
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.211.105.88

This content was downloaded on 31/08/2017 at 14:54

Please note that terms and conditions apply.

Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble

simulations

View the table of contents for this issue, or go to the journal homepage for more

2016 Environ. Res. Lett. 11 094007

(http://iopscience.iop.org/1748-9326/11/9/094007)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Reliability of African climate prediction and attribution across timescales

Fraser C Lott, Margaret Gordon, Richard J Graham et al.

Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May

precipitation forecasts in equatorial East Africa

Shraddhanand Shukla, Christopher Funk and Andrew Hoell

Towards seasonal Arctic shipping route predictions

N Melia, K Haines, E Hawkins et al.

Skilful seasonal predictions for the European energy industry

Robin T Clark, Philip E Bett, Hazel E Thornton et al.

Predicting uncertainty in forecasts of weather and climate

T N Palmer

Did a skillful prediction of sea surface temperatures help or hinder forecasting of the 2012

Midwestern US drought?

Jonghun Kam, Justin Sheffield, Xing Yuan et al.

Skilful seasonal predictions of Baltic Sea ice cover

Alexey Yu Karpechko, K Andrew Peterson, Adam A Scaife et al.

Skillful seasonal predictions of winter precipitation over southern China

Bo Lu, Adam A Scaife, Nick Dunstone et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-9326/11/9
http://iopscience.iop.org/1748-9326
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1748-9326/9/10/104017
http://iopscience.iop.org/article/10.1088/1748-9326/9/9/094009
http://iopscience.iop.org/article/10.1088/1748-9326/9/9/094009
http://iopscience.iop.org/article/10.1088/1748-9326/aa7a60
http://iopscience.iop.org/article/10.1088/1748-9326/aa57ab
http://iopscience.iop.org/article/10.1088/0034-4885/63/2/201
http://iopscience.iop.org/article/10.1088/1748-9326/9/3/034005
http://iopscience.iop.org/article/10.1088/1748-9326/9/3/034005
http://iopscience.iop.org/article/10.1088/1748-9326/10/4/044007
http://iopscience.iop.org/article/10.1088/1748-9326/aa739a


Environ. Res. Lett. 11 (2016) 094007 doi:10.1088/1748-9326/11/9/094007

LETTER

Improved sub-seasonal meteorological forecast skill using weighted
multi-model ensemble simulations

NikoWanders andEric FWood
Department of Civil and Environmental Engineering, PrincetonUniversity, Princeton,NJ 08544,USA

E-mail: nwanders@princeton.edu

Keywords: sub-seasonal forecasting, NMMEphase 2, extreme events, weighted ensemblemean, global

Supplementarymaterial for this article is available online

Abstract
Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital
information for a variety of water-related decisionmakers. Here, we investigate the skill of four sub-
seasonal forecastmodels fromphase-2 of theNorthAmericanMulti-Model Ensemble using
reforecasts for the period 1982–2012. Twoweightedmulti-model ensemblemeans from themodels
have been developed for predictions of both sub-seasonal precipitation and temperature. By
combiningmodels through optimal weights, themulti-model forecast skill is significantly improved
compared to a ‘standard’ equally weightedmulti-model forecastmean.We show that optimalmodel
weights are robust and the forecast skill ismaintained for increased length of time and regionswith a
low initial forecast skill show significant skill after optimal weighting of the individualmodel forecast.
The sub-seasonalmodel forecastsmodels showhigh skill over the tropics, approximating their skill at
monthly resolution. Using theweighted approach, a significant increase is found in the forecast skill
for dry, wet, cold andwarm extreme events. Theweightedmean approach brings significant advances
to sub-seasonal forecasting due to its reduced uncertainty in the forecasts with a gain in forecast skill.
This significantly improves their value for end-user applications and our ability to use them to prepare
for upcoming extreme conditions, like floods and droughts.

Introduction

Flood and drought events occur in all regions of the
world with large societal impact (Kundzewicz and
Kaczmarek 2000). Early-warning decision support
systems can help to reduce the societal vulnerability
to these hydrological extreme events. Such systems
rely on high-quality real-time hydrological forecasts,
which are provided by a combination of meteorolo-
gical forecasts and hydrological modelling. Because
the hydrological forecasts rely heavily on meteorolo-
gical input data, low skill and high uncertainty in the
meteorological forecast results in a decrease in
hydrological forecast skill and an inability to offer
meaningful early warnings for anticipated extreme
events (Wanders and Wada 2015). For short-range
forecasts (up to 14 days), high resolution (both in
space and time) skilful weather model forecasts are
available from a number of centres (Fan and Van

den Dool 2011, Magnusson and Källén 2013). How-
ever, to increase preparedness and reduce vulner-
ability to hydrological extremes it is important to
extend the forecast range beyond the two week
period. Applications that will benefit from this
extended forecast information include amongst
others, crop modelling (Ray et al 2015), flood
(Wanders et al 2014) and drought forecasting (Shef-
field et al 2014) and planning of reservoir operation
(Demargne et al 2014). Seasonal forecast models,
ranging from 14 days to one year, bridge the gap
between climate and weather models, and are avail-
able at a coarser resolution and lower temporal
resolution (typically monthly timescale and 1° spa-
tial resolution). The needs of water managers and
other end users are to have forecasts of extreme
hydrological conditions beyond the first two weeks
at high temporal resolution, which has stimulated
increased interest from the hydrological community
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for high quality meteorological sub-seasonal fore-
casts at the daily scale (Kirtman et al 2014).

