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LOWER BOUNDS TO THE RELIABILITIES OF FACTOR SCORE ESTIMATORS

David J. Hessen
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Under the general common factor model, the reliabilities of factor score estimators might be of more
interest than the reliability of the total score (the unweighted sum of item scores). In this paper, lower
bounds to the reliabilities of Thurstone’s factor score estimators, Bartlett’s factor score estimators, and
McDonald’s factor score estimators are derived and conditions are given under which these lower bounds
are equal. The relative performance of the derived lower bounds is studied using classic example data
sets. The results show that estimates of the lower bounds to the reliabilities of Thurstone’s factor score
estimators are greater than or equal to the estimates of the lower bounds to the reliabilities of Bartlett’s and
McDonald’s factor score estimators.
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1. Introduction

In the psychometric literature, the description and the assessment of the reliability of the
total score (the unweighted sum of the item scores) has received a lot of attention (e.g., ten Berge
& Sočan, 2004; Zinbarg, Revelle, Yovel, & Li, 2005; Sijtsma, 2009; Bentler, 2009; Revelle &
Zinbarg, 2009). For the assessment of the reliability of the total score, many coefficients have been
proposed (for an overview, see Revelle and Zinbarg, 2009). All these coefficients aremathematical
lower bounds to the reliability of the total score. One of these coefficients is the popular coefficient
alpha (Guttman, 1945; Cronbach, 1951). Coefficient alpha is widely used but other coefficients
have been shown to be greater lower bounds to the reliability of the total score. Therefore, Sijtsma
(2009) advised against using coefficient alpha and suggested to report the coefficient referred
to as the greatest lower bound (Woodhouse & Jackson, 1977; ten Berge, Snijders, & Zegers,
1981). Bentler (2009), however, made some critical observations about the greatest lower bound
and suggested to consider reliability coefficients based on a factor or structural equation model.
Revelle and Zinbarg (2009) showed that for some classic example data sets the estimate of the
greatest lower bound was systematically less than the estimate they obtained using the factor
model-based coefficient ω (Heise & Bohrnstedt, 1970; McDonald, 1978).

Under a factor model, however, the reliability of the total score might be of less interest than
the reliabilities of factor score estimators. Factor score estimators are the random variables used
to estimate the true values of the unobserved common factors assumed to underlie the item scores.
The estimated values of the common factors are called factor scores. When factor scores are used
for diagnostic purposes, or as inputs to subsequent analyses, then the reliabilities of the factor
score estimators are of interest.

Many factor score estimators have been proposed (for an overview, see Grice, 2001). Three
well-known types of factor score estimators that are defined in terms of the parameters of a factor
model are the regression estimators proposed by Thurstone (1935), the weighted least squares
estimators proposed by Bartlett (1937), and the correlation-preserving estimators proposed by
McDonald (1981). In this paper, lower bounds to the reliabilities of these three types of factor

Correspondence should be made to David J. Hessen, Department of Methodology and Statistics, Utrecht University,
Padualaan 14, PO Box 80.140, 3508 TC Utrecht, The Netherlands. Email: D.J.Hessen@uu.nl

648
© 2016 The Psychometric Society

http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-016-9538-5&domain=pdf


DAVID J. HESSEN 649

score estimators are derived and conditions underwhich they are equal are provided. Subsequently,
classic example data sets are used to study the relative performance of the derived lower bounds.
First, however, to introduce notation and to relate the general common factormodel to the classical
test theory model, a general decomposition of item scores is presented in the next section.

2. A General Decomposition

The reliability of a test score is defined in classical test theory (Lord & Novick, 1968). The
reliability of a test score is defined as the squared correlation between the test score and its true
score, which is defined as the test score minus its associated random error score. The factor score
estimators of interest in this paper are test scores constructed from the item scores and factor
model parameters. The reliabilities of these factor score estimators are the squared correlations
between the factor score estimators and their true scores. In order to derive lower bounds to the
reliabilities of these factor score estimators in terms of factor model parameters, the true scores of
these factor score estimators and the true scores of the item scores must be made explicit in terms
of factor model concepts. In this section, therefore, the general common factor model is related
to the classical test theory model.

