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Abstract—We present a novel dense crowd simulation method. In real crowds of high density, people manoeuvring the crowd need to

twist their torso to pass between others. Our proposed method does not use the traditional disc-shaped agent, but instead employs

capsule-shaped agents, which enables us to plan such torso orientations. Contrary to other crowd simulation systems, which often

focus on the movement of the entire crowd, our method distinguishes between active agents that try to manoeuvre through the crowd,

and passive agents that have no incentive to move. We introduce the concept of a focus point to influence crowd agent orientation.

Recorded data from real human crowds are used for validation, which shows that our proposed model produces equivalent paths for 85

percent of the validation set. Furthermore, we present a character animation technique that uses the results from our crowd model to

generate torso-twisting and side-stepping characters.

Index Terms—Crowd simulation, crowd animation, dense crowds, agent representation, holonomic motion

Ç

1 INTRODUCTION

THE shapes most often used to represent characters in
crowd simulations are points and discs. In sparse crowd

simulations, such a simple shape works well; the chosen
representation does not have a large impact on the behav-
iour, as there is ample space around the agents. However,
when the agents move very close to each other, motion fol-
lows shape. A common motion in dense crowds is the twist-
ing of the torso, to squeeze through an opening between
people. This is commonly seen at band performances, busy
cocktail parties, or crammed lifts. Points and discs are ill
suited for such situations, as the rotational symmetry pro-
hibits planning of such twist. Instead, in this paper, we
investigate an agent representation based on the torso. By
employing a representation that is closer to the human
shape, we expect to obtain more realistic human-like
motions than disc-based crowd simulation methods.

Main contribution: In this article we introduce the Torso
Crowd model for dense crowd manoeuvring, based on a
novel capsule-shaped agent representation modelling the
characters’ torsos (see Fig. 1). Contrary to other crowd simula-
tion systems, which often focus on themovement of the entire
crowd, ourmethod distinguishes between passive agents that
have no incentive to move from their present location, and
active agents that try to manoeuvre through the crowd
towards a goal position. We introduce the concept of a focus
point for crowd agents, which allows for more control and
more realistic, social and complex behaviour. Furthermore,

we validate the active agent behaviour using ground truth
data, obtained bymotion capturing a real crowd.

We use the term agent to indicate an abstract crowd agent
such as a point, disc, or capsule. The term character designa-
tes a humanoid virtual character, whereas the term people
refers to real humans. We mostly consider the motions of
the upper body, i.e., the torso. The lower body is only con-
sidered at the final visualization step, where humanoid
body animation is generated. Torso twist is not defined as a
rotation relative to the lower body, but as a rotation relative
to the agent’s trajectory.

Organization: The rest of the paper is organized as fol-
lows. Section 2 discusses related work. The overall setting
of our crowd model is described in Section 3, followed by a
description of the design of active (Section 4) and passive
(Section 5) agents. We show our results, compare with a cyl-
inder-based simulation method and with ground truth
obtained from motion capture, and describe several simu-
lated scenarios in Section 7. Section 8 describes the anima-
tion technique used to display the moving crowd agents as
walking humanoid figures. Section 9 discusses future work,
and concludes the article. The accompanying video can be
found online at http://stuvel.eu/video/torso-crowds.

2 RELATED WORK

For a general overview of crowd simulation techniques and
topics, we refer to the books by Thalmann andMusse [1], and
Pelechano et al. [2]. In the remainder of this section, we focus
onwork that is related to the simulation of dense crowds.

There are many approaches to simulating crowds, each
leading to different behaviour. Flow-based methods are mac-
roscopic, focusing on the crowd as a whole. They support
very large crowds, as high-level coordination prevents
obstructions. Common examples are fluid dynamics [3] or
gas kinetics [4], which can be applied to particle-based
crowds, and are particularly suitable for high-density simu-
lations. However, such approaches model a global opti-
mum, whereas humans generally behave less optimally and
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can even get stuck in very dense situations. Cellular
automaton approaches such as the works by Chenney [5]
and Alizadeh [6] discretize floor space into cells, where
every character can occupy exactly one cell, and vice versa.
Although such approaches are computationally inexpensive
and thus support large crowds, they also result in even
spacing between agents, which will appear unnatural when
densities are high. Both flow-based and cellular automaton
systems do not consider how people move, and thus gener-
ally do not result in believable human crowds. Agent-based
methods employing social forces, such as the HiDAC model
[7], or planning in velocity space, such as the RVO model
[8] generally allow for high-density crowds while support-
ing individual behaviour of agents, and can be extended to
support physical interaction with obstacles and the environ-
ment [9]. These approaches avoid agent collisions at all
costs, even to the point where all agents stop moving. In
contrast, in actual dense crowds people frequently bump
into each other. This is reflected in our method, as our
agents prioritize motion over collision avoidance. Our
model switches agents to the RVO steering method when
they are in low-density areas; such use of multiple models
of agent representation for crowd navigation is also per-
formed by Kapadia et al. [10].

Common representations used in path planning and
crowd simulation are points [3], [4] and discs [8], [11] Discs
are the most commonly used representation due to their
computational simplicity, and have proven to be suitable to
simulate abstract (i.e., non-humanoid) crowds of any den-
sity. However, when using such a simple, rotationally sym-
metric representation, it becomes hard to animate more
detailed human motion. This results in artefacts such as
interpenetration of characters, unnatural distances between
characters, and a lack of torso rotations. Furthermore, it has
been shown that a disc does not accurately represent the
actual volume occupied by the character in 3D space [12]. In
Section 7 we show the importance of the agent shape in
dense crowds, not just for realism of the motions, but also to
support higher densities without getting stuck. Singh et al.
use multiple discs [13] to represent an agent, and plan their
motion using a footstep model. This approach allows for
denser crowds than body-enclosing discs, and offers realis-
tic walking animations. Their footstep model was made
more robust by Berseth et al. [14], who also show the simu-
lation of a densely packed crowd of agents. However, due
to the lack of animated humanoid characters, it is hard to
draw conclusions as to the realism of the result. The works

by Van Basten et al. [15] and Beacco et al. [16] can be used to
animate such humanoid characters.

Finally, some crowd animation methods directly use
animation data to drive the characters [17], [18], also pro-
ducing realistically animated characters. However, due to
the high-level planning of these methods, planning the
motion of individuals, such as specific characters moving
towards their respective goal positions, is much harder to
do. The computer model SIMULEX [19] uses three circles
to approximate the top view human shape: a larger one
for the head, and two smaller ones for the shoulders.
SIMULEX does not consider torso orientation when plan-
ning; it just uses the three circles to more accurately per-
form collision detection between pedestrians. Rotating
polygonal shapes are supported by the Reciprocally-
rotating Velocity Obstacles method by Giese et al. [20].
Even though the rotations are considered when planning
motions, the planner does not aim at the simulation of
humanoid behaviour. As a result, the agents translate at
an angle in cases where a human would simply walk
straight. To our knowledge, our method is the first to
present the capsule as agent representation in crowd
simulations.

