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We study linear quadratic games played on a network. Agents face peer effects with 
distance-one neighbors, and strategic substitution with distance-two neighbors (local 
congestion). For this class of games, we show that an interior equilibrium exists both 
in the high and in the low regions of the largest eigenvalue, but may not exist in the 
intermediate region. In the low region, equilibrium is proportional to a weighted version 
of Bonacich centrality, where weights are themselves centrality measures for the network. 
Local congestion has the effect of decreasing equilibrium behavior, potentially affecting 
the ranking of equilibrium actions. When strategic interaction extends beyond distance-
two, equilibrium is characterized by a “nested” Bonacich centrality measure, and existence 
properties depend on the sign of strategic interaction at the furthest distance. We support 
the assumption of local congestion by presenting empirical evidence from a secondary 
school Dutch dataset.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Socio-economic decisions are typically taken in social networks defined by interpersonal, institutional and technological 
ties. Within these networks, neighbors jointly consume and produce goods, discuss political opinions, share information 
and beliefs. As a consequence, neighbors in the network tend to display correlation in behavior. Positive correlation (and in 
particular peer effects) has commanded substantial attention,1 partly because of its pervasiveness in social interaction, and 
because it amplifies individual shocks acting as a “social multiplier” (Glaeser et al., 2003).

In this paper we study problems in which strategic interdependency extends beyond the social ties, to agents that are 
at distance-two or further away in the social network. Most of our analysis deals with the case in which agents face 
peer effects at distance-one, as well as strategic substitution at distance-two. We refer to this substitution effect as local 
congestion. The term “local” refers to the assumption that actions generate congestion through common neighbors, rather 
than at large in the social network.

Examples of local congestion abound in economics. In job-referral networks, agents get to know about vacancies 
via their social ties, and compete for the information that becomes available to common neighbors. As shown by 
Calvó-Armengol and Jackson (2004), in the short run the incentives of an unemployed agent to actively search for a job 
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are negatively affected by how actively the other unemployed agents who share the same social contacts (and, thereby, 
have access to the same sources of information) search. A similar effect of local competition shapes the incentives structure 
in collaboration networks, where researchers compete for the limited time and attention of common co-authors.

Local congestion may also stem from the presence of negative local externalities. For instance, a smoker may decide to 
limit smoking in the presence of friends or relatives when these are already subject to large amounts of secondhand smoke. 
The incentive to limit smoking stems from the perception of a large marginal health damage suffered by the smoker’s 
congested friends. Pecuniary externalities may sort similar effects. Suppose firms A and B use each other’s output as factor 
of production. Therefore, an increase in firm A’s output level increases the demand for B’s product, and thus its price. This 
in turn raises the marginal cost of all other firms that use B’s product as production factor. The increase in the marginal 
cost will reduce these firms’ incentives to produce. Finally, local congestion can also be created by free-riding incentives of 
agents sharing a common neighbor. In conflict networks, for instance, countries that share a common enemy tend to free 
ride on each other in the production of armaments.

The aim of this paper is to trace equilibrium behavior to the topology of the social network in problems with local 
congestion. This is a crucial issue for the design of network-based policies that affect behavior by incentivizing the creation 
and/or the destruction of social ties such as friendships, kinship, work relations and such. The key element of our analysis, 
and a common feature of all the above examples, is that the adjacency matrix of the social network does not coincide 
with the matrix of strategic interactions of the game. In fact, the presence of local congestion both affects the intensity of 
distance-one relationships (when two neighbors also share common neighbors), and creates channels of strategic interaction 
not accounted for by the adjacency matrix of the network (between agents who are not neighbors but share common 
neighbors). We show that the matrix of strategic interaction is a weighted sum of the social network’s adjacency matrix 
and its second power.

A recent literature investigates the relation between equilibrium behavior and the pattern of social interaction in games 
with linear best replies. This relation has been studied in Ballester et al. (2006) and Bramoullé et al. (2014), and then 
applied to the analysis of various socio-economic problems (see for example Calvó-Armengol et al., 2009; Patacchini and 
Zenou, 2012, 2011; Ballester et al., 2010; Bloch and Quérou, 2013; Topa and Zenou, 2014). Ballester et al. (2006) is based on 
the observation that in this class of games, the matrix of strategic interactions can be decomposed into the sum of a local 
complementarity matrix and of a global substitution matrix, plus an idiosyncratic element. Ballester et al. (2006) shows that 
when an interior equilibrium exists, this is proportional to the vector of Bonacich centralities for the local complementarity 
matrix. Bramoullé et al. (2014) allows also for multiple non interior equilibria with active and inactive agents.

We follow this literature by focusing on games with linear best replies, and, as in Ballester et al. (2006), we look at 
interior equilibria. We note that, although the above decomposition can be applied to our problem with local congestion, 
the local complementarity matrix so obtained does not coincide with the adjacency matrix of the social network, and does 
not preserve its fundamental properties. The problem of tracing behavior to the topology of the social network cannot 
therefore be addressed by direct application of Ballester et al. (2006) results. As we discuss in detail below, this crucial 
difference implies that equilibrium behavior relates to the network via a variant of the Bonacich centrality measure.

We frame our results in terms of the effect of local congestion on both the existence and the characterization of equi-
librium. In particular, we take as benchmark the case of peer effects only, in which the adjacency matrix of the social 
network does coincide with the matrix of strategic interaction (and with the local complementarity matrix in Ballester et 
al., 2006). For this case, equilibrium is found only in the low range of the largest eigenvalue. We show that in the presence 
of local congestion, an interior equilibrium exists both in networks with high largest eigenvalue and in networks with low 
largest eigenvalue. The intuition for this result is immediate in the class of regular networks, whose eigenvalue equals the 
average degree: as the network becomes denser, distance-two channels of strategic substitution tend to grow faster than 
distance-one channels of peer effects, and this eventually bounds the magnitude of equilibrium feedbacks.

We then turn to the characterization of equilibrium. We show that in the low range of the largest eigenvalue, equilibrium 
is characterized by a weighted Bonacich centrality measure for the social network, where weights are themselves centrality 
measures for the same network. Using our characterization, we show that the introduction of local congestion always 
decreases equilibrium behavior, and that such a decrease is larger for agents who are more central in the social network. 
We provide an example where this produces a reversal in the ranking of agents’ equilibrium actions with respect to the case 
of peer effects only. We then perform comparative statics with respect to the social network. Within the class of regular 
networks, we show that the relation between behavior and network density is non-monotonic: behavior first increases and 
then decreases after a critical density level is attained. We also find that creating cliques unambiguously contracts aggregate 
behavior.

We extend the model with local congestion to encompass strategic effects beyond distance-two in the social network. 
This is relevant, for instance, in the adoption of safe behaviors in the presence of a transmittable disease, where someone’s 
incentives to adopt the safe behavior depends on the probability that her neighbors are infected. This in turn depends on the 
adoption of safe behaviors by all other agents to whom these neighbors are directly or indirectly connected. We show that 
the existence of an interior equilibrium crucially depends on the sign of the strategic interaction taking place at the furthest 
distance. In particular, an interior equilibrium exists in the region of high largest eigenvalues when strategic interaction 
at the furthest distance is of the substitute type. We also show that in the region of low largest eigenvalues, equilibrium 
behavior is characterized in terms of a “nested” variant of Bonacich centrality. This generalizes the characterization result 
for the case of local congestion to this more complex case.
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Finally, we provide empirical evidence of the existence of a negative correlation in behavior at distance-two, consistent 
with the presence of local congestion. We focus on doing homework, a behavior that generates interaction patterns of the 
type described for collaboration networks. The empirical analysis uses data from a novel dataset containing information 
about over 2,500 Dutch secondary school pupils.