LetX be a randomvector of k item scores for a randomly sampled individual fromapopulation
and let x be a realization. It is assumed that the item scores are indicators of q common factors,
where q ≤ k. Lord and Novick (1968) gave the following generalization of the general common
factor model:

X = μ + �F + �S + E, (1)

where μ is the mean vector of X, � is a k × q matrix of constant factor loadings, F is a random
vector of q common factors, � is a k × k diagonal matrix of constants, S is a random vector of
k specific factors, and E is a random vector of k random error scores. The difference between
S and E is that the values of the elements of S are only assumed to vary between individuals,
whereas the values of the elements of E are assumed to vary between and within individuals. All
within-person means of the elements of E are assumed to be zero. As a consequence, the means
of all elements of E are equal to zero in the population of individuals. In addition, the means of
all elements of F and S are only assumed to be zero in the population of individuals. Furthermore,
all elements of F are assumed to be uncorrelated with all elements of S and E, and all elements of
S are assumed to be uncorrelated with all elements of E. Finally, the specific factors are assumed
to be independent of each other and the random error scores are assumed to be independent of
each other, so that cov(S) and cov(E) are diagonal matrices. It follows that

cov(X) = ���′ + �cov(S)� + cov(E), (2)

where � = cov(F).
In the classical test theory model (Lord & Novick, 1968), the random vector of item scores

is defined as X = T+ E, where T = μ + �F+ �S is a random vector of the so-called true item
scores. Since all elements of T are assumed to be uncorrelated with all elements of E, it follows
that cov(X) = cov(T) + cov(E), where cov(T) = ���′ + �cov(S)�.

In the general common factor model, the random vector of item scores is defined as
X = μ+�F+U, whereU = �S+E is a random vector of unique factors. Since all elements of
F are assumed to be uncorrelated with all elements of U, it follows that cov(X) = � = � + �,
where � = cov(�F) = ���′ and � = cov(U) = �cov(S)� + cov(E) is a diagonal matrix. A
special case of the general common factor model is McDonald’s (1999) hierarchical factor model
given by X = μ + λ1F1 + BG + U, where F1 is a general factor (common to all k items), λ1 is
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the vector of general factor loadings,G is a (q − 1)× 1 vector of group factors (common to some
but not all k items), and B is a k × (q −1) matrix of group factor loadings. Note that F = [F1G′]′
and � = [λ1 B].

Without additional restrictions, the general common factor model is not identified. In
exploratory factor analysis, it is customary to resolve this indeterminacy by setting � = I and
restricting �′�−1� to be diagonal. These identification restrictions are however arbitrary and
other restrictions are possible. In confirmatory factor analysis, identification is usually achieved
by setting equal to zero more than q − 1 elements in each column of � and by setting equal to
one either all factor variances or one factor loading for each factor.

Estimates of μ, �, �, and � are often obtained using a least squares criterion or a maxi-
mum likelihood criterion. The estimate of μ is typically the observed sample mean vector x̄ and
the estimates of �, �, and � are usually obtained by numerical procedures. In what follows,
irrespective of the estimation criterion, estimates of �, �, and � are denoted by �̂, �̂, and �̂,
respectively.

3. A Linear Combination of Item Scores

In this section, a lower bound to the reliability of a general linear combination of the item
scores is presented. Let α be a nonzero vector of constants (weights). Substitution from Equation
1 into the linear combination Y = α′(X − μ) yields

Y = C + S + E, (3)

where C = α′�F, S = α′�S, and E = α′E. The reliability of Y is defined as the squared
correlation between Y and its true score C + S. The reliability of Y is the proportion of the
variance of Y explained by its true score C + S, and can be seen as a measure of the extent to
which Y is free of random measurement error. It can be shown that the reliability of Y equals

ρ2
Y (C+S) = ρ2

Y C + ρ2
Y S, (4)

where ρ2
Y C is the proportion of the variance of Y explained by the common factors (the com-

munality of Y ) and ρ2
Y S is the proportion of the variance of Y explained by the specific factors.

Without additional information, S and E cannot be separated from each other and only ρ2
Y C is

estimable. Since ρ2
Y S ≥ 0, it follows from Eq. 4 that ρ2

Y (C+S) ≥ ρ2
Y C , that is, the proportion of

the variance of Y explained by the common factors is a lower bound to the reliability of Y . ρ2
Y C is

equal to the reliability of Y if and only if all specific factors are randommeasurement errors. Now,
since under the general common factor model cov(Y, C) = var(C) = α′�α and var(Y ) = α′�α,
it follows that a lower bound to the reliability of the linear combination Y is given by

ρ2
Y C = {cov(Y, C)}2

var(Y )var(C)
= var(C)

var(Y )
= α′�α

α′�α
. (5)

