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Abstract. The digitization of printed music scores through the process
of optical music recognition is imperfect. In polyphonic scores, with two
or more simultaneous voices, errors of duration or position can lead to
badly aligned and inharmonious digital transcriptions. We adapt bio-
logical sequence analysis tools as a post-processing step to correct the
alignment of voices. Our multiple sequence alignment approach works on
multiple musical dimensions and we investigate the contribution of each
dimension to the correct alignment. Structural information, such musi-
cal phrase boundaries, is of major importance; therefore, we propose the
use of the popular bioinformatics aligner Mafft which can incorporate
such information while being robust to temporal noise. Our experiments
show that a harmony-aware Mafft outperforms sophisticated, multidi-
mensional alignment approaches and can achieve near-perfect polyphony
reconstruction.

1 Introduction

Optical music recognition (OMR), has been one of the earliest applications of
optical character recognition dating back to the late 1960s. The goal is to parse
a printed music sheet, typically through scanning, and convert its elements (e.g.
notes, clefs) to a digital format. From there, one can visualize, process or play
back the digitized score. The OMR process typically comprises image recogni-
tion and machine learning components; however, despite the technology advance-
ments, OMR has been imperfect with frequent pitch and temporal errors.

Recognition errors arise due to low quality printing, ambiguous music nota-
tion and written music’s higher complexity than traditional text e.g. merged staff
symbols. Temporal errors are those arising from predicting the wrong position
(onset) or duration of a note. For example, incorrectly recognizing an eighth
note as a quarter will result in all the following notes being shifted by an eighth.
Multiple errors of this type tend to accumulate. The problem becomes more
pronounced when dealing with polyphonic scores, since temporal note shifts can

c© Springer International Publishing AG 2017
J. Correia et al. (Eds.): EvoMUSART 2017, LNCS 10198, pp. 33–48, 2017.
DOI: 10.1007/978-3-319-55750-2 3



34 D. Bountouridis et al.

result to an alignment of voices that besides being incorrect, can sound inhar-
monious as well. Interestingly, incorrect alignment of voices can occur even if
the OMR is perfect, i.e. in printed musical sources from the 16th–18th centuries.
The music from that period is generally typeset using a font consisting of a
limited set of musical symbols. Because of this property, it is possible to attain
recall rates between 85% and 100% on good-quality prints [19]. However, there
are several complicating factors, two of which are particularly important for this
research. One is that music was generally not printed in score format but in
separate voices, each in its own “partbook”. The other is that barlines were only
introduced around 1600, so that an important mechanism for coordination of
voices that might counterbalance rhythmical errors in the OMR, is missing.

Polyphony reconstruction can be defined as the task of restoring a poly-
phonic piece to its original temporal formation-arrangement. In the same man-
ner, polyphony construction can be defined as the prediction of the temporal
formation of a set of unaligned voices. Understanding the temporal aspect of
polyphony, a requirement for both tasks, can find application to automatic music
generation and musicological analysis as well. Surprisingly, there is a lack of
related research, which can be partially attributed to the high complexity of the
problem: cognitively, aligning music notes with each other to form “meaning-
ful” polyphonic pieces, is a process involving many musical dimensions such as
harmony, durations and structure (e.g. segments, phrases, repetitions).

Interestingly, the synchronization of music voices has many parallels to the
well studied multiple sequence alignment problem in bioinformatics [28]. In bio-
logical sequence analysis, measuring the similarity of more than two sequences is
performed by examining possible multiple sequence alignments (MSA) in order
to find an optimum, given a “meaningful” distance measure [5]. Traditionally,
MSA algorithms are applied on unidimensional sequences; however, similar to
music, some biological sequences have multiple dimensions and consequently MSA
approaches that can deal with such information have been investigated through
the years; for example, MSA methods that are aided by proteins’ secondary struc-
ture (an abstraction of the three-dimensional form of local segments) [18].