We note that a notion similar to what we call local congestion is present in previous works on network economics, 
where it has been mainly formalized in terms of the effect of the “degree” of a node on the incentives of other nodes to 
link to that node. The “co-author model”, first proposed by Jackson and Wolinsky (1996), contains the general idea that the 
benefits coming from a connection may be limited when this is incident to a very connected node. This idea is embedded in 
various models of network formation, and it is key in determining the agents’ incentives to form and sever links. Examples 
of such models include Morrill (2011), Billand et al. (2012, 2013), Möhlmeier et al. (2016). Differently from these papers, we 
refer to local congestion as the impact of the “actions” taken by a neighbor of a given node on the incentives to act of the 
other neighbors of that same node. Finally, congestion in distance-two relations is behind Wahba and Zenou (2005) analysis 
of job market networks, where the probability of finding a job through social contacts (weak ties) decreases at high levels 
of network density. This is due to the relative speed of growth of distance-one and distance-two relations (and the ensuing 
competition effects), a mechanism at all similar to the one behind our non-monotonicity result in the density–behavior
relation.

The paper is organized as follows. Section 2 sets up the formal model with local congestion. Section 3 studies equilibrium 
existence and characterization. Section 4 extends the basic model to encompass interaction at arbitrary distance in the 
network. Section 5 brings the model to the data. Section 6 concludes the paper.

2. A model with peer effects and local congestion

We consider a set N of n agents, organized in a network g, defined by a n × n matrix G whose generic entry gij ∈ {0, 1}
measures the presence of a social tie between agents i and j. We assume that the network is undirected, gij = g ji for all 
i, j ∈ N , and we let gii = 0 for all i. When gij = 1 we say that agents i and j are neighbors in g. The number of neighbors of 
agent i in g is called the degree of agent i and is denoted by di . A walk of length m between agents i and j in g is defined 
as a finite sequence of agents (kn)n=1,...,m such that k1 = i, km = j and gknkn−1 = 1 for all n = 2, ..., m. The generic term g[2]

i j

of the power matrix G2 counts the number of walks of length-two from node i to node j in g (notice that g[2]
ii = di ).

The payoff function in (1) defines the payoff of agent i given a vector x ∈R
n+ of actions and the network g:

Ui(x) = αxi − σ

2
x2

i + φ
∑
j∈N

gijxi x j − γ
∑
k∈N

g[2]
ik xi xk (1)

The first two terms of (1) capture the private benefits from one’s own action. These benefits are the sum of a linear 
increasing part and a quadratic decreasing part, with intensity measured respectively by parameters α and σ . The third 
term captures the peer effect: the marginal incentive to act increases in the sum of the actions taken by neighbors. The 
intensity of such complementarity is measured by the parameter φ > 0. In the fourth term, each entry g[2]

ik counts the 
number of length-two walks from i to k. This term describes an indirect strategic interdependence: if γ > 0, the marginal 
incentives to act decrease in the aggregate level of actions taken at distance-two in the network. We call local congestion this 
strategic substitution effect between agents at distance-two in g. In Appendix A we sketch three micro-founded economic 
problems characterized by local congestion, yielding the utility function (1) as a reduced form.

3. Equilibrium

3.1. The matrix of strategic interaction

We start by laying out the matrix of strategic interaction associated with the payoff function (1) and with a given 
adjacency matrix G. This matrix, that we call G̃, keeps track of both peer effects at distance-one and substitution effects at 
distance-two in the network g. An interior equilibrium x is characterized by the following FOCs:

α · 1 =
[
σ I − φG̃

]
x, (2)

where G̃ is defined as:

G̃ ≡ G − γ

φ
G2. (3)

Strategic interaction in G̃ is defined with respect to both the network G and its power matrix G2. Note that G̃ is sym-
metric, being the sum of symmetric matrices, and therefore has real valued eigenvalues. The generic entry of G̃ is given 
by:
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g̃i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if gij = 0 and g[2]

i j = 0

1 if gij = 1 and g[2]
i j = 0

− γ
φ

g[2]
i j if gij = 0 and g[2]

i j > 0

1 − γ
φ

g[2]
i j if gij = 1 and g[2]

i j > 0

(4)

Let us consider each of the four possibilities of (4) in detail. In the first line, since i and j are neither directly nor 
indirectly connected in g, they experience neither peer effects nor local congestion, and g̃i j = 0. In the second line, i and 
j are neighbors in g but do not share any common neighbor; as a consequence, their interaction consists in the peer 
effect only. In the third line, i and j share a common neighbor but are not neighbors; there are no peer effects at work, 
but there is local congestion. Note that this entry grows in magnitude with the number of common neighbors. Note also 
that g̃ii = − γ

φ
di , so that G̃ always contains negative entries. Finally, in the fourth line i and j are both direct and indirect 

neighbors, and the sign of their interaction depends on the relative magnitude of peer effects and local congestion. Both the 
issues of existence and characterization of an interior equilibrium can be addressed by referring to the notion of Bonacich 
centrality.

Definition 1 (Bonacich centrality). Let A be an adjacency matrix, and let a ∈ R+ be a discount parameter. i) The Bonacich 
centrality matrix is given by M(A, a) ≡ [I − aA]−1; ii) The vector of Bonacich centralities is given by b(A, a) ≡ M(A, a) · 1; 
iii) The vector of weighted Bonacich centralities with weights vector w is given by bw(A, a) = M(A, a) · w.

Our analysis of existence of a unique interior equilibrium makes use of Ballester et al. (2006) construction of the nor-

malized n × n matrix C (that they call “local interaction matrix”), whose generic entry ci j = g̃i j+θ

λ
∈ [0, 1] is defined in terms 

of our model by the following parameters: the absolute value θ of the maximal substitutability in G̃; the maximal comple-
mentarity δ in G̃; and their range λ ≡ δ + θ . Let us also denote by μ1(C) the largest eigenvalue of C. Ballester et al. (2006)
have shown that if μ1(C) < σ

φλ
, there exists a unique interior equilibrium which is proportional to Bonacich centralities 

in C. In the next subsection we use the above construction and result to obtain explicit conditions on the eigenvalues of the 
network G for the existence of an interior equilibrium.

3.2. Existence

In preparation of Proposition 1, containing our main existence results, we discuss the relationship between the spectral 
properties of the matrix C described above and the adjacency matrix G of the social network. For a generic square matrix A, 
let μ(A) the vector of its eigenvalues. From the definition of G̃ in (3), for all i = 1, ..., n we can associate the ith eigenvalue 
of G with a jth eigenvalue of G̃. Formally, we define by I(G) and I(G̃) the set of indexes of the eigenvalues of the two 
matrices, and by ρ : I(G) → I(G̃) the bijection between the elements of the two sets. With a little abuse of notation we 
define as j(i) the index j ∈ I(G̃) such that j = ρ(i). Then we can write the map ρ as follows2:

μ j(i)(G̃) = μi(G) − γ

φ
μ2

i (G). (5)

Two remarks are in order here. First, the mapping in (5) is non-monotonic, and therefore it does not preserve the order 
of the eigenvalues of G. It follows that, in general, μ1(G) is not mapped into μ1(G̃), that is ρ(1) �= 1. Second, the map 
defined in (5) is strictly concave. Define i∗ ∈ I(G) as the index such that ρ(i∗) = 1. That is, μi∗ (G) is mapped into μ1(G̃). 
Let us then decompose C as follows:

C = 1

λ
G̃ + θ

λ
U (6)

where U is a matrix of ones. It follows that for a vector of shifts y we can write:

μ(C) = 1

λ
μ(G̃) + y (7)

Since (7) defines a monotone map (see the proof of Proposition 1), it follows that the eigenvalue μi∗ (G), is mapped into 
μ1(C) via the relations (6) and (7).