Since variances are nonnegative, it follows that 0 ≤ ρ2
Y C ≤ 1. If ρ2

Y C = 1, then ρ2
Y (C+S) = 1 and

Y is perfectly reliable. Here, it is stated without proof that ρ2
Y C = 1 if and only if the variances

of the unique factors are all equal to zero.
A special case of the coefficient in Eq. 5 is ω = 1′�1/1′�1 (Heise & Bohrnstedt, 1970;

McDonald, 1978), where 1 is a vector of ones. Coefficient ω is a lower bound to the reliability of
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the special linear combination 1′(X−μ). The estimate ofω is ω̂ = 1′�̂1/1′�̂1, where �̂ = �̂�̂�̂′
and �̂ = �̂�̂�̂′ + �̂. Another special linear combination of the item scores that might be of
interest in practice is β ′(X−μ), where β is the eigenvector of�−1� corresponding to the largest
eigenvalue of �−1�. For this linear combination, the coefficient in Eq. 5 attains its maximum
value of δ = β ′�β/β ′�β. The estimate of δ is δ̂ = β̂ ′�̂β̂/β̂ ′�̂β̂, where β̂ is the eigenvector
of �̂−1�̂ corresponding to the largest eigenvalue of �̂−1�̂. Other special linear combinations of
the item scores that might be of interest in practice are factor score estimators. In the following
section, lower bounds to the reliabilities of three well-known types of factor score estimators are
derived.

4. Factor Score Estimators

4.1. Thurstone’s Factor Score Estimators

Under the assumption that X and F have a joint multivariate normal distribution, that is,

[
X
F

]
∼ Nk+q

([
μ

0

]
,

[
� ��

��′ �

])
,

it follows that themean vector ofF conditional on x equals f1 = A′
1(x−μ), whereA′

1 = ��′�−1

(Thurstone, 1935; Thomson, 1946; Thompson, 1993). The vector f1 can be seen as a realization
of the random vector D = A′

1(X − μ) with mean vector 0 and covariance matrix ��′�−1��.
The i th element of D is the i th Thurstone factor score estimator Di = α′

i1(X − μ), where α′
i1 is

the i th row of A′
1. It follows from Eq. 5 that a lower bound to the reliability of Di is given by

ρ2
Di C = νi i

νi i + τi i
, (6)

where νi i = α′
i1�αi1 is the i th diagonal element of the matrixA′

1�A1 = ��′�−1��−1�� and
νi i +τi i = α′

i1�αi1 is the i th diagonal element of thematrixA′
1�A1 = ��′�−1��. The estimate

of ρ2
Di C

is ρ̂2
Di C

= ν̂i i/(ν̂i i + τ̂i i ), where ν̂i i is the i th diagonal element of �̂�̂′�̂−1�̂�̂−1�̂�̂

and ν̂i i + τ̂i i is the i th diagonal element of �̂�̂′�̂−1�̂�̂.

4.2. Bartlett’s Factor Score Estimators

Bartlett (1937) proposed the estimate of the vector f that minimizes the sum of squares
(x−μ−�f)′�−1(x−μ−�f), as a vector of estimates of the true factor scores of an individual
with realization x. The so-called weighted least squares estimate of f that minimizes this sum of
squares is the vector f2 = A′

2(x−μ), whereA′
2 = (�′�−1�)−1�′�−1. The vector f2 can be seen

as a realization of the random vector V = A′
2(X − μ) with mean vector 0 and covariance matrix

�+(�′�−1�)−1. The i th element ofV is the i th Bartlett factor score estimator Vi = α′
i2(X−μ),

where α′
i2 is the i th row of A′

2. It follows from Eq. 5 that a lower bound to the reliability of Vi is
given by

ρ2
Vi C = ψi i

ψi i + ηi i
, (7)

where ψi i = α′
i2�αi2 is the i th diagonal element of A′

2�A2 = � and ψi i + ηi i = α′
i2�αi2

is the i th diagonal element of A′
2�A2 = � + (�′�−1�)−1. The estimate of ρ2

Vi C
is ρ̂2

Vi C
=

ψ̂i i/(ψ̂i i + η̂i i ), where ψ̂i i is the i th diagonal element of �̂ and ψ̂i i + η̂i i is the i th diagonal
element of �̂ + (�̂′�̂−1�̂)−1.
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4.3. McDonald’s Correlation-Preserving Factor Score Estimators

The covariance matrices of both D and V are not equal to cov(F) = �. Factor score esti-
mators with the covariance matrix equal to � have been proposed by Anderson and Rubin
(1956) for the special case of orthogonal factors, and by McDonald (1981) for the gen-
eral case of oblique factors. ten Berge, Krijnen, Wansbeek, and Shapiro (1999) showed that
the vector of factor scores proposed by McDonald (1981) satisfies f3 = A′

3(x − μ), where

A′
3 = �1/2

{
�1/2�′�−1��1/2

}−1/2
�1/2�′�−1. The vector f3 can be seen as a realization of

the random vector Z = A′
3(X−μ) with mean vector 0 and covariance matrix �. The i th element

of Z is the i th McDonald factor score estimator Zi = α′
i3(X−μ), where α′

i3 is the i th row of A′
3.