Our method employs Voronoi diagrams for planning
motions through the crowd. The edges of such a diagram
represent the path of maximum clearance between agents;
intuitively this corresponds well with the desire of people
to minimize perceived effort when walking [21], [22]. St€uvel
et al. [23] showed that in a dense crowd people indeed
move along such paths. The Explicit Corridor Map method
by Geraerts [24] uses city-scale generalized Voronoi dia-
grams for path planning. Sud et al. [25] also employ general-
ized Voronoi diagrams for path planning; contrary to our
approach, they limit the use of this diagram to static
obstacles only, and do not apply it for agent avoidance. Sud
et al. [26] perform path planning based on 1st and 2nd order
Voronoi diagrams, containing information about respec-
tively the closest agent and the closest pair of agents. They
employ a path scoring technique slightly resembling our
proposed method. While their article promotes speed of
computation, our approach focuses on a richer character
representation, and validation against real crowd data.

3 SETTING AND PROBLEM FORMULATION

Our crowd simulation system considers the torso as the
main moving element. The algorithm is based on the find-
ings by St€uvel et al. [23], [27], who observed and recorded

Fig. 1. Our crowd simulation model, showing different stages of the simulation. From left to right: the agent representation, calculation of the Voronoi
diagram, planning a path towards a goal position, and finally the animation of virtual characters.
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dense crowd behaviour. In their experiment, participants
were given the task of manoeuvring through the crowd to
predefined points. The movement of the crowd was
recorded using a motion capture system, and these data
serve as a ground truth for the behaviour of people
actively manoeuvring through dense crowds. We refer to
St€uvel et al. [23] for the details of the experiment. Our
Torso Crowd model is designed to support the observed
motions of the crowd-escaping participants, and believ-
able simulation of essentially stationary people.

When observing dense crowds in general, and the previ-
ously mentioned recordings in specific, it is clear that torso
rotations are critical when manoeuvring through a dense
crowd. To support such rotations, our agents extend the
common disc-based crowd agents, as shown in Fig. 2. The
common agent is defined as a point with a radius r0; our
agent model extends this point to a line segment of length ‘,
with a (probably different) radius r. This extension elimi-
nates the rotational symmetry, thereby making it possible to
plan torso rotations.

People standing still in a crowd behave differently
from people trying to reach a certain goal position. In
order to model these differences in behaviour, two types
of agents are used in our crowd simulation technique.
Active agents move to reach their goal position, whereas
passive agents mostly stay in place, only moving to make
room for other agents. Section 4 describes the behaviour
of the active agents, while Section 5 describes the passive
agents. Different aspects of the environment, such as walls,
doors, and other obstacles, are handled by our method in
a unified way; this is described in Section 6. The goals of
the agents are determined by a high-level planner, which
is scenario-dependent and not described further in this
article. When an active agent reaches its goal, depending
on the intended scenario, the agent optionally switches to
passive behaviour. Similarly, when the high-level planner
provides a passive agent with a new goal position, that
agent will switch to active behaviour.

The crowd consists of N agents Ai, i 2 ½1; . . . ; N �. Each
agent Ai in reference placement is defined as the Minkow-
ski sum of a line segment of length ‘i centred around the
origin, and a disc of radius ri. The placement of an agent is
represented by a pair ðai; uiÞ, where ai and ui are the
agent’s position and orientation. For ease of discussion, we
denote the direction of the forward-facing normal of the
torso of agent Ai in placement ðai; uiÞ by ni, the continuous
set of points covered by its central axis by si, and its linear
velocity vector as _ai. These concepts will be detailed in the
following sections.

4 ACTIVE AGENTS

From observation of the previously mentioned ground truth
data and dense crowds in general, we formulate the follow-
ing assumptions as basis for our active agent model.

� People tend to choose a comfortable path, that is,
maximize clearance, by avoiding areas of very high
density. Occasionally, a less comfortable path may
be chosen, when the discomfort is only temporary
and the path leads to an area of larger clearance.

� People tend to minimize perceived energy use [21],
and thus prefer short, straight paths.

� People generally move in the direction of their goal,
but divert from the shortest path when it is
obstructed or when an alternative path is signifi-
cantly more comfortable.

� Averaging at 0.4 m/sec, the traversing speed
through a dense crowd is relatively low [27]. This,
combined with the dynamic nature of crowds and
possibly a lack of overview of the situation, makes
long-distance planning of exact paths to the goal
impractical.

The generalized Voronoi diagram (GVD) is a parti-
tioning of the plane. In our crowd model, a cell is
defined for each agent, being the set of all points that is
closest to that agent. The GVD is represented as a pair
fV; Eg of vertices V and edges E � V � V that represent
the boundaries of those cells, where the edges are arcs
(possibly with zero curvature, i.e., line segments). Every
point on an edge or a vertex is equidistant to its neigh-
bouring crowd agents. These edges form the medial axis
between the agents, and thus represent a more or less
comfortable path that maximizes local clearance. St€uvel
et al. [23] have observed that people in dense crowds
indeed follow such paths (also see Fig. 3).

In real situations, observing surrounding people, planning
a path, andmanoeuvring through the crowd, are intertwined
in a continuous process. However, people are not continually
reconsidering all their options all the time, but rather make
more or less discrete decisions. Our agents reflect this behav-
iour by replanning their actions at amoderate rate.

Similar to Sud et al. [28], all active agents use the same
GVD for planning their motion. The passive agents use a

Fig. 2. Two types of crowd agent representation. On the left a common
crowd agent: a point with a radius. On the right our crowd agent: a line
segment with a radius.

Fig. 3. Top-down view of a real, motion captured crowd, with the general-
ized Voronoi diagram in white lines.
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slightly altered GVD, as described in Section 5. As a
result, the GVD needs to be calculated at most twice per
simulation update, regardless of the crowd size and fre-
quency of planning. For simplicity of computation, we
use the central axes si to calculate the GVD, rather than
the agent shapes themselves. Due to the nature of the cap-
sule, where the distance from the axis to the edge of the
shape is constant, the approximated GVD is very similar
to the exact GVD (see Fig. 4); the distances between the
corresponding edges are in the order of magnitude of the
differences between the agent radii. Such small differen-
ces, in our case in the order of centimetres [23], are
unlikely to cause noticeable changes in the crowd’s
behaviour.

Our Torso Crowd method is suitable for simulating
dense crowd manoeuvring, and based on experimental
observations of such behaviour. However, in situations
where the crowd is not dense, we have no proof of validity.
As a consequence, our implementation switches to the
RVO2 crowd simulation algorithm [8] when agents move
out of the dense crowd, using a circular agent shape that is
large enough to encompass the agent and its personal space.
This can be seen in the accompanying video, when agents
walk out of a lift and into an empty hallway. We reuse the
definition of dense situations by St€uvel et al. [23], namely
those situations where there is at least three humans per
square metre, as measured by the area of their Voronoi cell.
Since we can measure this density on a per-agent basis, this
decision is also made for each agent individually.

In the next sections, we discuss the planning and execu-
tion of the agent’s movement. Firstly, similar to real people, a
desired position is planned, taking into account potential
torso twists needed to reach that position. Since the available
clearance at the planned position poses a bound on the torso
orientation, this orientation is planned in a second step.

4.1 Limited-Horizon Path Planning

To plan the movement of an active agent, the following
steps are taken:

1) Find paths by exploring the vicinity in the GVD of
the Voronoi cell containing the agent.