We adapt tools used in biological sequence analysis towards understanding
the temporal aspect of polyphony and towards solving polyphony reconstruction
in particular. We employ a multidimensional MSA approach that allows us to
identify the contribution of each musical dimension to the correct reconstruction.
Our first round of experiments shows that, besides harmonic relations, structural
information is a crucial for the task. However, structural information is rarely
available, and since most algorithms for automatic structure analysis rely on
temporal information (e.g. onset positions, durations), their predictions can be
highly unreliable when temporal corruption is present (e.g. due to OMR errors).
To accommodate for such corruption, we propose the use of the MSA algorithm
Mafft (Multiple Alignment using Fast Fourier Transform) [14], which can guide
the alignment by structural segments computed from non-temporal informa-
tion, such as pitch. We show that a harmony-aware Mafft can almost per-
fectly reconstruct a artificial dataset of temporally-corrupted polyphonic pieces;
a fundamental step towards real-life applications.
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The remainder is organised as follows. Section 2 presents a brief overview of
the related literature. Section 3 defines the problem of polyphony reconstruction
and explains the simplifications we make in order to reduce its inherent com-
plexity. Section 4 investigates the importance of musical dimensions to polyphony
reconstruction. Section 5 introduces Mafft and proposes its use for the task.
Discussion and conclusions are presented in Sect. 6.

2 Related Work

OMR is an area of active scientific research and as consequence, various solutions
have been proposed through the years. However, the task is merely secondary to
the scope of this paper. The reader is referred to [20] which provides a complete
overview of the algorithms and related literature regarding OMR. We note that
only few of the proposed systems address historical forms of music notation, such
as mensural notation from the Renaissance or lute tablature. The best results on
Renaissance polyphony (the notation that inspired this study) is attained with
Aruspix1.

Few relevant works are tangentially related to polyphony reconstruction. For
example, Boulanger-Lewandowski et al. [2] use recurrent neural networks (RNN)
to model temporal dependencies between polyphonic voices for the purposes of
music generation and music transcription. Similarly, Lyu et al. [17] propose the
fusion of a Long Short-Term Memory RNN and restricted Boltzmann machines
(RBM) for the purpose of music generation. However, none of the approaches
provide any insights regarding the cognitive process of polyphony construction.

A number of researches outside bioinformatics have adopted multidimen-
sional multiple sequence alignment (MDMSA) through the years. For example,
Joh et al. [13] use MDMSA to compute the similarity between activity patterns.
Sanguansat [22] uses a multidimensional version of the Dynamic Time Warping
(DTW) algorithm for the task of query-by-humming. Closer to our work, van
Kranenburg [25] uses a multidimensional extension of the DTW-based pairwise
alignment. In his work, the scoring function incorporates heuristics to accom-
modate for more dimensions and is applied on melody classification.

3 Problem Definition and Polyphony Representation

Monophonic melodies can be considered as sequences of three-dimensional
objects known as notes. Each note ni can be represented by its pitch, duration
and onset components: ni = (pi, di, oi). Perceptually, these dimensions never
appear in isolation but constantly interact with each other. For example, onsets
and durations allow us to perceive the rhythm dimension. Pitch patterns and
rhythm create melodic segments (e.g. phrases). In polyphonic pieces, where mul-
tiple melodic sequences (voices) sound in parallel, the dimension interaction is
higher. For example, the polyphonic temporal organization of notes creates more

1 www.aruspix.net.

www.aruspix.net
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complex rhythm patterns. In addition, notes of different pitches from different
voices happening in similar onset times allow us to perceive harmony.

Pitch errors aside, errors in the duration and onset dimensions, such as those
due to incorrect OMR, lead to both incorrect harmony and rhythm. The original
piece can be temporally reconstructed, as soon as both components are corrected
from errors. In this paper we are solely interested in reconstructing the original
harmony as a first step towards the complete polyphony reconstruction.