It follows from Eq. 5 that a lower bound to the reliability of Zi is given by

ρ2
Zi C = νi i + τi i

ψi i
, (8)

where νi i + τi i = α′
i3�αi3 is the i th diagonal element of A′

3�A3 = ��′�−1�� and ψi i =
α′

i3�αi3 is the i th diagonal element of A′
3�A3 = �. The estimate of ρ2

Zi C
is ρ̂2

Zi C
= (ν̂i i +

τ̂i i )/ψ̂i i , where ν̂i i + τ̂i i is the i th diagonal element of �̂�̂′�̂−1�̂�̂ and ψ̂i i is the i th diagonal
element of �̂.

4.4. Equality Conditions

In the following theorem, conditions are given under which ρ2
Di C

, ρ2
Vi C

, and ρ2
Zi C

are equal.

Theorem 1. If, under the general common factor model, both � and �′�−1� are diagonal, then
(a) ρ2

Di C
, ρ2

Vi C
, and ρ2

Zi C
are all equal to

δi = ψi i
∑k

j=1 λ2j i/θ j j

1 + ψi i
∑k

j=1 λ2j i/θ j j
, for i = 1, . . . , q, (9)

where λ j i is the loading of the j th item score on the i th common factor and θ j j = var(U j ) is the
variance of the j th unique factor, and (b) δ1, . . . , δq are the nonzero eigenvalues of �−1�.

Proof. (a) Let � = ��1/2, so that ���′ +� = ��′ +�. From Duncan’s formula (Henderson
& Searle, 1981), we have

(��′ + �)−1 = �−1 − �−1�(�′�−1� + I)−1�′�−1. (10)

Premultiplying both sides of Eq. 10 by �′ and postmultiplying both sides of Eq. 10 by � yields

�′(��′ + �)−1� = H − H(H + I)−1H, (11)

where H = �′�−1�. Let � = H − H(H + I)−1H. If both � and �′�−1� are diag-
onal, then both H and � are diagonal. If H is diagonal, then its i th diagonal element is
given by hii = ψi i

∑k
j=1 λ2j i/θ j j . If � is diagonal, then its i th diagonal element is given

by hii − hii (hii + 1)−1hii = hii/(1 + hii ), which is equal to the right-hand side of Eq. 9.
Coefficient ρ2

Di C
for the i th Thurstone factor score estimator is the i th diagonal element of
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�1/2���1/2 divided by the i th diagonal element of �1/2��1/2. If both � and � are diag-

onal, then ρ2
Di C

=
[
ψ

1/2
i i {h2

i i/(1 + hii )
2}ψ1/2

i i

]
/
[
ψ

1/2
i i {hii/(1 + hii )}ψ1/2

i i

]
= hii/(1 + hii ).

Coefficient ρ2
Vi C

for the i th Bartlett factor score estimator is the i th diagonal element of �

divided by the i th diagonal element of � + (�′�−1�)−1. If both � and �′�−1� are diago-
nal, then ρ2

Vi C
= ψi i/(ψi i + 1/

∑k
j=1 λ2j i/θ j j ), which is also equal to the right-hand side of

Eq. 9. Coefficient ρ2
Zi C

for the i th McDonald factor score estimator is the i th diagonal ele-

ment of �1/2��1/2 divided by the i th diagonal element of �. If both � and � are diagonal,

then ρ2
Zi C

=
[
ψ

1/2
i i {hii/(1 + hii )}ψ1/2

i i

]
/ψi i = hii/(1 + hii ). This completes the proof of part

(a). (b) The nonzero eigenvalues of �−1� are equal to the nonzero eigenvalues of � because
�−1� = �−1��′ and � = �′�−1�. If both � and �′�−1� are diagonal, then � is diagonal
and its eigenvalues are given by δ1, . . . , δq . This completes the proof of part (b). ��

Since in exploratory factor analysis the initial unrotated solution is usually obtained under
the conditions that � = I and �′�−1� is diagonal, it follows from part (a) of Theorem 1 that
for this initial solution the coefficients ρ2