2) Calculate a score for each path, and determine the
best-scoring path.

3) Calculate the desired agent orientation at the start of
the path, accounting for available clearance.

The GVD provides proximity information in a natural
way; the cell of the active agent represents its proximity,
and the outgoing edges of that cell’s vertices form paths
between agents in its direct vicinity. The search is initialized
by taking these outgoing edges, i.e., the edges that only
have a single vertex incident to the active agent’s Voronoi
cell. This set is then extended, parameterized by given val-
ues for Euclidean distancesHD andH�, and edge count limit
HC , as follows: the outgoing edges are followed depth-first
until either distance HD, or edge count limit HC is reached.
For the latter limit, edges shorter thanH� are ignored (as cir-
cled in Fig. 5). Such short edges occur, for example, when
four agents are almost equidistant, and the clearance
between the agents would likely be perceived as a single
space. Hence, such edges are unlikely to correspond to
human perception. Even though this approach could theo-
retically lead to a path consisting of an arbitrarily large
number of edges, such a situation does not occur in dense
crowds when using crowd agents of more or less realistic
human-like sizes. The resulting path P consists of a
sequence of GVD edges e 2 P ; following the path should
bring the agent closer to its goal.

After a set of candidate paths is found, each path is given
a score. The agent will attempt to use the path with the high-
est score. The composite score function Sði; P Þ takes agent
Ai and path P . It enforces the behaviour of real people in
dense crowds, based on the observations by St€uvel
et al. [23]. As all score functions should be balanced to make
a final decision as to the best possible path, they are com-
bined into a weighted sum:

Sði; P Þ ¼ wgSgði; P Þ þ wcScðP Þ þ wlSlðP Þ þ wmSmði; P Þ;

where Sgði; P Þ, ScðP Þ, SlðP Þ and Smði; P Þ are score func-
tions, and wg, wc, wl and wm are weights given to these sub-
scores. Values for these weights are determined in
Section 7.1. In the following descriptions of each score func-
tion, p0 and pf respectively indicate the initial and final

Fig. 4. The exact Generalized Voronoi Diagram of the capsules (black) and
the approximated diagram of their central axes (white). The distance
between corresponding edges depend on the difference in capsule radius.

Fig. 5. Candidate paths in white lines, with the best-scoring path as a
thick, red line. The circled edge was shorter than H�. The paths are
extended to the agent position. The goal position is bottom left outside
the frame. Note that the paths along curved Voronoi edges are just
drawn as straight line segments for simplicity.
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vertex positions of path P . Note that the path’s final point
pf does not necessarily correspond to the agent’s goal posi-

tion gi, due to the limit on the path length described earlier.

Score function Sgði; P Þ drives the agent towards its goal.
It measures how well the path leads to the goal position gi,
expressing the distance, from the end of the path to the
goal, as a ratio of the total Euclidean distance to the goal.
This normalization ensures that the resulting score is inde-
pendent of the absolute distance to the goal:

Sgði; P Þ ¼ 1�
jgi � pf j
jgi � aij

:

Score function ScðP Þmeasures the clearance radius along
the path, ensuring that the agent prefers comfortable routes
with large clearances. It consists of two components. The
first component stems from the moderate rate replanning
principle. It assumes that a person plans a motion towards a
more spacious area; when this area is reached, a new deci-
sion can be made. The second component prefers motion
along paths with as much clearance as possible. The GVD
structure enables efficient calculation of clearance radius

CðxÞ at any point x 2 R2

ScðP Þ ¼ wF
c CðpfÞ þ wA

c

1

jP j

Z
x2P

CðxÞ dx;

where jP j indicates the total arc length of P , x 2 P are the

collection of all points along path P , and wF
c and wA

c are
weights for respectively the final and the average clearance
of the path. Due to implementation details of our GVD
library, we only had access to the minimal clearance of
edges, and approximated the integral using discretized
summation. This score function also serves as a term to min-
imize the relative rotation of the torso with respect to the
motion trajectory, due to the way the clearance information
is used to plan torso orientations (see Section 4.2)

The conservation of energy can be broken down into two
components: the minimization of the distance travelled, and
the effort required to travel that distance. Score function
SlðP Þ models the first component, and measures path
length. This function combines with Sgði; P Þ into the prefer-
ence of short paths leading to the goal

SlðP Þ ¼ �
X
e2P

jej:

Score function Smði; P Þ represents the second component of
energy conservation, by penalizing changes in momentum,
i.e., sharp turns. Since we can safely assume that the mass
of the agent is constant, any change in momentum is
explained by a change (in the direction of) the velocity vec-
tor, which in turn can be modelled by the cosine similarity
of the current velocity and the direction towards the path:

Smði; P Þ ¼ _ai � e0
j _aijje0j

;

where e0 ¼ p0 � ai, the vector connecting the agent to the
starting point of the path.

A more elaborate alternative for Smði; P Þ could calculate
the weighted integral of the curvature along e0 and P , with
the weight inversely proportional to the distance from the

agent. This would take the curvature of the entire path into
account, emphasizing more immediate momentum
changes. However, our proposed approach is simpler, and
seems to be sufficient in practice. Furthermore, due to the
agent replanning while it is en route to its goal, effectively
the curvature of the entire path is taken into account.

4.2 Torso Rotation Planning

Once the best path P has been chosen, which determines the
next torso position, the torso orientation To is determined. For
this we use the torso normal ni of agentAi. Torso orientation
To consists of two components: heading Th and torso twist Tt.
The first component, Th, represents a common nonholo-
nomic walking motion along the start of the path. Its compu-
tation is trivial and not described here. The second
component, torso twist Tt, adjusts for the minimal clearance
along the start of the path. The clearance at later parts of the
path is of less importance for the current torso twist plan-
ning, due to themoderate-rate replanning principle. The first
edge of the path lies between two neighbouring agents, and
ends at a point of local maximum clearance behind those two
agents. It is this part of the path that is used for the planning
of the torso twist. The clearance at a point indicates the dis-
tance from that point to the nearest agent capsule. To maxi-
mize the time for the agent to smoothly change its torso
orientation towards the desired twist, we calculate the mini-
mal clearance c along the first edge of path P . The torso twist
Tt can then be expressed in radians as

Tt ¼

0 : c� ri � wi

cos �1 c� ri
wi

� �
: 0 < c� ri < wi

p

2
: c� ri 	 0 ;

8>>>><
>>>>:

where wi ¼ ‘i=2þ ri is the half-width of the capsule. This
results in two possible orientations, both of which will fit
the available clearance equally well: Th þ Tt and Th � Tt The
choice for the final orientation is based on the findings by
St€uvel et al. [27]. They observe that, while manoeuvring
through a dense crowd, people tend to aim their torso nor-
mal towards their goal position. The absolute angle between
the torso normal and the vector to their goal is limited to 90


for 90 percent of the time, and never more than 120
. Conse-
quently, we choose To ¼ Th � Tt such that this angle is mini-
mized. Once the desired position p0 and orientation To have
been calculated, each agent employs proportional-deriva-
tive controllers to steer towards the planned configuration.

