
Generating Hints and Feedback for Hilbert-style Axiomatic
Proofs

Josje Lodder
Open University of the

Netherlands
josje.lodder@ou.nl

Bastiaan Heeren
Open University of the

Netherlands
bastiaan.heeren@ou.nl

Johan Jeuring
Open University of the

Netherlands and
Utrecht University

J.T.Jeuring@uu.nl

ABSTRACT
This paper describes an algorithm to generate Hilbert-style
axiomatic proofs. Based on this algorithm we develop lo-
gax, a new interactive tutoring tool that provides hints and
feedback to a student who stepwise constructs an axiomatic
proof. We compare the generated proofs with expert and
student solutions, and conclude that the quality of the gen-
erated proofs is comparable to that of expert proofs. logax
recognizes most steps that students take when constructing
a proof. If a student diverges from the generated solution,
logax can still provide hints and feedback.

Keywords
propositional logic; axiomatic proofs; Hilbert axiom system;
feedback, hints; intelligent tutoring; e-learning

1. INTRODUCTION
The ACM 2013 computer science curriculum lists the abil-

ity to construct formal proofs as one of the learning outcomes
of a basic logic course [3]. The three main formal deductive
systems are Hilbert systems, sequent calculus, and natural
deduction. Natural deduction is probably the most popular
system, but classical textbooks on mathematical logic also
spend a couple of pages on Hilbert systems [14, 19, 8, 15].
Hilbert systems belong to the necessary foundation to the in-
troduction of logics (temporary, Hoare, unity, fixpoint, and
description logic) used in teaching of various fields of com-
puter science [25], and are treated in several textbooks on
logic for computer science [4, 21, 2, 24].

Students have problems with constructing formal proofs.
An analysis of the high number of drop-outs in logic classes
during a period of eight years shows that many students give
up when formal proofs are introduced [9, 10]. Our own expe-
rience also shows that students have difficulties with formal
proofs. We analyzed the homework handed in by 65 students
who participated in the course “Logic and Computer Sci-
ence” during the academic years 2014-2015 and 2015-2016.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08 - 11, 2017, Seattle, WA, USA
Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017736

From these students, 22 had to redo their homework exer-
cise on axiomatic proofs. This is significantly higher than,
for example, the number of students in the same group who
had to redo the exercise on semantic tableaux: 5 out of 65.

A student practices axiomatic proofs by solving exercises.
Since it is not always possible to have a human tutor avail-
able, an intelligent tutoring system (ITS) might be of help.
There are several ITSs supporting exercises on natural de-
duction systems [23, 22, 6]. In these ITSs, students construct
proofs, and get hints and feedback. We found two e-learning
tools that help students producing axiomatic proofs: Meta-
math Solitaire [18] and Gateway to logic [11]. Both tools
are proof-editors: a student chooses an applicable rule and
the system applies this rule automatically. These systems
provide no help on how to construct a proof.

In this paper we describe logax, a new tool that helps
students in constructing Hilbert-style axiomatic proofs. lo-
gax provides feedback, hints, next steps, and complete so-
lutions. logax is part of a set of tools assisting students in
studying logic, such as a tool to practice rewriting formulae
in disjunctive or conjunctive normal form, and to prove an
equivalence using standard equivalences [17, 16].

The main contributions of this paper are:

– an algorithm for generating axiomatic proofs, and
– the generation of hints and feedback based on this al-

gorithm.

To determine the quality of logax, we compare the proofs
generated by the tool with expert proofs and student so-
lutions. We use the set of homework exercises mentioned
above to collect common mistakes, which we have added as
buggy rules to logax.

This paper is organized as follows. Section 2 describes
Hilbert’s axiom system. Section 3 introduces the algorithm
to generate proofs automatically, and Section 4 explains how
we use these generated proofs for providing hints. Section 5
gives a collection of buggy rules. Section 6 shows the results
of a first evaluation of our work. Section 7 concludes and
presents ideas for future work.

2. AN E-LEARNING TOOL FOR HILBERT-
STYLE AXIOMATIC PROOFS

Several variants of axiomatic proof systems exist. In lo-
gax we use the following set of axioms:

φ→ (ψ → φ) Axiom a
(φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ)) Axiom b
(¬φ→ ¬ψ)→ (ψ → φ) Axiom c

387



Figure 1: A partial proof of q → r ` (p → q)→ (p → r) performed in logax

A proof consists of a list of statements of the form Σ ` φ,
where Σ is a set of formulae (assumptions) and φ is the
formula that is derived from Σ. In a ‘pure’ axiomatic proof,
each line is either an instance of an axiom, an assumption,
or an application of the Modus Ponens (MP) rule:

if Σ ` φ and ∆ ` φ→ ψ then Σ ∪∆ ` ψ

logax also supports a derived rule, the deduction theorem:

if Σ, φ ` ψ then Σ ` φ→ ψ

A proof in this system can be constructed in two directions.
To take a step in a proof, a student can ask two questions:

– How can I reach the conclusion?
– How can I use the assumptions?