The representation of a polyphonic piece as a tractable harmony structure is
of major importance for the task. The sequential nature of certain music docu-
ments (e.g. melodies, chord progressions) has allowed for their representation as
sequences of symbols in a wide range of pattern recognition and Music Informa-
tion Retrieval tasks (MIR) tasks. It is therefore logical to apply this successful
scheme to each voice in a polyphony. Our interest in harmony reconstruction
solely, allows us to use a representation that does not consider the duration and
onset dimensions. Each voice is represented as a sequence of pitch values folded
into one octave and mapped into an alphabet.

The question now is how to encode the harmonic relations between the
sequences. Multiple sequence alignment (MSA) is the arrangement of sequences
(via the introduction of gaps “-”) so that they have they have the same length,
while keeping related symbols aligned. MSA seems like a perfect fit to encode
harmony: gaps “-”, that can be interpreted as rests, can be introduced to the
pitch sequences such that original pitch alignments are retained (see Fig. 1).

The MSA representation of harmony allows us to reformulate the harmony
reconstruction task: assume a polyphonic score S and a function h : S → Aharm

that maps the score’s harmony into a multiple sequence alignment (Aharm), for
example by removing durations and focusing on simultaneous pitches. Given S∗,
a corrupted version of S in terms of note duration and onsets, our goal is to find

Fig. 1. A polyphonic score represented as a duration-onset-agnostic MSA (bottom).
Colors are used for visualization purposes. Only the harmonic relations are retained
from the original score. (Color figure online)
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a score correction function f such that h(f(S∗)) = h(S). To simplify, given a
corrupted score in terms of onsets and durations, our goal is to realign the pitch
sequences (voices) so that the original harmony is reconstructed.

4 Importance of Musical Dimensions

Our musical intuition suggests aligning music voices is a multidimensional
process. Obviously, the relation between note pitches should meet the stylis-
tic requirements for consonance and dissonance. However, one could posit that
for example, it is more likely for notes of similar duration to be aligned together.
This section aims to investigate to which extent various musical dimensions con-
tribute to the correct harmony reconstruction.

Formally, we are interested in arg min[d(h(fD(S∗)), h(S))] where d is a dis-
tance function between two MSAs and D is a set of musical dimensions that can
be incorporated in a function f . To achieve this we first need to have a reference
set of correctly aligned polyphonic pieces, the S component (see Sect. 4.1). Sec-
ondly, we need an aligner of multiple sequences that can incorporate more than
one dimensions, the f function (Sect. 4.2). We also need to establish a meaning-
ful distance measure so that we can compare the polyphonic ground truth to the
reconstruction created by the multidimensional MSA, the d function (Sect. 4.3).
Finally, after we discuss the musical dimensions we consider in our work, the D
component (Sect. 4.4), we put them to the test (Sect. 4.5) (Fig. 2).

S*

S

h(S)

h(fD(S*))

Set of dimensions D

2:

Multi-
Dimensional

MSA

fD
h

distance

d

BCCCCCB
CCCCCCC

ECNCORD
STGKXDT

n: AABFGTT
FABBBGF

A-ABF-GTT
FAB-BBG-F

1:

2:

B--CCC-CCB
CCCC-CC-C-

E--CNC-ORD
STGK-XD-T-

n: A--ABF-GTT
FABB-BG-F-

1:

A--ABF-GTT
FABB-BG-F-

Fig. 2. The pipeline and components (S, S∗, D, f, h, d) for discovering the importance
of musical dimensions in harmony reconstruction.