This is now available from the North American
Multi-Model Ensemble phase 2 (NMME-2) project
that has provided sub-seasonal forecasts for a 31 year
period at a daily temporal resolution (Kirtman
et al 2014). This project is the follow-up from NMME
phase 1 that provided multi-model seasonal forecasts
at a monthly temporal resolution. The sub-seasonal
climate forecasts, due to their increased temporal reso-
lution (from monthly to daily), can significantly
improve seasonal hydrologic forecasts. However, to
assess the added value of NMME-2 for hydrology it is
important to understand the skill of this product in
forecasting meteorological conditions. The uncer-
tainty in the meteorological forecasts will be imposed
upon the hydrological simulations and will impact the
skill of the hydrological forecasts.

The objective of this study is to assess the sub-sea-
sonal forecast skill of the NMME-2 ensemble for daily
precipitation and temperature over 22 global regions
(Giorgi and Francisco 2000). We use the output from
four available NMME-2 models to analyse sub-seaso-
nal forecast skill in daily precipitation and 2 m air
temperature for these 22 regions for the period
1982–2012 (Kirtman et al 2014). The models used in
the analysis are: Canadian Coupled Climate Model
version 3 and 4 (CanCM3, CanCM4, Merryfield
et al 2013), the Forecast-oriented Low Ocean Resolu-
tion (FLOR-B01, Vecchi et al 2014) and the Commu-
nity Climate System Model (CCSM4, Hurrell
et al2013). In addition, we evaluate the sub-seasonal
forecast skill of amulti-model ensemblemean forecast
constructed using three different approaches: equally
weighted individual mean model forecasts, optimally
weighted mean model forecasts with the model
weights constrained to �0, and optimally weighted
mean model forecasts with unconstrained model
weights.

Methods

Seasonal forecastmodels
In this study four available sub-seasonal forecast
models were used for the period 1982–2012 (table S1).
These models are part of the NMME-2 forecast
ensemble and provide hindcast initialised everymonth
with a daily temporal resolution (Kirtman et al 2014).
All models provide daily precipitation and daily mean
2 m air temperature at a 1° spatial resolution. More
details on the individual models can be found in their
corresponding documentation (Hurrell et al 2013,
Merryfield et al 2013, Vecchi et al 2014). In total 31
years of forecast data have been evaluated, where one
forecast is issued every month, leading to a total of 372
re-forecasts per model (table S1). The archive for
CCSM4 covered only 78% of the period, leading to a
reduced 290 available forecasts. A bi-weekly temporal

aggregation was used to estimate the sub-seasonal
forecast skill, while a monthly temporal aggregation is
used for the seasonal forecast skill.

Reference dataset
To validate the (sub)-seasonal hindcasts made in
NMME-2 we used an independent observation based
reference dataset, the Princeton Global Forcing (Shef-
field et al 2006). This dataset covers the NMME-2
hindcast period 1982–2012 and is available with a daily
temporal and 1° spatial resolution globally. The
monthly average values are derived from observations
(in situ and satellite) statistically downscaled (tempo-
rally) by combining high resolution observations (e.g.
satellite precipitation) with NCEP-NCAR reanalysis
that is not part of the multi-model seasonal forecast
system. To the extent possible, this ensures that the
reference dataset is as fully independent as feasible to
validate the seasonal predictions. The Princeton Glo-
bal Forcing dataset has proven to be a reliable and
widely used dataset.

Weightedmulti-model ensemblemean
The first approach assigns equal weights to eachmodel
ensemble mean forecasts and so ignores prior knowl-
edge of their forecasts skill. This is one of the most
commonly used procedures in seasonal forecasting
(Krishnamurti et al 1999), where it is assumed that the
equally weighted forecast will provide the best forecast
for future conditions, since eachmodel is equally likely
to represent the truth. In the second and third
approaches a multi-model forecast is developed based
on weighing each model forecast according to its skill
to forecast observations for a given initialisation
month and forecast lead time. In the second approach,
the weights are constrained to be�0 while in the third
approach this constraint is removed. The implication
of zero-weights is that models are removed from the
ensemble due to lack of skill, while negative weights
indicate that they show a consistent negative skill in
the hindcast period. Using step-wise regression, the
models that explain the largest portion of the observed
variance are favoured over models that can only
explain minor or identical parts of the observed
variance. This approach has been tested in a modified
approach on low resolution seasonal forecasts (Del-
Sole 2007, DelSole et al 2013), synthetic experiments
(Weigel et al 2008), sea surface temperature (Peña and
van den Dool 2008), weather forecasts (Kharin and
Zwiers 2002, Casanova and Ahrens 2009) and climate
reanalysis simulations (Haughton et al 2015) with
mixed results, but hasn’t been applied for high-
resolution, operational sub-seasonal ensemble fore-
castingmodels.