In Proposition 1 we use the analysis above to provide a novel result relating existence of an interior equilibrium to 
conditions on the spectral properties of the network g. These conditions bound the magnitude of the largest eigenvalue 
μ1(G) and reflect the twofold effect of each link in G: to create both one additional channel of peer effects and new 
channels of indirect substitution. Let d̄ := max{di |i ∈ N} and d̂ := σ

nφγ − φ

4nφγ 2 .

2 The result come from the fact that, for a generic square matrix A and an associated polynomial q(A), the eigenvectors μ(q(A)) = q(μ(A)). Note also 
that, in the analysis to follow, the assumption of symmetry of G is key since it guarantees that G is Hermitian (and this property is used in the proof of 
Proposition 1).
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Proposition 1. A unique interior equilibrium exists if one of the following conditions hold:

i. d̄ < d̂;

ii. μ1(G) < φ−√−4γ σ+4γ λφ y1+φ2

2γ ;

iii. μ1(G) > φ
2γ , and either μi∗(G) < φ−√−4γ σ+4γ λφ yi∗ +φ2

2γ or μi∗ (G) > φ+√−4γ σ+4γ λφ yi∗ +φ2

2γ .

Proposition 1 points to a remarkable role for local congestion: an interior (positive) equilibrium exists when μ1(G) is 
either large or small, while existence may fail for intermediate values of μ1(G). This result is in stark contrast with the case 
of peer effects only (i.e., of γ = 0), where an interior equilibrium fails to exist for large values of μ1(G). To get an intuition 
for this result, it is useful to consider the relation between the largest eigenvalue and the average degree, a rough measure of 
network density. Given that G is symmetric, the Min–Max theorem for Hermitian matrices directly implies that the average 
degree of G is a lower bound for the largest eigenvalue μ1(G) (see Teschl, 2014, p. 117). Point iii in Proposition 1 can be 
therefore interpreted as an existence result for very dense networks. The role of local congestion is easy to grasp: as density 
increases, the additional distance-two interaction channels (of the substitute type) have the effect of mitigating the positive 
impact on behavior of the additional direct complementarity channels. Point iii states that this effect bounds equilibrium 
actions when density is large enough. The intuition behind Proposition 1 is best illustrated for the class of regular networks 
in the following example.

Example 1 (Regular networks). In regular networks, the average degree d in g coincides with the largest eigenvalue μ1(G)

and comparative statics directly on d can be performed. The unique (symmetric) interior equilibrium is given by3:

x∗
i = α

σ − φd + γ d2
(8)

The above expression is well defined and positive if and only if either d ≤ φ−√
φ2−4γ σ
2γ or d ≥ φ+√

φ2−4γ σ
2γ . Note also that 

the small (large) root is decreasing (increasing) in φ, capturing the fact that strengthening local congestion allows for 
equilibrium in a smaller set of networks. Indeed, when peer effects become more intense, either sparser networks (with 
fewer channels of complementarity) or denser networks (where distance-two channels of interaction grow fast enough 
compared to the number of direct channels) are needed to recover existence of a positive equilibrium. Also, the small 
(large) root is increasing (decreasing) in γ , capturing the fact that strengthening local congestion allows for equilibrium in 
a larger set of networks.

3.3. Characterization

In this section we explore the relation between equilibrium behavior and centrality in the network g. We then build 
on this relation to discuss the effect of (small degrees of) local congestion on both the levels and the ranking of individual 
actions at equilibrium. We finally study the effect of changes in the network g on individual and aggregate behavior.

3.3.1. Equilibrium and centrality
From system (2), an interior equilibrium solves the following equality:

x = α
[
σ I − φG̃

]−1
1 (9)

Under the sufficient conditions on the eigenvalues of G highlighted in Proposition 1, system (9) provides the full charac-
terization of the interior equilibrium in terms of the matrix G and its power matrix G2 .

In the next proposition, we provide a characterization of equilibrium which applies to networks with a small largest 
eigenvalue. We show that equilibrium is characterized by a weighted version of the Bonacich centrality vector of G, where 
both the weighting vector and the discount factors take the strength of local congestion into account. To state the proposi-
tion, we first need to define the following two scalars4

a1 = φ + √
φ2 − 4γ σ

2σ
, a2 = φ − √

φ2 − 4γ σ

2σ
. (10)

3 We focus on symmetric equilibria since, when they exist, they are the unique solution of the FOCs. An analysis of asymmetric equilibria could imply 
the study of the cases where equilibria are not interior, which is beyond the scope of this paper (see Bramoullé et al., 2014).

4 We can also invert the order of the two scalars, i.e., a1 = φ−√
φ2−4γ σ
2σ and a2 = φ+√

φ2−4γ σ
2σ .
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Fig. 1. Star, butterfly and connected star networks.

Table 1
Effect of γ on equilibrium actions.

Network Agents γ = 0 γ = 0.51 |x0 − x0.51| |x0 − x0.51|/x0

Star 1 Center 0.2916 0.2275 0.0641 0.2198
2–5 Periphery 0.2291 0.1850 0.0441 0.1925

Butterfly 1 Center 0.3023 0.1956 0.1067 0.3530
2-5 Periphery 0.2558 0.1814 0.0744 0.2909

Connected star 1 Center 0.3157 0.1650 0.1507 0.4774
2–5 Periphery 0.2894 0.1652 0.1242 0.4292

Parametrization: α = 2, φ = 1, σ = 10, in equation (1). Networks are shown in Fig. 1.

Proposition 2. Let φ > 2
√

γ σ and μ1(G) < 2σ

φ+√
φ2−4γ σ

. Then the unique interior Nash equilibrium of the game is given by:

x = α

σ
bb(G,a1)(G,a2) < 0 (11)

The weighted centrality that in Proposition 2 characterizes equilibrium behavior is “nested”, meaning that weights are 
themselves Bonacich centralities of the network g. Two remarks are in order. First, when γ = 0, the upper bound for 
μ1(G) is σ

φ
. This means that Proposition 2 applies to all networks where, in the absence of congestion, a unique interior 

equilibrium exists by results from Ballester et al. (2006). Second, the upper bound is increasing in γ , which implies that an 
increase in γ enlarges the set of admissible networks. These two observations allow us to use Proposition 2 to measure the 
effect of introducing small levels of local congestion on equilibrium behavior.

Proposition 3. The decrease in equilibrium behavior due to the introduction of small levels of local congestion is given by:

dx

dγ

∣∣∣∣
γ =0

= 1

φ
· M(G,

φ

σ
) ·

(
d − G · b(G,

φ

σ
)

)
< 0. (12)

The introduction of local congestion decreases equilibrium behavior for the following reason. The ith entry of the vec-
tor G · b(G, φσ ) measures the sum of Bonacich centralities of all neighbors of i in G. Thus, the ith entry of the vector (

d − G · b(G,
φ
σ )

)
sums up, across all neighbors of i, the difference between 1 and each neighbor’s Bonacich centrality. Since 

Bonacich centralities are strictly larger than 1, this difference is strictly negative for all agents. Proposition 3 also shows how 
the reduction in behavior is distributed across agents: the reduction is larger for those agents who are ‘better connected” 
to agents whose neighbors are very central in g (i.e., for agents for which the matrix M(G, φσ ) associates a large entry to 
agents whose neighbors are very central). The intuition is clear: very central agents are characterized by large actions, and 
those who are closely connected to neighbors of very central agents are exposed to high levels of indirect substitution, and 
therefore suffer more than others from the introduction of local congestion.