So far we have discussed the general approach for an
active agent. Based on observations from real crowds, we
deviate from this approach when a character starts to move
towards a goal. St€uvel et al. [23] observed that, before they
start manoeuvring, people orient their torso towards their
goal. Similar behaviour is incorporated into our crowd
model. When an agent becomes active and starts planning
its movements, it performs the same planning steps as
described in the previous sections. However, it discards the
planned position p0, and rotates on the spot towards the
planned orientation To. Subsequent planning steps are per-
formed as described earlier.

ST€UVEL ET AL.: TORSO CROWDS 1827



5 PASSIVE AGENTS

In this section, we discuss the behaviour of passive crowd
agents, which, in contrast to active agents, do not have an
explicit target to navigate to. We consider two sometimes
contradictory motivations for their placement: finding local
comfort, and rotation towards a focus point. Our passive
agents locally optimize their placement, making themselves
as comfortable as possible, i.e., maximize the clearance
around them, given the constraints of their immediate sur-
roundings. The translation tS to reach a more comfortable
placement is described in Section 5.1. When the geometry of
the environment and the configuration of the crowd allow
for it, a trade-off is made between rotating to a comfortable
orientation and a rotation towards a focus point. This can be
the centre of a chatting group of people, the charismatic
front man of a performing band, or simply the floor number
display of the lift. To our knowledge, we are the first to use
such a focus point in a crowd simulation system. The rota-
tion fS from the current to the desired orientation is
described in Section 5.2. Passive members of a crowd tem-
porarily accept a less comfortable position in order to make
way for someone else to pass; this avoidance by translating
(tA) and rotating (fA) is described in Section 5.3. In
Section 5.4 we show how these desires are combined into
the agent’s motion.

5.1 Space Finding

Passive agents try to coarsely maintain their position. For
example, even when a lift is crowded, the door is open, and
outside the lift is a plethora of space, agents waiting in the
lift will remain in that lift. Manoeuvring to a different area,
such as stepping out of the lift, is considered active behav-
iour, and is described in the previous section. We use walls
and doors (see Section 6) to delineate areas in the environ-
ment. To restrict the space finding algorithm to the agents’
current area, our passive agents consider all doors as closed,
regardless of their actual state. However, the agents do
search for a better place to stand in their direct vicinity; this
is what we call space finding behaviour. This results in a
translation vector tS from their current position to a more
spacious position. Effectively it is a combination of comfort
optimization and avoidance of passive agents.

Whether the space finding algorithm is engaged depends
on the space around the agents. We assume that our passive
agents like to stand in a spot where there is enough space sur-
rounding them. When that is the case, i.e., the distance to the
nearest neighbouring agent or obstacle is larger than a certain
threshold, they remain stationary, even though there may be
even more space available to them; the agent is marked as
happy with its current placement, and will not engage the
space finding algorithm (so tS ¼ 0). This threshold can be con-
figured individually for each agent, and can be a function of
culture, scenario, or the geometry of the surroundings.

In tighter situations, our passive agents move to maxi-
mize their comfort. To obtain nearby candidate positions of
maximal comfort, agents consider points of maximum clear-
ance between their surrounding neighbours. By definition,
such points correspond with vertices of a Generalized Voro-
noi Diagram (GVD, see Section 4) of those neighbours. Such
a local Generalized Voronoi Diagram Li of agent Ai is the GVD

defined by N i, where N i is the set of neighbouring agents
and obstacles of agent Ai. N i can be efficiently extracted
from the GVD of the entire crowd, by iterating over the
edges of the cell containing Ai, and taking the agents or
obstacles on the opposite side of the edges. Note that agent
Ai itself is not included in Li (see Fig. 6). The vertices of Li

correspond to local clearance maxima, and thus potentially
comfortable positions for the agent to move to.

People try not to spend too much energy [21], and will
accept a marginally more cramped situation when walking
to a better spot would take a significant effort. We use the
following energy minimization function to balance the gain
(more available space) with the expended energy (the dis-
tance to travel to that space). All vertices vj 2 Li are consid-
ered potential better positions, and are given an energy cost

Eðai; vjÞ ¼
jvj � aij

CðvjÞ � CðaiÞ
;

vd ¼ argmin
vj2Li

Eðai; vjÞ;

tS ¼ vd � ai;

where CðxÞ indicates the clearance around x; vd denotes the
vertex with the lowest energy cost, and determines the
agent’s space finding translation vector tS . This scoring is
efficient; we have found that, in practice, 89 percent of the
time Li contains no more than three vertices, with an aver-
age of 2.7 vertices.

5.2 Orientation Finding

When agents are squeezed into a small area, they rotate
themselves to fit the available space. However, if the con-
straints allow for it, the agents focus on a given point (a per-
forming band on a stage, floor number display of a lift, etc.).
This results in a rotation fS from the current orientation of
the agent towards a desired orientation. The focus point is
environment- and scenario-dependent, and can of course
change over time and be different for each person or agent.
It is denoted as fi for agent Ai. The accompanying video
shows the effect of this focus point. A group of agents have
a focus point in the centre, and the video demonstrates the
effect of increased density on this group: the group stays
together, even though the focus point has no direct influ-
ence on the position of the agents (see Fig. 10).

Fig. 6. Example of a local Generalized Voronoi Diagram (GVD), with
points of maximal local clearance, in orange. The GVD of the crowd is
shown in white. The features that define the local GVD are shown in
magenta. The dashed circle shows the clearance of the agent.
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In the remainder of this section, p is the passive agent’s
index number, so ap indicates its position. The angle
between the agent’s torso normal np (see Section 3) and the
vector to its focus point fp is defined as

af ¼ ffðfp � ap;npÞ ;

where ffðx; yÞ indicates the signed angle between two vec-
tors on the interval ð�p;p�.

When marked as happy with their current placement
(which depends on the available clearance, as described in
Section 5.1), our crowd agents rotate such that their torso
normal points towards their focus point. In this case, we
take fS ¼ af .

The shape of the available space is the dominant factor in
someone’s orientation when that space is tight; one rotates to
fit the little space available. The narrower the space, the less
important any focus point becomes. To include this behav-
iour in our model, we inspect the shape of the agent’s
Voronoi cell. Since this cell contains all points that are closer
to the agent than to any other agent, it is a good model for
their available space. The width of the cell is defined as the
minimal distance between two parallel lines that enclose the
cell. The direction of these lines are a common measure for
the oblong direction of the cell. However, this direction is not
stable under small variations in agent configurations, so we
use a more elaborate approach. To obtain a vector that indi-
cates the overall orientation of the space, a Principal Compo-
nent Analysis (PCA) [29] is applied. Such an analysis is
applied to a point cloud, to determine its dominant direction.
Since it cannot be applied to continuous shapes, intuitively
we could sample the interior of the Voronoi cell to obtain
such a point cloud. However, to increase computational per-
formance, we limit this approach to the sampled cell edges;
considering the results this is sufficient. The result of the
PCA consists the eigenvectors and eigenvalues of a covari-
ance matrix; when ordered from large to small by their abso-
lute eigenvalues c1 and c2, the eigenvectors indicate the first
and second principal components C1 and C2. In the remain-
der of this section, we assume that the absolute eigenvalues
are ordered bymagnitude, i.e., c1 belongs to eigenvectorC1.

