b

t

w

T

t

w

m

t
focused on those classes that were reported as having a lower

quality, but could not directly relate them to the complete system.

While SonarQube itself reported the overall quality as good, an A

grade, the amount of warnings and low quality classes that were

reported gave a different impression. The volunteers using Sonar-

Qube gave a grade between 6 and 7.5. The volunteers that used

our tool could clearly see how the different subsystems related to

each other and could reason about the quality of the system as a

whole. They gave the system grades between 8 and 8.5. The users

of our tool did not give the overall quality as high a grade as Sonar-

Qube itself did; they noticed several classes and packages that have

a high number of functions with higher than average complexity.

They felt that while each function on itself might not be very com-

plex, when they are grouped together it indicates a complex piece

of software that might be hard to reason about.

Clearly the two groups had a different view on the overall qual-

ity of the system as a whole; the users of our tool found the over-

all quality higher than the SonarQube users, but lower than the

quality grade reported by SonarQube. At this point we gave both

groups access to both tools and asked them to re-evaluate their

quality grade. What we found interesting to see was that with the

visualizations provided by our tool, the volunteers could clearly

pinpoint classes that needed further inspection and used Sonar-

Qube to navigate to the source code. After giving the volunteers

some more time to play around with both tools, we asked them

to grade the overall quality of the system again. The volunteers

that originally used SonarQube now all gave a grade of 8 and the

volunteers using our tool gave the same grade as they did before.

We asked the volunteers that originally used SonarQube to explain

why they gave a higher grade than before and they all agreed on

the fact that they now could place the different metrics reported

on classes in the context of the whole system. Before, they focused

on the large number of reported low quality classes and warnings

that SonarQube gave and could not get a feeling for the number

of good quality classes. With the Voronoi treemap from our tool

they could get a total view of the system. After having seen that

SonarQube offers an aggregated quality score for classes, the users

of our tool said that our tool could be improved by also offering

an option to aggregate multiple metrics into a single metric for vi-

sualization.

The last question we asked was where they would start to im-

prove the quality of the system. The answers between the two

groups were largely in agreement. They both would pick the top-

most offending classes and start there. There was one exception:

a volunteer using our tool was of the opinion that a single low

quality function or class in a package might be acceptable. The in-

sight that this volunteer offered was that packages that have many

classes and functions with a lower than average quality could very

well indicate a problem that lies deeper than the lines of code

themselves. It is very well possible this is an indicator of an ar-

chitecture problem that could be solved on that level and increase

the quality of the system significantly.

7.2. The value of stability and predictability

After evaluating the usefulness of Voronoi treemaps we also

wanted to know if stability and predictability had an added ben-

efit. We again split the group of ten volunteers into two groups

of five. Both groups were given our tool, but only one group was

given a fully functioning version of our tool. The other group we

gave a crippled version of our tool: the ordering of the data that

was being visualized was always random. Otherwise the tool was

the same, which means that they still had all the other benefits

of our tool, such as interactive creation of Voronoi treemaps, the

ability to select one metric for size of a region and one for color,

and the ability to compare two versions of the system. In Fig. 20
e show several example Voronoi treemaps, of the same version

f Apache Jackrabbit Core, with different metrics for the available

ptions.

For this part of the study we gave both groups the complete

et of versions of Apache Jackrabbit we had source code analysis

esults for. Again, we formulated several questions for both groups

o answer. Afterwards we discussed the results as a single group.

• How does the quality of class org.apache.jackrabbit.core.

WorkspaceImpl evolve over time?

• In version 1.3.0 class org.apache.jackrabbit.core.nodetype.

NodeTypeDefDiff is introduced. When looking at version 1.2.2,

can you predict where the class will be in the visualization of

1.3.0?

• What is the big change that happens in the system between

version 1.6.4 and 2.0.0?

• How has the quality of the system evolved over time?