4.1 Dataset

Our dataset, called Hymns2, comprises of 153, sixteenth century 4-voice reli-
gious pieces. We picked this dataset due to its particular properties. First, all
2 www.genevanpsalter.com/music-a-lyrics/2-complete-collections/

181-midi-collections.

www.genevanpsalter.com/music-a-lyrics/2-complete-collections/181-midi-collections
www.genevanpsalter.com/music-a-lyrics/2-complete-collections/181-midi-collections
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pieces are transposed to the same key which allows us to learn a global harmony
model. Secondly, the average length of the pieces is small enough to run different
experiments with a reasonable time complexity. Finally, the number of notes over
the length of each voice is almost the same, which avoids alignment ambiguities.
For example, the sequence ABC can be aligned to both the beginning or end of
ABCXXXABC, so any algorithm would have trouble distinguishing which alignment
is better. This is an undesirable property in the context of this experiment. For
more information regarding this problem, the reader is referred to [12].

4.2 Multidimensional Multiple Sequence Alignment (MDMSA)

We are interested in a function f that can incorporate more than one dimension
to align the multiple voices of a polyphonic score. We use a multidimensional
extension of the popular progressive alignment (PA) approach which was orig-
inally used for aligning multiple unidimensional sequences [9]. We selected PA
due to its simplicity, both in terms of concept and development, and ease of adap-
tation to more than one dimension. In this section, we first present the concepts
of unidimensional MSA and PA before their multidimensional extensions.

The unidimensional multiple sequence alignment is the output of a process
that introduces gaps “-” to sequences of symbols so that they have the same
length. Formally, given k sequences s1, s2, ..., sk over an alphabet A, a gap
symbol “-” /∈ A and let g : ({−} ∪ A)∗ → A∗ a mapping that removes all
gaps from a sequence containing gaps. A multiple sequence alignment A con-
sists of k sequences s′

1, s
′
2, ..., s

′
k over {−} ∪ A such that g(s′

i) = si for all i,
(s′

1,p, s
′
2,p, .., s

′
k,p) �= (−, ...,−) for all p; and |s′

i| is the same for all i.
There is a great number of possible MSAs for a single input of sequences [8].

We typically want to pick the most “meaningful” considering our task at hand.
More formally: given a scoring function c : A → R that maps each alignment to
a real number, we are interested in A′ = arg max(c(A)). The most widely used
such function is the weighted sum-of-pairs (WSOP) [24]:

c(A) =
L∑

p=1

k−1∑

i=1

k∑

j=i+1

wi,jv(si,p, sj,p) (1)

where L is the length of the MSA, wi,j is a weight of the pair of sequences i, j
and v(a, b) is a “relatedness” score between two symbols a, b ∈ {−} ∪ A. The
scores are typically stored in a matrix format called the substitution matrix.
Literature suggests that A′ would be “meaningful” as long as the substitution
matrix captures “meaningful” relationships between symbols [8]. WSOP can also
be extended to take into consideration affine gap scores (different scores for gap
insertions and gap extensions).

The exact computation of A′ is NP-hard [27], so it cannot be used in practice.
Instead, the focus is on heuristic approaches that give good alignments not guar-
anteed to be optimal. The most popular approach is progressive alignment (PA)
[11], which comprises three fundamental steps. At first, all pairwise alignments
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between sequences are computed to determine the WSOP similarity between
each pair. In the second step, a similarity tree (guide tree) is constructed using
a hierarchical clustering method. Finally, working from the leaves of the tree to
the root, one aligns alignments, until reaching the root of the tree, where a single
MSA is built. The drawback of PA is that incorrect gaps are retained throughout
the process from the moment they are first inserted.

The unidimenional multiple sequence alignment can be extended to accom-
modate for multiple MSAs that we call “dimensions”. More formally: a mul-
tidimensional multiple sequence alignment (MDMSA) consists of N multiple
alignments A1, A2, ..., AN . Each An consists of k sequences sn1 , sn2 , ..., snk over an
alphabet {−} ∪ An such that |g(snm)| is the same for all n and if szm,p is a gap
at a dimension z, then snm,p is also a gap for all n. Figure 3 presents examples
of simple MSA and MDMSA. In the same manner, WSOP can be extended to
MDMSAs by summing over all dimensions:

c(A) =
N∑

n=1

Wn

L∑

p=1

k−1∑

i=1

k∑

j=i+1

wi,jvn(sni,p, s
n
j,p) (2)

where Wn and vn are the weight and scoring function of the nth dimension
respectively. Extending the progressive alignment algorithm to accommodate
MDMSAs is similarly straightforward; we extend pairwise alignment to multiple
dimensions (through the multidimensional WSOP score).