An answer to the first question might be: use the deduction
theorem to reach the conclusion. This answer creates a new
goal to be reached, and adds a backward step to the proof.
An answer to the second question might be: introduce an
instance of an axiom that can be used together with an as-
sumption in an application of Modus Ponens. This adds
one or more forward steps. Figure 1 shows an example par-
tial proof, constructed in our tool logax. A full proof that
completes this partial proof is:

1. p ` p Assumption
2. p → q ` p → q Assumption
3. p, p → q ` q Modus Ponens, 1, 2
4. q → r ` q → r Assumption
5. p, p → q , q → r ` r Modus Ponens, 3, 4
6. p → q , q → r ` p → r Deduction 5
7. q → r ` (p → q)→ (p → r) Deduction 6

Figure 1 illustrates most of the functionality of our e-
learning tool logax. A student starts with choosing a new
exercise from the list, or formulating her own exercise. She
continues working in the dialog box to add new proof lines.
Here she can first choose which rule to apply: an assump-
tion, axiom, an application of Modus Ponens or deduction
theorem, or a new goal. In case of an assumption she enters a
formula, and in case of an axiom, logax asks for parameters
to add the instantiation of the axiom to the proof. Figure 1

shows adding a Modus Ponens: a student has to fill in at
least two of the three line numbers. logax performs a step
automatically and adds a forward or backward step to the
proof. In the same way, a student provides a line number
to perform a backward application of the deduction theo-
rem. If the deduction theorem is applied in a forward step,
the student also provides a formula φ. If a student makes
a mistake, e.g. she writes a syntactical error in a formula,
or tries to perform an impossible application of Modus Po-
nens, the tool provides immediate feedback. At any moment
she can ask for a hint, next step, or a complete proof. The
high number labelling the target statement (1000) is chosen
deliberately, because at the start of the proof it is not yet
clear how long the proof will be. After finishing the proof a
student can ask the tool to renumber the complete proof.

3. AN ALGORITHM FOR GENERATING
AXIOMATIC PROOFS

An ITS for axiomatic proofs needs to provide hints and
feedback. There are at least two ways to construct hints
and feedback for a proof. First, they can be obtained from
a complete proof. Such a proof can either be supplied by a
teacher or an expert, or deduced from a set of student so-
lutions. An example of an ITS for natural deduction proofs
that uses student solutions has been developed by Mostafavi
and Barnes [20]. A drawback of this approach is that the
tool only recognizes solutions that are more or less equal to
the stored proofs. The tool cannot provide hints when a stu-
dent solution diverges from these stored proofs. Also, this
only works for a fixed set of exercises. If a teacher wants to
add a new exercise, she also has to provide solutions, and
the tool cannot give hints for exercises that are defined by
a student herself. The second way to provide the tool with
solutions, which we use, is to create proofs automatically.
At first sight this might solve only the second problem: au-
tomatically providing hints for new exercises. Section 4 ex-
plains how our approach makes it possible to provide hints
also in case a student diverges from a model solution.

We develop an algorithm that automatically generates
proofs. This algorithm should generate the kind of proofs

388



1. p ` p As 2. p → q ` p → q As

3. p, p → q ` q MP 1 2 4. q → r ` q → r As

5. p, p → q , q → r ` r MP 3 4

6. p → q , q → r ` p → r Ded 5

7. ` (q → r)→ (p → (q → r)) Axiom a

8. q → r ` p → (q → r) Ded 4 or MP 4 7

9. ` (p → (q → r))→ ((p → q)→ (p → r)) Axiom b

10. q → r ` (p → q)→ (p → r) Ded 6, or MP 8 9

Figure 2: A DAM for the proof of q → r ` (p → q)→ (p → r)

we expect from our students. Existing algorithms, such as
the Kalmár constructive completeness proof [13], or the al-
gorithms used in automatic theorem proving [12], are un-
suitable for this purpose. Natural deduction tools such as
ProofLab [23] and Pandora [6] also use solution algorithms,
and these algorithms can provide useful hints and feedback.
We adapt an existing algorithm for natural deduction to cre-
ate axiomatic proofs. Before we describe the algorithm, we
first explain how we represent proofs.