Di C
, ρ2

Vi C
, and ρ2

Zi C
are all equal to δi , for all i . In

addition, it follows from part (b) of Theorem 1 that for this initial solution max{δ1, . . . , δq} =
δ = β ′�β/β ′�β, where β is the eigenvector of �−1� corresponding to the largest eigenvalue
of �−1�. Since in the one-factor model both � and �′�−1� are scalars, it also follows from
Theorem 1 that under the one-factor model, the coefficients ρ2

Di C
, ρ2

Vi C
, and ρ2

Zi C
are all equal

to δ.
It is important to note that the coefficients ρ2

Di C
, ρ2

Vi C
, and ρ2

Zi C
are in general not invariant

under factor rotation. To see this, let f0 be either f1, f2, or f3, letA be eitherA1,A2, orA3, letρ2
Fi C

be

either ρ2
Di C

, ρ2
Vi C

, or ρ2
Zi C

, and letM be a q×q invertible transformationmatrix. It is awell-known

fact that the rotated vector of factor scores is given by M−1f0 = M−1A′(X − μ). This means
that the coefficient ρ2

Fi C
is obtained by dividing the i th diagonal element of M−1A′�A(M−1)′

by the i th diagonal element of M−1A′�A(M−1)′. So the value of ρ2
Fi C

for the i th factor score

estimator calculated before rotation is in general not the same as the value of ρ2
Fi C

calculated after

rotation. It is therefore recommended to calculate the estimates of the coefficients ρ2
Di C

, ρ2
Vi C

,

and ρ2
Zi C

after rotation. To do this, the presented formulas can be used where �̂ and �̂ are the
rotated matrices of estimated factor loadings and estimated factor covariances.

5. Factor Model Selection

The estimated value of any factor model-based lower bound to the reliability of a linear
combination of the item scores depends on the specified number of common factors in the factor
model used. In general, any lower bound estimate increases with the specified number of common
factors. Thismeans thatwhen a lower bound estimate is unsatisfactory, a new factor can be added to
the model to obtain a higher estimate. In principle, this can be repeated until the number of factors
reaches itsmaximum,which is equal to the number of items. In the extremeandunrealistic situation
where as many common factors are specified as the number of items, all unique variances are zero
and the estimate of any factor model-based lower bound to the reliability of a linear combination
of the item scores is one. Therefore, in assessing the reliability of any linear combination of
item scores by means of a factor model-based lower bound coefficient, it is essential to use an
interpretable common factor model that fits well to the data.

The idealmeasurement situation in practice is the situation inwhich an available confirmatory
factor model fits well to the data. When there is no confirmatory factor model available or when a
confirmatory factor model does not fit well to the data, exploratory factor analysis can be used to
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find an appropriatemodel.However, exploratory factor analysiswill not always yield an acceptable
model. Even in the case of the overidentified model with the largest possible number of common
factors, the fit to the data might be poor. For this situation, it is recommended to choose a model
from the set of saturated common factor models with the smallest possible number of factors.
Such a factor model is recommended because its interpretation and specification are in general
simpler than those of other not underidentified models, and its selection prevents the artificial
increase of the reliability lower bound estimate by adding common factors to the model when
previous lower bound estimates are unsatisfactory.

To be able to specify a saturated common factor model with the smallest possible number of
factors, this number of factors must determined. In the following theorem, the number of factors
of a saturated model with the smallest possible number of factors is given for a fixed number of
items.

Theorem 2. Given a fixed k number of item scores, the number of factors in a saturated common
factor model with the smallest possible number of factors is the ceiling given by

qc = min

{
q ∈ Z |q ≥ k + 1

2 −
√
2k + 1

4

}
, (12)

where Z is the set of all integers.

Proof. In the general common factormodel, the total number of parameters is kq+q(q+1)/2+k.
The number of restrictions needed for identification is q2. Consequently, the number of estimable
parameters is kq − q(q − 1)/2 + k. Since k(k + 1)/2 is the maximum number of estimable
parameters, the degrees of freedom are given by d f = k(k − 1)/2 + q(q − 1)/2 − kq. A
necessary condition for a factor model to be saturated is the condition that d f = 0. Multiplying
out and collecting powers of q yields the quadratic function d f = 1

2q2 −(
k + 1

2

)
q + 1

2k(k − 1)
of q given a fixed k. Since the coefficient of q2 is 1

2 , the function has a minimum. Since the
discriminant is 2k + 1

4 > 0, for all k, the function has two roots. The smallest root is given by

q0 = k + 1
2 −

√
2k + 1

4 . If q0 is a positive integer, then q0 is the number of factors. If q0 is a
positive real number, then the nearest positive integer larger than q0 is the number of factors. In
general, the number of factors is given by the ceiling of q0. This completes the proof. ��

If q0 is a positive real number, then qc > q0 and d f = k(k −1)/2+qc(qc −1)/2− kqc < 0.
In this case, the model is not identified. The number of additional restrictions then needed to
obtain a saturated model is given by −d f = kqc − k(k − 1)/2− qc(qc − 1)/2. In Table 1, qc and
−d f are given for k = 1, 2, . . . , 100.

