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Abstract: The objective of capture-recapture analysis is to estimate the size
of an elusive population, for which the zero-truncated Poisson model is a basic
model. We extend this model to the more general recurrent events model to
include cyclical effects and time-varying covariates. An application to police data
on victims of domestic violence provides strong evidence for the presence of weekly
and seasonal cyclical effects on the rate of police reports.
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1 Introduction

The zero-truncated Poisson model is a well-established model for the analysis
of single-source capture-recapture data. Such data typically arise when each ob-
servation of a member of an elusive population is recorded in a registration file.
Counting the number of records for each individual population member yields a
zero-truncated count distribution, because population members with a zero count
are not in the register. Under the assumption that the counts follow a Poisson dis-
tribution, an estimate of the Poisson parameter can be obtained that in turn can
be used to estimate the frequency of the zero count. Relevant covariates can be
included to model individual differences in Poisson parameters, this leads to the
zero-truncated Poisson regression model (TPR) (see Cruyff & van der Heijden,
2013; van der Heijden et al., 2003).

Like any type of events data, single-source capture-recapture data can exhibit
seasonal or cyclical patterns. For example, a homeless person may be more likely
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to stay in a homeless shelter during winter than in the summer and a problematic
drug user may have a higher probability of being admitted to the hospital in the
weekend than during the week. However, the TPR is unable to incorporate these
types of cyclical effects.

In this paper we present a method that allows for the inclusion of cyclical effects in
single-source capture-recapture data. In this method, the TPR is extended to the
zero-truncated recurrent events model (TREM), which includes a time dimension.
This dimension makes the model more general than the TPR, since it allows for
the inclusion of time-varying covariates and cyclical effects. The resulting model
can accommodate a wide variety of effects: time-invariant, cyclical, time-varying,
and interactions thereof.

2 Method

The TREM is an extension of the TPR that allows for the modelling of time-
varying covariates and cyclical effects in single-source capture-recapture data.
The likelihood of the TREM is given by

L(β) =

n∏
i=1

{
yi∏
j=1

λij

(
e−Λi(τ)

1− e−Λi(τ)

)}
, (1)

where Λi =
∑τ
t=1 λit, and lnλit = β0 + β1xit1 + · · · + βpxitp (Cook & Lawless,

2007, p. 273-278). Here, xitp specifies the value covariate p takes at time point t
for person i. Additionally, yi is the total number of captures over the observation
period for individual i. Note that this allows for time-varying covariates since
xitp may vary over time.

Cyclical effects are modelled by adding a cosine term to the linear predictor of
the TREM:

lnλit = β0 + β1xit1 + · · ·+ βpxitp + α cos

(
2π

k
t− θ

)
, (2)

where α is the amplitude and θ the horizontal shift. The period k is a constant
and determines how often the cyclical component peaks. The cosine term in
Equation (2) is non-linear and therefore difficult to estimate, but can be rewritten
to a linear function. The most common method is using a trigonometric identity
to parametrise the cyclical effect as

α cos

(
2π

k
t− θ

)
= βcos cos

(
2π

k
t

)
+ βsin sin

(
2π

k
t

)
, (3)

from Cryer & Chan (1994, Ch. 3, p. 34). The final expression can be easily
included in the linear predictor of the recurrent events model, where cos( 2π

k
t)

and sin( 2π
k
t) are entered as covariates. The interpretation of the two cyclical

regression coefficients is not very intuitive, but they can be transformed back in
terms of α and θ:

α =
√
β2

cos + β2
sin,

θ = arctan2(βsin, βcos),
(4)
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which is also known as a polar transformation. The linear parametrisation of
Equation (3) has the advantage that interaction effects with time-invariant co-
variates can be included almost in the classical manner. This provides the option
to include main effects of time-invariant covariates, cyclical effects, and interac-
tions between these two simultaneously.

Parameter estimates of the TREM are obtained by optimizing the loglikelihood
given by

l(β) =

n∑
i=1

yi∑
j=1

lnλij −
n∑
i=1

Λi −
n∑
i=1

ln[1− e−Λi ]. (5)

Analytical closed form expressions for the score function and Hessian of the
TREM can be derived from the loglikelihood (see Hu & Lawless, 1996). These ex-
pressions are then used to set up a Newton-Raphson algorithm. Standard errors
are obtained through the observed information matrix.

Given the parameter estimates β̂ of the TREM, the Horvitz-Thompson popula-
tion size estimate is obtained as

N̂ =

n∑
i=1

Ii

1− e−Λ̂i
, (6)

where Ii = 1 if case i is observed in the sample and Ii = 0 otherwise. The

denominator 1 − e−Λ̂i is the probability that a population member is observed
in the sample. The variance of N̂ is calculated through the Delta method, as
presented in van der Heijden et al. (2003).