Figure 1 shows a partial example proof of q → r ` (p →
q) → (p → r). There are alternative ways to start this
proof. A student may choose a different order, for exam-
ple starting with line number 2. Using one or more axiom
instances we may obtain entirely different proofs. Since we
want to recognize different proofs, we represent proofs as la-
beled directed acyclic multi graphs (DAM), where the ver-
tices are statements Σ ` φ and the edges connect dependent
statements. We annotate vertices with the applied rule: As-
sumption, Axiom, Modus Ponens or Deduction. Note that a
statement can be the result of different applications of rules.
An example of such a DAM is shown in Figure 2. Vertices
are numbered for readability. A dashed arrow means that
the lower statement follows from the higher by application of
the deduction theorem. A pair of ordinary arrows represents
an application of Modus Ponens. This DAM contains three
essentially different proofs: one that uses axioms a and b,
one that applies the deduction theorem and Axiom a, and
one that uses no axioms and applies the deduction theorem
twice. This last proof is a continuation of the proof provided
in Figure 1.

The basis for our algorithm for axiomatic proofs is Bolo-
tov’s algorithm for natural deduction proofs [5]. The algo-
rithm is goal-driven, and uses a stack of goals. We build
a DAM using steps that are divided into five groups. The
first group contains a single step to initialize the algorithm.
The steps in the second group check whether or not a goal
is reached. The steps in the third group extend the DAM.
The steps in group 4 handle the goals and may add new
formulae to the DAM. In this group, a goal F can be added.
The symbol F is not part of the language, but we use F as
shorthand for “prove a contradiction”. Finally, group 5 com-

pletes the algorithm, where we omit certain details for the
steps that are needed to prevent the algorithm from looping.

1. We start the algorithm by adding the target statement
(e.g. q → r ` (p → q) → (p → r)) to our stack of
goals, and the assumptions of this goal (q → r ` q →
r) to the DAM.

Until the stack of goals is empty, repeat:

2. (a) If the top of the stack of goals (the top goal from
now on) belongs to the DAM, we remove this goal
from the stack of goals.

Motivation: the goal is reached.

(b) If the top goal is ∆ ` F and the DAM contains
the statements ∆′ ` φ and ∆′′ ` ¬φ such that
∆′∪∆′′ ⊂ ∆, we add a set of axioms to the DAM
that can be used to prove the goal below the top
from these two statements. We remove the goal
∆ ` F from the stack.

Motivation: we can use the contradiction to prove
the goal below the top. Apart from the instances
of the axioms, this proof will use applications of
Modus Ponens. Hence, the goal below the top
will be removed in a later step.

3. (a) If the DAM contains a formula ∆ ` ¬¬φ, we add
an instance of Axiom a (` ¬¬φ → (¬¬¬¬φ →
¬¬φ)) and two instances of Axiom c to the DAM.
The next step uses these axioms to deduce ∆ ` φ.

Motivation: use the doubly negated formula.

(b) We close the DAM under applications of Modus
Ponens.

Motivation: here we perform a broad search, and
any derivable statement will be added to the DAM.

(c) If the DAM contains a formula ∆ ` ψ and the top
goal is ∆ \ φ ` φ→ ψ, we add ∆ \ φ ` φ→ ψ to
the DAM.

Motivation: use the deduction theorem.

4. (a) If the top goal is ∆ ` φ→ ψ, we add φ ` φ to the
DAM and the goal ∆, φ ` ψ to our stack of goals.

389



Motivation: prove ∆ ` φ→ ψ with the deduction
theorem.

(b) If the goal is ∆ ` ¬φ we add φ ` φ to the DAM
and the goal ∆, φ ` F to our stack of goals.

Motivation: prove ∆ ` ¬φ by contradiction.

(c) If the goal is ∆ ` p, where p is an atomic formula,
we add ¬p ` ¬p to the DAM and the goal ∆,¬p `
F to our stack of goals.

Motivation: we cannot prove ∆ ` p directly, and
hence we prove it by contradiction.

5. (a) If the top goal is ∆ ` F and ∆ ` φ → ψ belongs
to the DAM, we add ∆ ` φ to our stack of goals.

Motivation: we cannot prove a contradiction with
the steps performed thus far. Hence, we exploit
the statements we already have. Since our goal is
to prove ∆ ` F , any formula is provable from ∆.

(b) If the top goal is ∆ ` F and ∆ ` ¬φ belongs to
the DAM we add ∆ ` φ to our stack of goals.

Motivation: use derived statements.

