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1
General Introduction

“Most young children go through a ‘why’ phase, questioning the world. Some of us
never leave this phase.”

This introduction is mainly targeted to the non-immunologist/biologist reader,
and hopefully will provide them with the background information required to
understand the introductions of chapters 2-5. Readers that are familiar with the
human immune system and the antigen presentation pathway can start reading
at section 1.4; the origin of the MHC polymorphism.

The frequent use of italicized questions in this introduction is inspired by
the contributions of the late Ernst Mayrs (Mayr, 1961, 1997) to the philosophy
of biological science. In this thesis I provide a possible explanation both in
proximate (‘how/why does it work’) and ultimate (‘why is it the way it is’)
terms for the current shape of the antigen presentation pathway.

1.1 U N D E R S I E G E . H O S T- PAT H O G E N C O E V O L U T I O N

Since the onset of cellular life (Holland and Domingo, 1998; Hendrix et al., 2000),
and possibly even before that (Takeuchi and Hogeweg, 2008), hosts have been
plagued by pathogens. While at first pathogens and host were comparable in
size and evolutionary speed, the difference in generation time between the two
classes increased as the hosts became larger (Gaillard et al., 2005). After millions
of years of evolution, a virus like HIV-1 has a generation time of +/- 36 hours
(Perelson et al., 1996; Rodrigo et al., 1999), whereas humans have a generation
time of +/- 28 years (Fenner, 2005), which is nearly a 7000-fold difference. It is
therefore essential for slow-evolving hosts to have some kind of generic immune
system that can deal with fast-changing pathogens.

1.2 T H E H U M A N I M M U N E S Y S T E M

Hosts have evolved a variety of defensive mechanisms that cannot easily be es-
caped by pathogens. For the Gnathostomata (jawed vertebrata, which includes
Homo sapiens, the immune system can roughly be described as a three-layered
system.

The first layer of defense is the physical edge of our beings. The intact hu-
man skin is impermeable for most pathogens (Elias, 2007), and vastly reduces
number of pathogens that enter the body. Surface areas that are not covered
by a horn layer, but are still exposed to the outside world (e.g. the digestive
tract, eyes, air cavities, the urine-duct and the vagina) are coated with a mu-

1



Chapter 1. General Introduction

cus that contain antibiotic or acidic molecules that makes survival and entry of
pathogens less likely (Huttner and Bevins, 1999).

Once pathogens penetrate this first layer, they enter the extracellular fluid (i.e.
the blood plasma and tissue fluid). In this fluid, pathogens are exposed to two
immune systems, namely the innate immune system and the adaptive immune
system. The innate immune system is a fast-responding and evolutionary con-
served method of dealing with pathogens, and consists mainly of phagocytes,
and granulocytes1. These immune cells recognize conserved parts of pathogens
such as the bacterial flagella (Beatson et al., 2006), or viral capsids, and respond
by engulfing the pathogen, and/or locally releasing toxic molecules. Although
some pathogens do carry mutated versions of these evolutionary conserved
parts (Andersen-Nissen et al., 2005), most avoid the innate immune response
by other means (e.g. by covering their cell wall or capsid with host-derived
proteins, or by delivering inhibitory signals to the phagocytes (Finlay and Mc-
Fadden, 2006)).

The adaptive immune system operates on the same extracellular level as
the innate immune response, but deals with pathogens in a different way. The
adaptive immune system consists mainly of T cells and B cells. These cells do
not specifically target the evolutionary conserved signatures of pathogens, but
are selected during their development to target material of foreign origin (i.e.
foreign antigens). The adaptive immune system can be further subdivided in
the humoral immune system and the cellular immune system.

The B cells of the humoral immune system have a receptor on their cell sur-
face that upon binding to its cognate antigen will either trigger the cell to start
producing antibodies by itself, or after activation by a T helper cell (reviewed in
LeBien and Tedder (2008)). These antibodies are released into the extracellular
fluid. As the antibodies bind to the pathogens, they hinder the normal func-
tioning of a pathogen directly, but also serve as marker for cells of the innate
and the adaptive immune system2 to destroy that pathogen.

However, the effectivity of antibodies, and thus of the humoral immune sys-
tem is limited to the extracellular fluid domain. Many bacteria and all viruses
spend a large portion of their lifetime within host cells, where they are hidden
from the humoral and innate immune system. A third layer of defense, the in-
tracellular Antigen presentation pathway, and its extracellular component, the
cellular immune system, are specialized in detecting intracellular pathogens3.

1NK cells are part of the innate immune system, but are also involved in the cellular immune
system, where they monitor the expression of MHC class I alleles on the cell surface. Intracellular
pathogens can downregulate MHC class I expression to avoid the adaptive immune system, but
cannot do so completely without drawing the attention of NK cells (Waldhauer and Steinle, 2008).

2Antibodies can also serve as a marker for the complement system.
3There are several other intracellular defense systems in place, which are unjustly left out of this

summary of the immune system in exchange for brevity. Primarily amongst them are the siRNAs
(Carthew and Sontheimer, 2009).
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The Antigen presentation Pathway 1.3

1.3 T H E A N T I G E N P R E S E N TAT I O N PAT H WAY

1.3.1 Purpose

“What does the Antigen presentation Pathway do?”

The Antigen presentation pathway makes it possible for the immune sys-
tem to monitor the intracellular content of cells in the body from the surface of
these cells. The pathway displays small samples of all the proteins in a cell on
the cell surface with specialized proteins called Major Histocompatibility com-
plex (MHC) molecules4. Viruses need the host cell to synthesize the proteins
neccesary for replication, and intracellular bacteria typically excrete proteins
into the cytosol to manipulate the host cell (Pamer et al., 1997). For both types
of pathogens, protein samples will inevitably appear on the cell surface.

Once these protein samples are displayed on the cell surface, infected cells
can be recognized by the CD8+ T cells of the cellular immune system. CD8

+

T cells learn to recognize foreign peptides during their development in the
thymus. Here, immature T cells rearrange certain genes that define the binding
pattern of the T cell receptor. Only those T cells with a T cell receptor that
can bind with enough, but not too much affinity to MHC class I (for CD8

+ T
cells) or class II molecules5 (for CD4+ T cells) mature into competent naive T
cells (Boehmer, 2008; Borghans et al., 2003). This process ensures that naive T
cells will only recognize non-human peptide fragments with enough affinity to
start an immune responsee. Humans have a large repertoire of naive T cells,
and roughly 50% of the presented foreign peptides will be recognized by one or
more T cells (Yewdell and Bennink, 1999). The other half could be too similar
to a self-antigen or not be recognized at all by any of the T cells.

1.3.2 Implementation

“How does the Antigen presentation Pathway work.”

The antigen presentation pathway starts with a large protein complex called
the proteasome, whose main function is the degradation of intracellular pro-
teins. The proteasome cuts existing cytosolic proteins into peptide fragments,
and releases these fragments back into the cytosol (Fig. 1.1). Here, the pep-
tide fragments are further degraded by amino-peptidases to single amino acids.
From this collection of degrading peptide fragments, the transporter associated
with antigen processing (TAP) binds to peptide fragments of 10-12 amino acids
long, and transports these fragments into the Endoplasmic Reticulum (ER).
Once in the ER, these peptide fragments, or epitope precursor, are loaded onto

4Aside from the two MHC classes, there is a third antigen presentation pathway which has
specialized in presenting bacterial and autosomal lipids (Lawton and Kronenberg, 2004)

5The second class of MHC molecules, which can be found on certain immune cells, is specialized
in presenting epitopes derived from extracellular content to CD4+ T helper cells.
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Chapter 1. General Introduction

Figure 1.1 Schematic of the classical antigen presentation pathway. Both virus and host
proteins are cleaved by the proteasome into small peptides. Some of these peptides
are transported by TAP into the endoplasmic reticulum, where they bind to MHC class
I alleles, whereas others are reduced in the cytosol to individual amino acids by N-
terminal amino-peptidases. The MHC-peptide complexes are transported to the cell
surface, where CD8

+ T cells can scan the peptides, and thus attack cells that contain
virus proteins.

MHC class I molecules, while others are further degraded by amino-peptidases
to single amino acids (Craiu et al., 1997). The MHC-epitope complexes are
transported to the cell surface, where the CTL epitopes are exposed to the T
cell receptors of CD8

+ T cells.
There are several intermediate steps in the antigen presentation pathway that

trim protein fragments. These peptidases predominantly determine the rate
with which protein fragments are degraded in the cytosol and the endoplasmic
reticulum. Most (<99%) of the protein fragments in the cytosol are destroyed
by amino-peptidases before they can be transported by TAP (Reits et al., 2004).
As these peptidases appear to be aspecific to the amino acid composition of
the protein fragment, and degrade all protein fragments at relatively the same
speed (Reits et al., 2004), their role in determining the CTL epitope repertoire of
viruses appears to be limited.

1.3.3 Specificity

Not every possible protein fragment can be presented by the pathway. Each of
the three steps in the antigen presentation pathway has a certain specificity, a
limited ‘search image’ of what amino acid patterns are suitable for proteasomal
cleavage, TAP transport, or MHC binding (Burroughs et al., 2004). Given that
a typical host is heterozygous for both MHC class I loci in humans that are
associated with antigen presentation to the cellular immune system (i.e. HLA-
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Polymorphism 1.4

A and HLA-B6), the antigen presentation pathway presents 4-8% of all possible
peptides in a protein. This percentage should be large enough to guarantee that
even the smallest viruses generates several CTL epitopes7

Because the ‘search image’ of the pathway is constant, pathogens can es-
cape the presentation of CTL epitopes by substituting some of the amino acids
in their proteins. The only constraint for pathogens is that escape mutations
possibly affects protein function, and therefore pathogen fitness. However, vir-
uses like HIV-1 tolerate a large amount of amino acid variation in their proteins
(Brander et al., 2006), and it seems possible that a pathogen could escape all of
its important CTL epitopes in a particular host.

1.3.4 Functional Polymorphism

“Why does the Antigen presentation Pathway keep working?”

If all human hosts carried an identical antigen presentation pathway, then
pathogens could have escaped the cellular immune system of all humans by
accumulating a limited number of CTL epitope escape mutations. However,
many variants of the MHC alleles of the antigen presentation pathway exist
in the human population8, each of them with a different binding preference.
Different hosts ‘sample’ different parts of a pathogen, and as a consequence,
each time the pathogen is transmitted to a new host, the CTL epitopes that are
under selection pressure change as well. Escape mutations that were made in
previous hosts would typically not be under selection pressure in the next host,
and are expected to revert back to original protein sequence to restore optimal
protein function (e.g. Leslie et al. (2004)).

1.4 P O LY M O R P H I S M

1.4.1 Origin of the MHC Polymorphism

It seems sensible from the perspective of a host population to prefer an MHC
polymorphism in the antigen presentation pathway. However, it is not nec-
cesary to invoke the often complex-to-prove group selection arguments, as there
are direct fitness advantages for individual hosts to carry a mutant MHC allele
(Penn et al., 2002).

Two fitness advantages associated with expressing a new mutant MHC al-
leles are the Heterozygote Advantage (HA) and the Rare Allele Advantage

6Although there are CTL epitopes described for HLA-C, the MHC molecule is poorly expressed
on the cell surface (Neisig et al., 1998), and (one of) its functions is to act as a ligand for NK-cells
(Romero et al., 2008).

7Even for Hepatitis B, which has a genome of just over 3000 bp and is one of the smal-
lest known animal viruses (Kay and Zoulim, 2007), 79 CTL epitopes have been reported (see
http://www.immuneepitope.org)

8As of June 2009, there are 767 known variants of HLA-A, and 1178 variants of HLA-B
(IMGT/HLA database)
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Chapter 1. General Introduction

(RAA). The Heterozygote Advantage is the advantage that a heterozygous host
has over a host that inherited identical MHC alleles from his parents. Hav-
ing two different MHC alleles for binding epitope precursors, the heterozygous
host can present a wider range of CTL epitopes on its cell surface. This more
or less doubles the number of immune responses that can be mounted against
pathogens, and increases the chance of targeting an immunodominant epitope
(Doherty and Zinkernagel, 1975; Carrington et al., 1999). The rare allele ad-
vantage comes into play when pathogens are adapting to the MHC alleles that
they encounter in the population. Carrying a rare MHC allele makes it less
likely for the host that it will be infected with a pathogen that carries escape
mutations specific for that particular MHC allele (Slade and McCallum, 1992;
Langefors et al., 2001; Borghans et al., 2004). The HA and especially the RAA
provide sufficient selection pressure to drive the evolution of a high degree of
MHC polymorphism (de Boer et al., 2004).

1.4.2 Proteasome and TAP

The two other steps of the antigen presentation pathway, i.e. the proteasome
and TAP, are monomorphic. Both steps exhibit genetic variation in the form
of single nucleotide polymorphisms, but this genetic variation appears not to
result in functionally different alleles (Gomez et al., 2006; Alvarado-Guerri et al.,
2005; Faucz et al., 2000). The lack of polymorphism in the human proteasome
and TAP does not appear to be a restriction imposed by the structure and task
of these proteins: for both the proteasome and TAP, functional variants exist.

Several different variants of the proteasome already exist in every human;
the most notable variants are the default constituitive proteasome, and the im-
munoproteasome, which is present in cells exposed to an immunomodulatory
cytokine IFN-gamma (Tanaka and Kasahara, 1998). A more localized variant
of the proteasome is the thymoproteasome, expressed in the human thymus
(Murata et al., 2008), and an hypothesized testis-specific proteasome (Tanaka,
2009). All these variants cleave intracellular proteins, but with different pref-
erences for the type of amino acids after which to cleave proteins (Toes et al.,
2001; Kesmir et al., 2003). As the C-terminal of most CTL epitopes is determined
by the proteasome, these different cleavage patterns of the proteasome have a
large impact on the epitopes that are presented on the cell surface (Craiu et al.,
1997; Rock et al., 2002). In general, cells in an inflamed environment, such as at
the location of a virus infection, will predominantly express the immunoprotea-
some. Despite all these functionally different proteasomes exist, there does not
appear to be a functional polymorphism in humans. Everyone carries the same
set of proteasomes.

TAP does not have a functional polymorphism in humans, (Gomez et al.,
2006; Alvarado-Guerri et al., 2005) but is speculated to be functionally poly-
morph in birds (Sironi et al., 2008), trouts (Jensen et al., 2008), and is confirmed
to be functionally polymorph in rats (Heemels et al., 1993; Gubler et al., 1998).

6



How to answer? 1.5

1.4.3 Why did only the MHC become polymorphic?

With an explanation for the MHC polymorphism, the story of the classical an-
tigen presentation pathway seems complete. The proteasome cleaves proteins,
TAP transports some of the resulting peptide fragments to the ER, where the
epitope precursors form a complex with MHC class I molecules. The complex is
transported to the cell surface, where T cells can inspect the epitopes presented
by the MHC. Pathogen adaptation to this pathway is twarted by the extensive
polymorphism found in the MHC alleles, which evolved due to the heterozy-
gote and rare allele advantage.

However, the existence of two monomorphic steps in antigen presentation
pathway is poorly explained. More specifically, the following two questions
have not been answered:

“Why do pathogens not adapt to the monomorphic proteasome and TAP?”

“Why did only the MHC become polymorphic?”

From a pathogen perspective: recent studies of HIV-1 escape mutations (Yoko-
maku et al., 2004; Brander et al., 1999) had shown that pathogens could escape
CTL epitopes by escaping proteasomal cleavage or TAP transport. Pathogens
that accumulated epitope precursor escapes would in theory not be affected by
the MHC polymorphism in the human population, which would be a major
weakness of the antigen presentation pathway (Yusim et al., 2002).

From the a perspective: the heterozygote advantage applies not only to the
MHC; a host heterozygous for proteasome or TAP would present a wider range
of CTL epitopes, and therefore, in analogy with MHC heterozygosity, would
have had a fitness advantage over hosts with a homozygous pathway. Further-
more, if pathogens are not only escaping MHC binding, but also proteasomal
cleavage and TAP transport, the rare allele advantage would apply to all of the
steps in the antigen presentation pathway. The expected result would be an
antigen presentation pathway in which all three steps are polymorphic.

1.5 H O W T O A N S W E R ?

“How can the Antigen presentation pathway do its job, despite the rapid evolution of
pathogens?”

There is ample information about the current state of the Antigen presenta-
tion pathway. However, data on the evolution of the pathway is scarce (Lawlor
et al., 1990; Danchin et al., 2004). There is evidence that the different steps of
the pathway are coevolved to optimize epitope presentation (Toes et al., 2001;
Kesmir et al., 2003), and that some MHC alleles can persist in a population
for millions of years (Mayer et al., 1988), whereas others are relatively young
(Watkins et al., 1992).
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Chapter 1. General Introduction

In the 1980’s a new disease, named AIDS (Acquired Immune Deficiency Syn-
drome) caught the attention of the medical and scientific community. Once it
became clear that a virus was the causing agent of AIDS, blood samples were
routinely taken from AIDS patients, and the virus in the blood was isolated and
its protein amino acid sequence analysed. As a result of this practice, there is
now more than 30 years of data available on the evolution and adaptation of
HIV-1 to its new human host.

Combining this data set with recently developed algorithms that can predict
the CTL epitopes in a protein (Peters and Sette, 2005; Nielsen et al., 2004), it was
possible to study how a pathogen that is new to the human host adapts itself to
the human antigen presentation pathway.

We discovered that the epitope and epitope precursor density in HIV-1 had
remained constant in the last 3 decades, and described a mechanism by which
the monomorphic proteasome and TAP components of the pathway would be
(partially) protected from adaptation by the MHC polymorphism (Chapter 2).
Subsequently, we tested a theory on the large-scale adaptation of HIV-1 prior to
the 1980s (Yusim et al., 2002), but found no conclusive evidence for this to be
the case (Chapter 3).

We tested the hypothesized mechanism by which proteasome and TAP were
protected in an individual-based model, in which a virus modeled after HIV-1
was allowed to adapt to a host population. We studied the effect of different
degrees of MHC polymorphisms on the maximum level of adaptation that the
virus could reach to that population, and showed in more detail why pathogens
could not exploit the monomorphic proteasome and TAP (Chapter 4).

Finally, we extended the model such that the host population could evolve
all components of its antigen presentation pathway in response to multiple en-
demic pathogens. This allowed us to study whether the current structure of our
antigen presentation pathway could be explained just in terms of host-pathogen
coevolution (Chapter 5).
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2.1 A B S T R A C T

The large diversity in MHC class I molecules in a population lowers the chance
that a virus infects a host to which it is pre-adapted to escape the MHC binding
of CTL epitopes. However, viruses can also lose CTL epitopes by escaping the
monomorphic antigen processing components of the pathway (proteasome and
TAP) that create the epitope precursors. If viruses were to accumulate escape
mutations affecting these monomorphic components, they would become pre-
adapted to all hosts regardless of the MHC polymorphism. To assess whether
viruses exploit this apparent vulnerability, we study the evolution of HIV-1
with bioinformatic tools that allow us to predict CTL epitopes, and quantify
the frequency and accumulation of antigen processing escapes. We found that
within hosts, proteasome and TAP escape mutations occur frequently. How-
ever, on the population level these escapes do not accumulate: the total number
of predicted epitopes and epitope precursors in HIV-1 clade B has remained
relatively constant over the last 30 years. We argue that this lack of adaptation
can be explained by the combined effect of the MHC polymorphism and the
high specificity of individual MHC molecules. Because of these two properties,
only a subset of the epitope precursors in a host are potential epitopes, and that
subset differs between hosts. We estimate that upon transmission of a virus to
a new host 2/3rd of the mutations that caused epitope precursor escapes are
released from immune selection pressure.

2.2 I N T R O D U C T I O N

Antigen presentation allows CD8
+ T cells to monitor the protein content of a

cell and detect the presence of intracellular viruses (Paulsson, 2004). The clas-
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sical antigen presentation pathway consists of three main steps: the (immuno-)
proteasome, which cleaves cytoplasmic proteins into peptide fragments; the
transporter associated with antigen processing (TAP), which transports pep-
tide fragments into the endoplasmic reticulum; and the major histocompatibil-
ity complex (MHC) class I, which binds a small fraction of these endoplasmic
peptide fragments (Assarsson et al., 2007), and transports them to the cell sur-
face (Craiu et al., 1997; Rock et al., 2002; Groothuis et al., 2005). The peptide
fragments that are processed by the proteasome and transported by TAP are
commonly called ‘epitope precursors’.

Of these three steps in the antigen presentation pathway it is only the MHC
that is highly polymorphic, which is thought to have evolved because of a rare
allele advantage (Snell, 1968; Bodmer, 1972; Borghans et al., 2004): hosts that
carry rare MHC alleles are less likely to be infected by viruses that are adapted
to escape the host’s MHC alleles than hosts with common MHC alleles, because
it is less likely that these viruses come from a host with the same rare MHC
alleles. Therefore hosts with rare MHC alleles are thought to have a fitness
advantage. Indeed, hosts that were infected with pre-adapted variants of the
human immunodeficiency virus 1 (HIV-1) were found to progress rapidly to
AIDS (Goulder et al., 2001; Leslie et al., 2004; Chopera et al., 2008). However, if
viruses adapt to escape the epitope precursors (Bergmann et al., 1994; Beekman
et al., 2000; Allen et al., 2004; Milicic et al., 2005), which are created by the mono-
morphic proteasome and TAP, the protective effect of the MHC polymorphism
and the fitness advantage of hosts with rare MHC alleles would be lost.

We studied the ability of HIV to generate and accumulate epitope and epi-
tope precursor escapes, using algorithms that can reliably predict the likelihood
of proteasomal cleavage, TAP transport, and MHC binding of amino acid se-
quences (see Material & Methods). We discovered that there is no accumulation
of epitope precursor escapes on the population level: the total number of epi-
tope precursors (as well as that of epitopes) has remained relatively constant
over the last 30 years. We explore several possible causes for this lack of ad-
aptation to the antigen processing machinery, and postulate a mechanism by
which the specificity and polymorphism of the MHC prevents the adaptation
of viruses to the monomorphic parts of the antigen presentation pathway.

2.3 M AT E R I A L & M E T H O D S

2.3.1 CTL epitope predictions

Currently, a wide variety of algorithms (Peters and Sette, 2005; Nielsen et al.,
2004; Parker et al., 1994; Doytchinova et al., 2006) are available to predict MHC-
peptide binding. The capacity of these algorithms to identify new epitopes has
routinely been benchmarked on experimental data (Peters et al., 2006; Larsen
et al., 2007), and their accuracy has increased over time to such an extent that
the correlation between predicted an measured binding affinity is as good as
the correlation between measurements from different laboratories (Peters et al.,
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2006). A further increase in accuracy of identifying Cytotoxic T lymphocytes
(CTL) epitopes is achieved by combining the MHC binding predictors with
predictors trained to mimic the specificity of the proteasome and TAP, thus
creating a model of the complete antigen presentation pathway (Larsen et al.,
2005; Tenzer et al., 2005; Doytchinova et al., 2006). These pathway models come
in two types: those that sum the scores of the independent steps of the antigen
processing pathway, and use a threshold on the summed score (e.g. MHC-
pathway (Tenzer et al., 2005) and NetCTL (Larsen et al., 2005)), and those that
eliminate epitope candidates at each step (e.g. EpiJen (Doytchinova et al., 2006),
MAPPP (Hakenberg et al., 2003) and the alternative implementation of MHC-
pathway (Tenzer et al., 2005)).

