
Contents lists available at ScienceDirect

Continental Shelf Research

journal homepage: www.elsevier.com/locate/csr

Research papers

Modeling the finite-height behavior of offshore tidal sand ridges, a
sensitivity study

Bing Yuan⁎, Huib E. de Swart, Carles Panadès

Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands

A R T I C L E I N F O

Keywords:
Outer shelf
Tidal ellipticity
Critical bed shear stress for sand erosion
North Sea
Sand banks

A B S T R A C T

Tidal sand ridges are large-scale bedforms with horizontal dimensions of several kilometers and heights in the
order of tens of meters, which occur on outer shelves of coastal seas. In order to study the long-term evolution of
these ridges, an idealized nonlinear numerical model was developed. With this tool, the sensitivity of the
characteristics of these finite-height ridges, in particular, their shape and growth time, to 1D/2D configuration
(topography varies in one/two horizontal dimensions), tidal ellipticity and critical bed shear stress for sand
erosion was investigated. In the case of a 1D configuration, the root mean square height hrms of the bedforms
first grows exponentially and hereafter saturates. In the end, ridges in static equilibrium are obtained, i.e., hrms

remains constant. In contrast, when the configuration is 2D, ridges are found with spatially meandering crests
that oscillate in time. Initially the bedforms are composed of a finite number of bottom modes. The meanders
occur if bottom modes with crests normal to those of the initially preferred bedform exist, and their topographic
wavenumbers are in the order of that of the preferred bedform or smaller. In addition, the vertical distance
between the crest and trough levels should be larger than around 80% of the maximum water depth. Generally,
the global growth time, i.e., the time at which hrms stops increasing after the exponential growth stage of the
bedforms, is slightly larger for a 2D than for a 1D configuration. The ridge shapes are sensitive to the tidal
ellipticity, while they are hardly sensitive to the critical bed shear stress. The global growth time varies non-
monotonically with the tidal ellipticity, and it increases if the critical bed shear stress is included. Comparison
between the model results and field observations suggests that the model is able to simulate the gross
characteristics of the Dutch Banks and the Flemish Banks in the southern North Sea and that these ridges may
still be growing.

1. Introduction

In the offshore area of many shallow seas with sandy beds, patches
of tidal sand ridges are observed (Off, 1963; Liu et al., 1998; Dyer and
Huntley, 1999, and references therein). Tidal sand ridges have a typical
spacing (mean distance between successive crests) of 5–10 km, their
crests are cyclonically (5–30°) oriented with respect to the principal
direction of the tidal current, and their height is in the order of 10 m.
The formation time scale of tidal sand ridges is in the order of hundreds
of years. Although extensive studies on the dynamics of these large-
scale bedforms have been conducted (Roos et al., 2004, and references
therein), the long-term nonlinear evolution of these seabed features is
still not fully understood. Acquiring more knowledge about the
behavior of these bedforms with a finite height is desirable for practical
issues, such as assessment of the stability of underwater structures and
strategic planning of marine sand mining (van Lancker et al., 2010).

It is now generally accepted that tidal sand ridges may form as a

free instability of a system describing feedbacks between the sandy sea
bed and the tidal currents (Blondeaux, 2001; Besio et al., 2006, and
references therein). Linear stability analysis yields tidal sand ridges of
which the spacing and orientation are in fair agreement with those of
observed ridges. However, the analysis is restricted to bedforms with
an infinitesimally small amplitude. To quantify the characteristics of
these bedforms with a finite height, nonlinear models are needed. In
Huthnance (1982a), besides the initial formation of tidal sand ridges,
finite-height equilibrium ridges were shown to exist, but rather strong
simplifications were made. In his model, the topography only varied in
one horizontal direction (1D configuration), the tidal flow was modeled
as a block flow (constant flood and ebb current), and the Coriolis force
was neglected. Ridges only remained submerged in the case that either
stirring of sand by waves, asymmetrical tidal currents or limited
availability of sand (limited depth of the erodible bed) was considered.
It was also shown that asymmetrical tidal currents give rise to
asymmetrical equilibrium ridge profiles, and that the ridges migrate
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in the direction from their gentler side to their steeper side with respect
to the crests.

The long-term evolution of topographies that varied in two hor-
izontal dimensions (2D configuration) was further investigated in
Huthnance (1982b). The near-parallel depth contours in the equili-
brium state for an initial single bump bottom perturbation suggested
that arbitrarily long straight ridges would form in an infinite sea under
spatially uniform tidal forcing. Note that the same simplifications in the
forcing as those in Huthnance (1982a) were used, and the equilibrium
state was only obtained under the condition of limited availability of
sand. Komarova and Newell (2000) found that the nonlinear interac-
tion between tidal sand waves with crests normal to the principal
current direction and different wavelengths could generate bedforms
with spacings similar to those of tidal sand ridges. However, the crests
of the bedforms generated from the interaction between tidal sand
waves were normal to the principal current direction, which is different
from that of the observed ridges. Idier and Astruc (2003) determined
the saturation height of tidal sand ridges by the growth rate of the
initially fastest growing bottom mode with different initial heights
under steady/block flow. If the growth rate of the bottom mode with a
certain height is zero, the ridge height is said to be saturated. In this
way, the nonlinear interactions between bottom modes with different
spacings were neglected, and the cross-sectional (normal to crests in
space) ridge profiles in time could not be obtained.

In Roos et al. (2004), a nonlinear morphodynamic model was
developed to simulate the cross-sectional profiles of finite-height tidal
sand ridges, and stirring of sand by wind waves was parametrically
accounted for. In that study, a 1D configuration and rectilinear tidal
currents were assumed. Equilibrium ridges were shown to exist, and
they were asymmetrical and migrated in the case of asymmetrical tidal
currents. It was also found that the modeled ridge height overestimated
the observed ridge height of the Dutch Banks in the southern North
Sea. Tambroni and Blondeaux (2008) carried out a weakly nonlinear
stability analysis to investigate the behavior of finite-height ridges.
Their method is fast, but it is only applicable for tidal currents with
large ellipticity ϵ (the ratio between the minor axis and the major axis
of the tidal current ellipse). Many tidal sand ridges are actually
observed at locations where tidal currents are close to rectilinear
(ϵ ∼ 0), for instance, in the southern North Sea (Collins et al., 1995).
Furthermore, the effect of the critical bed shear stress for sand erosion
on the evolution of finite-height ridges has not been considered in the
above studies, except in Tambroni and Blondeaux (2008). In Yuan et al.
(2016), it was shown that including the critical bed shear stress for
sand erosion significantly affects the characteristics of tidal sand ridges
during their initial formation. In particular, the wavelength of tidal
sand ridges decreases and the formation time scale of the ridges
increases if the critical bed shear stress is accounted for. It is thus
desirable to systematically explore the role of the critical bed shear
stress in the long-term evolution of these ridges.