Input:

s1: ABCABC
s2: ACC
s3: BCAC

Output:

s'1: ABCABC
s'2: A-C--C
s'3: -BCA-C

Input:

s1
1: ABCABC

s1
2: ACC

s1
3: BCAC

s2
1: ZGGZGZ

s2
2: GGG

s2
3: ZZZG

Output:

s1
1: ABCABC

s1
2: AC--C-

s1
3: BC-AC-

s2
1: ZGGZGZ

s2
2: GG--G-

s2
3: ZZ-ZG-

Multiple Sequence Alignment
Multidimensional

Multiple Sequence Alignment

Fig. 3. Examples of: a multiple sequence alignment of three sequences (left), a multidi-
mensional multiple sequence alignment of three sequences and two dimensions (right).
Note that gaps in both dimensions are at the same positions.

4.3 Distance Between Two Multiple Sequence Alignments

Although the polyphonic scores S and S∗ are multidimensional, both h(fD(S∗))
and h(S) are unidimensional MSAs reduced to only the pitch dimension. There-
fore, we need to define a meaningful distance measure between two MSAs of
the same sequences; the smaller the distance the more similar two alignments of
the same voices should sound. The previous definition implies that any distance
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measure we devise should correlate with the perceived distance between two har-
mony alignments A and B. For the sake of convenience, we make the following
intuitive assumption: the larger the portion of the voices that are misaligned,
the higher the perceived distance; any misalignment of voices leads to a bad
sounding polyphony, despite the fact that it might sound “nice” by pure chance.

Based on this definition we generate a synthetic set of corrupted Hymn poly-
phonic pieces: each note ni = (pi, di, oi) in a voice sj is modified (doubled or
halved in duration) with a probability for modification P = (l2 × oi)/|sj |, where
l the misalignment degree. Every note with onset value larger than oi is conse-
quently shifted resulting to misalignment. Notes at the end of the piece (larger
oi) have higher chance to be modified, since altering initial notes would result
to larger misaligned portions. We generate misalignments at different degrees
l = 0.1, 0.2, ..., 0.8. Figure 4 presents an example of two voices from the score of
Fig. 1 corrupted at two different degrees l.

Fig. 4. Two (out of four) voices from the polyphonic score in Fig. 1 corrupted at differ-
ent degrees of misalignment (top, bottom). Star signs “*” represent which notes were
modified in terms of duration (halved or doubled) to generate the misalignments.

Now we identify a good measure for two MSAs. A widely used distance
measure is based on the sum-of-pairs similarity, recoded as a dissimilarity: dSP

represents the ratio of aligned symbols in A that could not be found in B over
|A|. Blackburne and Whelan [1] argue that dSP is not a real metric because it
violates the core principles of symmetry and triangle inequality. They presented
four alternatives that differ in the way they treat gaps: (a) the “Symmetrized
SP”, or dSSP which aims to be a correction of the dSP score by ignoring all
gaps (b) dseq which incorporates raw gap information meaning that each gap
is simply recoded as Gi, indicating it occurred in sequence i, (c) dpos which in
addition includes the position where gaps occur in a sequence, and (d) a metric
that incorporates information from the phylogenetic tree of the MSA; omitted
in our work since phylogeny information for our dataset is absent.
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The relationship between the misalignment degree l and a ideal distance
measure should be monotonic and linear; since as stated before, any distance
measure, should correlate with the perceived distance between two polyphonic
alignments. We measure these by calculating the Spearman and Pearson correla-
tion coefficients respectively between l and the MSA pairwise distance. We also
compute the coefficient of determination R2. Table 1 presents those figures for
all four distance measures considered in our work (all significance p values are
smaller than 1070 and are omitted). The simple dSP shows the highest correla-
tion to the misalignment degree l, therefore it will be used from now on whenever
we refer to a distance between two MSAs.