One important issue is whether the implied modification of equilibrium behavior can result in a change in the ranking
of individual actions. A general answer for arbitrary values of γ is complex due to the strong non linearity of centrality 
measures. However, we can address this issue in the context of simple network architectures, where central and peripheral 
agents in g are clearly identified. In Fig. 1 and Table 1 we consider three different networks: the star, the butterfly and the 
connected star. Consistently with expression (12), the impact of γ is not uniform across agents and across networks (see 
the last two columns of Table 1). In particular, in the star and the butterfly, agent 1 has the largest behavior (as in the case 
of γ = 0), while this is not the case in the connected star, where the ranking of the agents’ actions is inverted. Consistently 
with the intuition behind Proposition 3, the sharp decrease in agent 1’s behavior in the connected star is due to his many 
links towards agents with sufficiently large degree, suffering therefore from consistent congestion levels.

3.3.2. Changing the network
In this section we study the effect of changes in the topology of the network g on equilibrium behavior. We first focus on 

the impact of changes in the density of the network. While in the absence of local congestion, adding links unambiguously 
increases individual and aggregate behavior (see Ballester et al., 2006), the effect is ambiguous in the presence of local 



46 S. Currarini et al. / Games and Economic Behavior 105 (2017) 40–58
congestion, due to the additional substitution channels at distance-two. We address this issue by considering changes in the 
average degree of regular networks.

In a regular network, the symmetric equilibrium is characterized by equation (8). We can study the impact of an increase 
in d on equilibrium behavior by considering the sign of the following derivative:

∂x∗

∂d
= α(φ − 2γ d)

[σ − φd + γ d2]2
, (13)

determined by the following regions:⎧⎪⎨⎪⎩
d <

φ
2γ ⇒ ∂x∗

∂d > 0

d = φ
2γ ⇒ ∂x∗

∂d = 0

d >
φ

2γ ⇒ ∂x∗
∂d < 0

We see that equilibrium behavior and network density are related according to a non-monotonic pattern, with maximal 
behavior at d = φ

2γ . The forces driving the non-monotonic pattern are the following. Distance-two connections (responsible 
for strategic substitution) grow at the square of the speed of direct connections (channeling the peer effects), and eventually 
take over, causing a decrease in overall behavior. Outside the class of regular networks, we look at which changes in the 
topology of a given network would unambiguously decrease (increase) aggregate behavior.

Proposition 4. Consider the network g′ obtained from g by fully connecting an independent set Z of nodes of cardinality |Z | in g. Let 
x′ and x denote the associated equilibrium vectors. If |Z | ≥ φ

γ + 2, then x′ ≤ x.

Proposition 4 shows that a sufficient condition to reduce behavior is the presence of a large enough set of agents who 
are not connected in g; the number of such agents is inversely related to the intensity of local congestion γ . Behavior is re-
duced by creating very dense relations among these sparse agents, so that new direct ties come with enough new indirect 
interaction channels. If the number |Z | of these agents is not high enough with respect to the complementarity/substi-
tutability ratio φ

γ , the new connections will create complementarity channels that are not counteracted by a large enough 
number of indirect substitution channels.

4. Strategic interaction at arbitrary distance

In this section, we extend our framework to encompass strategic interaction at arbitrary distance in the network. Con-
sider a situation where agent i is exposed to the transmission of a disease from his neighbors. Each interaction determines 
the transmission with some given probability. Agent i can take a (costly) action reducing the probability of transmission. 
The incentives of agent i to take action depend on the likelihood that his neighbors are infected, which in turns depends 
on the actions taken at distance-two and the implied risks of contagion. Differently from the set up in Section 2, in this 
example i’s incentives are affected also by actions taken at distances larger than two, through the effect that these actions 
have on the probability of i’s neighbors to be reached by the disease. Within the context of this example, it can be expected 
that all indirect interaction is of the strategic substitute type, since the larger the action at any distance, the smaller the 
probability of i’s neighbors to be infected.

Yet, one could also envisage problems where the sign of strategic interaction alternates with distance. Consider for 
instance the following variant of the collaboration networks model sketched in Appendix A. Agents sharing a common 
collaborator compete for his time and effort; a busier collaborator (i.e, one with very active collaborators) is less attractive 
and provides weaker peer effects. Differently from the model in Appendix A, assume now that if i and j collaborate, 
the decrease in the peer effects enjoyed by i is milder when j’s collaborators are themselves very busy. In this set-up, 
interaction extends beyond distance-two; in particular, we expect strategic substitution at distance-two, complementarity at 
distance-three, substitution again at distance-four, and so on.

To keep the general analysis tractable, we assume that the type of strategic interaction (substitution vs. complementarity) 
between two agents only depends on their distance in the network, and that all agents at the same distance experience 
the same kind of strategic interaction. The utility function is written by augmenting (1) with interaction at distance up to 
R ≥ 2:

Ui = αi xi − σ

2
x2

i +
R∑

r=1

∑
j∈N

φr g[r]
i j xix j . (14)

In (14), r = 1, . . . , R denotes the distance, g[r]
i j is the generic entry of the power matrix Gr and φr is the associated 

coefficient. If φr > 0 any two agents at distance r experience strategic complementarity, while if φr < 0 they experience 
strategic substitution, and if φr = 0 there is no strategic interaction.
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4.1. Existence

The FOCs for an interior equilibrium are:

α · 1 =
[
σ I − φ1G̃

]
x, (15)

where the adjacency matrix G̃ of strategic interaction is defined as follows:

G̃ ≡ G +
R∑

r=2

φr

φ1
Gr . (16)

As in (7), we relate the eigenvalues of the matrices C and G̃ as follows:

μ(C) = 1

λ
μ(G̃) + y (17)

and, using the definition of G̃ and recalling the mapping ρ : I(G) → I(G̃) introduced in Section 3.2, the ith eigenvalue of C
and jth eigenvalue of G as:

μ j(i)(C) = 1

λ
[μi(G) +

R∑
r=2

φr

φ1
μr

i (G)] + yi (18)

As in section 3.2, we define μi∗ (G) as the i∗th eigenvalue of G that is mapped into μ1(C). Following the steps of 
Proposition 1 we can state the following:

Proposition 5. Consider the problem in (14). A sufficient condition for the existence of a unique interior equilibrium is that, 1
λ
[μi∗(G) +∑R

r=2
φr
φ1

μr
i∗(G)] + yi∗ < σ

φ1λ
.

In order to derive specific bounds for the eigenvalues one would need to know the polynomial in (17). Yet, we can use 
Proposition 5 to infer the qualitative properties of these bounds. In particular, we argue that networks with high largest 
eigenvalues are consistent with an interior equilibrium provided interaction at furthest distance is of the substitute type. To 
the extent that the largest eigenvalue can be interpreted as an indicator of the density of the network, this result points 
to the idea that in dense networks the large number of indirect interaction channels of the substitute type can bound the 
equilibrium feedbacks and allow for an interior solution. Assume, for simplicity, that μ1(G) is mapped into μ1(G̃), that is 
ρ(1) = 1 and i∗ = 1. Then, as μ1(G) grows, the term:

μ1(C) = 1

λ
[μ1(G) +

R∑
r=2

φr

φ1
μr

1(G)] + y1 (19)

remains bounded above by the term σ
φλ

(as required by Proposition 5) if and only if φR < 0, that is, if and only if interaction 
at the largest distance in the network is of the substitute type. This is in line with the results obtained for local congestion. 
As previously, we illustrate this result in the class of regular networks, where the largest eigenvalue coincides with the 
average degree.