The aims of this study are twofold. The first is to quantify the
differences in the characteristics of finite-height tidal sand ridges, i.e.,
their shape and growth time, assuming 1D and 2D configurations with
unlimited sand, rectilinear tides and no critical bed shear stress for
sand erosion. The second aim is to study the sensitivity of the
characteristics of the finite-height ridges to elliptical tides and the
critical bed shear stress for sand erosion. In addition, qualitative
comparison between modeled and observed ridges in the southern
North Sea will be done.

To fulfill these aims, an idealized nonlinear morphodynamic model
was developed, based on the work of Caballeria et al. (2002), Garnier
et al. (2006) and Yuan et al. (2016). The model describes the feedbacks
between tidally forced depth-averaged currents and the sandy bed on
the outer shelf. Following Roos et al. (2004), the formulation for sand
transport accounts for tidal processes, as well as for the stirring of sand
by wind waves. The model is idealized, i.e., an open domain with no
sloping bottom is used to mimic the open shelf. There are two reasons

to use an idealized model rather than other existing process-based
models, e.g. Delft3D. One reason is that the latter do not allow for
periodic boundary conditions while tidal sand ridges are manifestation
of rhythmic bedforms, and the other reason is that those existing
models require large computational effort for the long-term evolution
of the ridges.

The manuscript is organized as follows. In Section 2, the morpho-
dynamic model is introduced, followed by a description of numerical
implementation, quantities for the characteristics of finite-height bed-
forms and experiments design. Results are presented in Section 3 and
subsequently discussed in Section 4. Finally, Section 5 contains the
conclusions.

2. Material and methods

2.1. Model

This study focuses on the nonlinear dynamics of offshore tidal sand
ridges, hence an open domain is considered. The size of the domain is
in the order of the spacing of these ridges, which is assumed to be much
smaller than the wavelengths of the principal tidal waves. The
assumption justifies imposing periodic boundary conditions and a

time-varying horizontal pressure gradient force F
⎯→⎯

p , which is spatially

uniform on the scale of the domain. The force F
⎯→⎯

p drives a spatially

uniform background depth-averaged tidal velocity vector u0
⎯ →⎯⎯⎯

(Fig. 1)
that exists in the absence of bottom undulations, and it obeys the
momentum balance
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Here, ζ0 is the surface variation induced by F
⎯→⎯

p without bottom
undulations, g is the gravitational acceleration, and f Ω Φ= 2 sin is
the Coriolis parameter, with Ω the angular frequency of the Earth and
Φ the latitude. Furthermore, e→z is a unit vector in the vertical direction,
ρ is the constant water density, and H is the undisturbed water depth
(Fig. 1). Note that in the cross product e u→ × ⎯→⎯

z 0 , vector u⎯→⎯
0 is

interpreted as a three-dimensional vector with a zero vertical compo-
nent, and that only the horizontal components of the cross product are
considered. The bed shear stress vector τ⎯ →⎯⎯

b0 is determined by u0
⎯ →⎯⎯⎯

(for

explicit formulation see Section 2.2), hence for a given u0
⎯ →⎯⎯⎯

, F
⎯→⎯

p is
determined by Eq. (1). The horizontal components u0 and v0 of the
spatially uniform background velocity u0

⎯ →⎯⎯⎯
are specified as harmonic

series,

∑u U a ω t ϕ φ b ω t ϕ φ= + [ cos( − )cos − sin( − )sin ],
i

i i i i i i i i0 0
(2a)

∑v V a ω t ϕ φ b ω t ϕ φ= + [ cos( − )sin + sin( − )cos ].
i

i i i i i i i i0 0
(2b)

In these expressions, U0 and V0 are the horizontal components of the

Fig. 1. Sketch of the model geometry, also showing the spatially uniform tidal velocity
vector u⎯→⎯⎯

0 in its principal direction, and the angle φ between the principal direction of the

tidal current and the x-axis. Other symbols are explained in the text.
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residual flow M0, the subscript i represents different tidal constituents,
with ωi and ϕi being the angular frequency and phase of a tidal
constituent. Furthermore, ai and bi are the sizes of semi-major and
semi-minor axes of the tidal ellipse, and φi is the angle between the
major axis of the tidal ellipse and the x-axis (Fig. 1). As in Hulscher
et al. (1993) and Blondeaux et al. (2009), the ellipticity of the tidal
constituent is defined as b aϵ = /i i i. In the Northern Hemisphere,
positive (negative) ϵi means that the end point of the velocity vector
of that constituent follows an ellipse in a cyclonic (anticyclonic) sense.

In the presence of bedforms, the water motion is modeled by the
depth-averaged shallow water equations:

D
t

D u∂
∂

+ ∇·( →) = 0,
͠ ͠

(3)

u
t

u u f e u g ζ F
τ

ρD
∂→

∂
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͠z p
b

(4)

Here, ζ ζ ζ= −∼
0 is the surface elevation related to bottom undulations,

where ζ is the free surface elevation, D ζ H h= + −∼͠ is the water depth
related to ζ∼, with h being the bed level with respect to the reference
bottom level (Fig. 1). Vector u→ is the depth-averaged velocity, whose
components in the x- and y-directions are u and v, respectively.
Furthermore, τ→b is the bed shear stress vector.

The bed level evolution is determined by mass conservation of sand,

p h
t

q(1 − ) ∂
∂

+ ∇· → = 0,
(5)

in which ∫T dt· = ·
T−1

0
stands for tidal average, with T the tidal

period. For currents with more than one tidal constituent, the tidal
period is calculated as the least common multiple of the periods of the
tidal constituents. Furthermore, q→ is the volumetric sand transport per
unit width (formulation in Section 2.2), and p is the bed porosity.
Because the time scale of the bedforms considered here (order of 100
years) is much larger than that of tides (order of 1 day), the evolution of
the bedforms is to a good approximation related to the divergence of
net sand transport averaged over a tidal cycle. The justification for this
approximation follows from scaling arguments and the averaging
theory discussed in Sanders et al. (2007). Therefore, in the computa-
tion of hydrodynamics, the bed level h is fixed in a tidal cycle.