Table 1. The Spearman coefficient, the Pearson coefficient and the coefficient of deter-
mination R2 for the dSP , dSSP , dpos and dseq measures.

Spearman Pearson R2

dSP 0.826 0.801 0.641

dSSP 0.800 0.765 0.586

dpos 0.825 0.799 0.639

dseq 0.817 0.796 0.633

4.4 Dimensions and Sequence Representation

We now explain the different dimensions of a polyphonic score that we consider
in our work, and how they were represented as sequences, which is a prerequisite
of the multidimensional PA algorithm.

Pitch. Pitch information is probably the most important dimension when it
comes to harmony reconstruction. The representation of pitches into sequences
is achieved by folding the pitch values into one octave and mapping them into
an 12-sized alphabet of symbols.

Duration. We have also hypothesized that notes of similar duration might have
higher chance to be sounded together in a polyphonic piece. It is also interesting
to investigate to which extent duration corruption affects harmony reconstruc-
tion. We represent the duration dimension as a sequence by assigning an alpha-
betic symbol to each note value (e.g. thirty-second to “A”, sixteenth to “B”,
eighth to “C” and so on).

Segment Boundaries. In musicology, “meaningful” units of notes are referred
as “phrases”, “segments”, “sections” and so on, although the distinctions
between them are vague. Music psychologists consider segmentation a funda-
mental listening function in terms of how humans perceive and structure music
[16]. As such, information regarding segments has been frequently employed in
MIR applications [21]. Given the reasonable assumption that humans generate
a segment structure mentally as they listen to music, we hypothesize that the
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segment beginnings (or ends) have higher chance to be aligned between different
polyphonic voices, i.e. segments boundaries are more likely to sound in parallel.

Our dataset does not include segment boundary information, therefore we
use three automatic segmentation algorithms (applied on each voice seperately):
seggestalt by Tenney and Polansky [23] which is based on Gestalt principles,
segmarkov which is based on Markov probabilities of segment boundaries derived
from the Essen collection [15] and segLBD which is based on the Local Boundary
Detection Model by Cambouropoulos [4]. A number of segmentation algorithms
exist beyond the ones considered [21], however those three should be sufficient
for our task: understanding the importance of the segmentation dimension in
harmony reconstruction. All three are based on onset information so any score
corruption might have a major effect on their output. We represent the segmen-
tation dimension of each voice as a sequence by binning the space of values into
26 bins so that each note is assigned an alphabetic character corresponding to
its bin index. For example, if the segmentation output ∈ [0, 1] for a melody con-
sisting of ten notes is 1.0, 0.2, 0.0, 0.0, 0.9, 0.2, 0.2, 0.5, 0.2, 1.0, then the sequence
representation would be ZFAAWFFMFZ.

Metric Weights. The importance of a note in the temporal domain can be
represented by its metric weight (not to be confused with distance metrics).
We use the Inner Metric Analysis (IMA) [26] to compute the metric weights
based on the note onsets. Two different variations of the IMA algorithm are
computed: IMAspectral and IMAmetrical. We represent both IMA dimensions
into sequences by binning the space of values into 26 bins. Each note is assigned
an alphabetic character corresponding to its bin index.

Figure 5 presents an example of four MSAs corresponding to different dimen-
sions of a polyphonic score.