When the Voronoi cell of a passive agent has no clear ori-
entation, the eigenvectors hold little information, and the
eigenvalues will be more or less equal. In this case, the agent
rotates towards the focus point. When the shape of the cell
is elongated, and thus relevant for the orientation of the
crowd agent, the first principal component aligns with the
cell’s shape. This relevance is indicated by a large difference
between the first and second eigenvalue of the covariance
matrix, i.e., c1 � c2 � �2 (�1 will be introduced later as a
lower bound). In this case, there are two possible orienta-
tions for the agent, in which the agent’s central axis sp aligns
with either C1 or �C1; the agent chooses the orientation that
minimizes af . If there is no focus point, af is not defined,
and the agent chooses the orientation that requires the
smallest rotation from its current orientation

ac ¼ ffð�C1; spÞ:

To ensure smooth transition between ac and af , we blend
between them depending on the eigenvalue difference:

fS ¼
ac if �2 	 c1 � c2
Iðac;af ; tÞ if �1 	 c1 � c2 < �2
af if c1 � c2 < �1;

8<
:

where �1 < �2, Iðac;af ; tÞ indicates angular linear interpola-
tion along the shortest arc for t ¼ ðc1 � �1Þ=ð�1 � �2Þ. In our
implementation, we use �1 ¼ 0:015 and �2 ¼ 0:045.

5.3 Avoidance of Active Agents

The behaviour of passive and active agents is quite different.
Passive agents move slower, and try to divide the available
space between them. Active agents move faster (when
allowed by the constrained environment), and, more impor-
tantly, try to reach a specific goal. These differences are also
reflected in the way that passive agents perform agent avoid-
ance. This section describes how they avoid active agents.1

Since far away agents have negligible chance of colliding
with the passive agent, only those nearby are avoided. Of
the active agents that are within an avoidance distance di of
the passive agent, measuring distance between the agents’
capsules, the nearest K are considered for avoidance. In our
implementation we used di ¼ 0:4ri and K ¼ 4. The avoid-
ance distance di can be varied to model observant (larger)
or unaware (smaller) behaviour, and is not necessarily
related to the agent’s radius. In the following description of
the avoidance behaviour, we denote the index of the active
agent that is to be avoided as i 2 fi1; . . . ; iKg, and the index
of the passive agent as p. Agents that move away from the
avoiding agent, i.e., where ðai � apÞ � _ai > 0, are safely
ignored, as their motion is sufficient to avoid any collisions.

The avoidance behaviour consists of two components, a
rotation fA and a translation tA. The passive agent rotates to
minimize its width in the active agent’s direction of move-
ment, and it translates to move out of the way. The active
agent’s position ai and velocity vector _ai are used to deter-
mine a first-order approximation of its future trajectory.

Passive agent Ap rotates to reduce its width perpendicu-
lar to _ai, allowing Ai as much space as possible to pass. fA is
chosen such that the central axis sp aligns with either _ai or
� _ai, depending on which produces the smallest rotation:

fi ¼ ff � _ai; sp
� �

:

The final rotation fA is the sum of the individual rotations fi.
This summation is very simple; we are interested in a more
refined approach, such as computing the rotation to avoid
the one agent that is most likely to collide, based on its posi-
tion and velocity. The avoidance of other agents could then
be performed once that agent has been avoided. The investi-
gation of more elaborate methods is left as futurework.

To step out of the way of agent Ai, the passive agent
translates perpendicular to the velocity vector _ai (see Fig. 7).
For the active agent, we determine the line through ai and
oriented along _ai. For the passive agent, we determine the
line orthogonal to _ai and intersecting ap. The intersection
point xi of those lines determines translation vector ti:

ti ¼
1

di

ap � xi
jap � xij

;

1. Avoidance of passive agents is handled by the space-finding
algorithm, which is described in Section 5.1.
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with dampening factor di > 0. The dampening factor can be
agent-specific, to allow for different personality traits. A high
dampening factor will make the agent slower to respond than
a low dampening factor. In the accompanying video we used
di ¼ 200 for all agents. The final agent avoidance translation
vector tA is the sum of individual translations ti.

5.4 Turning Desire into Action

The previous sections described methods to obtain a vector
towards more space tS , a rotation fS towards a focus point
or to align with the available space, and translation tA and
rotation fA to avoid active agents. This section describes
how our method selects which translation and rotation to
use to produce the agent’s motion.

The space finding translation vector tS is only applied
when certain conditions are met. Firstly, based on the prin-
ciple of energy minimization, we assume that people accept
a marginally worse situation when manoeuvring into a bet-
ter spot would use significantly more effort than standing
still. In our algorithm, the clearance at the found point must
be significantly better than the agent’s current situation; we
use a threshold value of 125 percent of the agent’s current
clearance. Not only does this produce more natural results
(an irregular distribution of free space among the crowd), it
also prevents oscillation between points of similar clear-
ance. Secondly, when making space for someone to pass
(see Section 5.3), people generally accept a worse situation,
as it will only be temporarily. However, people try to move
towards an open space if one is available and can be reached
while still allowing someone to pass, since this will make it
both easier for the passing person and more comfortable for
the avoiding person. To model this, space finding vector tS
is only applied when agent avoidance and space finding
result in a translation in roughly the same direction; in other
words, when the dot product tS � tA > 0. When these are
more or less opposite, only the agent avoidance is per-
formed. The same approach is taken for fS and fA; if both
rotate in the same direction, they are combined, otherwise
only fA is applied

p0 ¼ ap þ tA þ
tS if tS � tA > 0

0 otherwise

�

To ¼up þ fA þ
fS if fAfS > 0

0 otherwise;

�

where up is the passive agent’s current orientation, and p0

and To are respectively the planned position and torso orien-
tation as described in Section 4. The movement of the agent
is controlled in the sameway as described in that section.

6 WALLS, DOORS, AND OTHER OBSTACLES

In order to model realistic scenarios, our method supports
walls, doors and polygonal obstacles. To integrate these into
the crowd behaviour, they are all modelled as line segments
and included as additional sites in the generalized Voronoi
diagram (GVD). As a result, the GVD contains line segment
sites for agents, walls, doors and obstacles. All these are
interpreted by the crowd agents as impenetrable obstacles.

Doors are modelled as special wall segments that can be
enabled when the door is closed, and disabled when the
door is opened. As described in Section 5.1, doors are inter-
preted differently by active and passive crowd members.
When a door is open, its line segment simply is not inserted
into the active agents’ GVD at the next simulation update.
The GVD for the passive agents always inserts door line
segments, to ensure that the space finding algorithm does
not cross area boundaries.

In real life, people anticipate the movement of others.
Anticipation in crowd simulation has been studied before
[30], [31], [32]; in these works, crowd agents predict other
agents’ movements, and adapt their ownmotion to avoid col-
lisions. Our crowd model takes the opposite approach; our
active agents place information in the environment to notify
passive agents of their intentions, similar to the approach by
Yeh et al. [33]. As a real-life example of the intended behav-
iour, consider a person entering a lift; people appear to men-
tally model the space required for that person, and make
space accordingly. Since the final orientation of the person is
not known a-priori, a point would be sufficient to model this.
In our simulation, active agents insert point obstacles in the
passive GVD, at their goal position gi. As a result, the passive
agents make space around this position, sooner than the
avoidance behaviour would. This is only applicable in situa-
tions where the active agent’s behaviour is predictable, such
as when entering or exiting a lift or bus, which is why it is an
optional feature of our crowd simulationmethod.