In this study we use the alternative implementation of the MHC-pathway
model (Tenzer et al., 2005). We screen all possible peptide fragments of 14

amino acids within a particular protein, and eliminate those fragments that
cannot be correctly processed by either the proteasome, TAP or the MHC class
I molecules (see Fig. 2.1). This approach allows us to distinguish between ad-
aptation of a virus to antigen processing and adaptation to MHC binding. The
threshold values for the proteasome and TAP predictors (see Fig. 2.1) were de-
rived by applying the MHC-pathway model to a large bacterial protein data set
and selecting threshold values which correspond to the estimated specificity
of the proteasome (33%) and TAP (76%) (Burroughs et al., 2004). For the
MHC-binding predictions we used the default threshold of -2.7, which corres-
ponds to an IC50 threshold of 500 nM (Peters et al., 2006; Assarsson et al.,
2007). As a result of using 500 nM as the threshold for MHC binding our
analysis focused on the medium to strong HIV-1 epitopes, and disregarded
the weaker CTL epitopes in the 500-5000 nM range in favor of a higher spe-
cificity (i.e. less false positives) of the MHC-pathway model. The depend-
ency of our results on the selected thresholds and the selected predictor was
tested by repeating the population and ancestor analysis for the HIV-1 clade
B ENV, GAG and NEF proteins, using a more relaxed MHC binding criteria
(5000 nM), as well as using another prediction algorithm, NetCTL(Larsen et al.,
2005). The predictors used in this paper are available through a web interface
(http://tools.immuneepitope.org/analyze/html/MHC binding.html 2006-01-01 version). Note
that we excluded 2 of the 34 available MHC predictors. The A*3002 predictor
was very non-specific at our thresholds, predicting MHC binding in as much
as 9944 out of 50.000 HIV-1 derived 9mers (20%). The B*0801 MHC predictor
appeared to be very specific, and predicted no MHC binding in 50.000 HIV-1
derived 9mers at the default threshold.

2.3.2 Prediction quality

Epitope predictors are routinely tested on large sets of epitopes derived from
various pathogens (Lundegaard et al., 2006; Peters et al., 2006). More recently,
Larsen et al. (2007) specifically tested the performance of four widely used
predictors on a data set of only HIV-1 epitopes. In that study, NetCTL and
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Figure 2.1 Schematic of the MHC-pathway model. A window of 14 amino acids is
slided across a protein. Each of these ‘14mers’ consist of a N-terminal flanking region
of 1 amino acid, a 9mer epitope candidate and a C-terminal flanking region of 4 amino
acids. Beneath the 14mer it is marked which parts of the peptide are used by the MHC,
TAP or proteasome predictors respectively. Applying the 14mer to the MHC, TAP and
proteasome predictors results in three different scores. If each of these scores is higher
than a fixed threshold, then the 9mer embedded in the 14mer is predicted to be a CTL
epitope for MHC allele tested (in this case A*0201). If a 14mer passes at least the pro-
teasome and TAP predictors then the 9mer embedded in the 14mer is predicted to be
an epitope precursor. In the analysis of longitudinal within-host data sets, CTL epitopes
are scored as escapes if mutations in the 14-mer lower one of the three scores below the
corresponding threshold.

MHC-pathway came out as the best performing algorithms. MHC-pathway is
estimated to recover 80% of the known epitopes at a specificity of 90%, and
recover 30% of the known epitopes at a specificity of 99.3%. However, Larsen
et al. (2007) stressed that these specificity ratings were underestimates, as the
test data set was build with the assumption that any peptide that isn’t a known
CTL epitope must be a non-epitope, due to the lack of confirmed non-epitopes.
As a result, many of the correctly predicted but experimentally not yet verified
epitopes were scored as erroneous predictions. A second issue that makes the
exact estimation of prediction quality difficult is that many of the experiment-
ally confirmed epitopes are based on CTL responses measured against overlap-
ping peptide pools, and are often defined as the best responding amino acid
substring within a peptide that elicits a T cell response, regardless of whether
or not this substring is the peptide that can be naturally processed. A more
reliable way to estimate the specificity of the predictors is to predict a set of
CTL epitopes and subsequently verify CD8

+ T cell responses against these epi-
topes experimentally. Schellens et al. (2008) identified 18 new CTL epitopes
out of a set of 22 predicted CTL epitopes in this manner (using NetCTL). This
suggests that the specificity of the predictors is far higher than the benchmark
estimates, and places the amount of false positive predictions at 20%. Prez
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et al. (2008) identified 114 out of 184 predicted epitopes (38% false positives) in
a similar manner, but predicted CTL epitopes for the MHC supertypes rather
than genotypes, which may explain their higher rate of false positives. A more
direct approach to measuring predictor quality is the use of mild acid elution
and mass spectrometry to determine MHC-binding peptides. Using these tech-
niques (Fortier et al., 2008) estimated the false positive rate of the MHC-binding
predictors of the MHC-pathway model to be less than 2%.

2.3.3 HIV-1 longitudinal within-host data

In December 2007, we performed an exhaustive search on the HIV Sequence
Database (http://www.hiv.lanl.gov) for longitudinal within-host sequences from 4

digit HLA-genotyped patients that had not received antiretroviral therapy, and
for which at least 3 matching MHC predictors were available. This resulted in
a data set of 13 patients for which GAG, NEF and POL protein sequences were
available (see Table 2.2 and Table 2.3 for sampling dates and accession num-
bers). All patients were infected with HIV-1 clade B, and their sample HIV-1
sequences spanned a time period of at least two years. The time between in-
fection with HIV-1 and extraction of the early sequence sample was in all cases
less than a year. Surprisingly, 8 out of 13 patients carried HLA-B5701 and/or
HLA-B2705, two rare and protective alleles (Klein et al., 1998; Kaslow et al.,
2001), which probably reflects an observation bias in the data base. All longitud-
inal within-host sequences were translated from nucleotide to protein sequences
with the GeneCutter tool (http://www.hiv.lanl.gov). For patient PIC1362(1052829)
multiple sequences per protein per timepoint were available, with small differ-
ences between each sequence. Not knowing which of the early timepoints (if
any) was the ancestral sequence of the late timepoints complicated some of the
within-host analysis. We took a prudent approach by excluding from the ana-
lysis the amino acid positions and CTL epitopes for which population dynamics
effects could not be ruled out. For example, if a particular epitope was present
in the majority of the early timepoint sequences, but not in any of the late
timepoint sequences there are two possibilities: the early timepoint sequences
that still contained the epitope escaped it, or the early timepoint sequences that
did not contain the epitope outcompeted those sequence that did contain the
epitope. In such cases the epitope was excluded from the analysis.

2.3.4 HIV-1 population data

The HIV-1 population data set used in this paper is the HIV-1 clade B subset
of the aligned HIV-1 Sequence Compendium 2002 (Dec 2007 version) (Kuiken
et al., 2003). This data set was pruned of sequences for which the sampling date
was unknown. The sequence compendium consists of 9 aligned fasta files, one
for each of HIV-1’s proteins. The number of available HIV-1 clade B sequences
in the compendium differs per protein and ranges from 96 to 386 sequences
(see Table 2.4 for details). The correlations in Fig. 2.2 and Fig. 2.3 were determ-
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ined with the Kendall Tau rank correlation test (Kendall, 1938) of the statistical
package R (Ihaka and Gentleman, 1996). The predicted HIV-1 clade B ancestor
sequence (Korber et al., 2000) (available at http://www.hiv.lanl.gov) was aligned to the
population data set with HMMER 2.3.2 (Eddy, 1998), a profile hidden Markov
model.

2.4 R E S U LT S

2.4.1 Adaptation to the human population

To determine whether HIV has exploited the lack of polymorphism of the pro-
teasome and TAP, we predicted the number of epitope precursors in a HIV-1
clade B sequence population data set sampled between 1980 to 2005 (see Mater-
ial & Methods for details on the HIV-1 Sequence Compendium data set (Kuiken
et al., 2003) and the quality of the MHC-pathway model (Larsen et al., 2007)).
We plotted the predicted epitope precursor density of each HIV-1 sequence
against its sampling date to study the changes over time (Fig. 2.2, first column
& Table 2.4). Using 32 MHC peptide binding predictors, the same procedure
was performed for the average density of MHC-binding peptides, and for the
average density of CTL epitopes. In all three cases there was no sign of any
large-scale adaptation of HIV-1 clade B over the last 30 years: the number of epi-
tope precursors, MHC-binding peptides and CTL epitopes per HIV-1 sequence
remained constant over time. Differences existed mainly between proteins: the
envelope protein (ENV) seemed more immunogenic and had a higher density
of precursors, MHC-binders and CTL epitopes than the other proteins, and the
NEF protein showed a far greater variability between sequences than the other
proteins. In addition to the proteins shown in Fig. 2.2, the same analysis was
performed for the other proteins of HIV-1 (Table 2.4), for two other HIV-1 clades
(clade C (Table 2.6) and clade A1 (Table 2.7)), as well as for human subpopula-
tions (Kroatia, UK & USA (Table 2.5)) within the HIV-1 clade B population data
set. This resulted in a total of 102 tests, of which 14 were found to be significant
at a p-value of < 0.01 (Kendall Tau rank correlation test). However, in 6 out of
these 14 significant cases HIV-1 was gaining epitope precursors, MHC-binding
peptides, or CTL epitopes over time. The 7 cases in which the density signific-
antly decreased over time were not consistently occurring in the same proteins
when comparing different HIV-1 clades, nor were they consistently affecting
the same step in the antigen presentation pathway. This makes it unlikely that
these 7 correlations reflect any adaptation of HIV-1 to its human host. We veri-
fied this result by repeating the analysis for ENV, GAG and NEF using a more
relaxed MHC binding threshold (5000 nM), as well as with a different predic-
tion algorithm (Larsen et al., 2007) (data not shown). This did not result in a
qualitative difference, except that according to the NetCTL predictions (Larsen
et al., 2007) the epitope precursor density in HIV-1 NEF decreased slowly, but
significantly over time (from 49 to 46 precursors over a 25y period, Kendall Tau
rank correlation test, p < 0.01).
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Figure 2.2 The predicted density of epitope precursors, MHC-binding peptides and CTL
epitopes in ENV, GAG and NEF stay constant over time. The density (expressed as
frequency per amino acid) is plotted on the y-axis with the same scale factor within each
column, which makes it possible to compare differences between proteins. The densities
for MHC-binding and CTL epitopes are averaged over the 32 MHC-binding predictors.
*: significant increase over time (Kendall Tau rank correlation test, p < 0.01).

That the number of MHC-binding peptides in HIV-1 remained constant over
time (Fig. 2.2, middle column) was to be expected, based on the theory that the
MHC polymorphism prevents pathogens like HIV-1 from escaping MHC bind-
ing on a population level (Slade and McCallum, 1992; Borghans et al., 2004), and
earlier reports that the virulence of HIV-1 had not changed over time (Müller
et al., 2006; Herbeck et al., 2008). However, other studies reported that HIV-
1 was capable of adapting to common MHC alleles (Moore et al., 2002; Leslie
et al., 2005; Poon et al., 2007), and suggested that HIV-1 was adapting to its new
human host population. Follow-up studies on Moore et al. (2002) showed that
their analysis was sensitive to founder effects in the viral lineage (Bhattacharya
et al., 2007) and that without these effects the adaptation of HIV-1 to the popu-
lation could only be detected on a small number of amino acids (Brumme et al.,
2007).

In line with our a priori expectations, Yusim et al. (2002) proposed that the
clustering of epitopes in HIV-1 proteins was a result of adaptation of the virus
to the monomorphic proteasome and TAP. However, our results (Fig. 2.2) refute
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that expectation: HIV-1 has not accumulated epitope precursor escapes over the
last 30 years. In this paper we explore possible reasons for the apparent lack of
adaptation of HIV-1 to the monomorphic antigen processing machinery.

2.4.2 Selection pressure by CD8+ T cells

A simple explanation why we find that HIV-1 is not accumulating CTL epitope
and epitope precursor escapes (Fig. 2.2) would be that CD8

+ T cells exert too
little selection pressure on the virus. The role of CD8

+ T cells in controlling
a chronic HIV-1 infection has been under debate (Zhang et al., 2003; Asquith
et al., 2006), but the strongest evidence that the virus is under selection pres-
sure of CD8

+ T cells is that certain immune escape mutations are rapidly re-
verted to the wildtype upon entering an HLA-mismatched host (Leslie et al.,
2004; Furutsuki et al., 2004; Li et al., 2007; Frater et al., 2007). Additional evid-
ence comes from CD8

+ depletion studies of chronic SIV infections in monkeys
(Matano et al., 1998; Jin et al., 1999; Schmitz et al., 1999), from studies that show
that MHC-heterozygous hosts progress slower to AIDS than homozygous hosts
(Carrington et al., 1999), and from correlates between HIV-1 disease progression
and the presence or absence of certain MHC class I molecules (Klein et al., 1998;
Kaslow et al., 2001).

In addition to the strong evidence on the selection pressure imposed by CD8
+

from the current literature, we studied CD8
+ T-cell mediated immune selection

pressure on HIV-1 by testing whether amino acid replacement mutations hap-
pen preferentially in CTL epitopes and their flanking regions. For this purpose
we data-mined the Los Alamos HIV database for longitudinal within-host HIV-
1 sequence data from MHC genotyped and treatment-naive patients (see Ma-
terial & Methods, and the Supplemental Materials). This resulted in 13 patients
for which GAG, NEF and POL protein sequences were available (see Table 2.2,
Table 2.3). We compared for each of these proteins the number of amino acid
replacements that occurred within predicted epitopes or their flanking regions
to the expected number of mutations. This expected number of mutations is
based on the fraction of the protein that the epitopes and their flanking re-
gions covered (‘epitope cover’). We found a trend towards mutations occurring
within CTL epitopes or their flanking regions for the three HIV-1 proteins that
were tested (Wilcoxon signed rank test: p = 0.09, with 15 out of 21 samples
following the trend).

A surprising observation based on our immune selection pressure study was
that the predicted CTL epitopes within a single host can cover a large fraction of
the viral proteome. For those samples in the longitudinal within-host data set
where predictors were available for all four of the Human Leukocyte Antigen
A (HLA-A) and HLA-B alleles of the host, the epitope cover ranged from 12%
to 74%. The average epitope cover of a single MHC allele for the HIV-1 clade B
HXB2 reference sequence was 17%, and all 32 MHC predictors together covered
94% of the HXB2 proteome.
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That we find no significant correlation between the location of mutations and
predicted CTL epitopes might be due to differences between CTL epitopes in
the strength of the immune selection pressure imposed on them, which would
reduce the detection power of our method of testing for selection pressure.
Yewdell and Bennink (1999) indicated that only half of all CTL epitopes can
trigger a CD8

+ T cell response. The underlying mechanism is poorly under-
stood, but possibly involves self-tolerance (Rolland et al., 2007; Frankild et al.,
2008). Zafiropoulos et al. (2004) and Frater et al. (2007) showed that the selection
pressure imposed on the virus differs between CTL epitopes. A possible cause
for this variation is whether an epitope is presented early or late during the in-
fection of a cell (van Baalen et al., 2002; Sacha et al., 2007a,b). Since the trend we
find is confirmed by the current literature, we assert that the lack of adaptation
in Fig. 2.2 is not likely to be due to a lack of immune selection pressure.

2.4.3 Short timespan of population data set

Another possible reason why we find that HIV-1 is not accumulating CTL epi-
tope and epitope precursor escapes (Fig. 2.2) would be that the timespan of our
population data set (30 years - from 1976 to 2006) is too short to detect an evol-
utionary process like the adaptation of a virus to its host. To test this, we pre-
dicted the epitope precursors of the putative HIV-1 clade B ancestor sequence
(Korber et al., 2000) and plotted the fraction of ancestral epitope precursors con-
tained in each sequence of our population data set against the sampling date
(Fig. 2.3). In this way the ‘immunological similarity’ of a sequence with the
ancestor sequence can be visualized. This similarity is expected to decline over
time, based on the destruction of ancestral epitope precursors by neutral amino
acid substitutions (Whitney et al., 1985; Kimura, 1991; Yokomaku et al., 2004),
and by the accumulation of escapes from CD8

+ T cell responses within hosts.
If the time covered by our population data set is sufficient, we should see a
decrease over time in the immunological similarity of current-day sequences to
the ancestral HIV-1 sequence.

Indeed, for ancestral epitope precursors as well as for ancestral MHC-binding
peptides and CTL epitopes, we found that the density declined significantly
over time in the six largest proteins of HIV-1 (Kendall Tau rank correlation test,
p< 0.01 in 17/18 tests). The only exception was a non-significant decrease in
the number of predicted ancestral epitopes in HIV-1 NEF (Fig. 2.3, bottom right
panel). Analysis of the NEF protein subset of the population data set revealed
that in the Kroatian population the number of ancestral epitopes in NEF was
increasing over time. Whether this increase reflects a particular adaptation of
the virus, or is due to a founder effect in the Kroatian subpopulation that was
oversampled in the HIV Sequence Compendium data set is not known. The
three smallest proteins of HIV-1 (TAT, VPR and VPU) yielded no significant
results, which indicates that at protein sizes of less than 100 amino acids our
method becomes insensitive.
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The HIV-1 clade B consensus sequence (Fig. 2.3, open square on the right-
hand side of each panel) is more similar to the predicted ancestral sequence
than most of the HIV-1 sample sequences themselves are, which indicates that
HIV-1 is undergoing divergent evolution. This is inconsistent with the idea that
HIV-1 is undergoing a large-scale global adaptation to the human host (which
would imply a convergent evolution process). Based on the results presented
thus far, we conclude that the evolution of HIV-1 seems largely determined by
the loss of ancestral epitopes due to antigenic drift, by local adaptation of the
virus to each individual host, and by the reversion of earlier adaptations.

Finally, the rate at which ancestral epitopes and epitope precursors disappear
(Fig. 2.3, grey lines) gives a novel way to estimate in what year HIV-1 clade B
was introduced into the human population. The age of the ancestral HIV-1 B
sequence can be predicted by extrapolating the regression line back to where the
fraction of ancestral epitopes or epitope precursors in HIV-1 sequences becomes
one, assuming that the loss over time has been linear. Each protein and each
category (precursor, MHC binding, epitopes) generates a separate prediction
for the age of the ancestral sequence. For the larger genes ENV, GAG and POL,
the estimated ancestral age is 1939±13, whereas for the smaller genes it is 1900

±54 years. The estimate for the larger genes concurs with the findings of Korber
et al. (2000), who dated the ancestral sequence on 1920-1940.

Summarizing: the analysis of the loss of ancestral epitope precursors shows
that our method is sensitive enough to pick up evolutionary processes in the
larger proteins of HIV-1 (> 100 amino acids). Therefore, the lack of adaptation
to epitope precursors in Fig. 2.2 should not be attributed to the relatively short
time span of the population data set.

2.4.4 Rarity of precursor escapes

Brander et al. (1999) hypothesized that the proteasome and TAP should be
rather non-specific for their substrate in order to fulfil their intracellular func-
tions. Therefore, most mutations should not affect antigen processing, and as a
result epitope precursor escapes would be harder to generate than MHC bind-
ing escapes. Although several studies have clearly shown that antigen pro-
cessing escapes do exist (Brander et al., 1999; Yokomaku et al., 2004), the fre-
quency of successful antigen processing escapes in vivo could be so low that
these kind of escapes play no role in the evolution of HIV-1, which would ex-
plain why HIV-1 is not accumulating epitope precursor escapes (Fig. 2.2).

We used the MHC-pathway model to determine the frequency of antigen
processing escapes in a longitudinal within-host HIV-1 sequence data set (27

HIV-1 proteins from a total of 13 different patients, see Material & Methods,
and Table 2.2 and Table 2.3). We found that 38 out of a total of 375 predicted
CTL epitopes were escaped by the virus (10.1%) during the time spanned by the
longitudinal within-host data set. Of these 38 escaped CTL epitopes, 34 (89%)
contained one or more mutations that prevented the peptide from binding to
its associated MHC molecule, and 6 (16%) contained one or more mutations in
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Figure 2.3 The predicted fraction of ancestral epitope precursors, MHC-binding pep-
tides and CTL epitopes present in the HIV-1 clade B sequences declines over time. The
predicted fraction is plotted per sequence as a dot on the y-axis. Ancestral epitope pre-
cursors are defined by their C-terminal position (Fig. 2.1, 10th amino acid from the left) in
the aligned sequences . Similarly, MHC-binding peptides and CTL epitopes are defined
by their C-terminal, but also by the MHC that they are predicted to bind to. *: significant
decrease over time (Kendall Tau rank correlation test, p < 0.01). The consensus sequence
is plotted as a square on the right-hand side of each panel.

the epitope or the epitope’s flanking region that prevented antigen processing
of the epitope precursor.

A second way to study the frequency of epitope precursor escapes is to study
the predicted effect of a single amino acid substitution on the number of CTL
epitopes in a HIV-1 protein. While this approach completely ignores functional
constraints on proteins, it has the advantage that we can calculate the average
effect of a single mutation on the escape of CTL epitopes. This procedure was
repeated a large number of times, until on average each amino acid in the HXB2

reference sequence had been mutated five times (previous mutations were re-
versed before a new one was generated). In 3.8% of the cases this procedure
resulted in the loss of one or more epitopes per MHC allele. In 38% of these
escape mutations, it was the epitope precursor that was no longer processed
correctly by the proteasome or TAP (Table 2.1).
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The amino acid substitution simulations on the HIV-1 HXB2 reference se-
quence showed that new CTL epitopes are predicted to be readily created by
random mutations (Table 2.1). Similarly, comparing the early and late timepoints
of the longitudinal within-host data set showed that 56 new CTL epitopes were
predicted to have arisen, which is in good agreement with the simulation res-
ults in Table 2.1. Although it seems counter-intuitive, the generation of new CTL
epitopes has been shown to occur in reality (Allen et al., 2005; Karlsson et al.,
2007). There are several reasons why new CTL epitopes could come about, des-
pite immune selection pressure: 1) a single mutation could escape an epitope
against which a strong immune response was directed, while at the same time
create a new epitope with a weaker response (Allen et al., 2005), 2) if a small
number of strong immune responses determine most of the fitness of the virus,
adding a single weak response to the existing weak responses has a negligible
effect on the fitness of the virus, 3) the new epitopes might not be recognized
by any of the CD8

+ T cell receptors of the host (Yewdell and Bennink, 1999),
and 4) the time between the generation of a new epitope and the expansion of a
CD8

+ T cell response against this new epitope provides a time window during
which new CTL epitopes in a HIV-1 sequence are not penalized (Barouch et al.,
2005).1

The analysis of the longitudinal within-host data set and the simulated HIV-
1 HXB2 reference sequence mutations established that antigen processing es-
capes occur relatively frequently, and thus that the predicted lack of antigen
processing adaptation of HIV-1 shown in Fig. 2.2 is not because precursor es-
capes are too hard to generate. The analysis also showed that new CTL epitopes
are frequently generated during the within-host evolution of the virus.

2.4.5 Polymorphism and Specificity

In the previous sections we investigated three possible explanations for the pre-
dicted lack of adaptation of HIV-1 to the monomorphic antigen processing path-
way (Fig. 2.2), but found no compelling evidence for any of them. Here we pro-
pose an alternative explanation: as each MHC class I allele utilizes only a small

1At the population level, MHC-mismatched CTL epitopes will also frequently be generated as
a by-product of escape or compensatory mutations in a host. The virus will only experience a
selection pressure of these new epitopes when it is transmitted to a MHC-matched host.