In this study, we applied the standard cross-valida-
tion procedure often referred to as ‘leave one out
cross-validation’ to each analyzed hindcast (see
Wilks 2006 section 6.4.4) to assess model skill. Here,
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one year of the hindcast is held back (the target year)
and the weights computed on the remaining 30 years.
The target year is then forecast. The target year is shif-
ted, year by year, with the weights recomputed from
the remaining years each time until all 31 years are
covered. This provides 31 target-year forecasts, each
not included in the computation of the optimal model
weights, which are used to assess the forecast skill of
the variousmulti-model prediction systems.

To generate the weighted multi-model ensemble
mean for a region, multivariate linear regression is
used to estimate the optimal weights. The ensemble
weightedmean is given by:

åa=
=

( ) ( )*Y m l t X t, , ,
i

I

i m l i m l
1

, , , ,

where, ( )Y m l t, , is the weighted ensemble mean for
that region at time/forecast year t that is calculated by
multiplying the ensemblemean ofmodel, ( )X t ,i m l, , by
the weight obtained from the multivariate regression
a( ),i m l, , for model i, forecast initialisation month m
and a lead time l. The weights are determined for every
forecast initialisation month and lead time separately
due to the varying skill of the models over the seasons.
While the anomalies in temperature have no con-
straints (due to the continuous distribution of temper-
ature), the range of precipitation anomalies is limited,
by conditioning that precipitation should exceed or
equal zero precipitation, to ensure valid forecasts.

The uncertainty in all generated weighted ensem-
ble forecasts is obtained from the variance within the
model ensemble members and the covariance among
the models ensemble means, following the variance
calculation for a multi-variate linear regression.
Including the model variances ensures a realistic
representation of the ensemble uncertainty and, in
general, prevents over confident forecasts. By taking
into account the covariance among models, models
with a shared heritage (e.g., CanCM3 and CanCM4)
will not dominate the ensemble mean when they are
over represented in the total ensemble. The forecast
uncertainty is given by:
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where the variance of each model at a specific
initialisation month m at lead time l is determined
from the spread between the individual ensemble
members and the covariance is determined from the
covariance between the individual model ensemble
means. By using the provided individual variances and
covariance between the models, a more realistic
estimate can be made of the ensemble spread at given
leads and given initialisationmonths.

Bootstrapping procedure
To analyse the robustness of the obtained weighted
means a bootstrapping experiment was designed.
From the 31 year period covered by NMME-2, x

random years (ranging from 6 to 30) are selected to
generate the weights a( ) that are then used to generate
the optimally weighted ensemble means ( )Y . Y is
validated against the remaining years of observations
derived from the Princeton Global Forcing dataset,
that were not used to derive to coefficients of the
constrained and unconstrained weights. This will
prevent over-fitting of the multi-variate linear model
and produce an independent validation dataset. The
procedure is repeated 100 times for each x random
years for all 22 regions and the anomaly correlations
derived to quantify the predictive skill. The range of
anomaly correlations is compared to the equally
weighted ensemble mean and the individual models,
to access the forecast skill. For the equally weighted
ensemble, the skill does not change with increasing the
number of random years, because the weights remain
constant. The bootstrapping procedure is performed
separately for precipitation and temperature.

Model forecast skill evaluation
The skilfulness of sub-seasonal forecast models is
evaluated using the Brier score (BS) (Brier 1950),
where the BS is given by:

å= -
=

( ) ( ( ( )) ( ))l
T

P X tBS lim,
1

sgn obs ,
t

T

l
1

lim, lim
2

where, ( )sgn obslim indicates a binary value, indicating
whether the observation exceeds the event threshold
(lim, fraction ranging from 0 to 1), ( ( ))P X tllim,

provides the probability values for every model
forecast at lag (l) and time t to exceed the limit. As a
benchmark BS for comparison a climatological fore-
cast (i.e. a forecast that reflect the probability of an
event happening at any given moment) as the refer-
ence BS. From the climatology the reference BS can be
derived by:

= -( ) ( )BS lim lim 1 limref

which is identical to the uncertainty in the decom-
posed BS. When the reference BS is larger than the
uncertainty the forecast is skilful and shows a higher
skill than the chance forecast reference. The Brier skill
score (BSS) is then given by:

= -BSS 1
BS

BS
,

ref

where BSS can range from −∞ to 1, where 1 is a
perfect forecast and all negative values indicate an
unskilled forecast.
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Results