2.2. Formulations of bed shear stress and sand transport

The bed shear stress τ→b is related to the depth-averaged current
velocity through the drag coefficient Cd by the quadratic friction law

τ ρC u u C D k→ = |→|→, = [2.5ln(11 / )] ,͠
b d d s

−2
(6)

where ks is the Nikuradse roughness that measures the roughness of
the sea bed. In the presence of ripples, ks is related to the dimension-
less grain size D*(Soulsby and Whitehouse, 2005) by

k d D D g s
ν

d= 202 * , * = ( − 1) .s
−0.554

2

1/3⎡
⎣⎢

⎤
⎦⎥ (7)

Here, s is the ratio of densities of non-cohesive sand and water, d is the
median grain diameter, and ν is the kinematic viscosity of water.

For sand transport, a bed load formulation is used. Suspended load
is not considered, as Besio et al. (2006) found that for coarse sand and
moderate tidal current, the contribution of suspended load to the initial
growth of the bedforms is negligible. The formulation for sand
transport is a modified version of that of Fredsøe and Deigaard (1992):

q α U U U U u ΛU h U U→ = ( − )(1 − 0.7 / )(→ − ∇ ) ( − ).e e c c e e e c
2 2 (8)

In this expression, αe is the sand transport coefficient given by

α
μ πC s g

= 30
′

1
( − 1)

,e
d

3
(9)

where μd is the dynamic friction coefficient and C D d′ = 2.5ln(11 /2.5 )͠ is
the grain-related conductance coefficient. The critical depth-averaged
velocity for sand erosion Uc is obtained from

U C s gdθ= ′[( − 1) ] ,c c
1/2 (10)

with θc being the critical Shields parameter. To calculate θc, an
empirical relation through the dimensionless grain size D* is used
(Soulsby and Whitehouse, 1997):

θ
D

e= 0.3
1 + 1.2 *

+ 0.055[1 − ].c
D−0.02 *

(11)

The modification concerns the wave stirring effect on sand transport
and the slope-induced transport. The wave stirring effect on sand
transport is included by using a wave averaged current Ue, given by
U u u= |→| + 0.5e w

2 2 2, where uw is the amplitude of the depth-dependent
wave-induced near-bed orbital velocity. Following Roos et al. (2004),
the velocity uw is parameterized as

u U H
D

= ,͠w w
⎛
⎝⎜

⎞
⎠⎟ (12)

in which Uw represents the near-bed orbital velocity amplitude in the
absence of bottom undulations. Hereafter Uw is called wave stirring
coefficient as in Roos et al. (2004). Furthermore, isotropic instead of
anisotropic slope-induced sand transport is employed with a bed slope
coefficient Λ, which is often used for bed load transport (e.g. Bailard
and Inman, 1981). Finally, the Heaviside function is used to
guarantee that sand transport only occurs if U U>e c.

2.3. Numerical implementation

The system (Eqs. (1)–(12)) is solved by using an explicit finite-
difference numerical scheme (Caballeria et al., 2002; Garnier et al.,
2006). A central second-order discretization is used in space, while an
explicit fourth-order Runge-Kutta scheme is applied for time integra-
tion. Further details about the numerical scheme are given in Garnier
et al. (2006) and Yuan et al. (2016). Moreover, since the morphological
time scale of offshore large-scale bedforms is much larger than the time
scale of tides, a morphological acceleration factor β (Roelvink, 2006) is
introduced into Eq. (5) (replace h t∂ /∂ by h βt∂ /∂( )) to accelerate the
morphodynamic processes.

The finite-height behavior of sand ridges is investigated by simulat-
ing the long-term evolution of bed perturbations that initially have a
small amplitude in a finite domain subject to tidal forcing. Here,
background tidal currents are characterized by a single angle φ
between the major axes of the ellipses of the tidal constituents and
the x-axis. Angle φ and domain length Ly are linked to the orientation
ϑp of the crests with respect to the principal current direction and the
wavelength λp of the initially fastest growing bottom mode (or the
initially preferred bedform/mode). Values of ϑp and λp (or wavenum-
ber k π λ= 2 /p p) are computed a priori by applying linear stability
analysis (Huthnance, 1982a) and are thus known. Negative ϑp means
that the crests of the bedforms are rotated cyclonically with respect to
the principal current direction. The chosen set-up is that φ = ϑp and
L Nλ=y p with N an integer. This implies that the domain is chosen such
that the initially preferred bedform has its crests parallel to the x-axis
and it fits into the domain. Regarding the domain length in the x-
direction Lx, three grid points (two are boundary points) are used in
the case of a 1D configuration, i.e., L x= 3Δx , with xΔ being the grid size
in the x-direction. Regarding a 2D configuration, Lx is chosen based on
a bottom mode with a wave vector k( , 0)x0 , i.e., L π k= 2 /x x0, such that
k k≃x p0 . As default, initially random bed perturbations are imposed
with a small amplitude (approximately 0.001 H).
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2.4. Quantities to describe characteristics of finite-height bedforms

The root mean square height of the bedforms h h= ( )rms
2 1

2 is used to
indicate the height of the bedforms, where the overbar denotes spatial

averaging ∫ ∫L L dx dy( ) ·x y
L L−1

0 0
x y . The potential energy of the bedforms

is thus measured by h /2rms
2 . The bedforms at any time contain Fourier

components with wave vectors k k mπ L nπ L( , ) = (2 / , 2 / )x y x y , i.e.,

∑ ∑h a e= .
m n

mn
π mx L ny L2 i( / + / )x y

(13)

Here, m and n are integers, m− ≤ ≤L
x

L
x2Δ 2Δ

x x , n− ≤ ≤
L

y

L

y2Δ 2Δ
y y , with yΔ

being the grid size in the y-direction, and amn represents the complex
amplitude of the corresponding component, which is obtained from
inverse Fourier transform. A bottom mode consists of components with
wave vectors k k±( , )x y . The potential energy of the bedforms is

computed as a∑ ∑ | | /2m n mn
2 .