There are many ways to specify a saturated common factor model with the smallest possible
number of factors. One possible way is to set the qc × qc matrix � equal to I, the factor loadings
λ j i , for j = 1, . . . , qc−1 and i = j +1, . . . , qc, equal to zero, and kqc−k(k−1)/2−qc(qc−1)/2
other factor loadings equal to zero.

As an example, consider the situation of four item scores and two common factors. If � = I
and � is diagonal, then two different saturated common factor models are given by the following
two matrices of factor loadings:

⎡
⎢⎢⎣

λ11 0
0 λ22

λ31 λ32
λ41 λ42

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

λ11 0
λ21 λ22
0 λ32

λ41 λ42

⎤
⎥⎥⎦ .
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Table 1.
The smallest possible number of factors qc for a saturated factor model as a function of k, and the necessary number of
additional identification restrictions −d f .

k qc −d f k qc −d f k qc −d f k qc −d f k qc −d f

1 0 0 21 15 0 41 33 5 61 51 6 81 69 3
2 1 1 22 16 1 42 34 6 62 52 7 82 70 4
3 1 0 23 17 2 43 35 7 63 53 8 83 71 5
4 2 1 24 18 3 44 36 8 64 54 9 84 72 6
5 3 2 25 19 4 45 36 0 65 55 10 85 73 7
6 3 0 26 20 5 46 37 1 66 55 0 86 74 8
7 4 1 27 21 6 47 38 2 67 56 1 87 75 9
8 5 2 28 21 0 48 39 3 68 57 2 88 76 10
9 6 3 29 22 1 49 40 4 69 58 3 89 77 11
10 6 0 30 23 2 50 41 5 70 59 4 90 78 12
11 7 1 31 24 3 51 42 6 71 60 5 91 78 0
12 8 2 32 25 4 52 43 7 72 61 6 92 79 1
13 9 3 33 26 5 53 44 8 73 62 7 93 80 2
14 10 4 34 27 6 54 45 9 74 63 8 94 81 3
15 10 0 35 28 7 55 45 0 75 64 9 95 82 4
16 11 1 36 28 0 56 46 1 76 65 10 96 83 5
17 12 2 37 29 1 57 47 2 77 66 11 97 84 6
18 13 3 38 30 2 58 48 3 78 66 0 98 85 7
19 14 4 39 31 3 59 49 4 79 67 1 99 86 8
20 15 5 40 32 4 60 50 5 80 68 2 100 87 9

In both cases, the model is identified and the number of parameters to be estimated (six factor
loadings and four unique variances) is equal to the maximum number of estimable parameters.

6. A Comparison of Lower Bounds

To get an indication of the relative performance of the proposed reliability lower bound
coefficients for the different factor score estimators, estimates of these coefficients have been
calculated for the same nine classic example data sets used by Revelle and Zinbarg (2009). The
first six data sets have been taken from Sijtsma (2009) and are called S1, S2, S3, S4, S5, and S6.
S1 consists of the scores of 828 respondents on eight rating scale items. S2 and S3 are independent
subsets of S1 and each of these two data sets consists of the scores on four items. S4, S5, and S6 are
three artificially created covariance matrices for six indicators each. The seventh data set has been
taken from Lord and Novick (1968) and is called LN. LN is the covariance matrix that belongs
to the scores of 1416 respondents on four items that measure English as a foreign language. The
eighth data set has been taken from Warner, Meeker, and Eels (1960) and is called WM. WM is
the correlation matrix that belongs to the scores on six indicators of social class. The ninth data
set has been taken from De Leeuw (1983) and is called DL. DL is the correlation matrix that
belongs to the scores on six political survey items.

Revelle and Zinbarg (2009) analyzed each of the nine data sets using a higher order factor
analysis with a Schmid–Leiman transformation (Schmid and Leiman, 1957) and the subsequent
estimation of the general factor saturation. They reported the estimates of ω calculated with the
estimates from the higher order factor analyses and compared these estimates to the values of
the glb and to the estimates of other lower bound coefficients for the reliability of the total score.
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Table 2.
Estimates of the well-known reliability lower bounds λ2, λ3, λ4, λ6, μ3, and the glb, and estimates of the factor model-
based reliability lower bounds ω and δ calculated with the estimates from regular exploratory factor analysis.