When trying to answer the question about the quality of class

orkspaceImpl , it took the group that used the fully working ver-

ion of our tool some time to find this class in the visualization,

ut then they quickly moved through the visualizations of several

ersions of the system. In each version they could quickly find the

lass, because it was visualized in approximately the same location.

hen a big change happened between two versions of the system,

t took a little longer to find the class, but they often could quickly

ecognize the package and find the class in it. Because the order of

lasses in a package and functions in a class stays the same, it was

asy to identify them even if the location was different. The differ-

nce view made it even easy to see small changes to the class. The

roup that was using the crippled version of our tool quickly gave

p using visualizations and resorted to using SonarQube. Because

n each visualization the location of packages, classes and functions

as completely different, finding the class was hard. Using Sonar-

ube they had to find the class in the listings, which was fairly

asy using the search function. In the end, the amount of effort it

ook to come to the answer that the class had hardly changed was

qual for both groups. While there was little change to the class

tself, the users of the fully functioning tool could tell if the sys-

em as a whole was changing or not. The group that reverted to

onarQube could only talk about the single class and had no real

otion of the changes in the overall system.

The question whether the volunteer could predict where a new

lass would show up in the visualization was somewhat unfair.

he group using our crippled tool could not even come close; each

ime they visualized the system the outcome was completely dif-

erent. The group using the full version of our tool could predict

ith high accuracy where the class was going to appear. Because

here were few other changes between the versions, the location

f the package that the class belonged to stayed the same. With

he ordered placement of classes within a package they could even

redict where the class would be visualized in the package.

The answer to the third question was fairly easy to find for

oth groups; a large part of the system was replaced with new

enerated code. For the group using our full tool this large change

eant that the visualizations had a bigger difference than visual-

zations of any other two consecutive versions. Once one or two

ackages were identified, identifying the other packages was easy

ecause their locations were predictable due to the predictable na-

ure of our algorithm. Using the difference view it was easy to see

hich packages and classes were removed and which were new.

he group that used the crippled version could still easily see that

here was a big change. Finding which packages remained and

hich were gone was a much harder task. The difference view did

ake it possible, but they could not easily correlate packages be-

ween versions and some even resorted to making a list on paper

R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258 257

Fig. 20. Apache Jackrabbit Core 1.4.2 visualized using four different sets of metrics. The first metric is used to compute region size, the second is used to order the data, and

the third is used to color the region. LOC: Lines of Code , FQN: Fully Qualified Name , MCC: McCabe’s Cyclomatic Complexity , UC: Usage Count , ID: unique IDentifier .

a

m

w

t

v

w

c

o

t

t

i

d

T

a

n

n

7

a

c

Q

a

a

m

d

v

t

o

w

t

a

t

c

o

s

r

t

t

p

S

O

r

fi

i

m

7

f

w

d

s

t

c

f

t

s

a

f

nd using that to keep track of what was new and what was re-

oved.

The fourth question was about the changes in quality of the

hole system over time. To help answer this question we prepared

wo slide shows: one using the full tool and one using the crippled

ersion. In these slide shows, we showed a slide for each version

ith a Voronoi treemap with lines of code as size and McCabe’s

omplexity as color. The slide show created with the full version of

ur tool showed a gradually and naturally changing software sys-

em that grows in size and complexity. The slide show made with

he crippled tool was hard to interpret; each time you got a feel-

ng for the quality of a version, the next Voronoi treemap was so

ifferent that it was hard to see what changed or stayed the same.

he volunteers in the group that used the crippled tool did have

 feeling that the system grew in size and complexity, but could

ot say with certainty if this was happening in a controlled and

ormal fashion.

.3. Threats to validity

The case study was done with a small group of volunteers that

lready had an affinity with software quality monitoring, source

ode analysis and metrics. All volunteers were familiar with Sonar-

ube and had used the web interface. None of the volunteers had

ny familiarity with Apache Jackrabbit which made placing the

nalysis results in context harder than with software they are inti-

ately familiar with.

The case study was not set up as a formal case study; we had a

iscussion between the two main parts of the study in which the

olunteers could influence each other. Also, several of the ques-

ions asked are biased in favor of stable Voronoi treemaps and we

nly used one software system when evaluating the usefulness.

The relation between software metrics and the quality of soft-

are is not always evident. The users of our tool only had access
o visualizations of the raw metric values. While most agreed that

 high McCabe’s complexity is bad and that a high number of func-

ion parameters is also an indicator of harder to maintain source

ode, the metrics do not directly show low quality code. During

ur study we asked questions in relation to quality of a software

ystem, but tried to answer those questions solely based on met-

ics. We had several discussions about how a certain metric relates

o quality.

The functionality offered by SonarQube is much larger than

he functionality offered by our tool. For example, SonarQube sup-

orts a much larger set of metrics and rules that can be measured.

onarQube also allows the user to click through to the source code.

ur tool is strictly a visualization tool and is limited to the analysis

esults that are provided. The analysis results we used were much

ner grained than those used in SonarQube; all metrics visualized

n our tool were at the method/function level, while most of the

etrics in SonarQube were at the class/file level.