To describe the growth or decay of the amplitude of the bedforms, a
global growth rate Γ of the bedforms is computed (Garnier et al., 2006),
which reads

Γ
h t

h= 1
( )

∂
∂

1
2

.
rms

rms2
2⎛

⎝⎜
⎞
⎠⎟ (14)

A static equilibrium state of the growth of finite-height bedforms is
reached if Γ remains 0, while a dynamic equilibrium state of the growth
of finite-height bedforms is obtained if Γ oscillates around 0 in time.
Typically, in the case of an initially random bed perturbation, Γ changes
its sign after a period during which the amplitudes of the bottom modes
grow exponentially. In this study, a global growth time τg is defined as
the time when Γ turns negative after the exponential growth of the
bottom modes.

In the presence of more than one tidal constituent, the bedforms
could migrate and show asymmetrical profiles. To describe the cross-
sectional (normal to crests) profiles of the bedforms, the relative height
hrel and asymmetry A defined in Roos et al. (2004) are used:

h
z z

z
A

l
l

=
| | − | |

| |
, = ln .rel

tr cr

tr

1

2

⎛
⎝⎜

⎞
⎠⎟ (15)

In these expressions, z| |tr and z| |cr are the distances between the
reference sea level and the trough/crest level, and l1 and l2 are the
horizontal distances from the crest to the neighboring troughs (Fig. 2).
Recall that the crests of the initially preferred bedform are parallel to
the x-axis. As most spatial variation of the bedforms is expected in the
y-direction, only l1 and l2 along the y-axis are presented. The distances
l1 and l2 are measured in the positive y-direction, such that A > 0
indicates that the steeper side with respect to the crest is in the positive
y-direction when measured from the crest.

2.5. Design of experiments

To fulfill the two main aims of this study, two groups of experiments
are designed. Default parameter values for hydrodynamics, sand
transport and numerics are listed in Table 1. The chosen physical
parameter values represent typical conditions at the outer shelf of the
southern North Sea. Experiments of the first group are carried out to
quantify the differences in the characteristics of finite-height tidal sand
ridges, i.e., their shape and growth time, using 1D and 2D configura-
tions under a rectilinear (ϵ = 0) semidiurnal tide M2 with no critical
bed shear stress for sand erosion (Uc = 0).

In the second group of experiments, the focus is on exploring
separately the effect of the tidal ellipticity ϵ and the critical bed shear
stress, or equivalently the critical velocity Uc for sand erosion, on the
characteristics of finite-height ridges. If an elliptical tidal current
(ϵ = − 0.4, − 0.2, 0.2, 0.4) is used, Uc = 0, while if the critical shear
stress is included, ϵ = 0. The values of the tidal ellipticity and the grain
size in this study are based on the reconstructed tidal currents from the
results of a numerical model and field data that are both presented in
van Santen et al. (2011).

Accounting for the subharmonics of the initially preferred bedform,
i.e., modes with wavenumbers k I(0, / )p (I is an integer larger than 1),
increases the complexity of the system. Therefore, in Section 3 the
domain length Ly is chosen as the wavelength of the initially preferred
bedform. Consequently, the modes with kx = 0 only include the initially
preferred bedform and its superharmonics (k Ik= p), as made visible as
squares in Fig. 3, which is a contour plot of the initial growth rate of
bottom modes in the topographic wavenumber space. Additionally, the
circles in Fig. 3 denote several bottom modes with wave vectors
normal/oblique to that of the preferred bedform in a 2D configuration.
Simulations that include subharmonics of the preferred bedform will
be discussed in Section 4.

Note that in the main part background tidal currents with multiple
constituents, e.g. M0, M2 and its first overtide M4 (with angular
frequency ω ω= 2M M4 2

), are only considered when situations at specific
field sites are mimicked (in Section 4). Further information of the effect
of considering more than one tidal constituent on the characteristics of
finite-height ridges is given in the Electronic Supplement.

Fig. 2. Sketch showing how quantities zcr and ztr (crest and trough levels), and length
scales l1, l2 are obtained from model output. From these quantities, the relative height
hrel and asymmetry A of the bedforms are calculated from Eq. (15). Here A < 0.

Table 1
Default parameter values for hydrodynamics, sand transport and numerics in the
experiments. An M2 background tidal current is considered, unless otherwise specified.

Parameter Value Description

Hydrodynamics H 30 m Undisturbed water depth
Umax 1 m s−1 Maximum velocity of

background tidal current
Φ 52°N Latitude
Ω 7.292 × 10 rad s−5 −1 Angular frequency of the

Earth
g 9.81 m s−2 Gravitational acceleration
Uw 0.25 m s−1 Near-bed wave stirring

coefficient
ν 1.4 × 10 m s−6 2 −1 Kinematic viscosity of water

ωM2 1.4 × 10 rad s−4 −1 Angular frequency of M2 tide

Sand transport s 2.6 Density ratio between sand
and water

p 0.4 Bed porosity
Λ 2.0 Bed slope coefficient
μd 0.6 Dynamic friction coefficient
d 0.4 mm Median grain size

Numerics xΔ 400 m Grid size in the x-direction
yΔ 200 m Grid size in the y-direction

tΔ 8 s Time step
β 25–450 Morphological acceleration

factor
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3. Results

3.1. Rectilinear tides and no critical bed shear stress for sand erosion:
1D versus 2D configuration

Fig. 4 shows snapshots of the bed level h at several times in the
experiments using a rectilinear M2 background tidal current and no
critical bed shear stress for sand erosion (Uc = 0) for both 1D and 2D
configurations. Based on the wavelength and orientation of the
preferred bedform, the domain length Ly = 9 km, and the principal
current direction is 41° clockwise rotated with respect to the x-axis. In
a 2D configuration, the domain length Lx = 8 km. Due to the selection
of the bottom modes, rhythmic bottom patterns appear in both 1D and
2D cases (Fig. 4a–b). Subsequently, the crests of the bedforms reach a
high level, and in the 2D case they become parallel to the x-axis
(Fig. 4c). Afterwards, the change in the bed level is minor in the 1D
case, while in the 2D case meandering crests appear in space (Fig. 4d).
In Fig. 5 the time evolution of the bed level h of a slice along the y-
direction is shown for both 1D and 2D configurations. During the first

2000 yr, the bed level evolves similarly in the two cases, while after-
ward it behaves quite differently. In the 1D case, after a certain time the
bed level does no longer change, a result that was also found by Roos
et al. (2004) (for a detailed comparison see the Electronic Supplement).
In contrast, if a 2D configuration is used, after about 3000 yr the crests
of the bedforms begin to oscillate in time. The oscillation of the crests
has a period of roughly 300 yr, and the distance that the crests shift in
the y-direction is approximately 2.4 km.