Example 2 (Regular networks). We parametrize regular networks by their common degree d. A symmetric interior equilibrium 
takes the following form:

x = α

1 − ∑R
r=1 φrdr

. (20)

As the average degree d grows, expression (20) remains positive if and only if φR < 0.

4.2. Characterization

We now turn to the characterization of an interior equilibrium. Proposition 6 extends Proposition 2 to the case of 
interaction up to an arbitrary distance R . Our characterization relies on the novel notion of “Nested Weighted Centrality”, 
introduced below.

Definition 2 (Nested weighted Bonacich centrality). The Nested Weighted Centrality of order s is the vector b[s](G, as) defined 
recursively as follows:
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b[1](G,a1) = b(G,a1) (21)

b[2](G,a2) = bb[1](G,a1)(G,a2) (22)

and

b[s](G,as) = bb[s−1](G,as−1)(G,as), for s ∈N (23)

In preparation of the next proposition, we introduce the terms Sr for r = 1, 2, ..., R . For a given R and a given vector 
of parameters a ≡ (ai)i=1,...,R , we denote by Tr(a) the set of all unordered tuples of distinct r elements from the set 
A ≡ {ai}i=1,...,R . A generic element of Tr(a) is called tr(a). We then define:

Sr = (−1)r−1
∑

tr(a)∈Tr(a)

∏
ai∈tr(a)

ai

So, S1 denotes the sum of all the parameters of A, S2 the (negative of the) sum of all products of (unordered) pairs of 
parameters of A, S3 the sum of all products of (unordered) triples of parameters of A and so on.

Proposition 6. Assume there exists a sequence of non-negative scalars (ai)i=1,...,R such that Sr = φk
σ , for k = 1, . . . , R. If μ1(G) ·

max{ai}i=1,...,R < 1, then the unique interior equilibrium satisfying the FOCs (15) can be written as follows:

x = α

σ
b[R](G,aR). (24)

The following example (R = 3), provides and explicit account of the terms Sk , of the associated constraints and of the 
nested structure underlying the above characterization.

Example 3. Let R = 3. The first order conditions in (15) take the following form:

α · 1 = σ [I −
3∑

i=1

φr

σ
Gr]x, (25)

where

[I −
3∑

i=1

φr

σ
Gr] = [I − φ1

σ
G − φ2

σ
G2 − φ3

σ
G3]. (26)

If there exists a vector (a1, a2, a3) ∈R
3+ satisfying the following constraints:

φ1

σ
= a1 + a2 + a3 = S1

φ2

σ
= −(a1 · a2 + a1 · a3 + a2 · a3) = S2

φ3

σ
= a1 · a2 · a3 = S3

then we can write:

[I − φ1

σ
G − φ2

σ
G2 − φ3

σ
G3] = [I − a1G][I − a2G][I − a3G]. (27)

Using (23) and (27), equilibrium is characterized by:

x = α

σ
b[3](G,a3) (28)

5. Local congestion: empirical evidence

The aim of this section is to investigate the empirical relevance of local congestion. As an individual action we consider 
putting effort in doing homework, claiming that it originates both peer effects between friends and substitution effects at 
distance-two in the friendship network. Substitution at distance-two occurs if students face low incentives to work when 
their friends are busy doing homework with their own respective friends. The mechanism is the following. A student whose 
friends are very active in doing homework is expected to experience substantial opportunities of collaboration (peer effects). 
At the same time, a student may find it difficult to collaborate with ‘busy’ friends, that is friends surrounded by very active 
friends. As a consequence, the more active those students that share friends with i, the more likely i is isolated, and the 
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Table 2
Network statistics.

Degree Distance-two degree Component size

Mean 5.3049 31.6596 16.1989
Max 15 106 29
Min 0 0 1
Median 5 29 19
Std 2.4286 19.5363 9.4742

‘Networks and actor attributes in early adolescence’ (wave 4). Authors’ calculations.

lower i’s incentives to do homework. Notice that incentives in this problems are similar to those in problems of scientific 
collaboration.

To the extent that the above mechanism is in place, we expect to find a positive association at distance-one in the 
network and a negative one at distance-two. We show that this is indeed the case, and adding interaction at further 
distance does not increase the explanatory power of the model. The empirical analysis is purely descriptive and aims at 
showing the existence of a negative correlation at distance-two. Given that the error term is spatially autocorrelated, we 
follow Bramoullé et al. (2009) who instrument peer effects with the matrix of distance-two neighbors’ demographics (and 
its higher powers). Differently from Bramoullé et al. (2009), we need to instrument both the behavior of friends and that 
of friends of friends. As a consequence, the only available instruments are demographic characteristics at distance three and 
further. These instruments are valid because they are correlated both to the friends and distance-two neighbors’s behaviors, 
and they do not directly affect the outcome of interest. However, we stress that while Bramoullé et al. (2009) focus on the 
identification of peer effect in models without local congestion, a structural estimation of the parameters of our model is 
beyond the scope of this paper.

We use data from Networks and Actor Attributes in Early Adolescence’, a longitudinal survey collected in the Netherlands 
between 2003 and 2004 (see Knecht, 2004; Corten and Knecht, 2013). The survey contains information about pupils enrolled 
in the first year of secondary school. Such pupils have been interviewed four times every three months between the first 
month after enrollment and the end of the first year. The sample consists of about 120 classes in 14 different schools. We 
use the last wave of the survey because we believe that the knowledge of distance-two friends (and the local congestion 
created by them) is crucial in our model and the relationships between the pupils are not well known in the first months 
of school.

Data contain also an indication of the network pupils are embedded in. We consider the network of best friends (up to 
12 nominations), because links are strong, known and often bilateral.5 To construct an undirected network, with a corre-
sponding symmetric adjacency matrix, we give value 1 to the link between i and j if either i nominated j, or j nominated i
(or both). Some descriptive network statistics are included in Table 2, while Figs. 2 and 3 represent the network and its 
properties. The dataset contains a variable that measures whether the pupils always do homework. The variable is categori-
cal and takes value from 1 to 5, where 1 indicates ‘very true’ and 5 ‘not true at all’. We reverse the order to have a variable 
increasing in effort. Descriptive statistics on the sample and the variable of interest are included in Table 3 and Fig. 4.

In our regressions we control for a set of demographic characteristics. Individual controls are: a) gender; b) a dummy 
variable indicating whether or not the language spoken at home is Dutch (to have a proxy of their ethnicity); c) age6; 
d) money pupils receive from their parents, as a proxy of family income. To control for the influence of network charac-
teristics different from behavior, we include the average of the individual controls at the friends’ level. Finally, to capture 
unobservables at the school and at the class level, we include school dummies (school fixed effects) and the kind of educa-
tional track the pupil is enrolled in.7

Table 4 displays correlations in behavior. Gy, G2 y, and G3 y are respectively the sum of the action chosen by friends, 
distance-two friends and distance-three friends, with zeros on the principal diagonal of matrices G, G2 and G3. Correlation 
between the actions is always positive due to the cascade generated by the peer effect. However, correlation between y and 
Gy (0.083) is much stronger than that between y and both G2 y (0.040), and G3 y (0.033). Notice also that G2 y and G3 y are 
almost perfectly correlated (0.984).

5 Networks are defined at the classroom level. Other network definitions would be a) classmates respondent receives practical support from; b) classmates 
respondent receives emotional support from; c) classmates respondent has been friends with at primary school; d) classmates respondent talks about 
personal things; e) classmates respondent would like to be friends with; f) classmates respondent meets outside school; g) classmates who likes same 
music as respondent; h) classmates respondent would lend 25 Euro; i) classmates whose opinion is important for respondent.