7 RESULTS

In this section, we validate our Torso Crowd model against
a real crowd, in order to find values for parameters that
result in human-like behaviour. Furthermore, we investi-
gate our model by looking at several scenarios. We also
compare our model with a disc-based crowd simulation:
Reciprocal Velocity Obstacles [8].

7.1 Validation and Parameter Optimization Using
a Real Crowd

To validate our crowd model behaviour, we used motion
capture data of a real crowd [23]. This data set contains the
torso width and thickness of each participant, and a record-
ing of their locations and torso orientations during each of 47
trials. These recorded motions represent human behaviour
in a real situation, and thus form suitable ground truth for
our parameter optimization and model verification. We do

Fig. 7. Active agent avoidance; the passive agent Ap (green) will move to
avoid the active agent Ai (cyan). Arrow ti indicates the resulting avoid-
ance vector.
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note that the recordingswere performed in a controlled envi-
ronment, and thus may not be a faithful representation of
day to day scenarios. We leave evaluation using real crowds,
for example using video analysis, to future work. The data
set is used to validate the behaviour of the active agents, and
the passive agents in the interior of the crowd. In the experi-
ment, the active participants had the concrete, reasonably
realistic task of manoeuvring through a crowd to a given
point. The rest of the crowd had to stand still in a dense con-
figuration, which was necessarily synthetic for the partici-
pants at the edge of the crowd due to the set-up of the
experiment. To compare the behaviour of the active partici-
pants with our crowd simulation system, we look at topolog-
ical equivalence, rather than Euclidean distance between
paths, as the exact positions of the paths are highly depen-
dent on the behaviour of the passive crowd members. The
parameters for the passive agents are simpler andmore intu-
itive than those for the active agents, and were chosen based
on visual inspection of the simulation results of the scenarios
described in Section 7.2.

Our crowd model uses a number of parameters that
determine the behaviour of the active agents, as described
in Section 3. These parameters, with their optimized values,
are shown in Table 1. To optimize these parameters, we
used the following approach:

1) Conversion: The motion capture data is converted to
our abstract agent representation, enabling us to
input captured situations into our crowd simulation
method.

2) Test sets: We choose N random frames from the
recorded motion capture data. We ensure that each
of the chosen frames represents a different situation.
The set of frames is separated into two distinct,
equally sized, randomly chosen subsets T for param-
eter tweaking and V for verification.

3) Parameter tweaking: For each frame in T , the choices
of the path planning algorithm are compared with
the choices of the participant. We adjust parameters
and repeat the comparison, until either all choices
made by the path planner are equal to the choices
made by the participants, or no more improvements
can be made. When the planned path passes between
the same agents as the participant’s motion, they are
considered equal.

4) Verification: For each frame in V, the same type of
comparison is performed, as a verification of the
parameters. We also measure the difference in pla-
nned and recorded torso twist.

We usedN ¼ 80 to tweak and verify our parameters. Little
adjustment was needed during the tweaking phase, resulting
in the parameters displayed in Table 1. To prevent over-fitting
to our motion capture data, we also validated against the
behaviour observed in the simulations seen in the accompa-
nying video. During the verification phase, the path planner
chose a path that was topologically equivalent to the partici-
pants in 85 percent of the cases. Fig. 8a shows examples of
such correctly planned paths. In four of the six cases where
the planner diverted from the recorded data, the planned
path was equally plausible (see Fig. 8b). In the recordings of
the other two cases, at the exact frame used for validation, the
participant shifted weight from one foot to the other while
otherwise stationary, which resulted in a large change in the
instantaneous momentum vector and thus in a different path
being chosen (see Fig. 8c); within 1=30 second after the test
frame, the planner chose the same path as the participant in
both cases. Of course this is not an issue when using simu-
lated data, as our systemdoes notmodel thisweight shifting.

TABLE 1
The Path Planner Parameters Obtained from Our Comparison

with Our Ground Truth Data

category parameter value parameter value

Planner horizon HC 3 HD 1.50
H� 0.05 m

Score function weights wc 2.30 wg 1.41
wl 0.21 wm 1.00

Clearance weights wF
c

0.1 wA
c

0.9

All values were obtained by manual optimization.

Fig. 8. Comparison between the planned paths (thick red line) and the
recorded motion capture data (thin blue line).
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The verification of our model also includes a comparison
between the planned and recorded torso orientations for the
34 test cases where the predicted path was topologically
equivalent to the path of the recorded participant. To remove
the influence of local path variations, we compare the torso
twists, since these are relative to the agent’s and participant’s
own paths. The twist is defined as the angle between the
torso normal and the torso’s instantaneous velocity vector
(as described in Section 4.2). For each verification frame, our
Torso Crowd method is used to plan the agent’s next short-
term target position p0 and torso twist Tt. The recording is
then forwarded to the time where the participant reaches p0,
after which his/her torso twist T 0

t is determined. The error is
then expressed as the signed difference between the twists:
E ¼ Tt � T 0

t where the sign of error E indicates whether our
planner over-estimates (positive) or under-estimates (nega-
tive) the required twist. In 10 cases we under-estimated the
required twist. We classify one of those cases as outlier; it
showed a �42o difference due to the participant moving at
that angle even though it was not needed given the available
space. In the other under-estimated cases the average error
was small at �12o, and the error was never more than �16o.
In 25 of the 34 cases, we over-estimated the required twist.
This is easily explained by the fact that the plan is based on
the GVD, which represents the current situation. In the
recorded data, it is clear to see that the passive participants
make space for the active participant, resulting inmore avail-
able space, hence less torso twist is required. The average
error when over-estimating was 22o. The largest error in the
predicted twist was 76o. However, in this case the planned
global torso orientation was reached within 0.8 seconds after
reaching the planned position. Note that we compare the tor-
sos at the moment in time where the distance between the
recorded participant and the planned position is minimal. In
16 of the 34 test cases, either the planned torso twist Tt or the
global torso orientation To is approached (within a 2o error
margin) within 0.5 seconds from that moment in time. This
indicates that the recorded participant rotates at a slightly
different rate, but still assumes the planned configuration
shortly before or after. The average of the absolute error is
quite small at 19o, and the median of 16o indicates that more
than half of the predictions have a smaller-than-average
error.We can conclude that ourmethod for simulating active
agents correspondswell with the ground truth data.