Table 2.1 Effect of random amino acid substitutions on the average loss and gain of CTL
epitopes per MHC allele in the HIV-1 HXB2 reference sequence.

loss gain
Mutations affecting epitope count 3.8% 4.3%

due to processing 38% 40%
due to MHC binding 80% 81%
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Figure 2.4 The effect of MHC specificity and polymorphism on the selection pressure
on epitope precursors. This example shows the first 100 amino acids of the NEF protein
of the HIV-1 HXB2 reference sequence, and the precursors and epitopes for two fictitious
hosts. The lines represent the epitope precursors generated by the monomorphic pro-
teasome and TAP. The black lines depict those epitope precursors that are used by the
MHC alleles. In this example, 4 out of 5 epitope precursors were released from selection
pressure, as were 32 out of 70 amino acids.

fraction of the available HIV-1 epitope precursors, not all of the epitope precurs-
ors in a host are under selection pressure. When a virus is transmitted from one
host to a new host with a different set of MHC molecules a large number of the
epitope precursors that were previously under immune selection pressure are
no longer so. Escape mutations in those epitope precursors can subsequently
revert to the wildtype sequence. A visual example of this mechanism is depic-
ted in Fig. 2.4, in which a HIV-1 protein is passed from one fictitious host to
another.

While the proposed mechanism is straightforward and plausible, its protect-
ive effect depends on the fraction of epitope precursors that is under selection
pressure in the donor host, but no longer in the recipient host. This is directly
influenced by the specificity and promiscuity of the MHC alleles of both host
and donor: the more specific the MHC binding is, the smaller the subset of
epitope precursors is that is used by the MHCs of the host, and therefore the
larger the typical fraction of epitope precursors is that is released from selection
pressure when the virus changes from one host to the other. We estimated this
fraction with a simple model in which we create fictitious hosts with random
sets of MHC alleles, and transmit the HIV-1 HXB2 reference sequence from one
host to another. Each time the virus is transmitted, we calculate the fraction of
the epitope precursors that were used by the MHC alleles of the donor host,
but are not utilized in the recipient host. In this way we estimated that on av-
erage 18% of the epitope precursors are under selection pressure in a random
host, i.e. are an actual epitope in that host. 66% of these actual epitopes will
be released from selection pressure in the next host (see Fig. 2.5). Alternatively,
the protective effect can also be calculated at the level of amino acid positions
rather than precursors. By doing so we predicted that on average 49% of the
amino acid positions are under selection pressure in a random host, and that
39% of this group of 49% is released from selection pressure upon transfer of
the virus to a new host. These two estimates represent the extreme ends of how
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Figure 2.5 The number of epitope precursors that bind to MHC alleles in the donor host
but no longer in the recipient host is calculated based on a 1000 simulated passages of
the HIV-1 HXB2 sequence between two hosts. The hosts are randomly created from a
set of 18 different HLA-A molecules and 14 different HLA-B molecules. On average,
the 4 MHC alleles of a host bind 18% (145) of the 818 predicted epitope precursors. Of
these 145 epitope precursors, an average of 34% can bind to one of the MHC alleles of
a recipient host, whereas 66% is no longer under selection pressure. 95% confidence
intervals (c.i) are shown in the figure. The overlap in epitope precursors used by the
donor and recipient is partially due to overlapping MHC molecules (by chance in 42%
of the cases the donor and recipient shared one or more MHC alleles), and partially due
to the promiscuity of MHC alleles.

much escape mutations in one epitope precursor influence the processing and
presentation of another epitope precursor. The true fraction of epitope precurs-
ors that is released from selection pressure when a virus travels from one host
to the next should lie somewhere in between this range of 39% - 66%. Note
that the range depends on our chosen threshold for MHC binding of IC50 500

nM (Peters et al., 2006; Assarsson et al., 2007). Increasing the specificity of the
MHC binding to 50 nM increases the fraction of released epitopes to a range
of 76%-83%, and lowers the average number of predicted CTL epitopes from
145 to 18 epitopes per host per viral sequence. Decreasing the specificity of the
MHC binding to 5000 nM decreases the fraction of released epitopes to a range
of 6%-31%, but with this threshold we predict an unrealistically large number
of CTL epitopes (514) per viral sequence.
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Based on these predictions, we argue that the magnitude of this MHC spe-
cificity and polymorphism-dependent release mechanism is large enough to
play an essential role in slowing down the adaptation of HIV-1 to the protea-
some and TAP. Its exact effect on the evolution of HIV-1 will also depend on
other characteristics of the virus, such as the transmission rate, and the balance
between the rate of escape mutations and the rate of escape reversion (Poon
et al., 2007). Combined with our proposed mechanism, these factors will de-
termine the eventual degree of adaptation to the antigen presentation pathway
that viruses like HIV-1 can reach.

2.5 D I S C U S S I O N

The total number of (predicted) epitope precursors and CTL epitopes in a large
population data set of HIV-1 clade B sequences is not decreasing over time (Fig.
2.2). This is in contrast to our initial expectation that HIV-1 would be able to
adapt to the monomorphic steps of the antigen presentation pathway (i.e. the
proteasome and TAP) to evade presentation of its proteins on the cell surface.
We investigated three possible factors that could explain why we did not detect
adaptation; 1) possible lack of CD8

+ selection pressure, 2) the (evolutionary)
short timespan of 30 years of our population data set (Fig. 2.3), and 3) the
possible rarity of epitope precursor escapes (Table 2.1), but found no compelling
evidence for any of them.

In the last section of the results we added and discussed a fourth possibility,
namely that the adaptation of HIV-1 to epitope precursors is limited by frequent
loss of the immune selection pressure on epitope precursor escapes as the virus
passes from one host to another (Fig. 2.4). We proceeded by quantifying that
a typical proteasome or TAP escape mutation is released from selection in 39%
to 66% of the human hosts. We propose that this loss of selection pressure on
epitope precursors is one of the main factors that determine the eventual degree
of adaptation to epitope precursors that HIV-1 can reach on the population level
(Fig. 2.5). Other factors are the transmission rate, the rate at which epitope
precursor escapes are acquired, and the rate at which they are lost or reverted
(Poon et al., 2007).

Based on our understanding of this mechanism, we speculate that only one
of the steps in the antigen presentation pathway has to be polymorphic to pre-
vent pathogens from adapting to any step in the pathway. The mechanism
functions best when the polymorphy occurs at the most specific step in the
pathway, as that increases the fraction of epitope precursors that is not under
selection pressure. While in humans it is the MHC class I molecules that are
highly polymorphic and specific, other solutions do appear to exist. The TAP
molecules of rats are more specific than the human TAP, and have a limited
functional polymorphism (Gubler et al., 1998), and the TAP and MHC genes of
chickens are equally polymorphic on the nucleotide level (Walker et al., 2005).
We are currently exploring the conditions that determine which of the steps of
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the antigen presentation pathway become polymorphic using an agent-based
host-pathogen model.

The lack of any large-scale adaptation of HIV-1 to reduce its number of CTL
epitopes -as reported by this study- is not necessarily in contradiction with the
possible fixation of certain CTL epitope escape mutations at the population level
(Leslie et al., 2005; Brumme et al., 2007)2, especially if these occur in combina-
tion with compensatory mutations (Navis et al., 2007). However, our analysis
indicates that fixation of particular CTL epitope escapes is not occurring at a
scale that makes it detectable amidst the constant destruction and generation
of CTL epitopes due to neutral amino acid substitutions (see Fig. 2.3, Table
2.1). Furthermore, we have only studied the adaptation of HIV-1 to escape an-
tigen presentation by means of amino acid substitutions. HIV-1 also influences
epitope presentation by blocking TAP transport (Kutsch et al., 2002) and down-
regulating MHC molecules (Baugh et al., 2008). Adaptation to the pathway
could well be occurring at this level, rather than at the level of individual CTL
epitopes. However, current findings that individual escape mutations can have
a large impact on viral load during within-host evolution (Karlsson et al., 2007;
Maurer et al., 2008), suggests that there is still a strong selection pressure on
individual CTL epitopes.

In summary: the monomorphic parts of the antigen presentation pathway
are protected from viral immune escape adaptations because only a subset of
the epitope precursors can be presented by the MHC alleles of a particular
host. Because of the MHC polymorphism, this subset differs per host. As a
result, epitope precursor escape mutations are frequently released from immune
selection pressure when pathogens spread through a population, and can revert
to the wildtype sequence. The protective effect of this mechanism increases with
the polymorphism of MHC and the specificity of the individual MHC class I
alleles.
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2For a detailed discussion of Kawashima et al. (2009), see Chapter 4.5.
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Table 2.2 Details longitudinal within-host data set (part 1).
Patient ID Protein Sampling date Accession number(s)

005(10151393) NEF 1985 AF129336

1989 AF129395

PIC1362(10152829) GAG 1998 DQ853466, DQ853467, DQ853468, DQ853469,
DQ853470, DQ853471, DQ853472, DQ853473,
DQ853475

2002 DQ853439, DQ853440, DQ853441, DQ853442,
DQ853443, DQ853444, DQ853445, DQ853446,
DQ853447, DQ853448

NEF 1998 DQ853427, DQ853430, DQ853432,
DQ853605, DQ853607, DQ853608, DQ853611,
DQ853612, DQ853614, DQ853615, DQ853616,
DQ853618, DQ853620, DQ853622, DQ853624,
DQ853625, DQ853626, DQ853627, DQ853628,
DQ853629,DQ853630, DQ853632, DQ853633,
DQ853634, DQ853635, DQ853636, DQ853637,
DQ853642, DQ853645, DQ853646, DQ853647,
DQ853648

2002 DQ853439, DQ853440, DQ853441, DQ853442,
DQ853443, DQ853444, DQ853445, DQ853446,
DQ853448, DQ853486, DQ853487, DQ853488,
DQ853489, DQ853490, DQ853491, DQ853492,
DQ853493, DQ853494, DQ853495, DQ853496,
DQ853497, DQ853498, DQ853499, DQ853500

POL 1998 DQ853466, DQ853467, DQ853468, DQ853469,
DQ853470, DQ853471, DQ853472, DQ853473,
DQ853474

2002 DQ853439, DQ853440, DQ853441, DQ853442,
DQ853443, DQ853444, DQ853445, DQ853446,
DQ853447, DQ853448

For patient PIC1362 additional sequence information is also available in the
Los Alamos Database for ENV, REV, TAT, VIF, VPR and VPU. To have at least
more than one patient per protein we have limited our analysis of the available
sequence data of patient PIC1362 to GAG, NEF and POL.
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Table 2.3 Details longitudinal within-host data set (part 2).
Patient ID Protein Sampling date Accession number(s)

MACS1(10159224) GAG 1985 EF525480

1989 EF525482

POL 1985 EF525481

1989 EF525483

MACS2(10159231) GAG 1991 EF525500

1995 EF525502

POL 1991 EF525501

1995 EF525503

MACS3(10159232) GAG 1987 EF525504

1992 EF525505

MACS5(10159234) GAG 1984 EF525512

1989 EF525514

POL 1984 EF525513

1989 EF525515

MACS7(10159236) GAG 1988 EF525520

1992 EF525522

POL 1988 EF525521

1992 EF525523

MACS9(10159238) GAG 1992 EF525526

1997 EF525528

POL 1992 EF525527

1997 EF525529

MACS11(10159226) GAG 1985 EF525488

1990 EF525490

POL 1985 EF525489

1990 EF525491

MACS12(10159227) GAG 1985 EF525492

1992 EF525493

MACS13(10159228) POL 1984 EF525494

1989 EF525495

MACS14(10159229) POL 1986 EF525496

1988 EF525497

MACS16(10159230) POL 1989 EF525498

1994 EF525499
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Table 2.4 Details HIV-1 Clade B population data set.

Protein (# samples) P density per aa 2008→2032 half-life

ENV (196)
Precursors 0.6552 0.319 273.1->272.0 3083 y
MHC-binders 0.0085 0.037 31.3->31.8
Epitopes 0.2145 0.019 16.0->16.3

GAG (186)
Precursors 0.9887 0.237 117.4->117.6
MHC-binders 0.4551 0.029 14.5->14.4 2924 y
Epitopes 0.5673 0.010 4.9->4.9 1033 y

NEF (368)
Precursors 0.0188 0.266 55.2->56.6
MHC-binders 0.6518 0.030 6.2->6.2 83727 y
Epitopes 0.0231 0.014 2.9->3.0

POL (97)
Precursors 0.0825 0.257 257.4->254.4 1042 y
MHC-binders 0.6235 0.033 32.6->32.5 4384 y
Epitopes 0.0424 0.013 12.6->12.3 526 y

REV (96)
Precursors 0.3933 0.216 25.5->25.1 858 y
MHC-binders 0.3137 0.027 3.2->3.1 359 y
Epitopes 0.1570 0.009 1.0->0.9 127 y

TAT (99)
Precursors 0.9730 0.211 18.3->18.4
MHC-binders 0.7891 0.017 1.5->1.5
Epitopes 0.2038 0.004 0.3->0.4

VIF (180)
Precursors 0.0388 0.271 52.1->53.8
MHC-binders 0.0037 0.037 7.1->6.9 428 y
Epitopes 0.3610 0.013 2.6->2.6 1986 y

VPR (160)
Precursors 0.1176 0.326 31.3->30.4 444 y
MHC-binders 0.0206 0.035 3.4->3.3 352 y
Epitopes 0.0037 0.016 1.5->1.4 124 y

VPU (147)
Precursors 0.2528 0.337 27.7->28.7
MHC-binders 0.5678 0.052 4.3->4.2 1426 y
Epitopes 0.3480 0.025 2.1->2.0 464 y

The density of epitope precursors, MHC-binding 9mers and CTL epitopes is expressed per amino-
acid and where applicable averaged over the 32 available MHC-binding predictors. The ‘2008→32’
column gives the estimated current (2008) number of precursors, average number of MHC-binders
and average number of CTL epitopes and projects 25 years into the future, based on linear regres-
sion. ‘Half-life’ is an estimate of the number of years it will take at which half of the precursors,
MHC-binders or CTL epitopes have been lost, assuming a linear decline. Statistical test: Kendall
Tau rank correlation test, with p-values < 0.001 in bold face.
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Table 2.5 Details HIV-1 Clade B sub-population data set.

Protein (# samples) P density per aa 2008→2032 half-life

HIV-1 Clade B Kroatia
NEF (153)

Precursors 0.0033 0.272 56.2->59.2
MHC-binders 0.8802 0.030 6.2->6.3
Epitopes 0.0090 0.014 3.0->3.2

VIF (70)
Precursors 0.3064 0.271 52.0->53.6
MHC-binders 0.0749 0.036 7.0->6.7 292 y
Epitopes 0.1858 0.013 2.5->2.4 203 y

HIV-1 Clade B Great Brittain
NEF (60)

Precursors 0.6408 0.257 53.1->52.4 854 y
MHC-binders 0.5277 0.029 6.1->5.7 169 y
Epitopes 0.7420 0.013 2.8->2.6 177 y

HIV-1 Clade B USA
ENV (81)

Precursors 0.1717 0.321 275.1->277.2
MHC-binders 0.0079 0.037 31.7->32.6
Epitopes 0.2258 0.019 16.1->16.7

GAG (56)
Precursors 0.5596 0.236 116.9->116.0 1587 y
MHC-binders 0.9887 0.029 14.5->14.5 4273 y
Epitopes 0.3232 0.010 4.8->4.6 248 y

NEF (62)
Precursors 0.5100 0.270 56.0->57.3
MHC-binders 0.3156 0.031 6.4->6.7
Epitopes 0.9902 0.014 2.9->2.9

VPU (56)
Precursors 0.4164 0.329 27.0->26.7 1335 y
MHC-binders 0.4952 0.051 4.2->4.1 490 y
Epitopes 0.3067 0.025 2.1->1.9 151 y

See HIV-1 Clade B population data set table for an explanation of the columns. Removed proteins
with less than 50 samples. Statistical test: Kendall Tau rank correlation test, with p-values < 0.001

in bold face.
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Table 2.6 Details HIV-1 Clade C population data set.

Protein (# samples) P density per aa 2008→2032 half-life

ENV (346)
Precursors 0.8204 0.319 273.5->271.9 2108 y
MHC-binders 0.0933 0.037 31.3->31.2 3580 y
Epitopes 0.2452 0.019 15.9->15.7 978 y

GAG (577)
Precursors 0.2472 0.239 118.3->116.8 914 y
MHC-binders 0.0357 0.030 14.6->14.5 2222 y
Epitopes 0.0003 0.009 4.6->4.3 150 y

NEF (374)
Precursors 0.0007 0.269 55.7->51.5 160 y
MHC-binders 0.1038 0.030 6.2->5.9 227 y
Epitopes 0.0152 0.015 3.1->2.8 121 y

POL (279)
Precursors 0.7939 0.257 257.9->256.7 2582 y
MHC-binders 0.9384 0.032 32.5->32.5 180095 y
Epitopes 0.5383 0.012 12.4->12.5

REV (295)
Precursors 0.1672 0.193 22.7->21.2 181 y
MHC-binders 0.7996 0.027 3.2->3.2 18684 y
Epitopes 0.6159 0.006 0.8->0.7 171 y

TAT (286)
Precursors 0.4717 0.187 16.3->16.6
MHC-binders 0.0059 0.017 1.5->1.3 81 y
Epitopes 0.4379 0.004 0.3->0.3 649 y

VIF (295)
Precursors 0.6219 0.286 54.9->55.0
MHC-binders 0.0593 0.037 7.1->7.4
Epitopes 0.6649 0.013 2.6->2.5 1053 y

VPR (298)
Precursors 0.9737 0.313 30.1->30.0 8964 y
MHC-binders 0.2668 0.035 3.3->3.3 656 y
Epitopes 0.4666 0.016 1.5->1.6

VPU (293)
Precursors 0.8715 0.376 30.8->30.8
MHC-binders 0.6532 0.053 4.3->4.2 461 y
Epitopes 0.4382 0.023 1.9->1.8 223 y

See HIV-1 Clade B population data set table for an explanation of the columns. Removed proteins
with less than 50 samples. Statistical test: Kendall Tau rank correlation test, with p-values < 0.001

in bold face.
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Table 2.7 Details HIV-1 Clade A1 population data set.

Protein (# samples) P density per aa 2008→2032 half-life

ENV (51)
Precursors 0.0002 0.303 259.1->240.7 169 y
MHC-binders 0.4856 0.036 30.8->30.4 951 y
Epitopes 0.3581 0.018 15.5->15.1 470 y

GAG (118)
Precursors 0.9002 0.233 115.5->117.2
MHC-binders 0.0026 0.030 14.7->15.4
Epitopes 0.0156 0.010 4.7->5.1

NEF (87)
Precursors 0.5081 0.254 52.6->50.4 291 y
MHC-binders 0.3472 0.030 6.3->6.3
Epitopes 0.6436 0.015 3.0->3.0

POL (54)
Precursors 0.1073 0.254 254.1->257.0
MHC-binders 0.0852 0.033 33.0->33.3
Epitopes 0.0242 0.012 12.2->12.5

REV (58)
Precursors 0.4442 0.183 21.6->20.3 195 y
MHC-binders 0.3422 0.024 2.9->2.9 2656 y
Epitopes 0.8804 0.005 0.6->0.7

TAT (55)
Precursors 0.9132 0.191 16.6->15.7 212 y
MHC-binders 0.9172 0.018 1.6->1.6 440 y
Epitopes 0.0062 0.003 0.3->-0.0 11 y

VIF (62)
Precursors 0.0213 0.265 50.8->47.8 202 y
MHC-binders 0.1021 0.035 6.7->6.9
Epitopes 0.7905 0.013 2.4->2.5

VPR (59)
Precursors 0.1106 0.294 28.2->29.2
MHC-binders 0.1236 0.033 3.1->3.0 257 y
Epitopes 0.8780 0.015 1.5->1.5

VPU (66)
Precursors 0.1275 0.342 28.0->28.4
MHC-binders 0.0046 0.050 4.1->4.8
Epitopes 0.0011 0.025 2.0->2.5

See HIV-1 Clade B population data set table for an explanation of the columns. Removed proteins
with less than 50 samples. Statistical test: Kendall Tau rank correlation test, with p-values < 0.001

in bold face.
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Boris V. Schmid1, Can Keşmir1,2, Rob J. De Boer1

1 Theoretical Biology, Utrecht University, The Netherlands
2 Academic Biomedical Centre, Utrecht University, The Netherlands

Manuscript accepted by BMC Evolutionary Biology

3.1 A B S T R A C T

Background: HIV-1 viruses are highly capable of mutating their proteins to
escape the presentation of CTL epitopes in their current host. Upon transmis-
sion to another host, some escape mutations revert, but other remain stable in
the virus sequence for at least several years. Depending on the rate of accu-
mulation and reversion of escape mutations, HIV-1 could reach a high level of
adaptation to the human population. Yusim et al. (2002) hypothesized that the
apparent clustering of CTL epitopes in the conserved regions of HIV-1 proteins
could be an evolutionary signature left by large-scale adaptation of HIV-1 to
its human/simian host. Results: In this chapter we quantified the distribution
of CTL epitopes in HIV-1 and found that that in 99% of the HIV-1 protein se-
quences, the epitope distribution was indistinguishable from random. Similar
percentages were found for HCV, Influenza and for three eukaryote proteo-
mes (Human, Drosophila, Yeast). Conclusions: We conclude that CTL epitopes
in HIV-1 are randomly distributed, and that this distribution is similar to the
distribution of CTL epitopes in proteins from other proteomes. Therefore, the
visually apparent clustering of CTL epitopes in epitope maps should not be in-
terpreted as a signature of a past large-scale adaptation of HIV-1 to the human
cellular immune response.

3.2 B A C K G R O U N D

The human immunodeficiency virus 1 (HIV-1) is a highly adaptive virus, cap-
able of rapidly evolving its proteins to escape cellular immune responses and
antiretroviral drugs (reviewed in Walker and Burton (2008) and Chen and Aldrovandi
(2008)). This ability of the virus to rapidly adapt to its host has raised the ques-
tion what level of adaptation to the whole human population the virus will
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eventually be able to reach. Currently there is no consensus on this point: on
the one hand there are studies that indicate that the current HIV-1 sequences
contain signatures of global adaptation (Moore et al., 2002; Leslie et al., 2005;
Bhattacharya et al., 2007; Poon et al., 2007; Brumme et al., 2007; Kawashima
et al., 2009), while on the other hand the virulence of the virus (Herbeck et al.,
2008; Müller et al., 2006) as well as its predicted number of cytotoxic T cell (CTL)
epitopes have remained constant over time (Chapter 2).

An alternative way to study viral adaptation would be to look for tell-tale
signatures of accumulated escape mutations in the virus. Yusim et al. (2002)
suggested that the clustering of CTL epitopes is such a signature. They ob-
served that regions in the virus with a low density of CTL epitopes were more
variable than regions with high epitope density. Moreover, these variable re-
gions had a lower level of epitope precursors than the conserved regions, and
contained fewer amino acids that were suitable to serve as anchor residues for
MHC binding. This led to the hypothesis that HIV-1 had escaped CTL epitopes
predominantly in the variable protein regions, and that large-scale adaptation of
the ancestral HIV-1 sequence to the human (or prior to that to the chimpanzee)
host resulted in the observed clustering of CTL epitopes in current-day HIV-1
sequences.

Another, more proximate hypothesis for the clustering of epitopes was for-
warded by Lucchiari-Hartz et al. (2003). Based on the analysis of proteasomal
degradation products in HIV-1, they showed that the epitope precursors (and
thus epitopes) occur preferentially in the more hydrophobic regions of HIV-
1 NEF and RT proteins. They concluded that the clustering of epitopes is a
generic feature of proteins, depending on the clustering of hydrophobic amino
acids.