6 Age is pretty homogeneous given pupils are all enrolled in the first year of secondary school, but some older pupils are also attending these classes.
7 The variable indicating different school tracks takes 9 values such as: 1 = LWOO; 2 = LWOO/VMBO-Basis and Kaderberoepsgerichte; 3 = VMBO-

Basis and Kaderberoepsgerichte; 4 = VMBO-Basis and Kaderberoepsgerichte/VMBO-theoretisch; 5 = VMBO-theoretisch; 6 = VMBO-theoretisch/HAVO; 7 =
HAVO; 8 = HAVO/VWO; 9 = VWO, where VMBO is ‘voorbereidend middelbaar beroepsonderwijs’, the middle-level applied education, divided in basic, 
middle-management (kaderberoepsgerichte) and theoretical (theoretisch). HAVO is ‘Hoger algemeen voortgezet onderwijs’ (higher general education), and 
VWO ‘voorbereidend wetenschappelijk onderwijs’ (preparatory scholarly education). Finally, LWOO is ‘Leerwegondersteunend onderwijs’ (learning path sup-
porting education) for pupils with special needs.
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Fig. 2. Network representation. ‘Networks and actor attributes in early adolescence’ (wave 4).

Table 5 reports the results of a OLS regression.8 We run 6 specifications: in (1) we regress individual behavior on Gy. 
In (2) and (3) we add, respectively G2 y and G3 y. In specifications (4)–(6) G3 y is excluded and controls are included. Consider 
specifications (1)–(3). In specification (1) the coefficient associated to Gy is positive and highly significant, consistently with 
the presence of peer effects. In specification (2) Gy and G2 y are significant at the 1% level. However, while the coefficient 
of the former is positive, the coefficient of the latter is negative. The introduction of G2 y makes the coefficient associated 
to Gy increase, suggesting that in (1) it was downward biased due an omitted variable bias. The sign of the bias is perfectly 
in line with our theoretical model.9

Adding G3 y does not improve our model (see specification (3)). Indeed G3 y does not have any explanatory power, since 
its coefficient is almost negligible and not significant. Notice that in specification (3) G2 y is negative, but not significant. 
The result is probably due to the strong multicollinearity between G2 y and G3 y (see Table 4) inflating the standard errors, 
and making the t-test drop. Notice also that the introduction of G3 y does not make the R2 increase, again suggesting that 
the variable does not have any explanatory power. For this reason, our preferred specification does not include G3 y. In 
specifications (4)–(6) we enriched (2) by adding individual, friends’, class and school controls, and the results are pretty 
stable and similar to those in specification (2).10

Given OLS may not be consistent due to spatial correlation, we also performed an instrumental variable estimation (using 
two stages least squares, 2SLS) and instrumenting G2 y and G3 y with the average demographics of the friends of friends, as 
well as those of the distance-three and distance-four friends. Our results are in line with those obtained via OLS.11 Tests 
on the first stages suggest that instruments may be weak. To overcome this problem, we report the Anderson–Rubin (AR) 
test statistics for which identification of the coefficients is not assumed.12 Fig. 5 shows the area where the model is not 
misspecified, i.e. when the peer effect is positive and the effect of distance-two friends is negative, confirming the result of 
the 2SLS.

6. Conclusions

We have studied games where the pattern of agents’ interaction is determined by a network of social relations. Along 
with peer effects between neighbors, the network induces strategic substitution between agents who share one or more 
neighbors. We have referred to this indirect effect as local congestion. We have looked at the predictions of this class 
of models, and have compared how individual and aggregate behaviors depart from a model with peer effects only. In 

8 As a robustness check we also ran all the specifications excluding singletons and using ordered probit. Results are robust and available upon request.
9 Recall that the omitted variable bias is given by the product of the effect of G2 y on y (negative because of substitution at distance-two), and the 

coefficient of a regression on Gy on G2 y (positive because of complementarity at distance-one).
10 Regressions in Table 5 do not allow to unravel the direct effect of local congestion from the equilibrium cascade effect, nor to separate the effect of the 

peer effect/local congestion from the effects of similarities due to network formation. Such tests have been carried out and shown that network formation 
alone does not explain correlations in behavior. Results are available upon request.
11 Results are available upon request.
12 The value of the under-identification, over-identification, and the F-test on excluded instruments are available under request. The AR test is a joint test 

on the parameters and on the exogeneity of the instruments and rejects the null when one or both conditions do not hold.
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Fig. 3. Network features. ‘Networks and actor attributes in early adolescence’ (wave 4).

particular, we have focused on how equilibrium actions relate to network centrality, and to network density. We have also 
extended some of our results on local congestion to more general interaction patterns on the network.

We believe our results provide valuable insights on the relation between the topology of social networks and behavior. 
These insights should be taken into account in designing policies that target these relations. Moreover, our analysis can be 
used to interpret empirical evidence on the distribution of certain types of behaviors in social networks. For instance, our 
result concerning the reversal of the ranking of Bonacich centralities (see Proposition 3 and the ensuing example) provides 
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Table 3
Descriptive statistics.

Variable Mean/share Std. deviation Min Max

Doing homework Very true 0.1432 0 1
True 0.3353 0 1
Sometimes 0.4317 0 1
Not true 0.0797 0 1
Not true at all 0.0201 0 1

Female 0.4777 0 1
Dutch spoken at home 0.9111 0 1
Type of secondary school Track 1 0.0342 0 1

Track 2 0.0267 0 1
Track 3 0.0302 0 1
Track 4 0.0074 0 1
Track 5 0.0801 0 1
Track 6 0.3402 0 1
Track 7 0.0320 0 1
Track 8 0.3616 0 1
Track 9 0.0876 0 1

At least one smoking parent 0.5152 0 1
Euros received from the parents 28.8520 44.7497 0 1000
Age 12.1025 0.4846 10 15
N. of observations 2284
N. of schools 14

‘Networks and actor attributes in early adolescence’ (wave 4). Authors’ calculations on the estimation sample.

Fig. 4. Doing homework: distribution, ‘networks and actor attributes in early adolescence’ (wave 4).

Table 4
Correlations in behavior at distance 1, 2, 3.

y Gy G2 y G3 y

y 1.000 0.083 0.040 0.033
Gy 0.083 1.000 0.894 0.845
G2 y 0.040 0.894 1.000 0.984
G3 y 0.033 0.845 0.984 1.000

N 2284

‘Networks and actor attributes in early adolescence’ (wave 4). Authors’ calculations 
on the estimation sample.

a novel explanation of the prevalence of smoking at the periphery of the network recorded in Christakis and Fowler (2008). 
This explanation views the gradual marginalization of smokers as an equilibrium phenomenon due to the congestion of 
central players, rather than a result of changes in the structure of the network in terms of a progressive severance of 
relational links with heavy smokers.

We see at least two interesting extension of the model we propose. First, equilibria with strong substitution effects and 
inactive agents may be relevant in many economic problems, and an analysis of how local congestion would affect this 
class of equilibria would be certainly of interest. Second, an estimation of the structural parameters of the model would be 
needed to design effective policies in problems when local congestion plays a substantial role.
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Table 5
Behavior at distance 1, 2, 3 (OLS).

(1) (2) (3) (4) (5) (6)
Coeff. Coeff. Coeff. Coeff. Coeff. Coeff.