In Fig. 6, the time evolution of the root mean square height hrms

and the global growth rate Γ of the bedforms are shown for both 1D
and 2D configurations. It is seen that for a 2D configuration, the global
growth time τg (2500 yr) of the bedforms is larger than that in the case
of a 1D configuration (1900 yr). For time t τ< g, the time evolution of
hrms and Γ of the bedforms is similar for the 1D and 2D configura-
tions, although a time difference of 600 yr is observed. For t slightly
larger than τg, the global growth rate in the 2D case starts to oscillate
around 0 (dynamic equilibrium) instead of infinitely approaching 0
(static equilibrium) as in the 1D case. In the end, in the 1D case hrms

and the relative ridge height hrel (not shown) become almost constant,
whereas in the 2D case these quantities oscillate in time. The relative
height of the ridges in the transect at x = 3.2 km in the 2D case is 87 ±
10% for time t τ> g, the mean value of which is close to that in the 1D
case. As meanders could appear in the 2D case, hereafter, the results
using a 2D configuration are presented, unless otherwise specified.

3.2. Elliptical tides and critical bed shear stress for sand erosion

In Fig. 7, the time series of the characteristics of the bedforms
(hrms and Γ) are shown for the experiments that consider M2 back-
ground tidal currents with different values of tidal ellipticity ϵ and no
critical bed shear stress for sand erosion. Results of the experiments
using a 1D configuration are presented in the Electronic Supplement.
The wavelength of the initially preferred bedform is largest (11.2 km)
for ϵ = − 0.4 and smallest (8.6 km) for ϵ = 0.2. The temporal behavior
of Γ reveals that for all values of ϵ (ϵ = ± 0.2 not shown), similar to the
case of a rectilinear tide, a dynamic equilibrium state is reached. In the
case of cyclonic tidal currents (ϵ > 0), for time t τ> g the time-averaged
value of hrms decreases as the value of ϵ increases. In contrast, for anti-
cyclonic tidal currents (ϵ < 0), for time t τ> g the time-averaged value of
hrms increases as the value of |ϵ| increases. Fig. 8a shows the
dependence of the global growth time τg on the tidal ellipticity ϵ.
Clearly, this dependence is non-monotonic, i.e, τg reaches a minimum
at ϵ = − 0.2 and a maximum at ϵ = 0.4. Besides, noticeable differences

Fig. 3. An example of the initial growth rate of bottom modes as a function of the
topographic wavenumbers kx and ky of the modes, obtained from linear stability
analysis. The x- and y-axes are chosen such that the preferred bedform has a wave
vector k(0, )p . The black dashed line ϑ = 0 indicates that the crests of the modes align

with the principal current direction. The plus and squares correspond to the preferred
bedform and two of its superharmonics, respectively. The circles denote several
additional modes with crests normal/oblique to those of the preferred bedform in a
2D configuration.

Fig. 4. Snapshots of the bed level h for both 1D (top) and 2D (bottom) configurations at times: (a) t = 0, (b) t = 500 yr, (c) t = 2600 yr, (d) t = 3600 yr, using a rectilinearM2 background
tidal current and Uc = 0. In the 2D case, the bed level obtained in the domain of 8 km × 9 km is used to cover a domain with a size 3 × 3 times larger. Similar extension in the y-direction
is done for the 1D case.
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in the crest and trough levels for different values of ϵ are observed,
which for each ϵ gives a large variation in the values of hrel. Fig. 8b
shows the range of relative ridge height hrel for time t τ> g against ϵ.
For t τ> g, the maximum of hrel for each ϵ is around 93%, while the
minimum of hrel changes from 85% at ϵ = − 0.2 to 48% at ϵ = 0.4.
Furthermore, Fig. 8c shows the period of the oscillation of the crests Tc
and the distance lc that the crests shift in the y-direction versus ϵ. It is
seen that Tc increases as ϵ increases, and lc varies between 2 km and
3.5 km. Note that lc is larger for negative ϵ than for positive ϵ.

Next, the sensitivity of the characteristics of the bedforms to the
critical velocity Uc for sand erosion is examined. In the case thatU > 0c ,

for the default value of the undisturbed water depth (H = 30 m, see
Table 1), Uc = 0.48 m s−1, and the initially preferred bedform has a
smaller wavelength (8 km) than that (9 km) in the case that Uc = 0.
Meandering crests that oscillate in time are also observed when U > 0c
(not shown). The period of the oscillation of the crests is around 400 yr,
and the distance that the crests shift in the y-direction is approximately
2.4 km. Another essential difference of the characteristics of the
bedforms between the cases that Uc = 0 andU > 0c concerns the global
growth time τg. In the latter case, τg is 500 yr larger. The other
quantities (hrms and hrel) of the bedforms are only slightly affected if
U > 0c is considered. In particular, at time t τ= g, the relative differences

Fig. 5. Time evolution of the bed level of a slice along the y-direction in the cases using a rectilinear M2 background tidal current and Uc = 0, for (a) a 1D configuration and (b) a 2D
configuration. The bed level obtained in a domain with Ly = 9 km is used to cover a domain with Ly that is 3 times larger. In (b), Lx = 8 km, and the slice was taken at x = 3.2 km.

Fig. 6. Time evolution of (a) root mean square height hrms and (b) global growth rate Γ of the bedforms in the cases using a rectilinearM2 background tidal current and Uc = 0, for both
1D (dotted line) and 2D (solid line) configurations. The vertical lines mark the global growth time τg of the bedforms.

Fig. 7. As Fig. 6 but for different values of ellipticity ϵ and Uc = 0. The case ϵ = 0 is identical to the 2D case in Fig. 6.
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in hrms and hrel between the cases that U > 0c and Uc = 0 are
approximately 0.3% and 0.8%, respectively.