Weighted ensemblemean
To ensure that the obtained weights for the con-
strained ensemble means are stable in time and do not
dependent on specific event or years, a sensitivity
analysis is performed to evaluate the robustness of the
weights. Using a bootstrapping analysis, a number of
years (ranging between 6 and 30) is selected to
compute the weights, which is then validated on the
remaining years and compared against the equally
weighted mean and individual model skills. For both
precipitation and temperature, we find that both
optimally weighted ensemble means to outperform
the individual models as well as the ‘standard’ equally
weighted mean in terms of anomaly correlation
(figure 1). For a superior sub-seasonal forecast using
optimal weights, 6 years of precipitation hindcast are
required, while mean temperature forecast require a
minimum of 11 years of hindcasts data due to the
higher initial forecast skill for temperature anomalies.
Using more than 25 years of forecast data has little
impact on the skill of the constrained weightedmeans,
since the weights change little as does the forecast skill.
This indicates that the use of optimal weights will
always be superior to the assumption that models
should be equally weighted; a finding that has a direct
impact on the way multi-model forecasts should be
constructed. The constrained weighted multi-model
mean has a higher initial forecast skill compared to the
unconstrained counterpart when limited sampling is
used, which would correspond to having a small
hindcast data set. This arises due to the increased
degrees of freedom in the fitting of the unconstrained

weights with the limited number of sampling years
that result in the estimated weights being overconfi-
dent and thus lead to a poorer performance.

To ensure that the assigned weights are robust, we
calculated the difference between the parameters
obtained after parameter fitting with the full data
record and subsets of the hindcast data ranging from 6
to 30 years.Weights were found to be robust and show
a decreasing normalisedmean difference with increas-
ing number of sampling years (figure S1). These results
ensured that applied methodology results in robust
parameters and parameters are not overfitted tomatch
the observations. The finding that the forecast skill
from the optimally weighted multi-model mean fore-
cast is higher than that of any of the individual models
or the equally weighted multi-model mean forecast
carries over to individual, regional forecasts
(figure S2).

Seasonal forecast skill
Forecast skill for seasonal precipitation is not equally
distributed over the globe (figures 2(a)–(c) and S3)
with high seasonal forecast skill (monthly temporal
aggregation) over the tropics (e.g. Amazon, Indone-
sia). In general, the CanCM and CCSM models have
higher skill than FLOR for short lead times, thereafter,
FLOR gains in forecasting skill. This is probably due to
the lack of initialisation of land states in FLOR but
rather uses its land surface climatology from an AMIP
simulation when initialising its forecasts (Gates
et al 1998, Jia et al 2015). For seasonal temperature
forecasts, the model skill is higher and the difference
amongst models is reduced (figures 2(d)–(f) and S4).
The tropics show up as areas of high forecast skill

Figure 1.Anomaly correlation over all regions in a bootstrapping experiment to determine the robustness of the constrained and
unconstrainedweighted ensemblemean.Horizontal lines indicate the forecast skill of separatemodels and the ‘standard’ equal weight
ensemblemean. The correlations are plotted as a function of the numbers of years that were used to calculate theweights, where the
validation of these weights is always performed on the remaining years of forecasts. Shaded areas (dark, 50%, light 95% interval)
indicate the range of obtained correlations with theweightedmeans and the lines indicate themedian correlation.
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while, in contrast to the precipitation forecasts,
relatively high skill is found in the northern latitudes
(locations above 60°N). Both optimally weighted
multi-model ensemble mean forecasts significantly
outperform the individual model forecast skill (one-
sided t-test, α=0.05), with the equally weighted
ensemble mean forecast being similar to the best
individual model’s skill. For long lead times this
superiority of the optimally weighted unconstrained
multi-model mean forecast is even more skilful
relative to the individual models (or their equally
weighted forecast). This is due to using information on
the (negative) skill of models to make more skilful

forecasts. An example is provided for the 6month lead
precipitation forecast over South Africa, where the
skill of CanCM3 is negative (figure S3). In this case the
weighted ensemble uses a large negative weight for the
CanCM3 forecast to obtain positive skill at a 6 month
lead in that region.

Sub-seasonal forecast skill
The sub-seasonal (bi-weekly temporal aggregation)
forecast skill is found to be similar to the seasonal
forecast skill, especially at leads below 6 months
(figures 2(g)–(l)). There is a large agreement amongst
themodels on the regional forecast skill and the rate in

Figure 2.Anomaly correlation between seasonal forecasted and observed precipitation (a)–(c) and temperature (d)–(f) and sub-
seasonal precipitation (g)–(i) and temperature (j)–(l) anomalies. Correlations are derived over the tropics (left), extratropics (middle)
and northern latitudes (right, areas above 60N) and grouped for each lead time.Uncertainty band are given for the ensemblemeans,
where the inner (darker) band indicates themiddle 50% and the outer band indicates the 95% interval of the obtained anomaly
correlations.
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which the skill is declining at longer lead times. The
forecast over the tropical regions again show high skill,
while the skill in the northern latitudes is quickly lost
or already absent after the first weeks. Again, a
significant gain in skill is found by using the optimally
weighted multi-model ensemble mean forecast. In
some cases, the forecasts skill in the equally weighted
mean deteriorates due to the poor skill of individual
models (also shown in figures S5 and S6), leading to
insignificant positive correlations (two-sided t-test,
α=0.05). The high skill levels found from the sub-
seasonal optimally weightedmulti-model forecasts are
promising for hydrological forecasting and related
applications that depend on making high temporal
resolution forecasts, like the predictions of heat waves,
drought events, pluvial periods or forecasting of crop
water requirements.