Reliability lower bound Data set

S1 S2 S3 S4 S5 S6 LN WM DL

λ2 .789 .753 .655 .643 .585 .533 .898 .943 .842
λ3 .785 .748 .652 .533 .533 .533 .894 .942 .840
λ4 .849 .820 .696 .889 .593 .533 .909 .969 .883
λ6 .785 .713 .593 .800 .571 .488 .880 .960 .830
μ3 .791 .755 .658 .666 .592 .533 .900 .943 .843
glb .852 .820 .683 .889 .647 .533 .920 .976 .885
ω .844 .755 .644 .889 .667 .533 .900 .972 .871
δ .995 .807 .689 .889 .667 .533 .930 .998 .883

For each data set, the greatest estimate is underlined.

Revelle andZinbarg (2009) concluded that the estimate ofω is systematically higher than the value
of the glb. In the present study, however, regular exploratory factor analyses have been carried out
on the data sets. Assuming multivariate normality of the item scores, estimates of the parameters
have been obtained by the method of maximum likelihood. The results of these exploratory factor
analyses show that the one-factor model fits satisfactorily well to S3 and LN, and perfectly to
S6. The two-factor model fits well to DL and perfectly to S5. Since the one-factor model does
not fit to S2, a saturated two-factor model has been selected for S2 in the way described in the
preceding section. The three-factor model fits reasonably well to S1 and perfectly to S4. Since
the two-factor model does not fit well to WM, the saturated three-factor model has been selected
for WM.

Although the main interest is in the relative performance of the reliability lower bound esti-
mates for the different factor score estimators, it is also interesting to see whether the estimates
of ω and δ calculated with the estimates from the regular exploratory factor analyses are sys-
tematically higher than the values of the glb and other well-known lower bound coefficients for
the reliability of the total score. The other well-known lower bound coefficients of interest are
Guttman’s λ2, λ3 (coefficient alpha), λ4, λ6, and μ3 (ten Berge & Zegers, 1978). The estimates
of ω and δ have been calculated using self-written R code (R Core Team, 2015). The values of
the glb and the other well-known reliability lower bound coefficients have been calculated using
the R package psych (Revelle, 2014). The results are shown in Table 2.

The results in Table 2 show that for six of the nine data sets the estimate of δ takes on the
highest value. For S1, LN, and WM, the estimate of δ is greater than the estimates of all other
coefficients. For all data sets, the estimate of δ is greater than or equal to the estimates of λ2, λ3,
λ6, μ3, and ω. For four of the nine data sets, the estimates of the glb and λ4 take on the highest
value. Only for S3 the estimate of λ4 is greater than all other estimates, and only for DL the
estimate of the glb is greater than all other estimates. For S2, the estimates of λ4 and the glb are
equal and their common value is greater than the estimates of all other coefficients. For all data
sets, the estimates of the glb and λ4 are greater than or equal to the estimates of λ2, λ3, λ6, and
μ3. For S1, S3, S5, LN, and WM, the estimate of δ is greater than the value of the glb, for S4
and S6 the estimates of δ and the glb are equal, and for S2 and DL the estimate of δ is less than
the value of the glb. For S1, S5, LN, and WM, the estimate of δ is greater than the estimate of
λ4, for S4, S6, and DL the estimates of δ and λ4 are equal, and for S2 and S3 the estimate of δ is
less than the estimate of λ4. Only for S5 the estimate of ω is greater than the estimate of the glb,
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Table 3.
Estimates of reliability lower bounds (communalities) of factor score estimators before factor rotation.

Factor Estimator Communality Data set

S1 S2 S3 S4 S5 S6 LN WM DL

1 Thurstone ρ2D1C .995 .700 .689 .889 .667 .533 .930 .998 .883

Bartlett ρ2V1C .995 .684 .689 .889 .667 .533 .930 .998 .883

McDonald ρ2Z1C .995 .692 .689 .889 .667 .533 .930 .998 .883

2 Thurstone ρ2D2C .853 .762 .889 .667 .988 .611

Bartlett ρ2V2C .853 .745 .889 .667 .988 .611

McDonald ρ2Z2C .853 .754 .889 .667 .988 .611

3 Thurstone ρ2D3C .577 .889 .947

Bartlett ρ2V3C .577 .889 .947

McDonald ρ2Z3C .577 .889 .947

For each data set and each factor, the greatest estimate is underlined.

for S4 and S6 the estimates of ω and the glb are equal, and for S1, S2, S3, LN, WM, and DL, the
estimate of ω is less than the estimate of the glb.