In this chapter we tested whether CTL epitopes and hydrophobic amino acids
in HIV-1 are significantly clustered, and compared the distribution of epitopes
in HIV-1 and other viruses to that of eukaryotes which are not under selection
pressure to escape the cellular immune response. We discovered that for all
tested protein sequences more than 95% of the epitope distributions, and more
than 98% of the hydrophobic amino acid distributions were likely to be random
distributions. Secondly, we discovered that there is a large amount of variation
in the epitope distribution within HIV-1 proteins, similar to the amount of vari-
ation observed in eukaryote proteins of an equal length. Both findings suggest
that the distribution of CTL epitopes in HIV-1 is similar to that of other pro-
teins, and that the apparent clustering of CTL epitopes on HIV-1 epitope maps
should not be interpreted as an indicator of past HIV-1 adaptation.

3.3 M E T H O D S

3.3.1 CTL epitope predictions

There are several algorithms available that can predict the location and binding
specificity of CTL epitopes in protein sequences (Hakenberg et al., 2003; Tenzer
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Figure 3.1 Schematic of the MHC-pathway model. A window of 14 amino acids is slided
across a protein. Each of these ‘14mers’ consist of a N-terminal flanking region of 1

amino acid, a 9mer epitope candidate and a C-terminal flanking region of 4 amino acids.
Beneath the 14mer the parts of the peptide are marked which are used by the MHC,
TAP or proteasome predictors. Applying the 14mer to the MHC, TAP and proteasome
predictors results in three different scores. Only if each of these scores is higher than
a fixed threshold, the epitope candidate is predicted to be a CTL epitope for the MHC
allele under consideration.

et al., 2005; Larsen et al., 2005; Doytchinova et al., 2006). In this study we use the
MHC-pathway model (Tenzer et al., 2005), which allows us to screen all possible
peptide fragments of 14 amino acids within a particular protein for their ability
to be correctly processed by the proteasome and transporter associated with
antigen processing (TAP), and presented by the MHC class I molecules. Peptide
fragments that can be correctly processed by all three steps are subsequently
marked as CTL epitopes (Fig. 3.1). An extensive analysis of the quality of these
predictors can be found in the methods section of Chapter 2. A brief synopsis
is that 81-97% of the predicted CTL epitopes are indeed CTL epitopes Schellens
et al. (2008); Fortier et al. (2008).

The threshold values for the proteasome and TAP predictors (Fig. 3.1) were
derived by applying the MHC-pathway model to a large bacterial protein data
set and selecting threshold values which correspond to the estimated specificity
of the proteasome (33%) and TAP (76%) (Burroughs et al., 2004). For the
MHC-binding predictions we used the default threshold of -2.7, which cor-
responds to an IC50 threshold of 500nM (Peters et al., 2006; Assarsson et al.,
2007). The predictors used in this paper are available through a web interface
(http://www.iedb.org 2006-01-01 version), and consist of an immuno-proteasome
cleavage predictor, a TAP transport predictor and 34 different MHC class I al-
leles binding predictors (18 for human leukocyte antigen (HLA)-A alleles and
14 for HLA-B alleles). Based on our previous work with these predictors in
Chapter 2, we excluded the A*3002 and the B*0801 MHC class I binding pre-
dictors for being too unspecific and specific, respectively.
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3.3.2 Describing epitope clusters

CTL epitopes are traditionally defined by their amino acid sequence, the start
and end-point of the sequence mapped onto a reference sequence, and the MHC
class I allele that they bind to. Based on this definition, a natural way to visually
present CTL epitopes is an epitope map (Fig. 3.3). However, for the statistical
study of the clustering of CTL epitopes it is more practical to reduce the position
of a particular epitope to a single point. In this chapter we have opted to use the
C-terminal amino acid of CTL epitopes to position an epitope in a sequence, as
the C-terminal amino acid is the most defining property of an epitope: amino
acid substitutions at the C-terminal have a large effect on proteasomal cleavage,
TAP transportation and MHC binding (Craiu et al., 1997; Cascio et al., 2001)
(Fig. 3.1). One effect of this transformation is that epitopes are only defined by
their position, and no longer by the MHC allele(s) that they bind. Thus, epitopes
that only differ in the MHC that they bind to will be reported as a single epitope.
Although this transformation makes it possible to perform a clustering analysis
on the distribution of CTL epitopes, it might destroy an evolutionary signature
that is contained in the number of MHC alleles that bind to individual epitope
precursors. We discuss this in the final section of the paper.

3.3.3 Clustering methods

Methods to describe the degree of clustering of sequential events or spatial loc-
ations have been developed in a large number of scientific fields, ranging from
astronomy to ecology and economics. These methods consider two features of a
clustering: the ‘intensity’ and the ‘grain’. The intensity reflects the difference in
object density between the rich and poor regions, and the grain describes how
frequently rich and poor regions alternate (Pielou, 1977). In this chapter we
will use two methods: the cumulative binominal probability (CBP) (Wilk and
Gnanadesikan, 1968), and the Hopkins and Skellam index (H&S) (Hopkins and
Skellam, 1954; Pielou, 1977).

Regarding the cumulative binominal probability method (CBP) (Wilk and
Gnanadesikan, 1968): this method can be used to determine whether a particu-
lar amino acid lies in a region that is rich, poor or neutral in epitope density (Eq.
3.1). For example, to determine whether a particular amino acid is located in an
epitope-rich region, one counts the number of epitope C-terminals (e) in a win-
dow of size w, and based on the average epitope-density in the protein ( f ) one
calculates the chance of finding e or more epitope C-terminals in a window of w
amino acids (i = e, i = e + 1, i = .., i = w). If this chance P falls below a certain
threshold (0.05 in this paper), all amino acids in that window are marked as be-
longing to an epitope-rich region. The same approach can be used to determine
which amino acids belong to epitope-poor regions. The CBP method makes it
possible to objectively determine the location of epitope-rich and epitope-poor
regions in a protein. These locations can be plotted to generate a CBP profile
(see Fig. 3.4).
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P =
i=w

∑
i=e

(
w
i

)
∗ f i ∗ (1− f )w−i (3.1)

Regarding the Hopkins and Skellam index (H&S) (Hopkins and Skellam,
1954; Pielou, 1977): this method is based on the observation that in a fully ran-
dom distribution (of an infinite size) the distance from a starting point to the
nearest object of interest is not influenced by the presence or absence of such
an object at the starting point. In an overdispersed distribution, the presence
of an object at the starting point will mean that the nearest object is on aver-
age further away than when starting at a random location, while in a clustered
distribution, the reverse is true. The ratio is calculated as the sum of squared
distances from a random point to the nearest object (dr) to the sum of squared
distances from a random object to the nearest object (do). When the number of
dr and do measurements are not equal, the sum of squared distance of dr and do
should be divided by the number of dr measurements (n) and do measurements
(m), respectively. The ratio will be a number (R) between 0 for perfectly overd-
ispersed distributions and infinity for fully clustered distributions (Eq. 3.2). In
this way the distribution of epitopes within a protein can be characterized by a
single ratio. In this chapter we normalized the range of the H&S index in such a
way that the index runs from 0 to 2, rather than from 0 to infinity, by translating
any score above one to 2− (1/score).

Both the CBP method and the H&S index take into account the ‘intensity’
and the ‘grain’ of epitope distributions and correct for the epitope density of
the protein. One difference between the two methods is that the latter gives
a higher clustering score to coarse grained distributions, whereas the former
favors fine-grained distributions (see section 3.4.3).

R =

i=n

∑
i=0

dr
2/n

i=m

∑
i=0

do
2/m

(3.2)

3.3.4 Statistical testing

The significance of both clustering measures can be tested with permutation
tests (Fisher, 1935; Box, 1980; Ludbrook and Dudley, 1998). Permutations are
created by randomizing the positions of the epitope C-terminals in the protein
that is under scrutiny. The p-value of the test is the fraction of cases in which
the randomized sequence has an equal or more extreme outcome than the ori-
ginal sequence. In the case of the CBP method the outcome was measured as
the fraction of the protein that is part of an epitope-rich region (or epitope-poor
region). In the case of the H&S index, the outcome was measured as the ab-
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solute difference of the index score from 1.0 (the expected score for a random
distribution).

3.3.5 Hydrophobicity

In order to determine whether hydrophobicity is clustered, we calculated the
clustering of the top 4 hydrophobic amino acids (Leu, Ile, Phe and Trp accord-
ing to both the HPLC pH 7.4 scale (Meek, 1980) used by Lucchiari-Hartz et al.
(2003), and the consensus scale (Tossi et al., 2002)), with the CBP method and the
H&S index. This is somewhat different from the more common approach of cal-
culating the running average hydrophobicity and setting one or two thresholds
to determine the hydrophobic and hydrophilic areas of a protein, (as was done
in the study of Lucchiari-Hartz et al. (2003)). However, it has the advantage
that we can use the same method for determining epitope clustering and hy-
drophobic amino acid clustering.

3.3.6 Data sets

The public data sets used in this paper originate from a variety of sources. Pre-
aligned HIV-1 and HCV data (size: 13093 and 8886 proteins, respectively) were
downloaded from the Los Alamos laboratories (www.hiv.lanl.gov,
www.hcv.lanl.gov), and the influenza data set (size: 47194 proteins) was down-
loaded from Biohealthbase (www.biohealthbase.org, under Influenza Virus, Data-
base Search, Sequence), by selecting for all available proteins from human influ-
enza type A, B or C. A Human proteome(Kersey et al., 2004) (IPI.human.prot,
size: 72082 unique proteins), a Drosophila (size: 23694 unique proteins) and a
Yeast proteome (size: 5863 unique proteins) were downloaded from Integrate
(http://www.ebi.ac.uk/integr8/). All data sets were downloaded on 13 Aug
2008.

The public HIV-1 and HCV data sets are already curated, and do not contain
multiple clones from one isolate, or multiple sequences from a single person.
Furthermore, very similar groups of sequences (based on phylogenetic tree ana-
lysis) are also reduced to a single sequence. In all three eukaryote proteomes,
only unique protein sequences are used.

The ancestral HIV-1 clade B sequence (Korber et al., 2000) can be downloaded
at http://www.hiv.lanl.gov.

3.4 R E S U LT S A N D D I S C U S S I O N

3.4.1 Imprints of immune evasion in HIV-1

HIV-1 is capable of maintaining escape mutations to CTL epitopes in the ab-
sence of immune selection pressure of a MHC-matched host (Goulder et al.,
2001; Kearney et al., 2009), and thus escape variants of HIV-1 can become the
consensus HIV-1 sequence (Leslie et al., 2005; Moore et al., 2002). Escape vari-
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ants with a low fitness cost, or having compensatory mutations revert slowly
or not at all (Schneidewind et al., 2009; Kawashima et al., 2009), and could
quickly accumulate in the virus (Leslie et al., 2005; Kearney et al., 2009). Fig.
3.2A sketches the fast spread of a non-reverting escape variant in a hypothetical
transmission network. Even though the hosts which carry an MHC allele that
can bind to the CTL epitope are not optimally positioned in the transmission
network, it only takes a few transmissions before the majority (54%) of the hosts
carries the escape variant of the virus.

Yusim et al. (2002) studied the apparent clustering of CTL epitopes in HIV-1
epitope maps, and found a negative correlation between CTL epitope density
and sequence variability in HIV-1. Based on the paucity of epitope precurs-
ors and suitable MHC anchor residues in these variable protein regions, Yusim
et al. (2002) concluded that the lack of epitopes in the variable regions was a
signature of immune evasion of the virus. The conserved protein regions were
assumed have more constraints related to protein function, and the virus would
have fewer viable options to generate escape variants in these regions(Yusim
et al., 2002), because the escapes made in these conserved regions would carry
a higher fitness cost (Wagner et al., 1999; Walker and Korber, 2001). As a result,
Yusim et al. (2002) argued that the accumulation of escape mutations would be
slower, and reversion of escape mutations faster in conserved protein regions
than in variable regions. These ideas are depicted in Fig. 3.2B. This difference
in the rate of accumulation of escape mutations between the variable and con-
served protein regions is expected to result in a clustering of CTL epitopes once
the virus has accumulated a substantial number of escape mutations. Taken
together, Yusim et al. (2002) concluded that the apparent clustering of CTL epi-
topes in epitope maps was a signature of a large-scale adaptation of HIV-1 to
the human population.

3.4.2 Clustering in epitope maps

The first reports that the CTL epitopes of HIV-1 occurred in clusters (Culmann
et al., 1991; Culmann-Penciolelli et al., 1994; Walker and Korber, 2001) were
published a few years after the discovery of HIV-1 CTL epitopes themselves
(Walker et al., 1987; Plata et al., 1987). However, the degree of clustering of
CTL epitopes has never been tested rigorously, perhaps because the method by
which epitope positions are visualized in epitope maps strongly suggests that a
clustering exists (Fig. 3.3). Here we list a number of reasons why epitope maps
may give an unjust impression of clustering:

1. The epitope map is a compilation of the CTL epitopes found in a large
number of sequences. Amino acid variants of the same epitope are all
depicted at the same position of the reference sequence, but never occur
simultaneously in a single HIV-1 sequence.

2. CTL epitopes that have not been mapped precisely to their minimal length
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Figure 3.2 A. Schematic of a transmission network of HIV-1 through the human pop-
ulation. An escape variant of a particular CTL epitope can rapidly become the consensus
sequence if reversion of the escape happens little or not at all. Of the 50 hosts (circles),
only 5 hosts (filled circles) carry an MHC allele that can bind the epitope. Grey lines
represent transmission of the wildtype virus, whereas black lines represent transmission
of the escape variant. B. Schematic of the accumulation of escapes in the variable pro-
tein regions When escape mutations occur more often, or reversion happen more slowly
in variable protein regions (gray shaded areas), and the number of accumulated escape
mutations is large enough, a clustering of CTL epitopes (plotted as arrow-delimited
lines) is to be expected. One underlying assumption is that the variable and conserved
protein regions are larger than a few amino acids in size.

can end up occurring more than once on the epitope maps as N- or C-
terminal extended versions of an epitope.

3. Epitope precursors are expected to be generated at roughly 25% of the
positions in a protein (Burroughs et al., 2004). The large polymorphism in
MHC class I alleles makes it likely that a single epitope precursor binds
to multiple MHC alleles (Frahm et al., 2007). Therefore, the absence or
presence of an epitope precursor at a certain position results in either zero
or many epitopes reported at that position.

4. CTL epitopes on the maps are vertically ordered to be non-overlapping.
This representation results in empty corridors between large slanted towers
of epitopes. The corridors need not correspond to epitope-poor regions,
but are a visual effect of the representation.
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Figure 3.3 Example of an epitope map of HIV-1 NEF and its transformed version (black
dots). The epitope map was retrieved from http://www.hiv.lanl.gov (Jul 31 2008 ver-
sion). This specific epitope sequence (an unspecified HXB2 variant) carries 52 predicted
epitope precursors, of which 38 are predicted to be epitopes (binding at least one of the
32 MHC class I allele binding predictors).

All four reasons listed amplify the difference between epitope-rich and epitope-
poor regions with the result that a strong clustering of CTL epitopes appears to
exist. Most of these reasons have already been listed by the scientists maintain-
ing the epitope maps at www.hiv.lanl.gov, but the suggestive effect on epitope
clustering is not mentioned explicitly. We removed these amplifications by us-
ing CTL epitope predictors (removing 2.) on a per-sequence basis (removing
1.), and by only plotting their C-terminal position (remove 3. and 4.). This
transformation results in a binary pattern of epitope C-terminal positions: each
position being either an epitope (of single or many MHC alleles) or a non-
epitope (see Fig. 3.3, Methods). Although neccesary for a meaningful analysis
of the clustering of CTL epitopes, the transformation could potentially destroy
an evolutionary signal if HIV-1 has evolved to have fewer MHC alleles binding
per epitope precursors in certain protein regions. We will consider this option
in the discussion.

We use epitope predictors rather than lists of known CTL epitopes, as the
predicted epitopes are less influenced by an ‘attention bias’ than experiment-
ally defined CTL epitopes. The bias is caused by of researchers focusing on
hot topics or building on previous work. Assarsson et al. (2008) showed that
as a result of such a bias, certain protein regions in Influenza are mistakenly
classified as CTL epitope-rich or poor.

Epitope predictors, such as the MHC-pathway algorithm, predict proteasomal
cleavage, transporter associated with antigen processing (TAP) and MHC class
I binding (Tenzer et al., 2005) for all peptide fragments within a protein. Those
fragments that can be processed by each of these steps are predicted to be CTL
epitopes (see Fig. 3.1). As the MHC-pathway algorithm has been tested extens-
ively (Peters et al., 2006) and has proven to have a high reliability (Schellens
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et al., 2008; Fortier et al., 2008) (see Methods), it allowed us to avoid any pos-
sible ‘attention bias’ (Assarsson et al., 2008) for certain HIV-1 protein regions or
strains.

3.4.3 No clustering of epitopes

We applied two distinct methods of measuring distributions to the epitope dis-
tribution of HIV-1 proteins. The first method divides proteins into epitope-rich,
epitope-poor, and neutral regions based on the cumulative binominal probab-
ility (CBP) (Wilk and Gnanadesikan, 1968) of having e or more amino acids
predicted as an epitope C-terminal in a window of size w (Eq. 3.1). The second
method is the Hopkins and Skellam (H&S) index (Hopkins and Skellam, 1954;
Pielou, 1977), which compares the average distance from an epitope to its nearest
epitope with the average distance from a random amino acid to the nearest
epitope within proteins (Eq. 3.2). Both methods are subjected to permutation
tests in order to establish per protein the significance of its distribution of CTL
epitopes. A more extensive discussion of these methods and the permutation
testing is available in the Methods section.

Using both the CBP method and the H&S index, we find protein sequences
in HIV-1 with CTL epitope distributions that are likely to be random, as well
as distributions that are likely to be clustered. We visualized a few of these
protein sequences using CBP profiles (Fig. 3.4), as well as a sequence in which
the positions of the CTL epitopes were randomized. Note that each of the
four visualized sequences, including the randomized one, contain epitope-rich
and/or epitope-poor regions. Thus, the mere presence of epitope-poor regions
in a protein does not indicate that some active process created it.

We analyzed the predicted CTL epitope distribution in a data set of 11017

HIV-1 proteins from the Los Alamos HIV-1 Sequence compendium with the
CBP method, and found that in 99% of these sequences the fraction of epitope-
rich regions was not significantly different from random (p < 0.001, permuta-
tion test). Only 158 sequences had a larger fraction of epitope-rich regions than
likely to arise in a random distribution of CTL epitopes. These 158 sequences
predominantly occurred in two specific HIV-1 proteins: HIV-1 VPU (79x) and
HIV-1 ENV (74x). Changing the window size w from 15 to 9 or 23 shifted the
number of significant sequences towards VPU or ENV, respectively, but did not
affect the overall lack of significant clustering of CTL epitopes. Similar to what
we found for the epitope-rich regions, only 153 sequences in HIV-1 had a larger
fraction of epitope-poor regions than expected, most of which occurred in VPU
(135x).

The H&S index gives a similar result as the CBP method: only 68 HIV-1
protein sequences (0.6%) had a predicted epitope distribution that is signific-
antly more clustered than expected from a random distribution, and most of
these occurred in the VPU protein (55x). The distribution of CTL epitopes in
the predicted ancestral HIV-1 clade B sequences (Korber et al., 2000) (green
dots, Fig. 3.5B) is also not significantly different from random. The fact that
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Figure 3.4 Example of the cumulative binominal probability (CBP) profiles of 4 HIV-
1 NEF protein sequences. Each profile features the position of predicted epitope C-
terminals in the protein sequence (black dots), a running average of the C-terminal dens-
ity (black line, window size 15), and the epitope-rich and/or epitope-poor regions (grey
blocks) (see Eq. 3.1). (A + B) The distribution of CTL epitopes in the protein sequence in
panel A (accession number:DQ351225), and the protein sequence in panel B (accession
number:AJ233029) have a low probability to arise from a random distribution of CTL
epitopes (Panel A, CBP: prich = 0.0056, ppoor = 0.0062; H&S: p = 0.015. Panel B, CBP: prich
= 0.06, ppoor not computable for a window size of 15 or smaller (see Methods); H&S: p <
0.001.). (C) The distribution of CTL epitopes in the protein sequence in panel C (acces-
sion number:AY905390) has a high probability to arise from a random distribution. CBP:
prich = 0.7026, ppoor = 0.5328; H&S: p = 0.195. (D) The same sequence as in Panel C, but
with the epitope C-terminals randomized.
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Figure 3.5 Analysis of HIV proteomes. Each protein sequence is plotted on the hori-
zontal axis according to its size (dots). Red dots are significant (p < 0.001). Above
each large cloud of sequences, the corresponding protein name is denoted. Sequences in
between clouds are likely to be truncated version of larger proteins that were not pruned
from the data set. The grey line denotes the average score. (A) The CBP method yielded
only 153 out of 11017 sequences whose epitope distribution was unlikely to be random
(less than 2%). (B) The H&S index yielded 68 sequences unlikely to be random (less
than 1%). Marked with green dots are the predicted ancestral sequence of HIV-1 clade B
proteins.
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we found HIV-1 ENV and VPU to be the proteins in which some sign of clus-
tering occurred would not be what one expects if the clustering would be due
to adaptation. The GAG protein would have been a more obvious candidate,
both for its early presentation on the cell surface (Sacha et al., 2007a) and its
immunodominant CTL epitopes (Kiepiela et al., 2007).

There is a remarkable large variation between sequences of the same protein
in both the CBP and the H&S methods. Sequences range from being devoid of
epitope-rich protein regions to having 20% of their amino acids belonging to an
epitope-rich region in the CBP method (Fig. 3.5A). The same holds for epitope-
poor regions (data not shown). Sequences range from a highly clustered to a
moderately overdispersed H&S index score (Fig. 3.5B), even when reducing the
data set to specific HIV-1 clades (data not shown). Apparently, even within
the closely related sequences, relatively small amino acid differences can cause
large variations in the degree of CTL epitope clustering, up to a degree that
their H&S index score variation for most of HIV-1’s proteins is similar to that
of randomized proteins of the same size. The POL and TAT proteins displayed
less variation than expected for their protein size.

When comparing the significantly clustered sequences predicted by both
methods, we find an overlap of 21%. While this is significantly higher than
the expected overlap of 1.4% (Fisher’s exact test, p = 0.0008), the difference
in outcome between the methods utilized is substantial. This could be due to
the difference in how both methods valuate the ‘grain’ of a pattern (i.e. how
frequently rich and poor regions alternate). The H&S index valuates coarse-
grained clusters (Fig. 3.5) above fine grained clusters, whereas the CBP method
does the opposite.

3.4.4 Comparison between species

Although CTL epitopes in HIV-1 are typically randomly distributed (Fig. 3.5), a
direct comparison of the CTL epitope distributions between virus and eukaryote
proteomes might reveal a difference between both groups that is due to immune
selection pressure. We included two additional virus sequence data sets in the
analysis, namely the Hepatitis C Virus (HCV) and Influenza, and picked three
eukaryote proteomes: the human Homo sapiens, fruitfly Drosophila melanogaster
(Leulier et al., 2003) and yeast Saccharomyces cerevisiae proteome. The latter two
are proteomes that normally do not come into contact with the human antigen
presentation pathway, and should therefore not be adapted to it.

The distribution of predicted CTL epitopes in HCV and Influenza was similar
to that of HIV-1. The vast majority of sequences featured a random distribu-
tion of CTL epitopes (> 99%), and the equally large amount of variation in
H&S clustering score as seen in HIV-1 (Fig. 3.6A). Although in all three viruses
some proteins tended towards clustering, and others towards overdispersion of
epitopes, we have not been able to detect a pattern in these tendencies. One dif-
ference between the viruses was that the small fraction of significantly clustered
sequences was somewhat higher in HIV-1 (0.6%) than in HCV (0.01%) and In-
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fluenza (0.00%), but as we are comparing many related copies of only a small
number of proteins, this difference could well be due to chance.