.4. Conclusion

Our study was too small to draw definitive conclusions, but we

eel we can say that Voronoi treemaps are a valuable visualization

hen assessing a software system using metrics. Stability and pre-

ictability have as added benefit that insight gained from one ver-

ion can be carried over to another version. The difference view of

wo versions helps in identifying exactly what changed, and be-

ause it uses the same stable Voronoi treemap the insight is trans-

erable to the view of a single version of a software system.

The volunteers of our study suggested several improvements

hat we could add to our tool. While they had little to do with

table Voronoi treemaps as such, we do think they would be valu-

ble additions. The suggestions as given by the volunteers are the

ollowing:

258 R. van Hees, J. Hage / Information and Software Technology 87 (2017) 242–258

[

[

[

[

[

• A search function to find a package, class or function would

help when looking for a specific package, class or function.

• A textual tree view of the system that highlights the node that

is clicked on in the Voronoi treemap. This gives a more detailed

view of a class or package.

• The ability to scale a Voronoi treemap in relation to its absolute

metric size. When comparing two Voronoi treemaps the size of

regions can be hard to compare, because the size is relative to

the parent Voronoi treemap.

• The ability to click through to the source code. This enables the

user to find out why a certain class or function has a certain

metric value.

• The ability to combine two or more metrics to a new ag-

gregate metric to use for either size or color in the created

Voronoi treemap. Visualizing just two metrics does not always

say enough about the quality of a system; visualizing more

metrics at once could help.

8. Conclusion

In this paper we have shown how we are able to create stable

and predictable Voronoi treemaps using scaled Hilbert curves and

additively weighted power Voronoi diagrams. We explained our

sweep line based algorithm for creating those additively weighted

power Voronoi diagrams. We also showed how we evolved our us-

age of Hilbert curves from a simple deterministic site placement

algorithm to a scaled approach that uses many orders of Hilbert

curves to provide a higher level of stability and predictability. In

the process we also improved upon the number of iterations it

takes to create a Voronoi treemap, by selecting a better starting

weight for Voronoi sites. Using a tool that implements our algo-

rithms, we were able to show stable and predictable visualizations

of multiple versions of a large software system and to do a small

case study. The case study gives a first indication that stable and

predictable Voronoi treemaps are valuable when looking at the

quality of a software system evolving over time.

Topics for future work include a larger study on the usefulness

of stable and predictable Voronoi treemaps, following the study of

Steinbrückner [7] . We would also like to see if we can extend our

algorithm to deal with relationships between visualized data items,

so that related items end up close together. We suspect this may

be possible by exploiting the order in which the visualized items

are mapped onto the Hilbert curve.

Acknowledgments

The authors would like to thank Hans Bodlaender for his contri-

bution to this project, and Joost Visser and others at the Software

Improvement Group for initiating it. We also want to thank the

anonymous reviewers for their many useful comments to improve

this paper.

References

[1] Apache Software Foundation, Apache jackrabbit . URL http://jackrabbit.apache.

org .
[2] S. Fortune , A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1)

(1987) 153–174 .
[3] R. van Hees , J. Hage , Stable voronoi-based visualizations for software quality

monitoring, in: Software Visualization (VISSOFT), 2015 IEEE 3rd Working Con-
ference on, IEEE, 2015, pp. 6–15 .

[4] M. Balzer, O. Deussen, C. Lewerentz, Voronoi treemaps for the visualization of
software metrics, in: Proceedings of the 2005 ACM Symposium on Software

Visualization (SOFTVIS05), ACM Press, New York, NY, USA, 2005, pp. 165–172 .

http://doi.acm.org/10.1145/1056018.1056041 .
[5] S. Hahn , J. Trümper , D. Moritz , J. Döllner , Visualization of varying hierar-

chies by stable layout of Voronoi treemaps, in: Proceedings of the 5th In-
ternational Conference on Information Visualization Theory and Applications

(IVAPP). SCITEPRESS-Science and Technology Publications, 2014 .
[6] A. Nocaj , U. Brandes , Computing Voronoi treemaps: faster, simpler, and resolu-
tion-independent, Comput. Graph. Forum 31 (3pt1) (2012) 855–864 .