Forecasting extremes
Before these sub-seasonal forecasts are used for
applications, the forecast skill based on anomaly
correlations and the anomaly forecasts need to be
transformed into useful information for end users
such as water managers. Here, we focus on the BS for
specific events and exceedance thresholds for both
precipitation and temperature when compared to the
climatological predictability (BSref) using the BSS. As
expected, the forecast models show the highest skill in
the first months after initialisation and for intermedi-
ate thresholds (figure 3). For the extreme thresholds
(e.g. Q10/low or Q90/high precipitation totals), the
skill is lower and decreases quickly. The skill is strongly
affected by the large ensemble spread of some of the
models (e.g. figure S2), indicating that the precision is
low, which strongly impact the BSS in a negative way.

The equally weighted multi-model mean forecasts
shows low skill when forecasting temperature
extremes due to the low skill of one of the models;
while this has little impact on the optimally weighted
multi-model forecasts.

The sub-seasonal forecast skill for accumulated
precipitation is provided for the 2011 Horn of Africa
drought (figure 4). This drought was significant for the
fact that it was poorly forecasted, which in turn resul-
ted in a substantial number of fatalities and economic
damage. The hindcasts clearly reflect the low sub-sea-
sonal model forecast skill for the drought. In fact,
some model forecasts show strong negative correla-
tions and predict pluvial conditions instead of
drought. As a result, the equally weighted, ensemble
mean forecast shows poor sub-seasonal forecast skill,
while the optimally weighted ensemble mean forecast
developed in this paper shows a strong forecast skill.
For this example, the observations from this particular
year have been excluded from the multivariate linear
regression to prevent overfitting of the data. The con-
strained ensemble mean forecast has a high weight for
the FLOR forecasts, which are in general skilful for this
region. In fact, the FLOR model outperform the con-
strained ensemble mean forecast in this scenario. The
unconstrained weighted mean takes advantage of its
flexibility and uses the skill of FLOR and the consistent
negative skill of CanCM4 to make a more accurate
forecast. The uncertainty in the weighted mean fore-
cast is low (e.g. compared to FLOR), yet the forecasts
are not over-confident and the observed anomalies are
within the forecast uncertainty range.

Another example is provided for the Brazil floods
in January 2011, where all models show a dry forecast
whereas the unconstrained weighted ensemble multi-

Figure 3.Brier skill score (BSS) of four sub-seasonal forecastmodels and the ensemblemeans for different thresholds and forecast lags
combined for all regions used in this study. The skill is determined by calculating the Brier score (BS) for each forecast and compare
that to the climatological predictability of an event (BSref, seemethods for additional information). Negative values of the BSS indicate
forecasts worse than the climatological predictability and 1 indicates a perfect forecast.
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model forecast predicts potential flooding (figure S7).
For this forecast the constrained weighted mean fore-
cast is clearly limited by the low forecast skill of the
individual model forecast, however, this forecast still
outperformance any of the individual model forecasts
or the equally weightedmulti-model forecast.

Both examples show that the uncertainty in the
cumulative forecast is reduced by the use of the opti-
mally weighted multi-model ensemble mean forecast
while the correlations show an increase between fore-
casts and observations. This higher skill and lower
forecast uncertainty provides higher confidence for
decision makers to act when faced with an extreme
event forecast.

Discussion and conclusions

From our analysis, the individual NMME phase 2 sub-
seasonal forecasts and an equally weighted multi-
model mean forecasts show strong skill over the
tropics, while the forecasts for the extratropics and
northern latitudes only show skill at shorter leads. The
optimally weighted multi-model mean forecasts show
a higher skill in general and in particular higher skill is
found for the longer lead times in the extratropics,
with the optimally weighted unconstrained multi-
model forecasts being most skilful overall. These
skilful sub-seasonal forecasts provide new opportu-
nities for end users that rely on sub-seasonal forecasts
and forecasts with a daily temporal resolution, such as
water managers and reservoir operators. The results

obtained in this study clearly show that some models
are more skilful over specific regions and for either
precipitation or temperature, and thus should be used
accordingly in a multi-model forecast system. This
information is exploited in the creation of the
optimally weighted, multi-model ensemble mean
forecasts, where skilful forecast models are given a
higher weight in the ensemble mean. Apart from
utilising the information on the positive skill of the
models, negative skill of the models can be used in the
unconstrained weighted multi-model forecasts. Even
though individual model forecast skill can be better
than an equally weighted ensemble mean, the results
from this study suggest that the newly applied
constrained and unconstrained optimally weighted
multi-model mean forecasts are overall superior to
individual models and the equally weighted ensemble
mean forecast.