The avoidance behaviour of the passive participants was
also investigated, to confirm that they show the alignment
behaviour we model in Section 5.3. Since our aim is the sim-
ulation of dense crowds, we discarded the participants at
the edge of the crowd, and limited this analysis to those that
are in a dense situation as per the metric described by St€uvel
et al. [23]. Their continuous motion was segmented into

avoidance actions, which are defined as a period in which the
participant shows a translation and/or rotation in order to
make way for the active participant. In our data set, all
avoidance actions consisted of at least a translation (average
0:09 m, s ¼ 0:07 m), which allowed us to find the peak in
translation speed, and use the local minima around this
peak to define the start and end timekeys of each avoidance
action. At both timekeys, we measured the angle between
the passive participant’s torso segment sp and the active
participant’s velocity vector _ai. By analysing 94 avoidance
actions, we found that at the start of the avoidance action,
the average angle was 42o (s ¼ 25o), and at the end timekey
it was 30o (s ¼ 22o). A paired-samples T-test on the angles
shows that this is a strong significant difference
ðp < 0:0001Þ, indicating that there is indeed a trend to align
with the active agent’s velocity vector. The specific values of
the observed averages are of relative importance, as we did
not account for any anticipation or other temporal effects.
Doing so may produce stronger results, which is left for
future research. The simulated avoidance behaviour is
parameterized, and can be adjusted to mimic these findings.

7.2 Examples and Comparison with Disc-Based
Simulation

We have modelled several scenarios to test our crowd simu-
lation method. As we focus on situations where a large part
of the crowd stands still, typical tests where the entire crowd
moves do not suffice. Furthermore, in dense crowds people
often bump into each other, so a benchmarking method that
penalizes collisions, such as SteerBench [34], will produce
unrealistic scores. Instead, we have chosen to use a lift and a
hallway to model crowded spaces. All scenarios are simu-
lated at real-time on a single CPU core of a modern PC (Intel
Core i7 at 4 GHz). With 44 agents, theHallway scenario ran at
23 frames per second; note that the crowd simulation algo-
rithm was implemented in Python, and the exact Voronoi
diagram was computed on the same CPU core using the
VRONI library [35]; a GPU-based implementation of the
GVD algorithm [36] and an optimized implementation in C
of the crowd simulation algorithm will result in a better per-
formance; we leave this for future work. The scenarios are
shown in the accompanying video. For each scenario, we
first show the simulated agents, and then animated charac-
ters that follow themotions of those agents. The set of param-
eters obtained in Section 7.1 was used in all scenarios, with
the exception of the clearance parameter wc of the active
agents. We use wc ¼ �0:5 when entering the densely
crowded lift to encourage the agents to move from the low-
density hallway into the high-density lift.

Small lift: In this scenario, the lift visits various floors, and
on each floor agents get in or out of the lift (see Fig. 9). This

Fig. 9. Stills of the “small lift” scenario. Three agents enter the lift, while the others make space.
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scenario shows the typical division of the available space seen
in lifts: one person by itself stands more or less in the middle
of the lift, while the space gets divided when more people
enter. While waiting for their floor, the agents turn towards a
common focus point: the floor indicator panel above the door.
When agents leave the lift, the remaining space is used by the
remaining agents. Note that, mimicking real life, the space is
not optimally divided amongst the agents. Instead, agents
around a gap, where an agent stood before leaving the lift,
benefit most from the newly available space. The effect of the
insertion of the immediate goal of active agents, as described
in Section 6, can clearly be seen when passive agents make
space as an active agent enters the lift.

Large lift: This scenario demonstrates what happens
when a group of agents share a focus point, and the density
of the crowd increases. The three green agents (see Fig. 10)
share a focus point that is positioned at the centroid of their
positions. The other agents in the simulation do not have a
focus point. The behaviour of the agents entering the lift is
not necessarily natural, since half of them have been
scripted to move to the back of the lift. This behaviour is
more disruptive to the agents already present, and thus
forms a more interesting scenario. Even though the focus
point has no direct influence on the agents positions, the
three agents stay together.

Hallway: In this scenario we show a character manoeu-
vring through a larger crowd in a hallway. We use this sce-
nario to compare the behaviour of our Torso Crowd model
with a widely accepted crowd simulation model: Reciprocal
Velocity Obstacles [8] (RVO). This comparison does not aim
specifically at RVO; we just use RVO as a good example of a
disc-based crowd simulation model. In this comparison, the
Torso Crowd agents share the same focus point, out of view
on the right-hand side. One agent tries to manoeuvre
towards its goal position, while the remainder of the crowd
is stationary; those agents have a zero preferred velocity.

Since RVO models agents as discs, we need to convert
our capsule representation. We keep in mind that the
agents actually represent humanoid shapes; making the
RVO agents narrower will result in many undetected
intersections. Therefore, the radius is chosen such that the
disc encloses the torso capsule, as shown in Fig. 11b. The
blue line shows how far the agent was able to move: in
such a dense, stationary crowd, the disc-shaped agents
are too big to manoeuvre, while this density is not a prob-
lem for Torso Crowds (see Fig. 11a). One of the underly-
ing issues is that RVO agents only make space to avoid
collisions. When the active agent slows down to avoid a
collision, the surrounding agents only move with half the
speed necessary to avoid the collision. This forces the

active agent to slow down even more, finally forcing it to
stand still. Its velocity vector then becomes zero and
holds no information, and the agents in its surroundings
will no longer move.

Fig. 10. Stills of the “large lift” scenario. The three green agents have a common focus point (the red dot).

Fig. 11. Motion paths of a Torso Crowd agent, and RVO approaches.
The RVO agents are displayed with a capsule shape overlay, to visualize
intersections between agent-driven humanoid characters.

ST€UVEL ET AL.: TORSO CROWDS 1833



To give the RVO agents more space, we reduce the agent
radii, such that the surface area of the agent’s ground pro-
jection is equal to that of the capsule. This makes the RVO
agents narrower but still thicker than the Torso Crowd
agents, and results in an equal ground coverage percentage
for RVO and Torso Crowds. The RVO agent can then suc-
cessfully navigate the crowd, at the expense of intersections
between the characters. Fig. 11c shows this situation, with
red capsules to visualize the character torsos. Statistics on
our choice of agent sizes are shown in Table 2; the average
width of 0.44 metres matches the average torso width (mea-
sured shoulder to shoulder) reported by St€uvel et al. [23].
We can further increase the crowd density; even the smaller
RVO agents move slowly, and eventually do not find a path
to the goal (Fig. 12b). Our Torso Crowd model still handles
this situation, and allows the agent to manoeuvre to its goal
position (Fig. 12a).

We can observe more differences. The Torso Crowd agent
takes a longer path through the crowd, as it has been config-
ured to avoid areas of low clearance (i.e., agents that stand
close together). The RVO agent tries to maintain the shortest
path by preferring velocities directly towards the goal posi-
tion. Another difference is that RVO agents are limited to non-
holonomic behaviour; an agent cannot take a step backward
or to the side to make room for a passing agent, resulting in
unrealistic instantaneous rotations when a human character
is animated in its place. Where the passive Torso Crowd
agents fill up the space in the wake of the blue agent to make
themselves more comfortable, the green RVO agents remain
stationary. These results show that the disc shape is not suit-
able for the simulation of dense crowds.We can also conclude
that our Torso Crowdmodel shows awider range ofmotions.

8 CHARACTER ANIMATION

In order to display a humanoid crowd, the motions of the
crowd agents need to be mapped to humanoid characters.
This poses an under-specified problem. Since only the torso
motion is simulated, the lower body orientation needs to be
reconstructed before further body animation is possible. In
our method, we first describe our lower body estimation
method, and then the proposed skeletal animation method.
This section briefly describes our approach; for further
details we refer to the work by St€uvel [37].