Next, the estimates of the lower bounds to the reliabilities of the factor score estimators before
factor rotation have been calculated using self-written R code (R Core Team, 2015). The results
are shown in Table 3.

For all data sets except S2, the values of the lower bound estimates in Table 3 are the same
for the different factor score estimators. The explanation for this is given by the proof of Theorem
1. For S2, the values of the lower bound estimates are not the same for the different factor score
estimators because in the fitted saturated factor model�′�−1� is not diagonal. The results for S2
show that the lower bound estimates to the reliabilities of Thurstone’s factor score estimators are
greater than those for Bartlett’s and McDonald’s factor score estimators and that the estimates for
McDonald’s factor score estimators are greater than those for Bartlett’s factor score estimators.

Finally, the estimates of the lower bounds to the reliabilities of the factor score estimators
after oblimin rotation have been calculated using self-written R code (R Core Team, 2015). The
results are shown in Table 4.

The results in Table 4 show that the estimates of the lower bounds to the reliabilities of
Thurstone’s factor score estimators are greater than or equal to the estimates of the lower bounds
to the reliabilities of Bartlett’s and McDonald’s factor score estimators. In addition, the estimates
of the lower bounds to the reliabilities of McDonald’s factor score estimators are greater than or
equal to the estimates of the lower bounds to the reliabilities of Bartlett’s factor score estimators.
For S1 and WM, the estimates of the lower bounds to the reliabilities of the different factor score
estimators seem to be equal but differences are found at higher decimal places.

7. Discussion and Conclusion

In this paper, lower bounds to the reliabilities of the elements of the random vector of Thur-
stone factor score estimators D, the random vector of Bartlett factor score estimators V, and the
random vector of McDonald factor score estimators Z have been derived. These elements are,
however, not exactly the factor score estimators used in practice. In practice, factor score estima-
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Table 4.
Estimates of reliability lower bounds (communalities) of factor score estimators after oblimin rotation.

Factor Estimator Communality Data set

S1 S2 S3 S4 S5 S6 LN WM DL

1 Thurstone ρ2D1C .995 .711 .689 .889 .667 .533 .930 .993 .849

Bartlett ρ2V1C .995 .693 .689 .889 .667 .533 .930 .993 .820

McDonald ρ2Z1C .995 .701 .689 .889 .667 .533 .930 .993 .836

2 Thurstone ρ2D2C .875 .791 .889 .667 .994 .830

Bartlett ρ2V2C .860 .783 .889 .667 .994 .792

McDonald ρ2Z2C .868 .787 .889 .667 .994 .813

3 Thurstone ρ2D3C .756 .889 .978

Bartlett ρ2V3C .684 .889 .978

McDonald ρ2Z3C .719 .889 .978

For each data set and each factor, the greatest estimate is underlined.

tors with realizations f̂1 = Â1(x − x̄), f̂2 = Â2(x − x̄), and f̂3 = Â3(x − x̄) are used, where the
estimates �̂, �̂, �̂, and x̄ are taken as the true values of �, �, �, and μ. Under general regularity
conditions, however, maximum likelihood estimates of �, �, �, and μ are known to converge
in probability to the true parameter values. Therefore, in using maximum likelihood estimates, it
can be expected that the difference between a particular reliability lower bound estimate and the
lower bound to the reliability of the corresponding estimator actually used in practice will become
smaller when the sample size increases. In practice, maximum likelihood estimates are usually
obtained under the assumption that the item scores have a multivariate normal distribution.

The decision to use either an overall test score or a factor score estimator should not be
based on a comparison of reliability lower bound estimates. This decision should be based on a
comparison of the validity of these scores for the purpose of measurement. However, the decision
to use either Thurstone’s, Bartlett’s, or McDonald’s factor score estimators should to some extent
be based on a comparison of reliability lower bound estimates. Fortunately, the general common
factor model provides a means to compare reliability lower bound estimates of different linear
combinations of the item scores. The results in Tables 3 and 4 show that the reliability lower
bound estimates for Thurstone’s factor score estimators are at least as high as the estimates for
Bartlett’s and McDonald’s factor score estimators. Therefore, Thurstone’s factor score estimators
can be recommended unless it is desirable to preserve the covariances among the factors. Then,
of course McDonald’s factor score estimators are recommended.
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