A comparison of the three eukaryote proteomes revealed that their CTL epi-
tope distributions are remarkably similar to each other. In all three proteomes
there is a steady trend towards clustered epitope distributions with increasing
protein size (Fig. 3.6B, grey line). It could be that these significant proteins con-
tain more structural motifs and repeating elements that the other proteins, and
that these motifs influence the epitope distribution (Irbäck et al., 1996; Landolt-
Marticorena et al., 1993). The percentage of significantly clustered sequences
(H&S) is a few percentage-points higher than in the viruses (Human: 1.9%,
Drosophila: 3.4%, Yeast: 1.9%, at a p < 0.001, permutation test), but is still only
a small percentage of all sequences.

An overlay of HIV-1 on the human proteome shows that the H&S clustering
scores for HIV-1 proteins fall within the range of scores for human proteins
(Fig. 3.7). The variation within HIV-1 proteins spans about the same range as
proteins of comparable size in the human proteome. This is surprising, as the
sequences within HIV-1 proteins are closely related to each other, and would
therefore be expected to have a smaller range of clustering scores (for the POL
and TAT protein this seems to be partially true).

Summarizing, the CTL epitopes of > 99% of HIV-1, HCV and Influenza se-
quences were found to be randomly distributed. A comparison between viral
and eukaryote proteomes showed no qualitative differences in the epitope dis-
tribution between the two groups that would point towards the adaptation of
viruses to the human host.

3.4.5 No clustering of hydrophobicity

An alternative hypothesis on epitope clustering that was forwarded by Lucchiari-
Hartz et al. (2003), challenged the idea that the distribution reflected the adapt-
ation of the HIV-1 to its new host (Yusim et al., 2002), Lucchiari-Hartz et al.
(2003) suggested that the clustering of CTL epitopes merely mirrored the clus-
tering of hydrophobic amino acids. As the proteasome, TAP, and many of the
MHC alleles favor hydrophobic amino acids at or near their C-terminal end
(Peters et al., 2003; Burroughs et al., 2004; Uebel and Tamp, 1999), a clustering
of hydrophobic amino acids would result in a clustering of epitope precursors,
and subsequently result in a clustering of CTL epitopes.

Our results thus far dispute the idea that CTL epitopes are clustered, as we
found the epitope distribution in the vast majority (> 99%) of protein sequences
to be not different from a random distribution. Therefore we wondered if hydro-
phobic amino acids are truly clustered in proteins, and repeated our clustering
analysis for hydrophobic amino acids. By taking the four most hydrophobic
amino acids (Leu, Ile, Phe and Trp (Meek, 1980; Tossi et al., 2002)), we could
construct binary maps similar to the transformed epitope maps of Fig. 3.3.

We found that nearly 100% of the protein sequences in HIV-1 had no sig-
nificant clustering of hydrophobic amino acids in their primary structure (Fig.
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Figure 3.6 The H&S index for six proteomes, plotted against protein length. The top
three panels display virus proteome data sets, and contain multiple sequences per pro-
tein. Each vertical cloud corresponds to another protein. The bottom three panels display
the proteomes of Human, Drosophila and Yeast. (A) Grey line: average index score taken
over all sequences. (B) Grey line: running average of the index score (window size of 70).
(A + B) Red dots: protein sequences whose epitope distribution is significantly unlikely
to be random (p < 0.001, permutation test).
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Figure 3.7 An overlay of HIV-1 proteins on top of the human proteome. The degree
of clustering of CTL epitopes in proteins is determined by the H&S index and plotted
against protein length. Significantly clustered sequences are denoted in yellow for the
human proteome and red dots for HIV-1 (p < 0.001, permutation test). The index scores
of HIV-1 fall within the range found in human proteomes, suggesting that the epitope
distribution pattern of HIV-1 is not extraordinary.

3.8C). However, the biophysical community is somewhat divided on this point:
depending on the method used and the subset of proteins studied, both ran-
dom (White and Jacobs, 1990) and non-random distributions (Pande et al., 1994;
Irbäck et al., 1996) are reported. We agree that some signs of non-randomness
is to be expected in the distribution of amino acids in proteins, as common
protein structures like α helices, β sheets have a certain periodicity in their use
of hydrophobic amino acids (Irbäck et al., 1996). However, because we find so
few proteins in which hydrophobic amino acids are significantly clustered, it
seems safe to conclude that the effect of protein structure on the distribution of
hydrophobic amino acids is rather subtle.

As was shown previously by Lucchiari-Hartz et al. (2003), hydrophobic amino
acids and the location of epitope C-terminals in HIV-1 correlate. This is visible
in CBP profiles (Fig. 3.8A, Fig. 3.8B, black and grey lines), and statistically con-
firmed in the overlap between sequences with significantly clustered epitope
distributions and hydrophobic amino acid distributions in the human proteome
(Fischer’s exact test, p < 0.0001, n = 69685). Summarizing, we find that epitope-
poor regions correlate with hydrophilic regions, but neither has a distribution
that is significantly different from random.
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Figure 3.8 (A + B) CBP profiles of the hydrophobic amino acids (Leu, Ile, Phe and Trp)
of the same two HIV-1 NEF sequences as profiled in Fig. 3.4A and Fig. 3.4B. Hydrophobic
amino acids (black dots) and hydrophobic areas (orange blocks) are depicted above the
running average (window size 15) of hydrophobic amino acid density (black line) and of
the epitope C-terminal density (grey line). (A) Both the fraction of the sequence that is
part of a hydrophobic region (14%), and the H&S index score (1.48) are likely to occur
at random (CBP: prich = 0.099, H&S: p = 0.095). (B) Both the fraction of the sequence
that is part of a hydrophobic region (15%), and the H&S index score (0.758) are likely to
occur at random (CBP: prich = 0.047, H&S: p = 0.576). (C) An overlay of HIV-1 proteins
on top of the human proteome. The degree of clustering of hydrophobic amino acids is
determined by the H&S index and plotted against protein length. Significant sequences
(i.e. p < 0.001, permutation test) are plotted as red dots for HIV-1 (only 5 out of 11039),
and yellow dots for the human proteome (1195 out of 70269).
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3.5 C O N C L U S I O N

We showed that the vast majority (>99%) of HIV-1, HCV and Influenza proteins
has a predicted CTL epitope distribution that is indistinguishable from a ran-
dom distribution (Fig. 3.5). Additionally, the distribution of hydrophobic amino
acids in these proteins is also likely to be random (Fig. 3.8C). These findings cast
doubt on two recent hypothesis in which it was argued that the clustering of
CTL epitopes in HIV-1 proteins is the product of virus adaptation (Yusim et al.,
2002), or the result of clustered hydrophobic amino acids (Lucchiari-Hartz et al.,
2003), respectively.

To further investigate if there was any sign of evolution in the distribution
of CTL epitopes in viruses, we compared three virus proteomes to those of
Human, Drosophila and Yeast (Fig. 3.6). The epitope distribution in HIV-1 pro-
teins, as measured by the Hopkins & Skellam index score, is not extraordinary
and falls within the range of proteins of comparable size in the human pro-
teome (Fig. 3.7). Remarkably, the variation in epitope distribution that exists
for any HIV-1 protein when sampling the virus from many hosts is as broad
as the whole range of distributions found between all eukaryotic proteins of a
comparable size as the sampled HIV-1 protein. Such a large amount of vari-
ation in epitope distributions is not what one would expect if HIV-1 has been
undergoing large-scale adaptation to the human population. If HIV-1 had been
globally accumulating the same CTL epitope escapes in its variable protein re-
gions(Yusim et al., 2002), the distribution of CTL epitopes within HIV-1 viruses
should be converging towards the same distribution.

The transformation that we applied to analyse the spatial distribution of CTL
epitopes in proteins (discussed in section 4.2 and 5.2) could have destroyed one
possible fingerprint of HIV-1 adaptation, namely that in the variable regions
HIV-1 has adapted to select for epitope precursor to which only a limited num-
ber of MHC alleles can bind (Yusim et al., 2002). A study of the distribution of
CTL epitopes over epitope precursors in HIV-1 revealed that a larger fraction of
epitope precursors is predicted not to bind to any of the 32 studied MHC al-
leles (33%), than expected for a random distribution. Furthermore, the number
of epitope precursors that bind to 1, 2 or 3 MHC molecules is underrepresen-
ted, whereas the number of epitope precursors that bind to 4 or more MHC
molecules is overrepresented in HIV-1. This pattern of under- and overrepres-
entation strongly suggests that the number of MHC alleles that can bind to a
particular amino acid sequence is clustered. However, this pattern is not only
observed for HIV-1 proteins, but also for HCV, Influenza, and the Human pro-
teome (see Fig. 3.9), which suggests that the clustering of MHC alleles over
epitope precursors reflects patterns in the binding preferences of MHC alleles,
and not as much a fingerprint of HIV-1 adaptation to its human host.

Whether or not HIV-1 is currently adapting to the human population is de-
bated in the literature, and investigated with the help of a variety of methods
(Moore et al., 2002; Yusim et al., 2002; Leslie et al., 2005; Müller et al., 2006;
Brumme et al., 2007; Bhattacharya et al., 2007; Poon et al., 2007; Herbeck et al.,
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Figure 3.9 MHC alleles are clustered over epitope precursors. Multiple MHC alleles
can bind to the same epitope precursor. Here we studied the distribution of MHC al-
leles over epitope precursors. With 32 different MHC matrices available for the MHC-
pathway predictor, a single epitope precursors will be able to bind between 0 and 32

HLA molecules. In a situation where MHC alleles are randomly distributed over epi-
tope precursors, each MHC allele has a chance to bind to an epitope precursor with the
same chance as the specificity of that MHC allele (which for a threshold of IC50 500nM
ranged from 0.5% to 13% of the epitope precursors). Given a random distribution, 18%
of the epitope precursors are expected to bind to none of the available MHC alleles, 33%
to bind a single MHC allele, and 49% to bind 2 or more MHC alleles (black line). In con-
trast with the random distribution, the predicted distribution for HIV-1 shows a higher
percentage of epitope precursors that bind no epitope precursors, fewer than expected
epitope precursors that bind between 1 and 3 MHC alleles, and more than expected epi-
tope precursors that bind to 4 or more MHC alleles (red line). Not only HIV-1, but also
HCV, Influenza, and the Human proteome follow this pattern.
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2008; Kawashima et al., 2009) (Chapter 2). We reported in Chapter 2 that HIV-1
did not show any large-scale adaptation to the cellular immune response over
the last three decades, using HIV-1 population sequence data sets and CTL epi-
tope predictors. In this paper we show that the distribution of predicted CTL
epitopes in HIV-1 appears to be random, and is similar to the distribution of
CTL epitopes in organisms that are not under selection pressure to escape the
human antigen presentation pathway. Therefore we conclude that the visually
apparent clustering of CTL epitopes in epitope maps should not be interpreted
as a signature of a past large-scale adaptation of HIV-1 to the human cellular
immune response.
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4.1 A B S T R A C T

Background: The classical antigen presentation pathway consists of two mono-
morphic (proteasome and TAP) and one polymorphic component (MHC Class
I). Viruses are capable of escaping CTL responses by mutating an epitope such
that it is no longer correctly processed by proteasome, TAP and/or the MHC.
Whereas escape mutations that affect MHC binding are typically no longer
under selection pressure in the next host of the virus (as hosts differ in their
MHC alleles), escape mutations that affect the processing of an epitope pre-
cursor would make this epitope precursor inaccessible for MHC-binding for all
MHC alleles in the population.

Results: We designed an agent-based model in which an HIV-1 like virus
adapts to the antigen presentation pathway of individual hosts, and spreads
through the host population. We tracked whether the virus would adapt to the
monomorphic proteasome and TAP, and what the consequences were for the
level of adaptation to the host population that the virus could reach. We found
that in a host population with a high degree of MHC polymorphism, viruses
are under selection pressure to accumulate escape mutations that prevent an-
tigen processing, rather than MHC-binding. As expected, an increase in the
degree of MHC polymorphism also increased the number of epitope precursors
in the virus that were intermittently under host immune selection pressure. In
an unadapted virus, the typical number of epitope precursors under selection
pressure within a host is independent of the degree of MHC polymorphism in
the population. Thus an increase in the total number of viral epitope precurs-
ors utilized by the host population resulted in an average increase in the time
between exposures to the immune system for each epitope and epitope pre-
cursor. In the model, the increased time between exposures led to an increased
reversion of CTL epitope escape mutations, and limited the level of CTL adapt-
ation that the virus could reach.
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Conclusion: Even though an HIV-1 like virus will adapt to the monomorphic
components of the antigen presentation pathway when encountering a high
degree of MHC polymorphism, the virus does not achieve a higher level of
adaptation to the host population by doing so. The increased time between ex-
posures to the immune system for individual epitopes and epitope precursors
in a population with a high degree of MHC polymorphism results in an in-
creased reversion of escape mutations, which negates the benefit the virus has
by adapting to the monomorphic proteasome and TAP.

4.2 I N T R O D U C T I O N

The antigen presentation pathway provides the immune system with a way to
detect intracellular pathogens, by displaying intracellular protein fragments on
the cell surface. One of the most remarkable features of this pathway is the
high degree of polymorphism in one of its components. With over 2300 alleles
known (Robinson et al., 2006; Sayers et al., 2009), the major histocompatibility
(MHC) class I molecules are the most polymorphic genes in the human genome.
This polymorphism is thought to have developed in response to the selection
pressure exerted by pathogens in at least two ways: by means of the heterozy-
gote advantage (Doherty and Zinkernagel, 1975; Carrington et al., 1999) (i.e. the
ability of heterozygote hosts to present a wider range of epitopes) and the rare
allele advantage (Slade and McCallum, 1992; Langefors et al., 2001; Borghans
et al., 2004) (i.e. pathogens typically carry the least escape mutations for the
rarest MHC alleles).

The antigen presentation pathway involves two other molecules besides the
polymorphic MHC alleles: the proteasome that cleaves proteins, and the trans-
porter associated with antigen processing (TAP) that transports epitope precurs-
ors into the endoplasmic reticulum, where they bind to the MHC. Surprisingly,
it is only the antigen presentation step of the pathway (MHC class I) that has
developed a large degree of polymorphism, even though viruses can escape
CTL responses by adapting to any of the steps in the antigen presentation path-
way (Yokomaku et al., 2004; Kwun et al., 2007) (Chapter 2). It would seem
that there is a fitness advantage for viruses to escape epitope processing by the
monomorphic proteasome and TAP.

In Chapter 2 we studied 30 years of available HIV-1 sequence data, but found
that HIV-1 did not appear to accumulate epitope precursor escape mutations.
We postulated a mechanism why HIV-1 would not be able to do so, based on
the specificity of the MHC alleles within a host, and the polymorphism of the
MHC in the population. These two characteristics of the MHC result in an
intermittent exposure of epitope precursors to immune selection pressure, as
HIV-1 is transmitted from one host to another. Without a constant selection
pressure to maintain epitope precursor escapes, these escape mutations can
frequently revert back into the wildtype sequence.

In this Chapter we explored the ability of an HIV-1 like virus to adapt its gen-
ome to a host population, using an agent-based simulation model. We report
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that even though the proteasome and TAP in these host populations are mono-
morphic, the virus cannot exploit this similarity between hosts to completely
escape the cellular immune response. In all host populations that have an MHC
polymorphism, the virus reaches a quasi-steady state in which the accumula-
tion of new escape mutations is balanced by the reversion of escape mutations
that are not under immune selection pressure in its current host.

In a host population with a high degree of MHC polymorphism, the virus is
selected to predominantly generate epitope precursor escape mutations. How-
ever, the benefit of adapting to escape proteasome and TAP is negated by an
increase in reversion of escape mutations, as the total time that each individual
epitope precursor or CTL epitope is under selection pressure in such a host
population is lower than in a host population with a low degree of MHC poly-
morphism.

4.3 M AT E R I A L S & M E T H O D S

4.3.1 Agent-based model: actors and events

The agent-based model consists of two types of actors (hosts and viruses) and
four types of events (procreation, death, and infection / sexual contact for the hosts,
and adaptation for the virus). For each time-step of 0.1 years in the model, the
events that will take place are determined based on their predefined frequency
per year, and are subsequently applied in a random order to all hosts in the
population. On average, each host participates in 0.5 procreation events, 1 death
event, and 2 infection events per year, and each virus in 10 adaptation events.
Following is a detailed description of each of these 4 events.

• Host procreation: The selected host passes on its proteasome, TAP and
half of its MHC alleles to a child. The other half of the MHC alleles is
drawn from a constant pool of MHC alleles in order to keep the degree
of MHC polymorphism in the population stable. The chance of successful
childbirth decreases linearly with the population size (i.e. we have logistic
growth). The newborn children are given the age of 15, and are added to
the host population.

• Host death: The host is removed from the population if it fails to pass
an age-dependent and viral-load-dependent death chance. The chance of
dying is a mathematical approximation of an age-specific mortality curve
(Gompertz, 1825; Carnes et al., 2006; Hallén, 2007). If the host is infected
by a virus, the chance of dying is further increased, based on the number
of years that the host has been infected, and the viral load of the virus
(Lavreys et al., 2006) (Eq. 5.3).

• Host infection / sexual contact events are short-term relationships between
two hosts. Transmission of the virus can happen in both directions between
the host and a randomly selected partner if one, but not both of them are
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infected. The chance to transmit the virus depends on the viral load in
the infected host (Eq. 5.2) (Chakraborty et al., 2001; Wawer et al., 2005). In
the model every host is the initiator of an infection event once per year,
and thus on average every host takes part in an infection event twice per
year. The chance of infection per event (Eq. 5.2) is based on the chance of
infection per sexual contact and the number of contacts per year (Wawer
et al., 2005).

• Viral adaptation can only happen in hosts that are infected with a virus.
A mutant of the virus is created by randomly changing one of its amino
acids, and this mutant replaces the original virus if its fitness in the host
is equal to or greater than that of the original virus. The fitness of a virus
is calculated by its number of epitopes and its distance from the wild-
type, and is expressed as a viral load (Eq. 4.1). This adaptation scheme
is a simplistic representation of selective sweeps that occur during the
within-host competition between viruses (Asquith et al., 2006), and cap-
tures the essence of within-host epitope escape mutations, reversion of es-
cape mutations and neutral drift in a computationally non-intensive way.

4.3.2 Antigen presentation pathway

The classical antigen presentation pathway can be described as three filters (pro-
teasome, TAP, MHC) that are applied to intracellular proteins. The pathway
tests which peptides in a protein can successfully pass through all three filters,
and thus be presented as CTL epitopes on the cell surface (Tenzer et al., 2005;
Groothuis et al., 2005) (Chapter 2). Although current algorithms can accurately
model this pathway for a limited number of MHC alleles (Larsen et al., 2005;
Tenzer et al., 2005), we have opted for a simpler and computationally faster
approach in this model, and let three regular expressions represent the pro-
teasome, TAP and MHC specificity. Regular expressions are commonly used
to search for complicated text patterns, and can efficiently locate certain letter
combinations in a string of text (Fig. 4.1). The model does not use 20 amino
acids, but just 8. The effect is twofold: it increases the chance of reverting es-
cape mutations from 1 over 19 to 1 over 7, and increases the fraction of possible
escape mutations per position from ±4 out of 19 to ± 3.5 out of 7, taking into
account alphabetic distance (see below section on Model equations). Because a
larger fraction of the mutations has an effect on escape or reversion, the com-
putation speed of the model increases.

Hosts are diploid, but always homozygous for proteasome and TAP. Hosts
have two MHC loci, and thus can carry up to four different MHC class I alleles.
The total number of unique CTL epitopes presented by these four MHC class
I alleles (rather than just the total) is used to determine the fitness of the host
(thus allowing for a heterozygote advantage (Doherty and Zinkernagel, 1975;
Carrington et al., 1999)).
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Figure 4.1 Three pattern filters act as the proteasome, TAP and MHC steps of the Ag
presentation pathway. In this example, proteasome can only recognize 9-mer peptides
that do not start with the amino acid E, and do not have an A, D or G amino acid in
the second position, etc. TAP, being less specific than the proteasome, is only sensitive
in its 6th and 7th position and cannot recognize any 9-mer peptides that have a B and
a C, respectively at those positions. Per position highlighted region indicate a match to
all three filters. Peptides like GBGAFEDAB that can be recognized by all three filters are
counted as CTL epitopes.

4.3.3 Model equations

The fitness of the HIV-1 like virus in the model is determined by its viral load,
and expressed as the logarithm of the viral load V. A virus has a base viral
load Vb of 9 (i.e. 109 copies per ml), and is penalized for every unique CTL
epitope e that a host can recognize, and for the number of mutations m that the
virus carries. Each epitope decreases the viral load by a 0.2 log change (Kiepiela
et al., 2007), and each amino acid that is different from the wildtype sequence
decreases the viral load by a 0.1 log change multiplied by the alphabetic distance
between the wildtype amino acid, and the mutant amino acid. e.g, mutating a
‘D’ amino acid into an ‘A’ would cost the virus a 0.1× 3 = 0.3 log change in
fitness, whereas mutating the ‘D’ amino acid into an ‘E’ would only cost 0.1 log
change in fitness. The log viral load V can not fall below 0. Eq. 4.1 describes
the above explained relationship:

V = max
{

0 , Vb − 0.20e− 0.10d
}

. (4.1)

The infectiousness I of an infected host per infection event is determined by
the viral load of the virus in the infected host (Chakraborty et al., 2001) (Eq. 5.2).
During the acute phase of an infection (first three months), the infectiousness I
is temporarily inflated by increasing the viral load by two a hundredfold. One
infection event represents a short-term relationship of six months and 60 sexual
acts in which the infected host can transmit the virus to susceptible host (ad-
apted from sexual activity data in Wawer et al. (2005)). Eq. 5.2 mathematically
approximates the dependency of the probability of transmission on viral load,
adapted from Chakraborty et al. (2001):

55



Chapter 4. Quantifying how MHC polymorphism prevents pathogens from adapting
to the antigen presentation pathway

I = 1−
(

1− 0.0004×
(
0.25×V

)8
)60

. (4.2)

By means of these infection events, hosts are connected to each other in a
simple dynamical sexual contact network. Mother-to-child transfer of the virus
is not included in this model.

The death rate of hosts D consists of two components. Firstly, hosts can die of
of old age, which is a function of age a, based on the estimated intrinsic death
rate of North Americans (Carnes et al., 2006). Secondly, hosts can die of the
viral infection. This infection-related chance of dying is a function of the time
since infection y and the viral load V (Chakraborty et al., 2001; Wawer et al.,
2005). In infected hosts, these two chances are summed (Eq. 5.3). In uninfected
hosts, the chance of dying to infection is set to zero.

D = e(0.1a)−10.5 + e(−0.4a)−8 + e0.1yV−5 (4.3)

4.3.4 Model initialization

The model is initialized with a host population at its maximum population size
of a 5000 hosts, with a random age between 0 and 100. An MHC polymorph-
ism for both MHC loci of 20 alleles is in place, modeled after the frequency
distribution and polymorphism of MHC alleles with a frequency of ≥ 1% in
the European population (dbMHC-Anthropology (Sayers et al., 2009)). The pro-
teasome and TAP genes are monomorphic. 5% of the population is inoculated
with a randomly generated wildtype virus sequence at the start of the model.
Simulations typically run for a 1000 years.

4.4 R E S U LT S

4.4.1 Model

To study the potential of viruses like HIV-1 to adapt to the human population,
we constructed an agent-based model of a small host population infected with
a chronic virus. We kept track of the level of adaptation that this virus reached
to the whole population, while it was undergoing within-host adaptation.