4.5 Experiment

Settings. We aim to find which dimension(s) are most important for the recon-
struction of the harmony of a polyphonic piece S after it has been corrupted to
S∗, i.e. the set D that minimizes d(h(fD(S∗)), h(S)). Besides the distance of the
reconstruction to the ground truth, we are also interested in the difference in dis-
tance before and after reconstruction δ = d(h(fD(S∗)), h(S)) − d(h(S∗), h(S)).
We perform the experiment on the Hymns dataset corrupted with misalignments
at different degrees l (see Sect. 4.3).

Regarding the substitution matrix vn for each dimension, we express the
probabilities of symbols appearing in pairs in the so called log-odds scores. This
means the substitution matrix for each dimension is learned from the ground
truth in a similar manner as in [3,7,10]. Particularly for the pitch dimension, the
substitution matrix can be considered a rough harmony model, since it encodes
which pairs of pitch values are frequently sounded together. All substitution
matrices are normalised to have zero mean and unit variance. All dimensions are
assigned equal weights Wi for the sake of simplicity, although different weight
settings may result to differences in performance. All pairs of sequences are
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Fig. 5. Four properly aligned MSAs corresponding to the following dimensions of a
polyphonic score (top): pitch, durations, IMAspectral and segLBD. Colors are used for
visualization purposes. (Color figure online)

assigned equal weights wi,j . Gap open and gap extend scores are set to −0.8
and −0.2 respectively. Although gap settings have great effect on alignments
in general [6], preliminary results have showed that the core findings of our
experiments are not affected.

In theory, given seven dimensions, we need to investigate the performance
of 27 = 128 different D set combinations. In practice, knowing that the pitch
dimension is essential we can reduce that number to 26 = 64, which is still
impractical considering the time complexity of the PA. We therefore decided to
combine dimensions empirically, starting from fewer dimensionalities to more.

Results. We start by combining the pitch dimension with any of the remain-
ing six, i.e. D = {pitches,y} ∀y ∈ { durations, seggestalt, segmarkov, segLBD,
IMAspectral, IMAmetrical}. Figure 6 presents the d(h(fD(S∗)), h(S)) and δ values
achieved at different misalignment degrees. Considering the d(h(fD(S∗)), h(S))
figure, three observations become immediately obvious: First, any addition to the
pitch dimension makes the reconstruction more accurate. Second, duration is the
dimension contributing the most. Third, all dimensions’ positive contribution is
weakened as the misalignment degree increases. It seems that a harmony model
(pitch dimension) by itself is not sufficient to reconstruct the original harmony but
the incorporation of more dimensions leads to a better reconstruction in compar-
ison. However, all dimensions besides pitch are onset, duration-based and their
reliability weakens as the degree of misalignment increases.
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Fig. 6. The results for two dimensions, |D| = 2. Left: the distance of the reconstructed
alignment (y axis), after corrupted at different misalignment degrees (x axis) to the
ground truth. Right: the difference in distance (δ) between the reconstructed and the
corrupted version to the ground truth. δ values above 0 mean that the method results
in a worse harmony reconstruction compared to the input corrupted score. The results
for the unidimensional MSA using only pitch information (PA-pitches) are also plotted
as a baseline.
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pitch and duration (PA-pitches-duration) are also plotted as baselines.

Considering the δ figure (right part of Fig. 6), it become obvious that only
the duration, seggestalt and segLBD dimensions result in an improvement on
the reconstruction (any δ value above 0 means we make the alignment worse).
Also the improvement happens only when the misalignment degree is above 0.2.
In other words, even though the fusion of the pitch with any other dimension
results in a better harmony reconstruction than the pitch dimension solely, only
a couple of dimension combinations actually have a positive effect. Also, given
an almost perfect polyphony we are more likely to make it worse than fix it.
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In general, the results show that the pitch dimension by itself is inadequate
for harmony reconstruction as is the incorporation of only one extra dimension.
However, there is a strong indication that the incorporation of more dimensions
will lead to a better reconstruction. Based on the previous findings we proceed
into combining three dimensions: D = {pitches,durations,y} ∀y ∈ { seggestalt,
segLBD}. Results are presented in Fig. 7. We can make the following observa-
tions. First, the pitches-durations-segLBD performs better than just the pitches-
durations-seggestalt and the pitches-durations approaches. Second, similar to the
previous experiment, given a near-perfect initial score (misalignment degree less
than 0.2), any combination of dimensions will result to a worse reconstruction.