The positive impact of using unconstrained
weights in this study illustrates that for some scenarios
or combinations of lead time and region, a sub-seaso-
nal forecast model can show consistent negative pre-
dictive skill. This is not a desired scenario for real-life
applications, but it does provide scientists with
insights that could help during model improvements
(e.g. understanding of important teleconnections that
may lead to improved sub-seasonal skill for specific
regions). Negative anomaly correlations were found in
earlier studies on seasonal predictions skills (e.g. Jia
et al 2015), and it was suggested that the consistent
negative skill could be related to imperfect initial con-
ditions (Wang et al 2010). Although indicating that a

Figure 4.Accumulated precipitation anomalies for EasternAfrica forMarch 2011, for the 2011 horn of Africa drought. Top rows
indicate the individual sub-seasonalmodel forecasts (ensemblemean, bold colour lines), individual ensemblemembers (grey lines)
and the observed anomalies (bold black line). Bottom row indicates optimal weights applied to the individualmodels and the resulting
multi-model forecast (dashed line) and observations (solid line). Grey lines indicate confidence intervals at 10% increments. The total
of the ensemble weights equals 1, and negative weights indicate that the original forecast anomaly ismultiplied by a negative weight in
the forecastedweighted ensemble. For all forecasts, anomaly correlation between the forecasts and observed anomalies are provided in
the bottom left of each panel. The target year (in this case 2011) is not used in estimating themodel weights.
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model has a consistent negative anomaly correlation
(and thus assigning it a negative or zero-weight) is
often not seen as a positive outcome, we want to take a
positive view and use that information to our advan-
tage to improve ensemble seasonal forecasts. In scien-
tific discussions we had with peers and experts in the
field, it was clear that the use of negative weights is not
a desirable (long-term) solution for some scientists.
However, most agree that it can provide an a (short-
term) solution to provide added value to seasonal fore-
cast applications and help to identify areas where skill
is currently lacking.

In this study, we found that a weighted ensemble
approach outperformed an equally weighted ensemble
in contrast to an earlier study by Kharin and Zwiers
(2002). They show that no additional skill was found
in a weighted ensemble approach for their super-
ensemble compared to a standard equally weighted
ensemble. One of the main reasons for this difference
could be the extended period that is covered by the
NMME phase 2 hindcast dataset compared to the 10
year period in Kharin and Zwiers (2002). Following
the results from figure 1, a 10 year period is too short
for computing stable and significantly improved
results for a weighted ensemble, which confirms their
findings. Additionally, temperature and precipitation
anomalies were studied here, compared to 500 hPa
geopotential height in Kharin and Zwiers (2002). Del-
Sole et al (2013) showed that in most of the world no
significant gain can be found when a weighted multi-
model approach is implemented for 2 m air temper-
ature and precipitation at a finer resolution of 2.5°
grid. Although, the study of DelSole et al (2013) is
more in line with this work (a 46 year hindcast period
and identical variables), the grid by grid approach does
not provide a spatially consistent pattern in the pre-
dictive skill assessment of the models and the model
covariance estimates. In this study, we used 22 global
regions, instead of a grid by grid comparison, to
reduce the noise in the estimates of model predictive
skill and covariance. This leads to stable coefficients
that results in a more consistent performance of the
weighted ensemble approach, which could be the
cause for the difference between the two studies.

Given the results from this study and the compar-
ison with earlier work, we argue that to successfully
implement the optimally weighted ensemble multi-
model forecast system, two requirements need to be
met. The observations and the independent models
must show some degree of correlation (either negative
or positive), and a sufficient number of historic fore-
casts (minimum of 10 years) is required to accurately
assign stable weights. We argue that a leave-one-out
cross validation is the best strategy to determine if the
weights are stable and a consistent performance of the
weighted ensemble approach is found. Finally, we
recommend that the forecasts are spatially upscaled to
a spatial resolution at which the predictive skill of the
models is spatially consistent.

We have shown that in the case of the NMME-2
forecasts, sufficient data is present to generate a stable
performance in the weighted mean (figure 1) and
that the individual models are correlated to the obser-
vations (figures 2 and S3–S6). Another advantage of
the optimal weighting is that the cross-correlations
between models can be used to prevent the generation
of a biased ensemble mean (e.g. over-representation
by models with a similar heritage). Finally, it is shown
that the occurrence of extreme events can be fore-
casted with a higher accuracy (figures 3, 4 and S7)
than previously obtained, while the uncertainty in the
forecast is reduced, hence improving their usability
for operational systems. For specific purposes, one
could also optimise the weighting of the models to the
applications that they will be used for. When end-
users are very interested in forecasting drought, the
weights can be optimised to favour models that show
a higher forecast skill in forecasting such extreme
events.