Gy 0.00844 *** 0.02395 *** 0.02507 *** 0.02346 *** 0.02317 *** 0.02206 ***
(0.04425) (0.00472) ( 0.00525) (0.00473) (0.00476) (0.00477)

G2 y −0.00234 *** −0.00333 −0.00225 *** −0.00231 *** −0.00225 ***
(0.00064) (0.00214) (0.00064) (0.00065) (0.00066)

G3 y 0.00009
(0.00020)

Const. 3.33264 *** 3.2809 *** 3.29003 *** 3.33857 *** 3.70288 *** 3.51034 ***
( 0.00212) (0.04631) (0.04982) (0.48889) (0.53131) (0.56114)

R2 0.00687 0.01270 0.01281 0.01674 0.02375 0.04339
Individual Controls No No No Yes Yes Yes
Friends’ and Class Controls No No No No Yes Yes
School FE No No No No No Yes
N 2284 2284 2284 2284 2284 2284

‘Networks and actor attributes in early adolescence’ (wave 4). Individual controls: female, Dutch spoken at home, quantity of money received from parents, 
at least one smoking parents. Friend’s controls: average of the individual controls within the friends. Class controls: dummy variables indication the kind 
of secondary school. Standard errors in parentheses, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Fig. 5. Anderson–Rubin (AR) test statistics for the overidentified IV model.
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Appendix A. Micro-foundation of utility

This appendix presents three examples of economic problems with different forms of local congestion producing utility 
function in (1).

Production networks. Consider a district where a set of monopolistic firms are linked by mutual supply relations. Firm 
i’s product is both demanded by consumers in final market i and used as input by i’s neighbors.13 Each firm i produces 
according to a Leontief technology with constant returns to scale, transforming the set of employed inputs Yi ≡ {y j : gij = 1}
into the production level xi :

13 For simplicity, we are assuming that links are undirected, so that if a firm provides an input to another firm, also the latter provides an input to the 
former.
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f i(Yi) = 1

k
min{y j ∈ Yi} (A.1)

Denoting by p j the price for commodity j for j = 1, 2, ..., n, the marginal cost of each firm i is constant and equal to:

ci = k
∑
j∈N

gij p j (A.2)

Demand for commodity i is given by the following function:

xi = Ai + Di − pi (A.3)

where Ai is the size of i’s consumers’ market, and Di is the demand for input i coming from i’s neighbors. From the Leontief 
technology specification, it follows that:

Di = k
∑
j∈N

gij x j. (A.4)

Each firm maximizes its profit as a monopolist:

πi(x) = (Ai + Di − xi − ci) xi = (Ai − xi + k
∑
j∈N

gij x j − k
∑
j∈N

gij p j)xi (A.5)

Substituting the expression of each price p j from the appropriate demand function p j = A j − x j + ∑
k g jkxk , we obtain:

πi(x) = (Ai − k
∑
j∈N

gij A j)xi − x2
i + 2k

∑
j∈N

gij xi x j − k2
∑
j∈N

∑
k∈N

gij g jkxixk (A.6)

which can be written as (1) once we set αi = (Ai − k 
∑

j gi j A j), σ = 2, φ = 2k and γ = k2. Note how firm i’s production is 
increasing in i’s neighbors’ production (strategic complementarities) and linearly decreasing in the production of firms that 
share a common input provider with i (substitution at distance-two in the network), as in McCann and Folta (2008, 2009).

Scientific collaborations. The network g describes the pattern of collaborations between scientists. The action xi measures 
the degree of research activity of scientist i. Collaborations are governed by complementarities, so that the larger the action 
of i’s co-authors, the larger i’s incentive to act. However, i’s co-authors compete for the limited research effort of their 
co-authors, so the degree of complementarity decreases with the effort exerted at distance-two. We model the utility in the 
following linear quadratic form:

Ui(x) = αi xi − σ

2
x2

i + φxi

∑
j∈N

gij[x j − γ1

∑
k∈N

g jkxk] (A.7)

The parameter γ1 measures the impact of competing projects in which a given co-author is involved on the benefits drawn 
from an ongoing project with that co-author. This expression is equivalent to (1) once we set γ = γ1φ.

Local negative externalities. Consider a set of agents whose actions produce local negative externalities that accumulate 
in stocks (e.g, transfrontier pollution). The stock at an agent’s location is given by the sum of her neighbors’ actions. Each 
agent suffers a convex damage, which depends on her own stock and on a fraction of her neighbors’ stocks. Possible 
examples of such situations are environmental games where the pollutant that accumulates from neighbors emissions leaks 
into neighboring locations. Alternative interpretations include social interaction problems where individual behavior has 
detrimental effects on friends and/or relatives (smoking, delinquency, skipping school), and where one’s perceived damage 
is affected by the observation of friends’ and relatives’ conditions. For example, a smoker’s awareness of his health risks 
may increase when a friend falls ill, which happens with higher probability the larger the amount of secondhand smoke 
this friend is exposed to. To model such situations, let for each i

Q i ≡
(

xi +
∑
k∈N

gikxk

)
(A.8)

denote the stock of pollutant that generates from local emissions in the neighborhood of i, which leaks into i’s neighbor-
hood. Assuming quadratic damage, we get the following utility function:

Ui(x) = αi xi + θ
∑
j∈N

gijxi x j − (Q i + γ1
∑

j gi j Q j)
2

2
(A.9)

The parameter γ1 measures the amount of leakage between neighboring locations. Expanding the squared terms, we 
obtain the following expression:
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αi xi − x2
i

2
+ (θ − 1 − 3γ1)

∑
j∈N

gij xix j − γ1xi

∑
j∈N

∑
k∈N

gij g jkxk + h(x−i) (A.10)

where the term h(x−i) does not depend on xi and thus does not affect optimal choices. Apart from the term h(x−i), (A.10)
can be rewritten as (1) by setting σ = 1, φ = (θ − 1 − 3γ1) and γ = γ1.

Appendix B. Proofs

Proof of Proposition 1. To prove the proposition we first state and prove the following lemma.

Lemma 1. Let y∗
i the shift associated to μi∗(G) in (7). If either

μi∗(G) <
φ −

√
−4γ σ + 4γ λφ y∗

i + φ2

2γ

or

μi∗(G) >
φ +

√
−4γ σ + 4γ λφ y∗

i + φ2

2γ
,

then a unique interior equilibrium exists.

Proof of Lemma 1. Consider equation (5). Consider also μ(C) and μ(G̃). Recall that for all i < n μi(C) ≥ μi+1(C) and 
μi(G̃) ≥ μi+1(G̃). We first prove that (7) defines a monotone map with the following property:

μ1(C) ≥ μ1(G̃) ≥ μ2(C) ≥ μ2(G̃) · ·· ≥ μn(C) ≥ μn(G̃) (B.1)

Given C and G̃ are both Hermitian with n eigenvalues, by Weyl inequality14 μi(C) ≤ μi− j(G̃) +μ1+ j(U), for all i = 1, . . . , n
and j = 0, . . . , n − 1. Recall also U is such that μ1(U) = n and μi(U) = 0 for all i = 2, . . . , n, and consider the inequality 
above for j ∈ {0, 1}. If j = 0 then μi(C) ≤ μi(G̃) + μ1(U); if j = 1 then μi(C) ≤ μi−1(G̃). It follows that μi− j(G̃) ≤ μi(C) ≤
μi(G̃) + μ1(U). This implies that the map (7) transforming the eigenvalues of G̃ into the eigenvalues of C preserves the 
ordering.