3 Application to domestic violence data

The application is a data set of domestic violence victims from the Netherlands
in the period 2004 - 2006. The response of interest is the number of times a
police report was filed for domestic violence for a certain individual. Although
information on perpetrators of domestic violence is also available, we do not
focus on that group in this paper. Hence, our population of interest is defined
as victims of domestic violence. There are a total of 56,575 observed victims of
domestic violence in the period 2004 - 2006. These data are made available by
the Dutch national police.

The variables gender and age are available as subject-specific covariates. Gender
is included as a time-invariant covariate. Age is modelled with time-varying linear
and quadratic contrasts, meaning that an individual can move from one age group
to another during the observation period. The age categories are: 0-17, 18-29, 30-
39, 40-49, 50+.

Cyclical effects with periods 366 and 7 are included, representing seasonal and
weekly effects, respectively. Interaction effects between the cyclical week effect
and the linear and quadratic age effects allow each age group to have a different
cyclical week effect. Furthermore, a linear effect of time is added in the final
model to allow for an increase or decrease of capture probabilities over the time
period of three years. Finally, an interaction effect of the cyclical season effect
and the linear time effect is included so that the cyclical seasonal is allowed to
vary over time.
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TABLE 1. Regression coefficients and point and interval estimate of the popula-
tion size for the TREM model fit to the domestic violence data

Variable Coding β̂ SE

Intercept -8.63 0.03 ∗∗∗

Gender (male = 0, female = 1) 0.63 0.03 ∗∗∗

Age Linear 0.26 0.03 ∗∗∗

Quadratic -0.50 0.02 ∗∗∗

cos366 -0.06 0.01 ∗∗∗

sin366 -0.02 0.01 ∗∗

cos7 0.05 0.01 ∗∗∗

sin7 -0.04 0.01 ∗∗∗

Age (Linear)*cos7 -0.03 0.01 ∗

Age (Linear)*sin7 0.03 0.01
Age (Quadratic)*cos7 0.12 0.01 ∗∗∗

Age (Quadratic)*sin7 0.01 0.01
Time 0.34 0.01 ∗∗∗

Time*cos366 0.01 0.01
Time*sin366 0.16 0.01 ∗∗∗

N̂ 211,155
95%-CI 206,460 - 215,848

Note: ∗∗∗ = p < 0.001, ∗∗ = p < 0.01, ∗ = p < 0.05.

−
0.

5
0.

0
0.

5

Fe
br

ua
ry

−2
00

4

M
ay

−2
00

4

Aug
us

t−
20

04

Nov
em

be
r−

20
04

Fe
br

ua
ry

−2
00

5

M
ay

−2
00

5

Aug
us

t−
20

05

Nov
em

be
r−

20
05

Fe
br

ua
ry

−2
00

6

M
ay

−2
00

6

Aug
us

t−
20

06

Nov
em

be
r−

20
06

Fe
br

ua
ry

−2
00

7

Time

C
ha

ng
e 

in
 ln

 λ
it

FIGURE 1. Fitted general cyclical trend for the domestic violence application
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FIGURE 2. Fitted cyclical week effect and its interaction with age for the do-
mestic violence application for the month January 2004

Table 1 shows the regression coefficients and point and interval estimate of the
population size for the model fitted to the data. The effects of gender and age
are significant. Women are more likely to be mentioned as a victim in a police
report for domestic violence than men, and there is a quadratic effect of age.

Both the cyclical main effects are significant, indicating the presence of seasonal
and weekly variation in capture probabilities. Additionally, the interaction effects
of age (linear and quadratic) with the cosine terms of the cyclical week effect are
significant, so that the cyclical week effect is different for each age group.

A positive effect of time is found, indicating that the capture probabilities increase
over the course of the observation period. One of the two interaction components
of time with the cyclical season effect is also significant, so that the cyclical season
effect is different over the three years. The population size estimate of domestic
violence victims in the time period 2004 - 2006 is 211,155 (95%-CI: 206,460 -
215,848).

The general cyclical trend of the fitted model (omitting cyclical week effects)
is presented in Figure 1. This trend consists of three components: the cyclical
season main effect, the linear effect of time, and the interaction between the two.
In general, we can say that the cyclical season effect is stronger in 2004 and 2006
than in 2005, and that the capture probabilities increase over the course of the
observation period. Additionally, the cyclical season effect in 2006 peaks in May,
while in the 2004 and 2005 the effect peaks in September.

In Figure 2, the cyclical week effect and the interaction of this effect with age is
presented. These effects are plotted for the month January in 2004, and repeat
throughout the length of the observation window. The age group 30-39 is the
reference group in this analysis, represented by the green curve. The strength of
the cyclical week effect is lowest for this reference group. The cyclical week effect
is strongest for the 50+ age group, while the strength of the cyclical effects of
the other groups is somewhere in between. For all age groups, the cyclical week
effect peaks after the weekend. The groups 40-49 and 50+ peak on Wednesday,
and the other groups on Monday (18-29) and Tuesday (0-17 and 30-39).
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