The model itself is simple in design: a host population was created, from
which members were randomly selected and subjected to one of four events:
procreation, death, within-host adaptation of the virus, and infection of another
host. The selected host had to meet certain natural criteria for an event to
successfully take place (e.g. infection of another host could only occur if the
selected host was infected with a virus in the first place). This cycle of selecting
hosts and applying events to them is simply repeated as long as the simulation
runs.

Hosts are defined by their age, time since infection, and their antigen present-
ation pathway molecules. The latter consist of a single proteasome and TAP al-
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Table 4.1 Model parameters
Parameter Value Notes

Host population parameters
Maximum population size 5000

MHC diversity 2 loci, each with 20 al-
leles

a sample of 3500 Europeans
contained 16 and 20 different
MHC alleles (HLA-A, HLA-B)
in frequencies ≥ 2%, dbMHC
Anthropology (Robinson et al.,
2006).

Procreation events 0.5 per host per year logistic growth
Age-dependent death events 1 per host per year (Carnes et al., 2006)

Virus parameters
Length 500aa single protein is the main de-

terminant of viral fitness in
HIV-1 (Kiepiela et al., 2007)

Evolution events 10 per pathogen per
year

leads to an average of 3.5 es-
cape mutations, and an equal
amount of reversions per infec-
tion.

Infection events 1 per host per year
Effect of a single CTL response
on the viral load

-0.20 log10 (Kiepiela et al., 2007)

Effect of an escape mutation
of alphabetic distance 1 on the
viral load

-0.10 log10 assumed to be smaller than the
positive effect of escaping an
epitope. Estimation is based on
the natural amount of variation
found in HIV-1 GAG sequences.

Effect of acute phase of the dis-
ease

+2 log10 viral load, for 3

months.
(Piatak et al., 1993; Costin, 2007)

Virus-dependent death rate dependent on time
since infection, and
viral load

(Lavreys et al., 2006)

Chemical parameters
Number of amino acids 8 see 4.3.2
Epitope size 9 Most common size for CTL epi-

topes
Specificity of proteasome + TAP
combined

0.25 (Burroughs et al., 2004)

Specificity of MHC alleles 0.05 (Burroughs et al., 2004; Assar-
sson et al., 2007; Tenzer et al.,
2005)
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lele and four MHC alleles. Each of these alleles is implemented as a pattern filter
which only allows a subset of peptides to ‘pass through’ (see Fig. 4.1, Methods).
The specificity of each of these filters matches the estimated specificity of its
corresponding step in human antigen presentation.

Viruses are represented by a string of letters, and tested against the antigen
presentation pathway of the host to determine the number of epitopes that the
virus carries (i.e. the number of substrings that can pass through the filters of
the current host). The number of unique epitopes that the virus carries, as well
as its distance (alphabetic distance, see Methods) to the wildtype determine the
viral load. The viral load in turn influences the chance that a host dies during
a death event (Eq. 5.3), and the chance that transmission of the virus occurs
during infection events (Eq. 5.2). Within hosts the virus produces mutants. A
mutant virus replaces the resident virus within the host if it has an equal or
higher fitness. In this way both selection and neutral sequence drift can occur
within a host. The model is described in more detail in the Methods section,
and its parameters are given in Table 4.1.

With this model, we can track the adaptation of a virus to its current host
(e.g, first panel, Fig. 4.2), and observe the rate and fraction at which the virus
accumulates antigen presentation escape mutations (black lines), and antigen
processing escape mutations (red lines).

4.4.2 Intermittent Exposure

In Chapter 2, we estimated that in a typical host only 18% of the epitope pre-
cursors of a virus will bind to any of the hosts’ 4 MHC class I alleles, due to
the high specificity of the MHC. The other epitope precursors are not under
immune selection pressure for as long as the virus remains in that host. When
the virus is transmitted to a new host, the immune selection pressure shifts to
a new set of epitope precursors, due to the MHC polymorphism in humans,
and any epitope precursor escape mutation that is no longer under selection
pressure can revert to the wildtype sequence, just as MHC binding escapes do
(Friedrich et al., 2004; Barouch et al., 2005; Herbeck et al., 2006). We postulated
that this intermittent exposure of epitope precursors due to the selectivity and
polymorphism of the MHC is what prevents HIV-1 from efficiently exploiting
the monomorphic property of the proteasome and TAP to escape the CTL re-
sponses against the virus (Chapter 2).

The effect that this intermittent exposure of epitope precursors has on the
adaptation of a virus to the antigen processing machinery can be visualized
by tracking a single virus as it passes from one host to the other (Fig. 4.2).
During these passages, three properties of the virus are monitored: 1) its current
number of CTL epitopes in the host, divided by the number of CTL epitopes
that the original wildtype of the virus would have had in the host (black line). 2)
its loss of epitope precursors compared to the number of epitope precursors in
the wildtype, divided by the total number of epitope precursors in the wildtype
that could bind to any of the MHC alleles in the population (red line). 3) its
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Figure 4.2 The adaptations of a single virus variant as it passes through multiple hosts.
Each panel represents a host. The time since infection is plotted on the x-axis, and
the within-host level of adaptation to CTL epitopes (black lines), the population-wide
adaptation to epitope precursors (red lines), and the population-wide level of adaptation
to CTL epitopes (grey lines) is shown on the y-axis. The y-axis ranges from -0.1 (less
adapted than the wildtype) to 0 (as adapted as the wildtype to the host population) to
1 (fully adapted to the host population). Arrows indicate the moment in the infection
where the host transmitted the virus to the next host.

total number of epitope precursors that could bind to at least one of the MHC
alleles in the population, divided by the same measurement in the wildtype
(grey line).

Because we scale to wildtype expectation, and correct for the fraction of
epitope precursors that is expected not to bind to any of the MHC alleles,
we can directly compare the levels of within-host CTL epitope adaptation (1),
population-wide epitope precursor adaptation (2), and population-wide CTL
epitope adaptation (3), as all three range from 0 to 1 after scaling.

On average, the wildtype virus carried 16.5 CTL epitopes in each host, in
a short sequence of 500 amino acid that we designated as the source of all
immunodominant epitopes in the virus, and escaped 3.5 CTL epitopes during
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its stay in a host. Within a host, the number of CTL epitopes in the virus is
generally decreasing (black lines), as the virus adapts to its host. When the
virus is transmitted to a new host with different MHC alleles, the number of
within-host CTL epitopes changes to a new starting point, from which it starts
decreasing again (Fig. 4.2.)

Both the population-wide level of adaptation to epitope precursors (dark
grey lines) and the population-wide level of adaptation to CTL epitopes (light
grey lines) drop during within-host evolution, but at a slower pace than the loss
of within-host CTL epitopes (black line), as each host represents only a small
part of the host population. When a virus is transmitted to a new host, the
population-wide level of adaptation of epitope precursors and CTL epitopes
remain at exactly the same level as in the old host, as these two measurements
are not directly affected by the differences in genetic composition between the
old and the new host (Fig. 4.2).

At the beginning of the epidemic, the virus predominantly accumulates ad-
aptations to its current host and to the host population (Fig. 4.2, top 3 panels),
as it has not yet accumulated many escape mutations that could be reverted.
As the virus passes through more and more hosts, and accumulates CTL epi-
tope escape mutations, the virus carries more escape mutations, and reversion
of escape mutations start to occur more frequently (Fig. 4.2, bottom 3 panels).
Eventually, reversions of escape mutations that are no longer under selection
pressure in the current host, and escape mutations in the current host happen
at the same frequency, and the population-wide adaptation approaches a quasi-
steady state.

4.4.3 Viral adaptation approaches a quasi-steady state

In the previous section, we followed a single virus variant through its sub-
sequent hosts, and described how it approached a quasi-steady state level of
adaptation to the population. Now we study the adaptation of all virus variants
in the population from the start of the epidemic onwards. As the virus ad-
apts to the population, the average population-wide level of adaptation to CTL
epitopes in the virus decreases rapidly at first, and then slowly settles into a
state in which it has about 28% less population CTL epitopes than the wildtype
virus had (black line Fig. 4.3), i.e. is pre-adapted for 28% of the CTL epitopes.
Over the course of the epidemic, the population size dropped to 82% of the
original population size, and the average age of individuals drops from 46 to
24 years. In the quasi-steady state, ± 65% of the population is infected with the
virus. This is a higher prevalence than the maximum prevalence that has been
observed thus far in Swaziland (42% (Mathunjwa and Gary, 2006)), and close
to an earlier estimate for HIV-1 of a prevalence of 70% once the epidemic ap-
proaches a quasi-steady state (van Ballegooijen et al., 2003). It could be that the
HIV-1 epidemic has not yet approached a quasi-steady state, and that the pre-
valence will rise even higher. However, our model does not account for possible
changes in the social behaviour of the afflicted host population, or the effect of
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Figure 4.3 The quasi-steady state that the HIV-1 like virus approaches in a population
with a polymorphism of 40 MHC alleles is characterised by a population-wide loss of ±
28% of its CTL epitopes, 24% of the epitope precursors that could bind to at least one of
the MHC alleles in the population, and 6% of the MHC-binding peptides, compared to
their respective densities in the wildtype sequence. 81% of the escape mutations affected
the processing of the epitope precursors, and 21% affected MHC binding. The graph
shows the averaged values of 20 simulations.

drug treatment. Nor does it allow for large changes in its initial MHC allele fre-
quenties, such that MHC alleles that confer resistance to the virus could rise in
frequency (Carrington and O’Brien, 2003). These differences between the sim-
ulation model and reality could account for the high prevalence in the model,
compared to the prevalence observed for HIV-1 epidemics in southern africa.
Remarkably, 81% of the adaptations that the virus had accumulated were muta-
tions that prevented the processing of an epitope precursor, while only 21% of
the mutations affect the MHC-binding of the peptide (Fig. 4.3), even though the
latter type of mutation is more frequently generated due to the higher specificity
of the MHC (Brander et al., 1999; Yokomaku et al., 2004) (Chapter 2).

4.4.4 Effect of MHC polymorphism on adaptation

In a population with a total of 40 MHC alleles, the virus predominantly accu-
mulated epitope precursor escapes (Fig. 4.3). We found that the ratio of accumu-
lated epitope precursor to MHC-binding escapes in the virus gradually shifted
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Figure 4.4 The effect of the degree of MHC polymorphism on the quasi-steady level
of adaptation that the virus approaches. Increasing the MHC polymorphism (x-axis)
increases the fraction of the absolute number of escaped CTL epitopes (white bars,
righthand y-axis) that are due to precursor escapes (dark grey bars) and decreases the
fraction that is due to MHC binding escape mutations (light grey bars). At the same
time, increasing the MHC polymorphism increases the number of epitope precursors
that bind to one or more of the MHC alleles in the population (black line, with std.
dev, righthand y-axis) from 31 up to 115 epitope precursors, which approaches the total
number of epitope precursors in the virus (dotted line). The grey line (lefthand y-axis) is
the fraction of all CTL epitopes in the host population (black line) that the virus carries
escape variants for (white bar), and thus represents the level of adaptation that the virus
can evolve to, for different degrees of MHC polymorphism in the host population. At an
MHC polymorphism lower than 6 MHC alleles the host population would not survive
the virus.

towards epitope precursor escapes with an increase in the degree of MHC poly-
morphism in the host population (bars in Fig. 4.4). At an MHC polymorphism
of 6 alleles, the majority of escape mutations are MHC binding escape muta-
tions, but at high degrees of MHC polymorphism (e.g. ≥ 20 alleles), the virus
variants that acquired epitope precursor escape mutations outcompete the vir-
uses that acquired MHC binding escape mutations.

Not only does a high degree of MHC polymorphism select for pathogens
that have accumulated epitope precursor escape mutations, it also has an obvi-
ous effect on the number of epitopes in the population that can be bound by at
least one of the MHC alleles in the host population (black line, Fig. 4.4). Rais-
ing the MHC polymorphism from 6 MHC alleles to 80 MHC alleles increases
the absolute number of epitope precursors that can bind to at least one of the
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MHC alleles from ± 31 to a 115 epitope precursors. As the number of epitope
precursors that is expected to bind to the MHC alleles of a single host remains
constant, an increase in the absolute number of epitope precursors in the pop-
ulation implies that on average each epitope precursor in the virus is under
immune selection pressure a shorter fraction of the time. As a result, even in
a situation where the virus was predominantly adapting to the monomorphic
proteasome and TAP, the virus fails to achieve a high level of adaptation to
the host population (grey line, Fig. 4.4). The level of adaptation to the host
population that pathogens can reach decreases with an increase in MHC poly-
morphism, and levels off at ± 25%.

4.5 D I S C U S S I O N

Viruses that escape a CTL response against a particular epitope by abrogating
the MHC-binding of that epitope would typically have no advantage of this
adaptation in another host, due to the extensive MHC polymorphism. A major
concern of ours when we studied the antigen presentation pathway was that
in response to the MHC polymorphism, viruses would evolve to prevent the
processing of epitope precursors by the monomorphic proteasome and TAP,
rather than to prevent MHC binding. This concern was based on reports of
antigen processing escapes (Brander et al., 1999; Yokomaku et al., 2004), and
was confirmed in our simulations: in human populations with a high degree of
MHC polymorphism, viruses were selected to adapt almost exclusively to the
monomorphic components of the antigen presentation pathway (Fig. 4.3).

Surprisingly, even when adaptation occurred primarily to the proteasome
and TAP, viruses could not escape all of the CTL responses against their CTL
epitopes, but approached a quasi-steady state in which escape mutations for
CTL epitopes were created and reverted at an equal rate. The long time between
exposure to immune selection pressure for individual epitope precursors in a
population with a high degree of MHC polymorphism balances the accumula-
tion of epitope precursor escapes with the reversion of escape mutations. The
exact amount of time between two subsequent exposures of an epitope or epi-
tope precursor to the immune system is determined by the host history of a
particular virus variant, and depends on the distribution of MHC alleles, their
promiscuity (Frahm et al., 2007) and the degree of MHC polymorphism in the
contact network through which the virus moves. This direct relation between
escape variant frequency and MHC allele frequency is clearly visible in a recent
study by Kawashima et al. (2009).

Recently, Kawashima et al. (2009) and Schellens (2009) reported that HIV-1 is
still accumulating adaptations to the human immune system, because for sev-
eral CTL epitopes1, the fraction of HIV-1 viruses that carried escape variants
of these epitopes had increased between the 1980’s and now (or in the case of

1A discussion on how to interpret the apparent lack of large-scale adaptation of HIV-1, and the
accumulation of escape variants for certain epitopes can be found in Chapter 2.5
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Schellens (2009), the number of CTL epitopes that were predicted to bind to cer-
tain MHC alleles had decreased since the 1980’s). In both cases, this apparent
accumulation of escape mutations in the virus could also reflect the adapta-
tion of HIV-1 to the different MHC frequencies in new locale. For example, in
the Kawashima et al. (2009) study, the HLA-B*51-negative Japanese haemophil-
iacs from 1983 were infected with HIV-1 through blood transfusion from blood
plasma imported from the USA (Shimizu et al., 1992). Thus, the low escape vari-
ant frequency in 1983 (21% contained the RT I135X escape mutation) could just
reflect the level of adaptation that HIV-1 virus variants in the USA had reached
for this particular MHC allele (prevalence in the USA: 12% (Kawashima et al.,
2009; Robinson et al., 2006)). By 1997 and 2008, the HIV-1 virus that circulated
in Japan would have encountered HLA-B*51 positive hosts (prevalence: 22%
(Kawashima et al., 2009)), and the high frequency of the I135X escape variant in
HLA-B51-negative Japanese patients (> 50%) would by now reflect the Japan-
ese HLA-B*51 allele frequency. Based on this alternative explanation, we predict
that epitope escape variants for MHC alleles that are common in the USA but
rare in Japan, would have decreased in frequency in the Japanese HIV-1 infec-
ted patients. A recent paper by Vider-Shalit et al. (2009) describes a decrease
in the ‘size of the immune repertoire (SIR)’-score between the transition from
SIV to HIV, which suggests a loss of multiple epitopes in HIV-1 since the virus
jumped species. Oddly enough, the GAG protein appears to be increasing in
SIR score over time. What causes the differences in predictions of Vider-Shalit
et al. (2009) and the predictions based on the MHC-pathway is currently under
investigation.

In our model, the HIV-1 like virus started completely unadapted to the host
population, and evolved within 200-500 years towards a stable state where it
carries escape variants for ± 25-30% of its CTL epitopes (depending on the de-
gree of MHC polymorphism, see Fig. 4.4). However, HIV-1 is related to and
likely originated from the SIVcpz virus in the chimpanzee subspecies Pan trog-
lodytes troglodytes (Keele et al., 2006). Furthermore, humans and chimpanzee
are closely related, and share common features and binding patterns in their
antigen presentation pathway (Hoof et al., 2008; Anzai et al., 2003). Therefore,
it seems possible that part of the adaptation of the virus to the proteasome, TAP
and MHC alleles of the human population had already occurred in chimpanzee.
Such a partial adaptation to the human population could be the reason why in
Chapter 2 a decrease in the total number of (predicted) HIV-1 CTL epitopes in
the period between 1980 and 2005 was absent: the quasi-steady state of Fig. 4.3
would have already been approached prior to the 1980’s.

Concluding, we find that a high degree of MHC polymorphism in a host
population selects for viruses that escape the monomorphic proteasome and
TAP. However, a high degree of MHC polymorphism also increases the time
between exposures to CTL responses for any epitope precursor. As a result of
this, the selection pressure on a virus to maintain a particular escape mutation
decreases, and the level of adaptation to the antigen presentation pathway that a
virus can evolve is reduced. By increasing the number of epitope precursors that
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5.1 A B S T R A C T

The classical antigen presentation pathway has three main components; the
proteasome, TAP and MHC class I molecules. Of these three, only the MHC
evolved a functional polymorphism, whereas the former two have remained
monomorphic. As pathogens can escape antigen processing and presentation
by adapting to any of these molecules, the heterozygote advantage, and rare al-
lele advantage selection pressures -which are thought to be responsible for the
extensive MHC polymorphism- should apply to all three steps in the pathway. It
is not understood why proteasome and TAP have not evolved a polymorphism.
Previously we predicted that it would be sufficient for the host population if at
least one of the steps of the pathway would be polymorphic, and that it would
be most beneficial for the host population if that step was the most specific step
of the antigen presentation pathway (i.e. the MHC). Here we studied the evol-
ution of polymorphism in the antigen presentation pathway in an agent-based
model, in which pathogens can adapt to any of the three steps of the pathway,
and all three steps of the pathway are capable of evolving a polymorphism in
response to the pathogen selection pressures. Under the condition that the host
population maintains a high degree of coevolvedness between the steps of the
Ag presentation pathway, we found that it is always, and only, the most specific
step that becomes polymorphic.

5.2 I N T R O D U C T I O N

One of the most remarkable features of the classical antigen (Ag) presenta-
tion pathway is the high degree of polymorphism of one of its molecules. The
major histocompatibility complex (MHC) class I molecules are the most poly-
morphic genes in the human genome, with over two-thousand alleles described
(Robinson et al., 2006). This polymorphism is thought to have developed as a

67



Chapter 5. The emergence of polymorphism in the antigen presentation pathway

response to pathogens, by means of the heterozygote advantage (HA) (Doherty
and Zinkernagel, 1975; Carrington et al., 1999) and the rare allele advantage
(RAA) (Slade and McCallum, 1992; Langefors et al., 2001; Borghans et al., 2004;
de Boer et al., 2004).

The Ag presentation pathway involves two other molecules besides the poly-
morphic MHC alleles: the (immuno-) proteasome which cleaves proteins, and
the transporter associated with antigen processing (TAP) which transports epi-
tope precursors into the endoplasmic reticulum, where they bind to the MHC.
Surprisingly, only the MHC class I molecules have developed a large degree of
polymorphism, even though viruses can escape CTL responses by adapting to
any of the steps in the Ag presentation pathway (Yokomaku et al., 2004; Kwun
et al., 2007) (see Chapter 2). It would seem that there is a fitness advantage
for viruses to escape epitope processing by the monomorphic proteasome and
TAP (Yusim et al., 2002). Indeed, in an agent-based simulation model of an
MHC-polymorphic host population, pathogens were strongly selected to accu-
mulate escape mutations that affect proteasomal and TAP processing of epitope
precursors (see Chapter 4).

Because pathogens adapt not only to the MHC, but also to the proteasome
and TAP, one would expect that all steps of the Ag presentation pathway would
have evolved a polymorphism in response to pathogens. However, in the human
species, proteasome and TAP are functionally monomorphic (Gomez et al., 2006;
Alvarado-Guerri et al., 2005; Faucz et al., 2000). To study the factors that shaped
the current diversity of molecules in the human Ag presentation pathway, we
build an agent-based model of a host population that is infected with several en-
demic pathogens. Hosts have a small chance of passing a mutated proteasome,
TAP or MHC allele to their offspring, and thus contribute to the polymorphism
of these molecules in the population. Pathogens infect individual hosts and
adapt their amino-acid sequence to the Ag presentation pathway of that host.
We found that all three steps of the Ag presentation pathway are individually
capable of becoming polymorphic in response to the pathogens.

In Chapter 2 we suggested that the evolution of one polymorphic step in the
Ag presentation pathway would be sufficient to prevent pathogens from ad-
apting to any step in the pathway. We further suggested that a polymorphism
would be expected to evolve in the most specific step of the Ag presentation
pathway, as that would provide the best protection against adaptation to the
Ag presentation pathway. Our results confirm both of these predictions. Under
the condition that new alleles are limited in their mutational freedom such that
the simulated host population maintains a high level of coevolution between
the individual steps of the Ag presentation pathway, there is indeed a strong
selection pressure for the MHC to become polymorphic. We can further re-
fine our hypothesis from Chapter 2 by stating that under the aforementioned
condition, the expectation should not be that at least one step of the Ag present-
ation pathway will become polymorphic, but that only the most specific step will
become polymorphic. In simulations where the alleles were evolving fully un-
constrained, additional quasi-steady states existed, but with lower host fitness.
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In these simulations, the initial conditions of the Ag presentation pathway put
the host population in different basins of attraction.

5.3 M E T H O D S

We use an agent-based model that consists of two types of actors (hosts and
viruses) and five types of events (procreation, death, infection of the hosts, and
escape and reversion of the pathogens within hosts). The timestep of the model
is 1 year, and each year every host participates in 0.5 birth events, 1 death event,
2 infection events, 1 escape and 1 reversion event. The order of these events,
and the order of hosts is randomized each year. The occurrence of an escape
or a reversion event is applied on the host level, i.e. in a single escape event,
all pathogens in a particular host have the opportunity to escape one of their
epitopes. The following is a detailed description of both actors, and each of the
5 events.

5.3.1 Pathogens

The pathogens in the simulations are modeled as chronic pathogens that in-
crease the natural age-related death rate of the host. Once infected with a
particular pathogen species, the host remains a lifelong carrier of this patho-
gen and cannot be superinfected by the same pathogen. Typical simulations
contain twenty of such pathogen species, which is sufficient to ensure that the
hosts evolve a generic Ag presentation system, and not one that is specifically
selected to deal only with the simulated pathogens.