[7] F. Steinbrückner, Consistent Software Cities: Supporting Comprehen-
sion of Evolving Software Systems, 2012 . http://books.google.nl/books?id=

GLPgngEACAAJ .
[8] A. Noack , C. Lewerentz , A space of layout styles for hierarchical graph models

of software systems, in: Proceedings of the 2005 ACM Symposium on Software
Visualization (SOFTVIS05), ACM Press New York, NY, USA, 2005, pp. 155–164 .

[9] M.-A. Storey , J. Michaud , SHriMP views: an interactive environment for explor-

ing multiple hierarchical views of a Java program, in: Proceedings of 9th Inter-
national Workshop on Program Comprehension (IWPC01), 2001 .

[10] M. Pinzger , H. Gall , M. Fischer , M. Lanza , Visualizing multiple evolution met-
rics, in: Proceedings of the 2005 ACM Symposium on Software Visualization

(SOFTVIS05), ACM Press New York, NY, USA, 2005, pp. 67–75 .
[11] T. Gîrba , M. Lanza , S. Ducasse , Characterizing the evolution of class hierarchies,

in: Proceedings of the 9th European Conference on Software Maintenance and

Reengineering (CSMR05), IEEE Computer Society, 2005, pp. 2–11 .
[12] M. Lanza , S. Ducasse , Polymetric views - a lightweight visual approach to re-

verse engineering, IEEE Trans. Softw. Eng. 29 (9) (2003) 782–795 .
[13] A . Telea , A . Maccari , C. Riva , An Open Visualization Toolkit for Reverse Archi-

tecting, in: Proceedings of the 10th International Workshop on Program Com-
prehension, IEEE Computer Society Washington, DC, USA, 2002 .

[14] L. Voinea , A. Telea , Visual data mining and analysis of software repositories,

Comput. Graph. 31 (3) (2007) 410–428 .
[15] Q. Wang , W. Wang , R. Brown , K. Driesen , B. Dufour , L. Hendren , C. Verbrugge ,

EVolve: an open extensible software visualization framework, in: Proceedings
of the 2003 ACM Symposium on Software Visualization, ACM Press New York,

NY, USA, 2003 .
[16] A. Hanjalic, Clonevol: visualizing software evolution with code clones, in: Pro-

ceedings of the First IEEE Working Conference on Software Visualization (VIS-

SOFT13), 2013, pp. 1–4, doi: 10.1109/VISSOFT.2013.6650525 .
[17] R.G. Kula, C. De Roover, D. German, T. Ishio, K. Inoue, Visualizing the evolution

of systems and their library dependencies, in: Proceedings of the Second IEEE
Working Conference on Software Visualization (VISSOFT14), 2014, pp. 127–136,

doi: 10.1109/VISSOFT.2014.29 .
[18] G. Langelier , H. Sahraoui , P. Poulin , Exploring the evolution of software quality

with animated visualization, in: 2008 IEEE Symposium on Visual Languages

and Human-Centric Computing, IEEE, 2008, pp. 13–20 .
[19] F. Steinbrückner , C. Lewerentz , Understanding software evolution with soft-

ware cities, Inf. Vis. 12 (2) (2013) 200–216 . 1473871612438785
[20] B. Cornelissen , A. Van Deursen , L. Moonen , A. Zaidman , Visualizing testsuites

to aid in software understanding, in: Proceedings of the 11th European Con-
ference on Software Maintenance and Reengineering (CSMR07), IEEE, 2007,

pp. 213–222 .

[21] D. Holten , Hierarchical edge bundles: visualization of adjacency relations in
hierarchical data, in: Proceedings of the IEEE Symposium on Information Visu-

alization. IEEE Computer Society, 2006 .
22] P. Gestwicki , B. Jayaraman , Methodology and architecture of JIVE, in: Proceed-

ings of the 2005 ACM Symposium on Software Visualization, ACM Press New
York, NY, USA, 2005, pp. 95–104 .

[23] O. Benomar , H. Sahraoui , P. Poulin , Visualizing software dynamicities with heat
maps, in: Software Visualization (VISSOFT), 2013 First IEEE Working Confer-

ence on, IEEE, 2013, pp. 1–10 .

[24] B. Shneiderman, Tree visualization with tree-maps: 2-d space-filling approach,
ACM Trans. Graph. 11 (1) (1992) 92–99 . http://doi.acm.org/10.1145/102377.