The next step forward will be to implement the
output of these sub-seasonal forecasts and the newly
created ensemble mean into decision support systems
to assess their quality for end-user applications. This
could significantly improve the usability of sub-seaso-
nal forecasts and their impact on decision making and
hazard prevention measures. The weighted ensemble
approach could also be implemented for all other
ensemble forecasting systems as it shows a high poten-
tial for operational forecasting systems and could help
to advance seasonal forecasting in general.

Acknowledgments

We would like to acknowledge four anonymous
reviewers that helped to improve the manuscript. NW
was supported by a NWO Rubicon Fellowship
825.15.003 (Forecasting to Reduce Socio-Economic
Effects of Droughts) and EFW was supported by the
NOAA Climate Program Office under grant
NA15OAR4310075 (Assessing NMME Phase-2 Fore-
casts for Improved Predictions of Drought and Water
Management). The forecast data from the North
American Multi-Model Ensemble phase 2 are freely
available at http://earthsystemgrid.org/.

References

BrierGW1950Verification of forecasts expressed in terms of
probabilityMon.Weather Rev. 78 1–3

Casanova S andAhrens B 2009On theweighting ofmultimodel
ensembles in seasonal and short-rangeweather forecasting
Mon.Weather Rev. 137 3811–22

DelSole T 2007A bayesian framework formultimodel regression
J. Clim. 20 2810–26

DelSole T, Yang X andTippettMK2013 Is unequal weighting
significantly better than equal weighting formulti-model
forecasting?Q. J. R.Meteorol. Soc. 139 176–83

Demargne J et al 2014The science ofNOAA’s operational
hydrologic ensemble forecast serviceBull. Am.Meteorol. Soc.
95 79–98

8

Environ. Res. Lett. 11 (2016) 094007

http://earthsystemgrid.org/
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1175/2009MWR2893.1
http://dx.doi.org/10.1175/2009MWR2893.1
http://dx.doi.org/10.1175/2009MWR2893.1
http://dx.doi.org/10.1175/JCLI4179.1
http://dx.doi.org/10.1175/JCLI4179.1
http://dx.doi.org/10.1175/JCLI4179.1
http://dx.doi.org/10.1002/qj.1961
http://dx.doi.org/10.1002/qj.1961
http://dx.doi.org/10.1002/qj.1961
http://dx.doi.org/10.1175/BAMS-D-12-00081.1
http://dx.doi.org/10.1175/BAMS-D-12-00081.1
http://dx.doi.org/10.1175/BAMS-D-12-00081.1


FanY andVan denDoolH2011 Bias correction and forecast skill of
NCEPGFS ensemble week-1 andweek-2 precipitation, 2 m
surface air temperature, and soilmoisture forecastsWeather
Forecast. 26 355–70

GatesWL et al 1998An overview of the results of the atmospheric
model intercomparison project (AMIP I)Bull. Am.Meterol.
Soc. 73 1962–70

Giorgi F andFranciscoR2000Uncertainties in regional climate
changeprediction: a regional analysis of ensemble simulations
with theHADCM2coupledAOGCMClim.Dyn.16169–82

HaughtonN, Abramowitz G, PitmanA and Phipps S J 2015
Weighting climatemodel ensembles formean and variance
estimatesClim.Dyn. 45 3169–81

Hurrell JW et al 2013The community Earth systemmodel: a
framework for collaborative researchBull. Am.Meteorol. Soc.
94 1339–60

Jia L et al 2015 Improved seasonal prediction of temperature and
precipitation over land in a high-resolutionGFDL climate
model J. Clim. 28 2044–62

KharinVV andZwiers FW2002Climate predictionswith
multimodel ensembles J. Clim. 15 793–9

KirtmanB et al 2014TheNorth Americanmultimodel ensemble:
phase-1 seasonal-to-interannual prediction; phase-2 toward
developing intraseasonal predictionBull. Am.Meteorol. Soc.
95 585–601

Krishnamurti TN,Kishtawal CM, LaRowTE, BachiochiDR,
Zhang Z,WillifordCE,Gadgil S and Surendran S 1999
Improvedweather and seasonal climate forecasts from
multimodel superensemble Science 285 1548–50

Kundzewicz ZWandKaczmarek Z 2000Copingwith hydrological
extremesWater Int. 25 66–75

Magnusson L andKällén E 2013 Factors influencing skill
improvements in the ECMWF forecasting systemMon.
Weather Rev. 141 3142–53

MerryfieldW J, LeeW-S, BoerG J, KharinVV, Scinocca J F,
FlatoGM,AjayamohanRS, Fyfe J C, Tang Y and
Polavarapu S 2013TheCanadian seasonal to interannual
prediction system: I.Models and initializationMon.Weather
Rev. 141 2910–45

PeñaMand van denDoolH2008Consolidation ofmultimodel
forecasts by ridge regression: application to Pacific sea surface
temperature J. Clim. 21 6521–38