4. Discussion

4.1. Tendency of tidal sand ridges towards static equilibrium

In the experiments using a 1D configuration, finite-height tidal
sand ridges in static equilibrium are obtained with the present model,
i.e., the global growth rate Γ of the bedforms in the end state remains
zero. In contrast, in the experiments using a 2D configuration in
Section 3, ridges in dynamic equilibrium are observed, i.e., Γ oscillates
in time. To further understand why tidal sand ridges in static
equilibrium occur, the potential energy of the bedforms (measured by
h /2rms

2 ) is analyzed. From the equation of bed level evolution (Eq. (5)),
the equation for the evolution of the potential energy is derived, which
reads

t
h

h q
p

h q
p

∂
∂
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− ∇· →
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+
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Here, q→a and q→s are the advective and slope-induced sand transport,
respectively,
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By applying the Green's theorem and periodic boundary conditions, the
first and second terms on the right hand side of Eq. (16) are written as
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Here, P describes the production of the potential energy due to
advective sand transport q→a, and Δ describes the damping of the

potential energy due to slope-induced sand transport q→s . Note that Δ
is proportional to h h−∇ ·∇ , and thus its value is negative.

Fig. 9a shows the time evolution of the production and damping
terms P and Δ of the potential energy and their sum in the experiment
using a rectilinearM2 background tide, critical velocity Uc = 0 and a 1D
configuration in Section 3.1. It is seen that the balance of the
production term P and the damping term Δ in the end gives rise to a
state in which the potential energy of the bedforms remains constant.
Initially (for time t ≲ 1600 yr) the magnitudes of both P and Δ increase.
At this stage, since the bed slope h|∇ | is small, the magnitude of Δ is
smaller than that of P. As the potential energy increases, the bed slopes
become larger, giving rise to a fast increase in Δ. The final balance
between the production term P and the damping term Δ results from a
more vigorous increase in Δ caused by the increasing bottom slopes,
rather than by the vanishing of P. The fact that P remains positive, even
for a large value of hrms (see Fig. 6a), indicates that the mechanism
that causes initial growth of tidal sand ridges (see Huthnance (1982a))
also persists when sand ridges have finite heights. If wind waves are
present, as the near-bed wave orbital velocity amplitude is inversely
proportional to the water depth, bottom erosion due to wave stirring
will prevent the crest level from growing too close to the surface level.
Fig. 9b shows the ridge profiles (1D configuration) in equilibrium using
different values of the near-bed wave stirring coefficient Uw. It is seen
that as Uw increases, the depth above the crests increases and the
crests become flatter.

4.2. Presence of tidal sand ridges with meandering crests

In Section 3.1, in the case of a 2D configuration, ridges appear with
meandering crests that oscillate in time. The spatial characteristics of
the ridges indicate the existence of bottom modes with wave vectors in

Fig. 8. (a) Global growth time τg versus tidal ellipticity ϵ. (b) As (a), but for relative ridge height hrel in the dynamic equilibrium state t τ( > )g . (c) As (b), but for the period Tc (solid line)

of the oscillation of the crests and the distance lc that the crests shift in the y-direction (dashed line).
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different directions. To investigate this in more depth, the amplitude
a| |mn of different bottom modes are analyzed. Fig. 10 shows the
amplitude of the bottom modes at several times. It turns out that
several bottom modes with crests that are oblique to those of the
preferred bedform are excited at 3600 yr, which induces the mean-
dering feature in space. Meanwhile, the temporal variations in the
potential energy (measured by a| |mn

2 for a single bottom mode) of those
excited modes, the preferred bedform and its first few superharmonics
cause the oscillation of the crests in time. The phenomenon that
meandering crests of sand ridges evolve from straight crests is
qualitatively similar to that of finite-amplitude plane waves of large
steepness developing into three-dimensional (3D) crescent water waves
due to nonlinear instability (Dias and Kharif, 1999, and references
therein).

One mechanism that causes the evolution of water waves from a 2D
to a 3D pattern is related to the growth in amplitudes of waves that
have wave vectors oblique to that of the original plane wave (Toffoli
et al., 2013). Similarly, the development from straight crests to
meandering crests for tidal sand ridges is the result of the presence
of bottom modes with crests that are oblique to those of the preferred
bedform. Based on the behavior of water waves, it is hypothesized that
the occurrence of meandering ridges is linked to two variables. The first
is the ratio of the wavenumber of the initially preferred bedform and
the minimum wavenumber of bottom modes with crests normal to
those of the preferred bedform, i.e., k k/p x0. The other is the relative
ridge height hrel, which is strongly coupled to the near-bed wave
stirring coefficient Uw. In Fig. 11a, hrel at time t τ= g is plotted against
the ratio between Uw and the velocity amplitude UM2

of the M2 tide for
the cases of a rectilinear M2 background tide, Uc = 0 and a 2D
configuration. It is seen that the larger the value of U U/w M2

, the smaller
the value of hrel.

Additional experiments were performed with different domain

lengths Lx (recall that k π L= 2 /x x0 ) and different values of Uw based
on the experiments in Section 3. Fig. 11b shows the presence of
meandering features for different values of the wavenumber ratio k k/p x0
and hrel at time t τ= g. In general, meanders appear if h ≳ 80%rel and
k k/ ≳ 1p x0 . In addition, Fig. 11c shows the period Tc of the oscillation of
the crests and the distance lc that the crests shift in the y-direction
versus the wavenumber ratio k k/p x0 for the cases (with different Lx) of a
rectilinearM2 tidal current and Uc = 0. The values of Tc and lc increase
as k k/p x0 increases.

Tidal sand ridges with meandering crests are indeed observed in the
field, such as the Leman Bank and the Ower Bank of the Norfolk Banks
area in the southern North Sea (Caston, 1972) and the Noordhinder
Bank on the Belgian Continental Shelf (Smith, 1988). In particular,
Caston (1972) suggested that, possibly due to an unequal sand
transport rate along the originally straight crests of the ridges, a
meandering ridge grows and breaks into three ridges. Smith (1988)
on the other hand examined the stability of a kink in the Noordhinder
Bank over a 135 yr period and did not find support for Caston's model.
Instead, Smith (1988) proposed that it is more likely that eventually the
kink would break, resulting in two ridges. In the present model,
breaking of a ridge into two parts indeed happens, as shown in
Fig. 4c–d. Additionally, merging of two ridges (not shown) with crests
almost in the same direction occurs. Thus, alternate breaking and
merging of ridges in the course of time takes place.

4.3. Sensitivity of the results to numerical parameters

The sensitivity of the results to numerical settings, i.e, the mor-
phological acceleration factor β, the time step tΔ , and the grid size xΔ
and yΔ was examined. To this end, different values of numerics were
used in the experiment with a rectilinear M2 background tidal current,
Uc = 0 and a 2D configuration, as considered in Section 3.1. In the

Fig. 9. (a) The production and damping terms P (dashed line) and Δ (dotted line) of the potential energy and their sum (solid line) versus time, from the experiment using a rectilinear
M2 background tidal current, Uc = 0 and a 1D configuration in Section 3.1. Several times are also indicated by circles. (b) Ridge profiles in equilibrium for different values of near-bed
wave stirring coefficient Uw, using the same experiment setup as that for (a) except the value of Uw.