115768 .
25] B. Shneiderman , M. Wattenberg , Ordered treemap layouts, in: Proceedings

of the IEEE Symposium on Information Visualization (INFOVIS01), 2001,
pp. 73–78 .

26] M. Bruls , K. Huizing , J.J. Van Wijk , Squarified Treemaps, Springer, 20 0 0 .

[27] J. Van Wijk , H. Van de Wetering , Cushion treemaps: visualization of hierarchi-
cal information, in: Proceedings of the IEEE Symposium on Information Visu-

alization (INFOVIS99), 1999, pp. 73–78 .
[28] R. van Hees, Stable Voronoi treemaps for software system visualization, http:

//www.cs.uu.nl/people/jur/msctheses/rinsevanhees-msc.pdf (2014).
[29] M.d. Berg , O. Cheong , M.v. Kreveld , M. Overmars , Computational Geometry:

Algorithms and Applications, 3rd ed., Springer-Verlag TELOS, Santa Clara, CA,

USA, 2008 .
[30] M.-M. Deza , E. Deza , Dictionary of Distances, Elsevier, 2006 .

[31] M. Wattenberg , Visualizing the stock market, in: Conference on Human Factors
in Computing Systems, 1999, pp. 188–189 .

32] H.S. Warren , Hacker’s Delight, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002 .

[33] Wolfram Demonstrations Project, reproduced from http://demonstrations.

wolfram.com/HilbertAndMooreFractalCurves/ .
[34] Datagenetics, Hilbert curves, reproduced from http://datagenetics.com/blog/

march22013/index.html .
[35] S. Raemaekers, A. van Deursen, J. Visser, The maven dependency dataset,

(2013). 10.4121/uuid:68a0e837- 4fda- 407a- 949e- a159546e67b6 .
36] SonarQube, SonarQube; an open platform to manage code quality . URL http:

//www.sonarqube.org/ .

[37] SonarQube, SonarQube online demo instance for apache jackrabbit . URL https:
//nemo.sonarqube.org/overview?id=org.apache.jackrabbit:jackrabbit .

http://jackrabbit.apache.org
http://jackrabbit.apache.org
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0002
http://doi.acm.org/10.1145/1056018.1056041
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0005
http://books.google.nl/books?id=GLPgngEACAAJ
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0014
http://dx.doi.org/10.1109/VISSOFT.2013.6650525
http://dx.doi.org/10.1109/VISSOFT.2014.29
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0022
http://doi.acm.org/10.1145/102377.115768
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0026
http://www.cs.uu.nl/people/jur/msctheses/rinsevanhees-msc.pdf
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30282-8/sbref0030
http://demonstrations.wolfram.com/HilbertAndMooreFractalCurves/
http://datagenetics.com/blog/march22013/index.html
http://10.4121/uuid:68a0e837-4fda-407a-949e-a159546e67b6
http://www.sonarqube.org/
http://www.sonarqube.org/
https://nemo.sonarqube.org/overview?id=org.apache.jackrabbit:jackrabbit
https://nemo.sonarqube.org/overview?id=org.apache.jackrabbit:jackrabbit

	Stable and predictable Voronoi treemaps for software quality monitoring
	1 Introduction
	2 Related work
	3 Background: Voronoi diagrams and Voronoi treemaps
	3.1 History
	3.2 Algorithms and terminology

	4 Creating Voronoi treemaps
	4.1 Additively weighted power Voronoi sweep line algorithm
	4.1.1 Updated circle event
	4.1.2 New event: top site circle event
	4.1.3 Extended sweep line

	4.2 Voronoi treemap algorithm
	4.3 Limitations
	4.3.1 Additively weighted power Voronoi diagrams
	4.3.2 Voronoi treemap algorithm

	5 Hilbert space filling curves for better initial site placement
	5.1 Variably spaced Voronoi sites
	5.2 Scaled Hilbert curve site placement
	5.3 Performance and stability
	5.4 Limitations

	6 Implementation
	6.1 Application
	6.2 Creating a Voronoi treemap
	6.3 Comparing Voronoi treemaps
	6.4 Apache Jackrabbit Core
	6.5 Performance

	7 A small informal case study
	7.1 The value of Voronoi treemaps
	7.2 The value of stability and predictability
	7.3 Threats to validity
	7.4 Conclusion

	8 Conclusion
	 Acknowledgments
	 References