RayDK,Gerber J S,MacDonaldGKandWest PC2015Climate
variation explains a third of global crop yield variabilityNat.
Commun. 6 5989

Sheffield J, Goteti G andWoodE F 2006Development of a 50-yr
high-resolution global dataset ofmeteorological forcings for
land surfacemodeling J. Clim. 19 3088–111

Sheffield J et al 2014Adroughtmonitoring and forecasting system
for Sub-Sahara Africanwater resources and food security
Bull. Am.Meteorol. Soc. 95 861–82

Vecchi GA et al 2014On the seasonal forecasting of regional tropical
cyclone activity J. Clim. 27 7994–8016

WandersN, KarssenbergD, de RooA, de Jong SMand
BierkensMFP 2014The suitability of remotely sensed soil
moisture for improving operational flood forecastingHydrol.
Earth Syst. Sci. 18 2343–57

WandersN andWada Y 2015Decadal predictability of river
dischargewith climate oscillations over the 20th and early
21st centuryGeophys. Res. Lett. 42 10689–95

WangW,ChenMandKumar A 2010An assessment of theCFS
real-time seasonal forecastsWeather Forecast. 25 950–69

Weigel A P, LinigerMA andAppenzeller C 2008Canmulti-model
combination really enhance the prediction skill of
probabilistic ensemble forecasts?Q. J. R.Meteorol. Soc. 134
241–60

WilksD S 2006 StatisticalMethods in the Atmospheric Sciences 2nd
edn (NewYork: Academic) p 627

9

Environ. Res. Lett. 11 (2016) 094007

http://dx.doi.org/10.1175/WAF-D-10-05028.1
http://dx.doi.org/10.1175/WAF-D-10-05028.1
http://dx.doi.org/10.1175/WAF-D-10-05028.1
http://dx.doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
http://dx.doi.org/10.1007/PL00013733
http://dx.doi.org/10.1007/PL00013733
http://dx.doi.org/10.1007/PL00013733
http://dx.doi.org/10.1007/s00382-015-2531-3
http://dx.doi.org/10.1007/s00382-015-2531-3
http://dx.doi.org/10.1007/s00382-015-2531-3
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1175/JCLI-D-14-00112.1
http://dx.doi.org/10.1175/JCLI-D-14-00112.1
http://dx.doi.org/10.1175/JCLI-D-14-00112.1
http://dx.doi.org/10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1126/science.285.5433.1548
http://dx.doi.org/10.1126/science.285.5433.1548
http://dx.doi.org/10.1126/science.285.5433.1548
http://dx.doi.org/10.1080/02508060008686798
http://dx.doi.org/10.1080/02508060008686798
http://dx.doi.org/10.1080/02508060008686798
http://dx.doi.org/10.1175/MWR-D-12-00318.1
http://dx.doi.org/10.1175/MWR-D-12-00318.1
http://dx.doi.org/10.1175/MWR-D-12-00318.1
http://dx.doi.org/10.1175/MWR-D-12-00216.1
http://dx.doi.org/10.1175/MWR-D-12-00216.1
http://dx.doi.org/10.1175/MWR-D-12-00216.1
http://dx.doi.org/10.1175/2008JCLI2226.1
http://dx.doi.org/10.1175/2008JCLI2226.1
http://dx.doi.org/10.1175/2008JCLI2226.1
http://dx.doi.org/10.1038/ncomms6989
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1175/BAMS-D-12-00124.1
http://dx.doi.org/10.1175/BAMS-D-12-00124.1
http://dx.doi.org/10.1175/BAMS-D-12-00124.1
http://dx.doi.org/10.1175/JCLI-D-14-00158.1
http://dx.doi.org/10.1175/JCLI-D-14-00158.1
http://dx.doi.org/10.1175/JCLI-D-14-00158.1
http://dx.doi.org/10.5194/hess-18-2343-2014
http://dx.doi.org/10.5194/hess-18-2343-2014
http://dx.doi.org/10.5194/hess-18-2343-2014
http://dx.doi.org/10.1002/2015GL066929
http://dx.doi.org/10.1002/2015GL066929
http://dx.doi.org/10.1002/2015GL066929
http://dx.doi.org/10.1175/2010WAF2222345.1
http://dx.doi.org/10.1175/2010WAF2222345.1
http://dx.doi.org/10.1175/2010WAF2222345.1
http://dx.doi.org/10.1002/qj.210
http://dx.doi.org/10.1002/qj.210
http://dx.doi.org/10.1002/qj.210
http://dx.doi.org/10.1002/qj.210

	Introduction
	Methods
	Seasonal forecast models
	Reference dataset
	Weighted multi-model ensemble mean
	Bootstrapping procedure
	Model forecast skill evaluation

	Results
	Weighted ensemble mean
	Seasonal forecast skill
	Sub-seasonal forecast skill
	Forecasting extremes

	Discussion and conclusions
	Acknowledgments
	References