The lower body orientation is estimated based on two
observations. Firstly, when manoeuvring, the lower body is
oriented more or less in the same direction as the torso, and
slightly turned towards the direction of motion. Secondly,
the lower body cannot instantly change its orientation. By
applying smoothing and computing the angle between the
smoothed torso orientation and the trajectory of the motion
we determine the lower body orientation.

Once the lower body orientation is determined, we can
animate the skeletal structure that determines the charac-
ter’s pose. A commonly used technique for crowd anima-
tion is the use of a single walk cycle to animate characters
at various speeds, where the animation playback rate
depends on each character’s walking speed. Such an
approach is simple to implement, but does not support
holonomic motion (such as side-stepping). Furthermore,
it results in a direct dependency between walking speed
and cadence (steps per minute). However, when people
change their walking speed, both the cadence and stride
length change [38]. This change in stride length cannot be
captured in a single walk cycle, producing unnatural
results. To address these issues, the basis for our anima-
tion technique is two sets of ten gender-specific walk
cycles, consisting of an idle animation (0.00 m/sec), eight
slow (0.45 m/sec) walk animations in different directions,
and a faster (1.00 m/sec) straight forward walk. The eight
slow animations consist of straight forward and back-
ward walking, left and right sidestepping, and diagonal
steps in four directions. The speed of 0.45 m/sec was cho-
sen for those animations as it was found to be the average
speed when manoeuvring through a dense crowd [27]. To
produce a character that walks at the correct speed, the
joint angles of the animations are blended using weights
that depend on the speed of the crowd agent and the
lower body orientation. Constraints are placed on the
spine bones to incrementally rotate the torso to produce
the required torso twists. An example is shown in Fig. 13.

TABLE 2
Agent Diameters Used in the Comparative Scenario, in Metres

Simulation shape min max mean

Torso Crowds capsule 0.382 0.504 0.443
Regular RVO disc 0.382 0.504 0.443
Same-area RVO disc 0.280 0.399 0.345

For capsule agents the diameter is defined as 2ri þ ‘i, whereas for disc agents
this is 2ri.

Fig. 12. Motion paths through an even denser crowd. RVO does not find
a path to the goal, while Torso Crowds does. The RVO agents are dis-
played with a capsule shape overlay, to visualize intersections between
agent-driven humanoid characters.
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9 CONCLUSION

In this article we have introduced a novel crowd simulation
method, based on the manoeuvring of a number of people in
otherwise stationary dense crowds. By extending the com-
mon disc-based agent representation to capsules, we are able
to plan upper body twisting based on available clearance.
Such torso twisting is critical for believable dense crowd
manoeuvring.

Our method has been validated against data obtained
from real crowd behaviour. The active agent behaviour
matches paths chosen by humans in 85 percent of the cases,
and produces different but equally plausible paths in 10
percent of the cases. The method’s parameter values were
manually optimized; it would be interesting to investigate
automatic parameter tuning such as proposed by Wolinski
et al. [39] and Berseth et al. [40]. Even though we used a sim-
plified Voronoi diagram, the resulting behaviour is a close
match to the ground truth (as shown in Section 7.1). The
majority of our validation focused on the behaviour of
active agents; further comparison, with different ground
truth data, could improve realism of the passive crowd
members as well, and could strengthen our design deci-
sions, such as the space-finding behaviour, the assumption
that passive agents do not move to different rooms, and
show what role focus points play in real crowds.

Regardless of the method to obtain the parameters, it is
likely that their scope is limited to high-density situations.
Since the planning of torso twist is no longer a necessity in
lower-density crowds, our crowd simulation system switches
between our proposed method and a different agent-based
method aimed at regular locomotion, depending on the den-
sity of the crowd.Alternatively, our system could be extended
to handle lower densities, by employing density-dependent
parameter values; this should be relatively straight-forward,
since our densitymetric is agent-oriented, and the parameters
are already adjustable for each agent. Itwould also be interest-
ing to add velocity-based path planning to our method; for
example, the change of clearance over time could be used to

prefer small-but-growing openings in the crowd over larger-
but-shrinking ones.

All parameters in our model can be personalized per
agent, for example by sampling them from a given random
distribution or by adding noise. More human-like behav-
iour could be introduced, such as hesitation when one is
unsure about the path to take; hesitation could be simulated
in our model when different paths have similar scores. Such
diversification of the crowd simulation is left for future
work.

The passive agents use a generalized Voronoi diagram to
find comfortable places to stand. By definition, such a dia-
gram is symmetric, in that there is no distinction between
agents and walls, or the front or rear of agents. This symme-
try results in artefacts, such as agents standing too far away
from walls. A possible solution may be found in a multipli-
catively or additively weighted generalized Voronoi dia-
gram [41], which might also be useful to model the
asymmetrical nature of people’ personal space [42]. How-
ever, since there are no suitable, robust implementations
available, we are unable to implement such an approach at
this time, and leave this to future work.

In our scenarios, each active agent was appointed a fixed,
scenario-specific goal position. When that goal is reached,
the agent switches to passive behaviour. Due to the
dynamic nature of the crowd, the scripted goal position
may not be the most comfortable (see Section 5.1), and the
agent will move to a desirable point after reaching the goal.
When approaching the goal, the active agent could use a
local GVD to find a comfortable position in the goal area,
and actively move there before switching to passive
behaviour.

We have used an animation system that shows walking
characters in a crowd using the motions obtained from the
simulation. Our system uses a kinematic approach, hence it
does not respond to inter-character collisions. Due to the
density of the crowd, however, such collisions are likely to
occur. We are currently investigating a method employing
physics-based characters that follows our torso planning
method [43]. Such a system would be able to respond to col-
lisions in a physically correct way, and be used to plan
lower-body motion. Another interesting way to extend our
model is based on the observation that in dense crowds peo-
ple often use their arms for navigation. Not only are they
used to physically make space, but also for notification as to
the intent to pass between people, and as a tactile addition
to visual information about one’s neighbours in the crowd.
A different approach to improving the result of the anima-
tion system would be the integration of a footstep-based
method, such as described by Singh et al. [13] and subse-
quently improved by Berseth et al. [14]; we expect that plan-
ning both footstep positions and torso orientations may lead
to more natural results. It would also be interesting to
extend motion editing methods [44], [45], [46] such that
torso orientations are taken into account.

Further research could extend the Torso Crowd model to
allow for a crowd of mostly active agents. It would be inter-
esting to add a velocity component similar to RVO to the
planner. Furthermore, the Torso Crowd representation
could be employed to reduce the energy needed to manoeu-
vre a crowd for other crowd simulations. For example, our

Fig. 13. A crowd of animated, human characters in a lift. The man in the
blue clothing is the active character, whose torso twist is clearly visible.
The path is shown in blue.
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passive agents anticipate the motions of the active agents,
and move aside and twist their torso to make space. Such
behaviour can also be observed in less dense crowds, in
cases where making twisting the torso is not a geometric
necessity for someone to pass, but does provide them with a
more energy-efficient path. This happens, for example,
when making space for someone running towards a train.
This shows that torso planning is not limited to dense
crowds.
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