Each pathogen species has a unique randomly chosen wildtype sequence,
and has the opportunity to accumulate escape mutations during escape events,
and can revert escape mutations that are no longer under selection pressure
back to the wildtype sequence during reversion events. The fitness of a patho-
gen is expressed in viral load. Pathogens start with a base viral load Vb of 9

(i.e. 109 copies per ml), and are penalized for every unique CTL epitope e that
a host can recognize, and for the number of mutations m that the pathogen car-
ries. Each epitope decreases the viral load by a 0.1 log change (Kiepiela et al.,
2007). The cost of a single mutation starts at 0.035 log change, and becomes
increasingly more costly the more mutations the pathogen carries:

V = Vb − 0.1e− 0.035×m1.25. (5.1)

The exponent of 1.25 for the cost of additional escape mutations limits the
sequence variability in a pathogen to ± 28 mutations, which translates to ± 60%
of the epitopes in a single host. In general, the pathogens in the model quickly
accumulate 28 escape mutations, and thus their rate of escape is limited by the
rate of reversion of escape mutations that are no longer under selection pressure
in the new host.
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Not the whole pathogen is modeled, as not all genes of a pathogen are likely
to be expressed early on in the pathogens life cycle, or are expressed in a large
enough quantity to play a dominant role in the selection pressure on the patho-
gen (Kiepiela et al., 2007). The pathogens in the simulations consist of 500 amino
acids that will generate the immunodominant immune responses.

The infectiousness of a pathogen I per infection event is determined by its
viral load V, and increases non-linearly from 0 to 1 as the viral load V increases
from 0 to its maximum Vb (Fig. 5.1A, black line). In the model we use a power
of 3, and therefore the relationship between infectiousness of a pathogen and
its viral load is described by

I = (V/Vb)3. (5.2)

5.3.2 Host actors

Host actors in the model are simplified humans, and carry a diploid genome
that encodes for an Ag presentation pathway consisting of one proteasome,
one TAP and one MHC locus. Furthermore, any combination of two hosts can
reproduce meiotically from the moment they are born.

Antigen presentation pathway

The classical Ag presentation pathway can be described as three pattern filters
(proteasome, TAP, MHC) that are applied to intracellular proteins. As pattern
filters, the proteasome creates overlapping 9 amino-acid long peptides (9-mers)
from the virus protein, based on the amino acid patterns that the proteasome al-
lele can recognize, TAP transport those 9-mers into the endoplasmic reticulum,
if they match the pattern for which TAP is specific, and the MHC alleles of the
host bind to those 9-mer peptides that it can recognize. In this implementa-
tion, the three main steps of the Ag presentation pathway differ only in their
specificities. Current algorithms such as the MHC-pathway (Tenzer et al., 2005)
and NetCTL (Larsen et al., 2005) can accurately model this pathway for the pro-
teasome, TAP and a large number of MHC alleles. However, we have opted for
a simpler and computationally faster approach in this paper, and use regular
expressions to represent the proteasome, TAP and MHC pattern filters (Fig. 5.2).
In a regular expression filter, we can define for each position in a sliding win-
dow which amino-acids can be recognized by each allele in the Ag presentation
pathway of the host. In contrast to the more sophisticated MHC-pathway pre-
dictors, a regular expression either accepts or does not accept a certain amino
acid at a particular position. As all of the three steps are diploid, epitopes can
be generated by up to 8 different combinations of a proteasome, TAP and MHC
allele. The total number of unique CTL epitopes presented by these pathways is
used to determine the viral load of the pathogens in the host (Eq. 5.1), which
increases the death-rate of the host (Eq. 5.3, Fig. 5.1).
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Generation of new alleles

There are several ways to generate the pattern filters that serve as Ag present-
ation pathway genes in the model. Unfortunately, randomly drawing the sets
of amino acids that can be recognized at each of the nine positions that make
up a gene (Fig. 5.2) is inefficient for pattern filters with a very low or very high
specificity. The initial alleles in Fig. 5.3, Fig. 5.4, Fig. 5.5B & C were generated by
starting with a fully aspecific pattern filter, and then to remove or add random
amino acids from the filter until the desired specificity is reached (e.g. between
31-35%, 71-79%, and 4-6% for proteasome, TAP, and MHC, respectively).

New alleles in Fig. 5.3, and Fig. 5.4 were generated in a way that artificially
assisted in maintaining a coevolved Ag presentation pathway. Rather than start-
ing from a fully aspecific pattern filter, a mutated allele in a child for one partic-
ular step would be started from a pattern that was the intersection of the filters
in the other two steps of the pathway (e.g. a new TAP allele would be construc-
ted from the intersection of the two proteasome and two MHC alleles that the
parents contributed to the child). This approach made it more likely that the
new allele remains coevolved with the rest of the Ag presentation pathway.

New alleles in Fig. 5.5 were generated by taking the original allele, random-
izing the number and identity of the amino acids in one of the nine positions,
and then correcting for the change in specificity by adding or removing amino
acids from any position in the allele until the right specificity was reached. The
biological interpretation of this algorithm is that mutations change one of the
key positions in proteasome, TAP or MHC alleles radically, and the structure of
the whole molecule changes slightly to accomodate for this change.

5.3.3 Model events

• Procreation: The selected host and a randomly drawn second host both
pass on half of their proteasome, TAP and MHC alleles to a child. During
this event, there is a small chance to mutate (10−4 per allele) into a novel
allele. The chance of succesful childbirth decreases linearly on the density
of the host population (i.e., the model implements logistic growth).

• Death: The host is removed from the population if it fails to pass an age-
dependent and viral-load-dependent death chance. The chance of dying
is a function of age a, mathematically approximated from the age-specific
intrinsic death rate of North Americans (Carnes et al., 2006) (Fig. 5.1B).
This death rate D is multiplied by a factor based on the total viral load of
the pathogens within the host (Fig. 5.1A, grey line), and on the fraction of
the maximum disease burden that a host could have:

D =
(

e(0.1a)−10.5 + e(−0.4a)−8
)
×max

{
1 , 1000×

( ∑n
i 10Vi

N × 10Vb

)5}
, (5.3)

71



Chapter 5. The emergence of polymorphism in the antigen presentation pathway

Figure 5.1 A. The relation between log viral load and infectiousness (black line, lefthand
axis), and log viral load and increased deathrate (grey line, righthand axis). B. The
intrinsic age-dependent death rate of the host population.

in which N is the total number of pathogen species in the population, Vi
is the log viral load of pathogen i, and Vb is the maximum log viral load.
The impact of disease burden increases non-linearly, with a power of 5.

• Infection of a host occurs by randomly selecting a contact partner, whose
different pathogen species each have a chance to infect the host, based on
their viral load (Eq. 5.2, Fig. 5.1A, black line). Infection is a one-directional
event, and hosts can only be infected by a particular species of pathogen
once.

• Escape events are applied to all pathogens in a host. Differences in escape
mutation rate between pathogens are accounted for by giving each patho-
gen species a fixed chance (range 0.75 – 1.0) to participate in an escape
event. When a pathogen participates in an escape event, we randomly
select one of the possible escape mutations that result in a higher viral
load (see Eq. 5.1). Escape events do not model the mutation rate of patho-
gens, but the selective sweep resulting from the competition between es-
cape variants in the within-host quasispecies of a pathogen (Althaus and
de Boer, 2008).

• Reversion events are applied to all pathogens in a host. Similar to escape
events, every pathogen species has a fixed chance of participating in re-
version events (range 0.5 – 0.75). During a reversion event, we randomly
select one of the mutations in the pathogen that when reverted, results in
a higher viral load (see Eq. 5.1). Reversion events do not model the chance
that a random mutation is a reversion, but model the outcome of the com-
petition between reversion variants in the within-host quasispecies of a
pathogen (Asquith et al., 2006).
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5.3.4 Model initialization

The model is initialized with a monomorphic host population at its maximum
population size of 5000 hosts, with a random age between 0 and 100. A new
virus species is introduced into a single host every 100 years until the maximum
number of 20 virus species in the population is reached. If a virus species
goes extinct, a new virus species with a new wildtype and mutation rate is
introduced. Simulations typically run for 80,000 years.

5.3.5 Simpsons Reciprocal Index (SRI)

The level of polymorphism in a particular locus can be expressed as the Simpsons
Reciprocal Index score (Simpson, 1949). The Simpsons Index is a measurement
of diversity that can be interpreted as the probability that two randomly chosen
alleles from two random hosts in the population are identical. The lower the
Simpsons Index, the higher is the diversity of alleles in the population. The
reciprocal of the Simpsons Index puts a number to this diversity, and has the
advantage over the total number of unique alleles as a measurement of diversity,
that it is less sensitive to fluctuations in allele numbers caused by random neut-
ral drift. For example, a polymorphism where all alleles are equally frequent
has an SRI score equal to the number of alleles in the population, whereas a
population that is dominated by a single allele will have an SRI score close to 1.

The Simpsons Reciprocal Index R can be expressed as

R =
1

∑N
i f 2

i
(5.4)

in which fi is the fraction of allele i over all alleles of that locus in the popu-
lation, and N is the total number of unique alleles.

5.4 R E S U LT S

5.4.1 Agent-based model

To study the evolution of the Ag presentation pathway, we constructed an agent-
based model of a small host population infected with several endemic chronic
viruses. Hosts in this model are diploid, and their Ag presentation pathway is
implemented as sequential pattern filters, each of which can recognize a pre-
defined fraction of all possible 9 amino-acid long peptides (9-mers). Any pep-
tide from a virus protein that can pass through a proteasome, TAP and an MHC
pattern filter is marked as an epitope (Fig. 5.2). As hosts are diploid there are
8 different combinations of proteasome, TAP and MHC alleles through which
a peptide might be recognized. Pathogens in the model are implemented as
a string of letters that represents their protein sequence. The pathogens can
mutate their protein sequence to escape the presentation of epitopes. Pathogen
fitness depends on the number of epitopes that they present, and the number of
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Figure 5.2 Three pattern filters act as the proteasome, TAP and MHC steps of the Ag
presentation pathway. In this example, proteasome can only recognize 9-mer peptides
that do not start with the amino acid E, and do not have an A, D or G amino acid in
the second position, etc. TAP, being less specific than the proteasome, is only sensitive
in its 6th and 7th position and cannot recognize any 9-mer peptides that have a B and a
C, respectively at those positions. Per position highlighted regions indicate a match to
all three filters. Peptides like GBGAFEDAB that can be recognized by all three filters are
counted as CTL epitopes. The example regular expressions here can only detect 8 amino
acids, but in the simulations the alphabet has been increased to 20 amino acids.

mutations they carry compared to the wildtype sequence of the pathogen (Eq.
5.1).

Pathogens evolve within hosts. The formalism for within-host evolution that
is used in the model is that all single-point escape mutation variants of the
pathogen are assumed to exist in low numbers in the quasispecies, and that
these variants compete until one of them becomes the dominant within-host
variant of that pathogen (Althaus and de Boer, 2008). At that point this new
dominant variant forms the basis of a new quasispecies, and the process re-
peats itself. Reversions of escape mutations are implemented in the same way
(Davenport et al., 2008). By escaping the presentation of epitopes and reverting
obsolete escape mutations, pathogens can increase their infectiousness during
host-to-host contacts, but also impair themselves by increasing the death-rate of
their host (see Eq. 1-3, and Fig. 5.1).

During the simulation, each host in the population is subjected to one of four
events: reproduction, death, adaptation of its pathogens, and infection with
new pathogens from another host. The model is described in greater detail in
the Methods section.

5.4.2 Low specificity also allows for polymorphism

One factor that directly influences the potential degree of polymorphism is the
specificity of the mutating molecule (Borghans et al., 2004; Brander et al., 1999).
Proteasome and TAP have a low specificity (33% (Burroughs et al., 2004) and
62–84% (Peters et al., 2003; Burroughs et al., 2004), respectively) compared to the
MHC class I molecules (1–8% (Burroughs et al., 2004; Tenzer et al., 2005)). As
a result of their low specificity, new proteasome and TAP alleles typically have
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Figure 5.3 All three steps in the Ag presentation pathway are specific enough to evolve
a polymorphism. Each panel shows the degree of polymorphism (solid line, expressed
in Simpsons Reciprocal Index on the y-axis) that an Ag presentation pathway consisting
only of a single diploid step with a specificity of 33%, 75% or 5% respectively, would
evolve to. The expected number of epitopes in random pathogens was scaled down to
the same number (± 48) for the proteasome and TAP simulations by reducing the size of
the pathogens in those simulations. Dotted lines indicate the SRI caused by neutral drift
for a population with a comparable host turnover rate as the simulations with pathogens.

a large overlap in the 9-mers they can recognize with other alleles in the host
population, which reduces the RAA and HA fitness advantage for host carrying
these new alleles, compared to hosts carrying a new MHC class I allele. Thus,
in a setting where only one of the steps in the pathway is allowed to evolve a
polymorphism, the degree of polymorphism is expected to be inversely related
to the specificity of that step, because the selective advantage of a new allele
depends on how different it is from the existing alleles.

The effect of specificity on polymorphism was tested in a simplified version
of the model, in which the Ag presentation pathway of the hosts was modeled
as containing only a single step. The specificity of this step was set to 33%,
75% or 5%, to simulate the proteasome, TAP, and the MHC, respectively. The
length of the virus protein was adjusted such that the number of epitopes in
a random virus was comparable between the three specificity settings. The
degree of polymorphism is expressed in terms of the Simpsons Reciprocal Index
(Simpson, 1949) (see Methods), which is a measurement of diversity that is less
sensitive to fluctuations in allele numbers than counting the total number of
unique alleles.

As expected, the host population whose single-step Ag presentation pathway
had the specificity of the MHC (5%, panel C), aquired the highest degree of
polymorphism with a Simpsons Reciprocal Index (SRI) diversity score of ± 22.6
alleles (Fig. 5.3C, solid line). The polymorphism in the other host populations
followed the order of their specificity, with the specificity of 33% resulting in a
SRI polymorphism of ± 18.2 alleles, and the specificity of 75% resulting in a SRI
polymorphism of ± 13.5 alleles in the last 100 centuries. (solid lines, Fig. 5.3A
and Fig. 5.3B). In all simulations, the degree of polymorphism was higher than
expected from random neutral drift (dotted lines, Fig. 5.3). The host populations
with a specificity of 5% and 33% had a similar increase in death rate (15x and
17x), and expected lifespan (45.1y and 44.65y), whereas for the host population
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with a single-step TAP Ag presentation pathway, the increase in death rate was
twice as high (33x) and the expected lifespan three years shorter (41.5y).

These results suggest that all three specificities of the Ag presentation path-
way allow for a polymorphism. Thus, the low degree of specificity of the pro-
teasome and TAP are not the direct cause of why these molecules are mono-
morphic in the human host population.

5.4.3 Emergence of polymorphism in a coevolved Ag presentation pathway

The above simulations demonstrate that in host populations facing endemic
pathogens, all three steps of the Ag presentation pathway are individually cap-
able of forming a polymorphism, in response to the combined selection pres-
sures of the RAA and HA. When all three steps of the pathway are simultan-
eously allowed to evolve, there is an additional selection pressure on the hosts:
the 9-mers that the proteasome pattern filter can recognize should also be re-
cognizable to the TAP and the MHC alleles of a host, for a host to maximize
the number of epitopes. In the rest of the paper we will refer to this selection
pressure as the “coevolvedness of the Ag presentation pathway”, and it will
be calculated for each possible combination of the proteasome, TAP and MHC
alleles within a host. For naturally occurring 9-mers, it was shown that MHC
class I alleles were ±2.5 times more likely to present a 9-mer peptide that was
processed by proteasome and TAP than the average 9-mer (Burroughs et al.,
2004). We hypothesized that the selection pressure on hosts to keep a coevolved
Ag presentation pathway would affect the emergence of polymorphisms in the
different steps of the Ag presentation pathway. Therefore, to provide a proof
of principle, we first perform simulations with a host population in which the
mutation process of the hosts is adapted such that novel alleles are fairly well
coevolved to the other steps in the Ag presentation pathway of an individual
(see Methods for more details on this algorithm).

In this proof of principle simulation, where the coevolution of new alleles is
enforced upon the hosts, the population develops an Ag presentation pathway
that consists of a monomorphic proteasome and TAP, and a highly polymorphic
MHC with a SRI score of ± 20-25 alleles (Fig. 5.4). The overlap in 9-mer peptide
repertoire between MHC alleles is 25-26%, which is higher than the average of
10% overlap observed between MHC alleles in Fig. 5.3C. The difference between
the two cases is that in the single-step Ag presentation pathway (Fig. 5.3C), the
MHC alleles could distribute their peptide repertoire over all possible 9-mer
peptides, whereas in the latter case the MHC alleles restrict their own peptide
repertoires to the smaller set of peptides that both proteasome and TAP can
recognize. As a result, the MHC alleles are more similar to each other in the
latter case, which leads to a lower functional MHC polymorphism, and a higher
increase in death rate for the host population (Table 5.1).

In duplicate runs of Fig. 5.4, it is always the MHC that becomes polymorphic.
Even in simulations where initially only TAP or proteasome could evolve, the
MHC would eventually become the polymorphic step of the pathway, and push
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Table 5.1 Characteristics of the simulation presented in Fig. 5.4.
Host population:
average age of the hosts: 20 – 21ya (down from 38y)b

expected lifespan of the hosts: 38 – 39y (down from 81y)
average increase in death rate/year: 38x – 41x (up from 1x)

Antigen presentation pathway:
average pathway coevolvednessc: 0.94 – 0.99

weighted functional polymorphism of proteasomed: 0.96 – 1.0
weighted functional polymorphism of tap: 0.97 – 1.0
weighted functional polymorphism of mhc: 0.25 – 0.26

e

Pathogens:
average number of epitopes per pathogen: 31

average number of epitopes of a pathogen at infection: 39

average number of epitopes in a random pathogen: 48

average pre-adaptation of pathogens f : 24%
average viral load of pathogens: 3.7

a ranges and averages are based on the minimum and maximum value over the last 300 centuries of the simula-

tion.
b in a host population without pathogens.
c average pathway coevolvedness: the average number of 9-mers that all the pathways that are present in the host

population can present, divided by the maximum number of 9-mers that a proteasome-TAP-mhc pathway can be

expected to present, based on the specificities of the steps.
d weighted functional polymorphism: the frequency-weighted functional polymorphism indicates the average

overlap in the peptide repertoire between two alleles that were randomly drawn from the population. It therefore

takes into account both the functional diversity between different alleles and the frequency distribution of the

alleles.
e The mutation algorithm used in the simulations is not fully random, both in Fig. 5.4 and in Fig. 5.3C. Therefore

the overlap in both simulations is higher than the expected overlap of 5% for two completely random MHC

alleles with a specificity of 5% - see Methods.
f the pre-adaptation of a pathogen compares the average number of epitopes that a pathogen has at the moment

of infection, to the average number of epitopes that the wildtype sequence of that pathogen would have had.
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Figure 5.4 When all three steps in the Ag presentation pathway evolve simultaneously,
only the MHC alleles become polymorphic (upper solid line), and reach a SRI score of
20-25 alleles, and a total number of unique MHC alleles that varies between 29 and 39

alleles. The SRI score of proteasome and TAP is close to 1 (bottom solid lines), and is not
distinguishable from drift (the three largely overlapping dotted lines at the bottom).

the other steps of the pathway towards monomorphism (results not shown).
Taken together, these results suggest that, under the condition that the host
population maintains a coevolved pathway, one obtains a polymorphism only
in the most specific step of the pathway. This confirms our prediction of Chapter
2, where we expected that at least one of the steps of the Ag presentation path-
way needed to evolve a polymorphism to protect the pathway from adapting
pathogens, and that it would be most beneficial if the polymorphic step was the
MHC.

5.4.4 Factors influencing the shape of the Ag presentation pathway

The previous section demonstrates that the current state of the human Ag
presentation pathway (two monomorphic steps, and one polymorphic step)
can evolve from a monomorphic Ag presentation pathway, if new alleles re-
main coevolved. However, when we replace the algorithm with other mutation
algorithms, the monomorphism of proteasome and TAP becomes conditional.
In Section 5.4.2 we created new alleles by randomly ‘breaking down’ a com-
pletely generic allele until it reached the required specificity (see Methods),
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Figure 5.5 Starting conditions influence the evolution of polymorphism in proteasome
(black lines), TAP (red lines) or the MHC (green lines). Three different initial conditions;
(A) non-coevolved monomorphic start, (B) coevolved monomorphic start, and (C) coe-
volved, polymorphic MHC start, consistently result in three different quasi-steady states
for the polymorphism of the Ag presentation pathway. The degree of polymorphism is
expressed in the Simpsons Reciprocal Index score (y-axis). The coevolved, polymorphic
MHC start (C) was initialized in the same way as Fig. 5.4, but after 50 centuries (vertical
striped line) the mutation algorithm was switched to the one used in (A) and (B).

which resulted in large amount of variation in the recognized peptide pools
between the alleles. Using this mutation algorithm in a host population where
the whole Ag presentation pathway could evolve would consistently result in a
weak polymorphism in all three steps of the pathway. For both the enforced-
coevolvedness, and the breaking-down algorithm, the results remained consist-
ent for different host mutation rates, pathogen mutation and reversion rates, the
initial conditions of the Ag presentation pathway.

Next we use moderate mutation algorithm, in which new alleles are gener-
ated by randomizing the number and identity of the recognized amino acids in
one of the nine positions of the parent allele (see Fig. 5.2), and then corrected
for a change in pre-defined specificity by repeatedly adding or removing amino
acids from any of the positions until the required specificity was approached.
The biological interpretation of this algorithm is that a mutation changes one of
the key positions in proteasome, TAP or MHC alleles radically, and the struc-
ture of the whole molecule changes slightly to accomodate for this change. The
algorithm does not artificially force co-evolvedness between the different steps
in the Ag presentation pathway, but neither does it generate mutated alleles
that are so radically different from the original allele that the host population
cannot maintain a coevolved pathway (i.e. the system crosses the information
threshold (Nowak and Schuster, 1989)). With the moderate mutation algorithm,
the monomorphism of proteasome and TAP depends on the starting conditions
of the Ag presentation pathway.

When the host population starts with a non-coevolved (10–20% coevolved-
ness), monomorphic Ag presentation pathway, all three steps of the Ag present-
ation pathway evolved a similar degree of polymorphism (Fig. 5.5A). The host
population reached an Ag presentation pathway coevolvedness of 32%, and a
degree of polymorphism in all three steps that is typically enough to ensure
that all steps of the pathway are heterozygous (Borghans et al., 2004; de Boer
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Table 5.2 Characteristics of the simulations presented in Fig. 5.5.
starting conditions: Fig. 5.5A: Fig. 5.5B: Fig. 5.5C:

non-coevolved coevolved coevo. &
polym. MHC

Host Population:
average age of the hosts: 15y 18y 19y
expected lifespan of the hosts: 27y 33y 36y
average increase in death rate/year: 113x 80x 54x

Antigen presentation pathway:
average pathway coevolvednessc: 0.32 0.69 0.97

weighted fun. polym. of proteasomed: 0.48 0.67 0.98

weighted fun. polym. of tap: 0.77 0.99 0.99

weighted fun. polym. of mhc: 0.21
e

0.30 0.27

Pathogens:
average number of epitopes per pathogen: 17 22 26

ave. num. epi. of a pathogen at infection: 24 28 33

ave. num. epi. in a random pathogen: 28 40 46

average pre-adaptation of pathogens f : 17% 32% 28%
average viral load of pathogens: 5.2 4.7 4.2

a–f: see Table 5.1.

et al., 2004). The low level of overlap between proteasome alleles, between TAP
alleles and between MHC alleles (Table 5.2 first column: 41%, 77% and 21%, re-
spectively) suggests that there is a selection pressure in this population for each
step of the pathway to be as functionally heterozygous as possible. Because
for proteasome, TAP and MHC both alleles are expressed (Gimelbrant et al.,
2007), heterozygous hosts typically have 8 different combinations of a protea-
some, TAP and MHC allele to recognize pathogen epitopes with (see Methods),
which compensate for the low level of coevolvedness. Pathogens in the host
population of Fig. 5.5A only reach a pre-adaptation state of 17% (Table 5.2), i.e.
at the time of infection carry escape mutations for 15% of the epitopes that the
host could have presented in the wildtype virus. This is lower than in any of
the other quasi-steady state solutions. However, host populations with a poly-
morphism still have the lowest expected lifespan (Table 5.2).