5 Harmony Reconstruction Using MAFFT

The previous experiments revealed that the duration and segmentation dimen-
sions (beside pitches) are the most important for harmony reconstruction: notes
of similar duration and notes at segment boundaries are more likely to be
sounded together in a polyphonic piece. Unfortunately, as soon as the note
durations are altered drastically (highly corrupted), both dimensions become
unreliable to be used for harmony reconstruction via multidimensional MSA.
Segmentation particularly, degrades since the algorithms used in our work rely
on musical heuristics applied on onset and duration information. It becomes clear
that harmony reconstruction requires a segmentation technique that is impervi-
ous to duration-onset errors and according to our knowledge, such an algorithm
for single voices, does not exist. It is also clear that the only reliable information
for our task is pitches. Consequently, the question becomes whether useful struc-
tural information can be extracted from multiple pitch sequences corresponding
to the different voices of a polyphonic piece.

Interestingly, locating very similar sub-regions (segments) between large
sequences has been in important task in bioinformatics. Such segments can effi-
ciently reduce MSA runtimes and as a consequence, MSA solutions that incor-
porate segmentation, such as Dialign [18] and Maftt [14], have found success-
ful application. Mafft in particular, is a unidimensional progressive alignment
method at its core, but uses the fast Fourier transform to identify short sub-
regions that are high-scoring matches between the sequences in the alignment.

We hypothesize that Mafft’s pipeline can be a viable solution to the har-
mony reconstruction problem. Therefore, we apply Mafft solely on the pitch
dimension and we incorporate a harmony model similarly to the PA approaches,
i.e. a learned log-odds substitution matrix from the pitch dimension of the
ground truth. Figure 8 presents the results for Mafft compared to the best
performing PA-pitches-durations-segLBD approach from the previous experi-
ment. For the sake of completeness we also include a five-dimensional approach
PA-pitches-durations-segLBD-seggestalt, although we know in advance its per-
formance will not be robust to high misalignments degrees. For this dataset, the
results show that Mafft achieves almost perfect harmony reconstruction and
performs better than any multidimensional PA approach. In addition, given an
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Fig. 8. The results for various dimensionalities and Mafft.

almost perfect polyphonic score, Mafft is more likely to fix it than worsen it.
More importantly, Mafft’s performance is stable and invariant to any duration
and onset noise. Consequently, given our particular task (harmony reconstruc-
tion), a harmony-aware Mafft approach is the most reliable solution.

6 Conclusions

In this paper we introduced the problem of polyphony reconstruction and tack-
led its harmonic component: how to align pitches from different voices after they
have been corrupted in terms of durations and onsets. By using a multidimen-
sional version of MSA we showed that structural information, namely segment
boundaries, are essential for the correct polyphony reconstruction. Since most
segmentation algorithms are based on duration and onset information, we pro-
posed the use of the bionformatics MSA aligner Mafft extended with a harmony
model. We additionally showed its superiority and perfect fit for the task.

However, polyphony reconstruction is far from being considered solved, while
we cannot claim that we now understand the cognitive process behind aligning
voices. Besides excluding the crucial rhythm component, our work made a set of
simplifications; first, we employed progressive alignment which is heuristic rather
than an exact MSA algorithm. Secondly, each musical dimension was considered
equally important, although the literature contradicts this. Thirdly, we have not
yet investigated how pitch errors could be dealt with. And finally, the reper-
toire we have chosen is rhythmically simple in comparison to most polyphony
from the 16th century. Despite those facts, our work set strong foundations for
understanding polyphony and towards a complete solution to the polyphony
reconstruction problem.
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