Fig. 10. Amplitude a| |mn of bottom modes with index (m, n) (Eq. (13)) at times: (a) t = 0, (b) t = 500 yr, (c) t = 2600 yr, (d) t = 3600 yr, corresponding to Fig. 4 (bottom). The image of

a| |mn in the whole (m, n) space is symmetric with respect to (0, 0), thus for better visualization only the part with positivem is shown. The index of the initially preferred bedform is (0, 1).
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reference case, xΔ = 400 m, yΔ = 300 m, tΔ = 8 s and β = 200. For a
smaller value of β, i.e., β = 100, the relative changes in the global
growth time τg and hrms at time t τ= g of the bedforms are 0.1% and
0.02%, respectively. For a smaller time step, tΔ = 6 s, the relative
changes in τg and hrms at time t τ= g are 0.1% and 0.04%, respectively.
Using a smaller grid size, xΔ = 200 m and yΔ = 150 m, comparing with
the results in the reference case, τg is 0.2% larger, while hrms at time
t τ= g is 2% smaller.

4.4. Role of subharmonics of the preferred bedform in the dynamics
of ridges

So far, results have been presented for a domain length L λ=y p,
such that in the direction normal to the crests of the initially preferred
bedform, only the initially preferred bedform with a wavelength of λp
and its superharmonics were included. Roos and Hulscher (2006)
studied the effect of subharmonics on the finite-height sand ridges
using a 1D configuration. They observed that in the presence of
subharmonics of the initially preferred bedform, the average spacing
between successive crests of ridges increased in time. This phenomen-
on, morphodynamic pattern coarsening, is observed for other types of
bedforms as well, such as sand bars in the nearshore zone (Garnier
et al., 2006), shoreface-connected sand ridges (Calvete and de Swart,
2003; Nnafie et al., 2014) and rippled scour depressions (Coco et al.,
2007) on the inner continental shelf. In the present model, if
subharmonics of the initially preferred bedform are considered, by
using L Iλ=y p with I an integer larger than 1, coarsening of the ridges
also occurs in the experiments in which no obvious meanders appear
(Fig. 12a). Note that here the ridges do not migrate, and coarsening
occurs as some ridges cease locally. If the bedforms migrate, merging of

two parallel crests could happen due to different migration rates of the
crests, as is found in the studies cited above. In contrast, if meandering
ridges appear, coarsening does not take place (Fig. 12b). Hence, it
seems that introducing bottom modes with crests normal/oblique to
that of the initially preferred bedform inhibits the coarsening of sand
ridges, due to nonlinear interactions between those modes. This may
contribute to the formation of multiple ridges aligning with each other
in the field (apart from breaking of a ridge into two, as suggested by
Smith, 1988) since in nature bottom modes with wave vectors in all
horizontal directions exist. Note that other processes can slow down
the coarsening, for instance, the presence of additional background
tidal constituents, such as M0 and M4, besides M2 (Roos and Hulscher,
2006) and sea level rise (Nnafie et al., 2014).

4.5. Comparison between modeled and observed tidal sand ridges

Modeled tidal sand ridges are compared with two observed patches
of ridges, viz. the Dutch Banks and the Flemish Banks in the southern
North Sea. The observed characteristics of the ridges (after Roos et al.,
2004) and the model input are listed in Table 2. The velocity
amplitudes and phases of the tidal currents are based on the numerical
work of van der Molen and de Swart (2001). The values of the tidal
ellipticity and the grain size are adopted from van Santen et al. (2011).
The modeled initially preferred bedforms have wavelengths of 6.8 km
and 5.6 km for input parameters that are representative for the Dutch
and Flemish Banks, respectively, which qualitatively agree with the
spacings between observed ridges. The crests of the modeled ridges are
approximately 40° cyclonically rotated with respect to the principal
current direction. The magnitudes of the modeled orientation angles

Fig. 11. (a) Relative ridge height hrel at time t τ= g (2D configuration) versus the ratio between the near-bed wave stirring coefficient Uw and the velocity amplitude of the M2 tideUM2.

(b) Presence of meandering tidal sand ridges for different values of the wavenumber ratio k k/p x0 and hrel at time t τ= g, here k π L= 2 /x x0 is the minimum wavenumber of the bottom

modes with crests normal to those of the initially preferred bedform. (c) The period Tc (solid line) of the oscillation of the crests and the distance lc that the crests shift in the y-direction
(dashed line) versus k k/p x0. In (a) and (c), rectilinear M2 background tidal currents were used and Uc = 0. For other parameters see Table 1.
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are larger than those of the observed angles.
Figs. 13 and 14 shows the observed and modeled ridge profiles for

the Dutch Banks and the Flemish Banks, respectively. It is seen from
Fig. 13 that the modeled ridge profiles between 6000 yr and 6500 yr
(smaller than the global growth time, τ = 7300 yrg ) for the Dutch Banks
are similar to the observed ridge profiles. The corresponding relative
height hrel (23–42%) from the modeled profiles is close to that
retrieved from the field data, albeit the values of modeled and observed
asymmetry A (defined in Eq. (15)) differ. The same applies to the

Flemish Banks (the modeled τ = 6600 yrg , and from 6000 yr to 6500 yr
hrel increases from 60% to 79%), while the location of the steeper side
of the ridge with respect to the crests (indicated by the sign of A) is
different from that in the field (Fig. 14). Hence, it is likely that those
ridges are still growing.

There are several aspects that might explain the difference in the
spacings of the modeled and observed ridges in Figs. 13 and 14. First,
note that the observed spacings in Table 2 represent the dominant
values obtained from Fourier analysis of the seabed topography in the
regions of the Dutch Banks and the Flemish Banks. The spacing of the
ridges itself in the field could vary even within a small domain as seen
from Fig. 14a. Second, the background tidal forcing in the model
consists of only one primary (M2) constituent, its first overtide and the
residual current, whereas in nature multiple tidal constituents are
present. Third, in the model the domain size was fixed according to the
spacing of the initially preferred bedform based on the present-day
conditions, while in nature the spacing of the ridges could change in
time due to changes in the sea level, tide and wave conditions. These
aspects will be investigated in future studies.