When the host population starts with a coevolved (≥ 90% coevolvedness),
monomorphic Ag presentation pathway, a polymorphism evolves in the pro-
teasome (Fig. 5.5B). In contrast with the previous quasi-steady state, the host
population maintains a relatively high degree of coevolvedness of 69%. The de-
gree of polymorphism in the proteasome is low, with a SRI score of 4.3 alleles.
The functional polymorphism between these proteasomes is less pronounced
than in that of the previous quasi-steady state: the overlap in 9-mer repertoire
that two proteasomes that are randomly selected from the host population can
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recognize, is ± 67% (Table 5.2B, second column). Pathogens reach the highest
level of preadaptation to host populations in the quasi-steady state approached
in Fig. 5.5B, but the hosts can cope better with these pathogens than the hosts in
the earlier described quasi-steady state. The high level of preadaptation is com-
pensated by hosts by having a more coevolved Ag presentation pathway than
in the situation of Fig. 5.5A. Duplicate runs with the same starting conditions
suggest that in some cases TAP evolves a very limited polymorphism with a
SRI score of < 3. Whether this behaviour indicates another quasi-steady state
in which the polymorphism of each step of the pathway is inversely related to
the specificity of the step, or falls within the variation of this quasi-steady state,
is unclear.

The third quasi-steady state (Fig. 5.5C) is similar to the one reached in the
simulations where coevolution of the Ag presentation pathway was enforced by
the mutation algorithm (Fig. 5.4). The host population starts with a coevolved,
and MHC-polymorphic Ag presentation pathway, and is capable of maintain-
ing the MHC polymorphism at a higher level then the host populations in the
other two quasi-steady states (SRI score of 13.6 alleles versus 10.6 and 8.8 MHC
alleles in Fig. 5.5B and C). The host population also maintains its high level of
coevolvedness (97%). Pathogens in these host populations reach an intermedi-
ate level of preadaptation, but can be well recognized by the Ag presentation
pathways of the hosts. The host populations in this third quasi-steady state
have the highest expected lifespan (Table 5.2, third column).

Summarizing, changing the way hosts evolve new alleles affects the quasi-
steady states that are approached in the model, and the initial starting condi-
tions of the Ag presentation pathway determine in which basin of attraction the
simulation starts.

5.5 D I S C U S S I O N

Because pathogens do not only adapt to the MHC alleles of the classical antigen
presentation (Ag) pathway, but also to the proteasome and TAP (see Chapter
2, Chapter 4, (Brander et al., 1999; Yokomaku et al., 2004; Kwun et al., 2007)),
all of the steps in the Ag presentation pathway are expected to evolve a poly-
morphism, under the selection pressures of the heterozygote advantage (HA)
(Doherty and Zinkernagel, 1975; Carrington et al., 1999) and the rare allele ad-
vantage (RAA) (Slade and McCallum, 1992; Langefors et al., 2001; Borghans
et al., 2004; de Boer et al., 2004). The fact that no functional polymorphism has
been reported for either proteasome or TAP suggests that there are selection
pressures on these molecules to remain monomorphic. To understand what
this selection pressure could be, we build an agent-based model in which a host
population faces several endemic chronic pathogens.

In a setting where the Ag presentation pathway was reduced to a single
step, and in which coevolvedness therefore played no role (Fig. 5.3), the protea-
some, TAP, and MHC each individually responsed to the endemic pathogens
by evolving a polymorphism. However, in settings where all three steps could
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simultaneously evolve, and therefore affect the coevolvedness of the Ag present-
ation pathway, only the MHC alleles became polymorphic (Fig. 5.4, Fig. 5.5C).
These results indicate that, under the condition that the host population are
capable of maintaining a high degree of coevolvedness, it becomes a strong se-
lection pressure to only let the MHC become polymorphic, counterbalancing the
selection pressure for polymorphism by the HA and RAA on the proteasome
and TAP.

A much simpler explanation of why the proteasome and TAP molecules are
monomorphic would be that they limited by biochemical constraints, and can-
not form a polymorphism. However, existing variation in proteasome and TAP
molecules makes this explanation unlikely. Within every human host, there are
several different proteasome variants; aside from the constituitive proteasome,
there is the immunoproteasome, the thymoproteasome (Murata et al., 2008), as
well as a hypothesized testis-specific proteasome (Tanaka, 2009). All of these are
confirmed, or speculated, to have different cleavage patterns, and thus present
different CTL epitopes (Craiu et al., 1997; Rock et al., 2002). Furthermore, in sev-
eral frog species of the genus Xenopus, a functional proteasome polymorphism
has been reported (Nonaka et al., 2000). The TAP dimer is an ABC transporter,
i.e. is part of a broad class of membrane bound peptide transporters with dif-
ferent specificities within the human genome (Hollenstein et al., 2007; Procko
and Gaudet, 2009), and has been reported to be polymorphic in several animal
species (Heemels et al., 1993; Gubler et al., 1998; Sironi et al., 2008; Jensen et al.,
2008). Therefore there appear to be no biochemical constrains on proteasome
and TAP that prohibit a functional polymorphism.

The evolution of polymorphism in the Ag presentation pathway in our model
simulations proved to be sensitive to the way in which mutations in proteasome,
TAP or MHC alleles affected their phenotype (see section 5.4.4). In our simu-
lations, all the three steps of the pathway were implemented as pattern filters
that were subjected to the same algorithm mutating the phenotype of these al-
leles. In reality, the three steps of the pathway are radically different molecules
that are either cleaving, transporting or binding peptides. Therefore, it could be
that the effect of mutations on the phenotype of mutant alleles differs between
the three molecules, which would in turn affect the degree of polymorphism of
each molecule, and possibly the evolution of polymorphism in the human Ag
presentation pathway.

Interestingly, with the last mutation algorithm used in the results of Fig. 5.5,
the quasi-steady state that the Ag presentation pathway approaches is heavily
dependent on the initial Ag presentation pathway. The degree of coevolved-
ness of the Ag presentation pathway at the start of the simulation (Fig. 5.5A,
B) determined whether all three steps of the pathway would acquire a similar
polymorphism, or the level of polymorphism would inversely correlate to the
specificity of the molecule. Furthermore, only an Ag presentation pathway that
started with a limited MHC polymorphism could keep both the proteasome
and TAP monomorphic. In a review on the evolution of MHC class I proteins,
Lawlor et. al. (Lawlor et al., 1990) suggests that the class I pathway evolved
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from class II molecules, but also comments that the evidence is scarce and that
little is known about the original circumstances under which the MHC class I
pathway evolved. Nevertheless, it opens up the possibility that the classical Ag
presentation pathway might have started its evolution with a MHC polymorph-
ism originating from polymorphic MHC class II alleles.

In conclusion, in a host population where pathogens can adapt to the protea-
some, TAP and MHC class I molecules, all three steps of the Ag presentation
pathway are capable of evolving a polymorphism in response to the pathogen
selection pressure. However, under the condition that the host population main-
tains a high degree of coevolvedness between the steps of the Ag presentation
pathway, we found that it is always, and only, the most specific step (i.e. MHC)
that becomes polymorphic.
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6
General Discussion

6.1 F I N D I N G S P R E S E N T E D I N T H I S T H E S I S

In this thesis we address the evolution of the classical antigen (Ag) presentation
pathway, both from a proximate and an ultimate point of view. In order to do
so, we made thankful use of the public Los Alamos HIV-1 sequence data base
and of prediction algorithms for the individual steps of the Ag presentation
pathway. By studying how a virus like HIV-1 changes and adapts to the Ag
presentation pathway, we learned of the selection pressures that the virus ex-
erts on the pathway, and visa versa. The newfound understandings that flowed
from these initial studies allowed us to build simulation models of an evolving
human population, in which we could study the evolution of the Ag presenta-
tion pathway.

6.1.1 Proximate findings

Summarizing, in this thesis we have studied the recent evolution of HIV-1
(Chapter 2), the possibility that HIV-1 had already adapted to CTL epitopes
in the more distant past (Chapter 3), and the effect of an MHC polymorphism
on the adaptation of a HIV-1 like virus to the Ag presentation pathway (Chapter
4). These three lines of research provided us with an answer to the first half of
the double-sided question that we posed in the introduction:

“Why do pathogens not adapt to the monomorphic proteasome and TAP?”

In Chapter 2 we showed that the total number of both CTL epitopes and
epitope precursors in HIV-1 has remained more or less constant in the last thirty
years. Due to the high specificity and the high degree of polymorphism of the
MHC class I molecules, the epitope precursors of HIV-1 are not constantly under
selection pressure. In an average host, only 18% of the epitope precursors can
actually bind to the MHC molecules of that host, leaving 82% of the epitope
precursors free to revert possibly costly escape mutations that were acquired
in previous hosts. This intermittent exposure of epitope precursors to immune
selection pressure limits the level of adaptation that viruses can reach to the
monomorphic components of the Ag presentation pathway.

But how much of the adaptation of HIV-1 to its new human host had already
happened prior to the 1980’s? Yusim et al. (2002) proposed that the past ad-
aptation of HIV-1 had left a ‘footprint’ in the distribution of CTL epitopes in
current-day HIV-1 sequences, and hypothesized that large-scale CTL epitope
adaptations had predominantly occurred in the variable regions of the ances-
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tral HIV-1 sequence. The epitope-poor and epitope-rich regions in HIV-1 were
hypothesized to be the result of this process of localized adaptation. Although
this hypothesis was compelling, a detailed study of the distribution of CTL
epitopes in HIV-1 sequences revealed that these distributions were not discrim-
inable from random (Chapter 3), and that the variation in the epitope distribu-
tions in HIV-1 was comparable to that of other organisms like humans, yeast
or fruitflies. Based on these findings, we discarded the hypothesis that there is
evidence for large-scale adaptation of HIV-1 to the human host in the apparent
clustering of its CTL epitopes. The question how much the ancestral HIV-1 had
adapted to the human host prior to the 1980’s remains open, but it might be
less than previously appreciated.

To understand how the MHC polymorphism affects the potential for patho-
gens like HIV-1 to adapt to a new host population, we constructed a host-
pathogen interaction model (Chapter 4). Varying the MHC polymorphism of
the host population, we discovered how an increase in MHC polymorphism
of the population steered pathogens towards adapting to the monomorphic
components of the pathway. However, at the same time an increase in MHC
polymorphism strengthened the intermittent exposure effect by increasing the
number of epitope precursors that were intermittently under selection pressure
at the population level, and thus the average time between exposures for in-
dividual epitope precursors. Our prediction from Chapter 2 turned out to be
correct: a single polymorphic step in the pathway could indeed prevent patho-
gens from exploiting the monomorphic properties of the other steps. Taken
together, the answer to the above question is that pathogens do adapt to the
monomorphic proteasome and TAP, but that due to the MHC polymorphism,
there are few, if any, negative consequences of this adaptation for the host pop-
ulation.

6.1.2 Ultimate findings

In the fifth chapter of this thesis we explored how the Ag presentation pathway
of a host population could have evolved into its current shape. In Chapter 2 we
had already postulated that the intermittent exposure effect would ‘work best’
if it was the most specific step of the pathway (i.e. MHC) that was polymorphic.
However, we had no answer as to why the other two steps of the pathway would
remain monomorphic. Just like MHC class I molecules, proteasome and TAP
were under the selection pressures of the heterozygote advantage (HA) and rare
allele advantage (RAA) to become polymorphic.

“Why did only the MHC become polymorphic?”

We constructed a simulation model in which all three steps of the Ag present-
ation pathway were capable of evolving a polymorphism in response to the se-
lection pressure exerted by pathogens. We found that, under the condition that
the host population maintains a coevolved Ag presentation pathway, that it is
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always and only, the most specific step that becomes polymorphic. When we
removed the condition of coevolvedness, and the alleles of the pathway were
evolving fully unconstrained, additional quasi-steady states existed and the ini-
tial conditions of the Ag presentation pathway would determine which of these
quasi-steady states the host population approached. Interestingly enough, mul-
tiple quasi-steady states appear to exist in the animal kingdom as well.

We therefore have two possible answers to our question. Based on certain
restrictions, an Ag presentation pathway with only a polymorphic MHC is
strongly selected for, and gives a higher fitness to the host population than
that other configurations of the Ag presentation pathway do. However, the ex-
istence of alternative quasi-steady states in the animal kingdom suggests that
our current Ag presentation pathway might just be the coincidental end-result
of past conditions in our evolutionary history, and not necessarily the result of
selection pressure from our current environment.

6.2 O U T L O O K

“At the end of my paper, there is always some research left.”1

The process of researching seems to generate not only publications, but also
a battlefield of interesting results and promising sidetracks that have not been
further pursued. Here we take the opportunity to discuss two of them: the role
of specificity in the antigen presentation pathway, and the effect that superin-
fection might have on the adaptation of HIV-1 to the human host.

6.2.1 Specificity of the proteasome, TAP and MHC class I

We addressed the evolution of the polymorphism of the antigen presentation
pathway in the 4th and 5th chapter of this thesis, but did not address the evolu-
tion of its specificity. As mentioned in the introduction, each of the steps has its
own specificity, and the complete pathway can only present a small percentage
of the peptide fragments in a protein. Why is our antigen presentation path-
way not far more generic? A greater variety of presented CTL epitopes would
increase the chance of generating CTL responses that can control, or even clear
an infection.

The hosts in our simulation models (chapter 4 and 5) would, if given the op-
portunity, rapidly evolve an antigen presentation pathway that can present close
to a 100% of the peptides in a protein. That the human antigen presentation
pathway has not evolved to present every possible peptide fragment, suggests
that there is a negative effect of presenting too many different CTL epitopes.

Intuitively, one possible explanation would be that a too generic antigen
presentation pathway would limit the T cell repertoire. As mentioned in the
introduction, developing T cells undergo positive and negative selection in the

1rephrased from a famous Loesje

87



Chapter 6. General Discussion

thymus. A more generic antigen presentation pathway would also increase the
repertoire of presented self-peptides, and as a consequence the number of T
cells lost by negative selection. This explanation is similar to the one forwarded
by Nowak et al. (1992) for the limited number of MHC loci in human cells. An
increase in the number of MHC loci (e.g. HLA-A, HLA-B etc) also increases the
number of self-peptides presented in the thymus, and thus increase the impact
of negative selection. However, Borghans et al. (2003), showed that positive se-
lection is the largest bottleneck during T cell development, and that increasing
the number of MHC loci would actually increase the T cell repertoire.

Whilst increasing the number of MHC loci increases the number of devel-
oping T cells that survive positive selection, it is not known what the effect of
a generic MHC allele would be on positive selection. If a generic MHC mo-
lecule only affects negative selection by increasing the repertoire of presented
self-peptides, then increased deletion of developing T cells could prohibit a too
generic antigen presentation pathway.

Alternatively, hosts that present many different CTL epitopes might have
a larger chance of generating an auto-immune response. With every CTL re-
sponse against a foreign peptide, there is a small chance that the responding
T-cell population is cross-reactive with a self-peptide. Normally, these T cells
would have been negatively selected during their development in the thymus,
but this process is not perfect (Gallegos and Bevan, 2006), and some self-reactive
naive T cell might escape negative selection (Huseby et al., 2001). Increasing the
number of self and foreign epitopes might therefore also increase the chance on
auto-immune diseases.

A third option is that with a more generic antigen presentation pathway, the
frequency of each particular MHC-epitope complex on the cell surface will be
diluted. Human cells present an estimated 50,000 - 100,000 MHC class I mo-
lecules on their cell surface (Yewdell et al., 2003), and increasing the repertoire
of presented CTL epitopes could lower the frequency of a particular epitope on
the cell surface, and with it the strength of the T cell response (van den Berg
and Rand, 2004; Goldwich et al., 2008)

All three options could well be implemented in models such as the ones used
in this thesis, and explored for their ability to limit the specificity of the antigen
presentation pathway.

6.2.2 HIV-1 superinfection

The simulation models in this thesis are simplified representations of reality,
and help us understand how host and pathogens influence the selection pres-
sures that act on them. One of the challenges in constructing such models lies
in the choices we make on which processes to include, and which to neglect
(e.g. do we give pathogens a wildtype, or let them evolve with little or no re-
strictions, how do we implement the Ag presentation pathway, is it neccesary
to include a sexual contact network).
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One of the choises we made was to not include the ability of HIV-1 vari-
ants to superinfect HIV-1 patients. The ability of HIV-1 to superinfect has
been described since the discovery of recombinant strains (Burke, 1997), but
was initially considered a rare event. With the increased availability of longit-
udinal HIV-1 sequence data, more cases of superinfection have been reported.
However, the reported incidence vary widely between different studies, from
virtually non-existent to as common as primary infections (van der Kuyl and
Cornelissen, 2007; Piantadosi et al., 2008; Willberg et al., 2008; Sidat et al., 2008)

The risk associated with HIV-1 superinfection is that of a more rapid pro-
gression to AIDS for the superinfected patient (Sidat et al., 2008; Streeck et al.,
2008). However, if superinfection is relatively common, it will also have a large
effect on the level of adaptation to the human population that HIV-1 can reach.
The practice of ‘sero-sorting’, in which two HIV-1 infected patients have un-
protected sex, might therefore put more people at an increased risk than just
themselves. Superinfection generates an additional selection pressure on the
virus. In a population with a high incidence of superinfection, the virus is not
only under selection to adapt to the CTL responses of its current host, but also
selected to be able to invade other HIV-1 infected patients, and outcompete the
local virus. HIV-1 variants that can do so, have a larger pool of susceptible
hosts, and will therefore spread through the population.

Without superinfection, escape mutations in epitopes that are not targeted
in the current host have no selection pressure on them to be maintained. With
superinfection, there is a higher selection pressure to maintain escape muta-
tions, because the superinfecting virus has to compete with a locally adapted
virus. This would decrease the intermittent exposure effect, and thus allow for
an increased adaptation of the virus to the human Ag presentation pathway.
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Hoof, I., Keşmir, C., Lund, O., and Nielsen, M. (2008). Humans with
chimpanzee-like major histocompatibility complex-specificities control HIV-1
infection. AIDS, 22(11):1299–1303. (Cited on page 64.)

97



Bibliography

Hopkins, B. and Skellam, J. (1954). A new method for determining the type
of distribution of plant individuals. Annals of Botany (London), 18(1):213–227.
(Cited on pages 34, 35, and 40.)

Huseby, E. S., Sather, B., Huseby, P. G., and Goverman, J. (2001). Age-
dependent T cell tolerance and autoimmunity to myelin basic protein. Im-
munity, 14(4):471–481. (Cited on page 88.)

Huttner, K. M. and Bevins, C. L. (1999). Antimicrobial peptides as mediators
of epithelial host defense. Pediatr Res, 45(6):785–794. (Cited on page 2.)

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graph-
ics. Journal of Computational and Graphical Statistics, 5(3):299–314. (Cited on
page 14.)
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Samenvatting

Het humane immuunsysteem gebruikt verschillende strategien om virale infec-
ties te bestrijden. Een daarvan is het cellulaire immuunsysteem, wat bestaat
uit cytotoxische T cellen (CTLs). Deze CTLs kunnen virus-genfecteerde cellen
herkennen aan de hand van de virale eiwitfragmenten die op het celoppervlak
van een genfecteerde cel worden gepresenteerd. Virussen staan onder sterke
selectiedruk om te voorkomen dat de cel waarin ze zich voortplanten voortijdig
vernietigd wordt door CTLs, en evolueren mutaties die ervoor zorgen dat er
minder eiwitfragmenten van hun protenen op het celoppervlak gepresenteerd
worden. Zo ontsnappen ze aan de immuunreactie van de gastheer.

In deze thesis bestuderen we hoe de co-evolutie tussen virussen en gastheren
de klassieke antigeen presentatie route (een groep van moleculen die ervoor zor-
gen dat intracellulaire protenen op het celoppervlak ten toon gesteld worden),
gevormd heeft. We kiezen het AIDS virus als model om te onderzoeken hoe
een virus zich aanpast aan een nieuwe gastheer, en leren zodoende ook meer
over hoe het menselijke immuunsysteem om kan gaan met de snelle evolutie
van virussen. Allereerst bestuderen we hoe HIV-1 zich op een populatieniveau
heeft aangepast gedurende de laatste 25 jaar (Chapter 2), door per HIV-1 se-
quentie het totaal aantal voorspelde CTL epitopen (de virale eiwitfragmenten,
die door de route gepresenteerd worden) en hun intracellulaire voorlopers te
bepalen, en de trends in hun aantallen over tijd te bestuderen. Ook hebben
we gekeken naar de distributie van deze epitopen over de protenen van HIV-1,
en die distributie vergeleken met die van de protenen van andere organismen
(Chapter 3). In beide gevallen vonden we geen bewijs dat het virus zich in grote
mate aan had gepast aan de humane populatie. Dit was een onverwachte bevin-
ding, aangezien twee belangrijke moleculen (genaamd ‘proteasoom’ en ‘TAP’)
in de antigeen presentatie route, die tezamen de intracellulaire voorlopers van
epitopen genereren, bijna geen variatie vertonen tussen verschillende mensen.
De verwachting was dat een snel evoluerend virus als HIV-1 veel ontsnapping-
mutaties voor deze twee monomorfe molecule zou hebben verzameld in zijn
genoom.

Aan de hand van deze bevindingen, stelden we de hypothese op dat het HIV-
1 virus zich niet kan adapteren aan het monomorfe proteasoom en TAP, omdat
het meest specifieke molecuul in de antigeen presentatie route, het MHC, juist
erg polymorf is. Er is dus een grote genetische diversiteit aan MHC moleculen
in de humane populatie, en twee verschillende MHC moleculen zullen niet
dezelfde set van intracellulaire voorlopers kunnen herkennen. Wanneer het
virus wordt overgedragen naar een andere gastheer, verandert daarmee dus ook
welke delen van het virale genoom onder selectiedruk staan van cytotoxische
T cellen. Ontsnappingsmutaties in HIV-1 die het monomorfe proteasoom en
TAP, alsook die het polymorfe MHC benvloedden, staan geregeld niet onder
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selectiedruk van een immuunsysteem, en kunnen daarom weer terug muteren
naar een oorspronkelijke staat.

Dit scenario hebben we getoetst in een computermodel waarin een virtueel
HIV-1 virus zich kon adapteren aan virtuele gastheer populatie (Chapter 4). We
vonden dat in een situatie waarin de gastheer populatie een hoge mate van
MHC polymorfisme had, virussen geselecteerd werden om zich voornamelijk
aan te passen aan de monomorfe proteasome en TAP moleculen, maar dat tege-
lijk door de grote variatie in MHC moleculen tussen de verschillende gastheren,
dit niet leidde tot een hoge mate van aanpassing van het virus aan de gastheer
populatie. Als laatste hebben we het computermodel zodanig uitgebreid dat de
antigeen presentatie route van de gastheer populatie ook kon evolueren (Chap-
ter 5). Met deze uitbreiding konden we bestuderen of de huidige structuur van
de presentatie route kon worden uitgelegd puur in termen van gastheer-virus
co-evolutie. Gebaseerd op onze eerder geponeerde hypothese, verwachtte we
dat alleen in de meest specifieke stap van de route een polymorfisme zou evo-
lueren. Onder de aanname dat de verschillende stappen van de route onderling
nog redelijk op elkaar bleven aansluiten, evolueerde de virtuele gastheer popu-
latie in het model inderdaad een antigeen presentatie route met een structuur
gelijk aan die van de mens.
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