We are now able to derive the condition for existence. Recall that a sufficient condition for the existence of an interior 
equilibrium is μ1(C) < σ

φλ
. This condition, using (7), can be written as 1

λ
μ1(G̃) + y1 < σ

φλ
. Consider the eigenvalue μi∗(G)

which maps into μ1(G̃) in (5), i.e., 1 = ρ(i∗). Using (5), we can rewrite the sufficient condition for the existence of an 
interior equilibrium as follows:

1

λ
μi∗(G) − γ

λφ
[μi∗(G)]2 + yi∗ <

σ

φλ
(B.2)

By noticing that − γ
λφ

< 0 and solving for μi∗ (G) the result immediately follows.
We can now prove Proposition 1.
Recall (6) and consider yi , for all i = 1, . . . , n. By the Wielandt–Hoffman theorem15 | μi(C) − 1

λ
μi(G̃) |= yi ≤ θn

λ
, being 

n = μ1(U). Given yi ≥ 0 for each i, the following holds:

φλ

σ
μi(C) = 1

σ
(φμi(G) − γμ2

i (G) + φλyi) ≤ 1

σ
(φμi(G) − γμ2

i (G) + φθn) < 1

We recall that from the definition of G̃ it follows that θ = γ
φ

d̄. Then the last inequality becomes

1

σ
(φμi(G) − γμ2

i (G) + γ d̄n) < 1. (B.3)

If the roots of the polynomial on the left hand side are complex, the inequality is satisfied for all μi(G), which drives to 
the condition i) in the proposition.

To prove condition ii), consider now the case in which d̄ > d̂. Assume μ1(G) < φ
2γ , so the LHS of (B.3) is monotonically 

increasing in μi(G), and consequently μi(G) < φ
2γ for all i = 2, . . . , n. Notice that 1

λ
μ1(G) − γ

λφ
[μ1(G)]2 is strictly monotone 

and increasing in μ1(G), once its domain is restricted to the interval (−∞, φ
2γ ]. This monotonicity implies i∗ = 1 so that 

14 See, for example, Horn and Johnson (2012), p. 241.
15 See, for example, Horn and Johnson (2012), p. 40.
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μi∗(G) = μ1(G). Then the existence conditions can be written just in terms of μ1(G). Moreover, being d̄ > d̂ ≡ σ
nφγ − φ

4nφγ 2 , 

then 
√−4γ σ + 4γ λφ y1 + φ2 is real-valued, and φ−√−4γ σ+4γ λφ y1+φ2

2γ <
φ

2γ <
φ+√−4γ σ+4γ λφ y1+φ2

2γ . Being μ1(G) < φ
2γ only 

the first part of the inequality is binding and the result immediately follows by applying Proposition 1.
Consider now condition iii). This immediately follows from the fact that if μ1(G) > φ

2γ then it is generally true that 
μ1(G) �= μi∗(G). Then we just need to apply Lemma 1 to the correct μi∗(G). �
Proof of Proposition 2. FOCs in (2) yield

α

σ
· 1 =

[
I − φ

σ
G + γ

σ
G2

]
x. (B.4)

Consider now the symmetric matrix[
I − φ

σ
G + γ

σ
G2

]
. (B.5)

If two scalars a1 and a2 exist that solve the following system:

a1 + a2 = φ

σ
(B.6)

a1a2 = γ

σ
(B.7)

then (B.5) can be written as:[
I − (a1 + a2)G + a1a2G2

]
= [I − a1G] · [I − a2G] (B.8)

Solving the constraints in (B.6) and (B.7) we get two pairs (a1, a2):

a1 = φ ± √
φ2 − 4γ σ

2σ
(B.9)

a2 = φ ∓ √
φ2 − 4γ σ

2σ
(B.10)

well defined if and only if φ > 2
√

γ σ .
We can now rewrite (B.4) as follows:

α

σ
· 1 = [I − a1G] · [I − a2G] x. (B.11)

If μ1(G) < 1
max{a1,a2} , then both inverses [I − a1G]−1 and [I − a2G]−1 are well defined, and (B.11) yields:

x = α

σ
[I − a2G]−1 · [I − a1G]−1 · 1 (B.12)

Since by definition of Bonacich centrality:

[I − a2G]−1 · 1 = b(G,a2) (B.13)

we can then apply the definition of weighted Bonacich centrality and write:

x = α

σ
bb(G,a1)(G,a2) � (B.14)

Proof of Proposition 3. We study the derivative of (11) with respect to γ at the point γ = 0. Note first that when γ = 0
then a1 = φ

γ and a2 = 0. Immediate computations also give the following expressions when γ = 0:

b(G,a2)

∣∣∣∣
γ =0

= 1; ∂a1

∂γ

∣∣∣∣
γ =0

= − 1

φ
; ∂a2

∂γ

∣∣∣∣
γ =0

= 1

φ
; ∂b(G,a2)

∂a2

∣∣∣∣
γ =0

= d, (B.15)

where in the last expression d denotes the vector of degrees in G.
We can then write the total derivative of the equilibrium actions’ vector with respect to γ as follows:

dx

dγ

∣∣∣∣ = ∂M(G,a1)

∂γ

∣∣∣∣ · b(G,a2) + M(G,a1) · ∂b(G,a2)

∂γ

∣∣∣∣ (B.16)

γ =0 γ =0 γ =0
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Replacing terms from (B.15) we obtain:

dx

dγ

∣∣∣∣
γ =0

= ∂M(G,a1)

∂a1
(− 1

φ
)

∣∣∣∣
γ =0

· 1 + M(G,a1) · d

φ
(B.17)

The term ∂M(G,a1)
∂a1

is computed by using the expression of the matrix M(G, a1):

∂M(G,a1)

∂a1
= ∂

∂a1
[I − a1G]−1 = −[I − aG]−1 · ∂[I − aG]

∂a1
· [I − aG]−1 (B.18)

or, equivalently,

−[I − a1G]−1 · −G · [I − a1G]−1 (B.19)

Substituting back in (B.17) and factorizing terms we obtain:

dx

dγ

∣∣∣∣
γ =0

= 1

φ
· M(G,

φ

σ
) ·

(
d − G · M(G,

φ

σ
) · 1

)
(B.20)

or, using the definition of Bonacich centrality vector,

dx

dγ

∣∣∣∣
γ =0

= 1

φ
· M(G,

φ

σ
) ·

(
d − G · b(G,

φ

σ
)

)
� (B.21)

Proof of Proposition 4. Consider first a node k /∈ Z such that gkz = 0 for all z ∈ Z . We have g̃ki = g̃′
ki for all i ∈ N . Consider 

then a node k /∈ Z such that gki = 1 for at least one i ∈ Z . We have that g̃′
ki < g̃ki and g̃′

kz ≤ g̃kz for all z ∈ Z . Consider now 
any two nodes i, j ∈ Z , for which, by construction, g′

i j − gij = 1. We also have g′ [2]
i j − g[2]

i j = |Z | − 2, since all nodes in Z are 
now linked with each other. Thus g̃′

i j − g̃i j = 1 − ργ
φ

≤ 0 since we have assumed that φ ≤ (|Z | − 2)γ . Thus, g̃′
i j ≤ g̃i j for all 

i, j ∈ Z with at least one strict inequality.16 �
Proof of Proposition 6. Consider the FOCs we report below here

α · 1 =
[
σ I − φ1G̃

]
x, (B.22)

where the adjacency matrix G̃ of strategic interaction is defined as follows:

G̃ ≡ G +
R∑

r=2

φr

φ1
Gr. (B.23)

Then we can write[
σ I − φ1G̃

]
=

R∏
r=1

[I − arGr] (B.24)

provided there exists a set A = {ar}r=1,...,R satisfying it. Moreover notice that (B.24) holds independently of the order of the 
product since matrices are symmetric. By induction it can be shown that the set A is such that φ1

σ is the sum of all ar , φ2
σ

is the sum of the double products of elements in A times −1, φ3
σ is the sum of the triple products, φ4

σ is the sum of the 
quadruple products times −1, and so on. Formally we get φr

σ = Sr . �
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