Different location of the steeper ridge side with respect to the crests
between the modeled and observed ridges (Flemish Banks setting)
could be due to that the phase difference ϕΔ between the tides M2 and
M4 used in the model is different from that in the field. In Uehara et al.
(2006), it was shown that the spatial pattern of sand transport in the
area of the Flemish Banks is quite complicated according to the peak
bed shear stress vectors in that area, i.e., the direction of the peak bed
shear stress vectors varies by 180°. Results of further experiments
using different values of ϕΔ show that the magnitude and sign of A vary
with ϕΔ . If the tidal current consists of only M2 and M4, increasing/
decreasing the phase difference ϕΔ between M2 and M4 by π changes
the sign of A. This means that the new ridge profiles are like those
shown in Fig. 14b, except that the steeper and gentler sides with

Fig. 12. Time evolution of the bed level along a slice at x = 3.2 km in the experiments with subharmonics of the preferred bedform (L λ= 3y p), using a rectilinear M2 background tidal

current and Uc = 0. In (a) Lx = 4 km, no obvious meanders appear; in (b) Lx = 8 km, meanders appear. For other parameters see Table 1.

Table 2
Observation at the Dutch banks and the Flemish banks and model input.

Parameter Dutch Banks Flemish Banks

Observation Latitude Ω 52°40′ N 51°30′ N
Wavelength (km) 5.7–9.8 4.5
Orientation ϑ (°) −25 −6
Relative height hrel (%) 26 61
Asymmetry A 1.3 0.2

Model input Mean water depth H (m) 28.9 28.7
Residual flow velocityUM0 (m s−1) 0.01 0

Velocity amplitude of M2, UM2
(m s−1)

0.69 0.74

Velocity amplitude of M4, UM4
(m s−1)

0.08 0.08

Ellipticity of M2, ϵM2 −0.2 0.1

Ellipticity of M4, ϵM4 −0.2 0.1

Phase of M2, ϕM2
(°) 0 0

Phase of M4, ϕM4
(°) 36.4 127.5

Grain size d (mm) 0.25 0.45

Fig. 13. (a) Observed ridge profiles in the region of the Dutch Banks in the southern
North Sea (after Roos et al. (2004)). (b) Modeled ridge profiles at several times (input
parameter values see Table 2). The bed level obtained in a domain with Ly = 6.8 km is
used to cover a domain with Ly that is 5 times larger, and Lx = 4 km.

Fig. 14. As in Fig. 13 but for the Flemish Banks. In (b), the bed level obtained in a
domain with Ly = 5.6 km is used to cover a domain with Ly that is 5 times larger, and Lx
= 4 km.
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respect to the crests are reversed.

4.6. Limitations of the model

Several assumptions have been made in the present model. First,
the vertical flow structure is neglected by employing the depth-
averaged shallow water equations, so the model is unable to simulate
sand waves (Hulscher, 1996). The difference between modeled and
observed orientations of the bedforms could also be due to this
assumption, since sand transport is determined by the near-bed
currents, the direction of which may differ from that of depth averaged
currents (e.g., Shapiro et al., 2004). Second, the mean sea level is
assumed to be constant, while it has changed significantly over the last
thousands of years. For example, it has been shown that the sea level
for the continental shelves of Belgium and the Netherlands at 8 ka BP
(thousands years before present) was about 15 m lower than the
present sea level (Beets and van der Spek, 2000). Third, the tide and
wave conditions have also changed during the last few thousands of
years (Uehara et al., 2006; Neill et al., 2009), but such changes are not
taken into account here. Note that no phase difference of the back-
ground tidal forcing within the study domain is considered as it is
assumed that the domain size is much smaller than the wavelength of
principal tidal waves, and the way of including the wind wave stirring is
parametric. Additionally, only bed load transport of sand is considered,
while suspended load could also play a role in the long-term evolution
of these bedforms if the current is strong and the grain size is small
(Besio et al., 2006). In this study, uniform grain size is assumed, while
in nature multiple sand fractions are present (see e.g. Gao et al., 1994).
Thus sorting processes (Walgreen et al., 2004) resulting in variation of
mean grain size over the ridges are not accounted for. Last, the domain
size is fixed and the principal current direction is prescribed such that
the crests of the initially preferred bedform align with the x-axis.
Natural selection of the wavelength and orientation of the bedforms
could be possible if a 2D domain is used and its size is large enough.
However, at the present stage the computational efficiency of the model
hinders such kind of simulations.

5. Conclusions

Using a nonlinear morphodynamic model, the dynamics of finite-
height tidal sand ridges in the shelf seas have been studied. The focus
has been on the effect of considering topographies that vary in either
one or two horizontal dimensions, tidal ellipticity and critical shear
stress for sand erosion on shape and growth time of sand ridges.

For the range of parameter values that have been considered in this
study, different results have been found between the cases using 1D
and 2D configurations. Compared to the 1D case, in the 2D case it takes
longer time for the ridges to reach a similar value of root mean square
height hrms. In the 1D case, the end state is a static equilibrium state,
i.e., hrms remains constant. In contrast, in the 2D case, the ridges
reach a dynamic equilibrium state, if the minimum wavenumber of the
bottom modes with crests normal to those of the preferred bedform is
in the order or less than the wavenumber of the preferred bedform and
the relative ridge height right after the global growth time is above
80%. This state is characterized by ridges with meandering crests that
oscillate in time.

If elliptical tides and the critical shear stress for sand erosion are
considered, tidal sand ridges with meandering crests are still observed
in the 2D case. Regarding elliptical tides, noticeable changes in the
shape of ridges are observed. The minimum of the relative ridge height
after the global growth time varies from 85% at ϵ = − 0.2 to 48% at
ϵ = 0.4, while the maximum of the relative ridge height is around 93%
for all the values of ϵ considered in this study. The global growth time
of the ridges varies non-monotonically with ellipticity. In contrast, if
the critical bed shear stress is considered, the ridge shape hardly
changes, and the global growth time increases compared to that in the

case neglecting the critical bed shear stress. The modeled ridge profiles
in the period 6000–6500 yr (smaller than the global growth time) are
similar to the observed ridge profiles for the Dutch Banks and the
Flemish Banks in the southern North Sea. This result suggests that the
ridges at those locations might still be growing.
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