This algorithm constructs a basic DAM. Bolotov shows
that his algorithm is correct and complete. Our adaptations
are such that correctness and completeness are preserved.
We omit a detailed proof.

The above algorithm only uses axioms in a proof of a
contradiction, or in the use of double negations. However, we
want our students to recognize the possibility to use axioms.
We use extra heuristic rules to add more instances of axioms
to the DAM, such that we indeed can produce the example
DAM in Figure 2. An example of such a rule is:

– If the top goal equals ∆ ` φ→ ψ and Σ ` ¬φ already
belongs to the DAM, where Σ \ ¬ψ ⊂ ∆, then add an
instance (¬ψ → ¬φ) → (φ → ψ) of Axiom c to the
DAM together with a derivation of Σ\¬ψ ` ¬ψ → ¬φ
by the deduction theorem from Σ ` ¬φ.

4. MODEL SOLUTIONS AND HINTS
The DAM may contain different solutions. Figure 2 shows,

for example, three essentially different solutions for the proof
of q → r ` (p → q) → (p → r). We use the DAM to
provide complete solutions and to trace the solution con-
structed by a student to give adequate feedback or hints.
Therefore, we extract solutions stepwise from the DAM. In
each step there is a choice between different lines that can
be added to the proof. We add preferences to these choices.
In general, backward applications of the deduction theorem
are preferred over forward steps, and axioms or assumptions
that can be used in an application of Modus Ponens together
with statements that are already in the proof, are preferred
above statements that cannot be used directly. For exam-
ple, when we apply the extraction procedure to construct
a sample solution from the example DAM (Figure 2), the
first line we add to the proof is a backward step: the goal
can be reached by an application of the deduction theorem.
Also the next line will be an application of the deduction
theorem. Now, we have to introduce an assumption, and
in this case the procedure will choose line 1 or 2 from the
DAM, because both these lines can be used in a next step.
It will not choose line 4, since line 4 can only be used after
the application of Modus Ponens on lines 1 and 2.

logax uses the above extraction procedure to generate
complete solutions, and to provide hints or next steps. When
a student works on an exercise, logax compares her steps
with the steps in the DAM for the exercise. As long as the
student follows a preferred or non-preferred solution from
the DAM, logax can give hints (e.g. perform a backward
step, or apply Modus Ponens), or next steps. logax com-
pares the partial solution of the student with the DAM to
find a solution path that is a continuation of the solution
of the student. This solution path is used to generate hints
or next steps. When a student diverges from the DAM, we
build a new DAM that contains the (partial) student solu-
tion. This DAM can then be used to provide adequate hints
and next steps to continue the student proof. Of course, it is
possible that the new DAM does not contain a solution path
that uses the partial solution of the student. In that case we
can give a warning, and a hint or next step will ignore steps
that are not recognized by logax. Note that logax does
not allow students to add incorrect steps. Hence, the final
proof may contain lines that are not used, but it cannot be
an incorrect proof.

The DAM contains different solution paths comparable
to the way behavior graphs in example-based tutors code
solutions [1]. The main differences are that:

– the DAM is generated automatically;
– feedback and hints are not coded in the DAM;
– DAMs are not static, we generate a new DAM when a

student follows a different solution path.

5. BUGGY RULES
Students make mistakes in axiomatic proofs. From the

homework of students participating in our course we col-
lected a set of mistakes, and classified these mistakes in three
categories:

– oversights,
– conceptual errors, and
– ‘creative’ rule adaptations.

Mistakes such as missing parentheses belong to the first
category. A typical example of a mistake of the second cat-
egory is the following application of Modus Ponens:

1. ¬q ` ¬p → ¬q
2. ` (¬p → ¬q)→ (q → p)
3. ¬p → ¬q ` q → p Modus Ponens 1, 2

Here, the student has the (wrong) idea, that after an appli-
cation of Modus Ponens on ∆ ` φ and Σ ` φ → ψ, the for-
mula φ becomes the assumption of the conclusion. Creative
rule adaptations may take various forms. Further analysis
of the homework exercises suggests that students typically
make these mistakes when they do not know how to pro-
ceed. This is in line with the repair theory, which describes
the actions of students when they reach an impasse [7].

logax contains a dialog box to add new proof lines. The
idea behind this approach is that a student can concentrate
on proof construction. This also means that students can
make fewer mistakes. The only possible oversights are syn-
tactic mistakes in formulae. The example given before of a
conceptual error is impossible to construct in logax, since
logax fills in the assumptions automatically. However, it is
still possible that a student tries to apply a rule incorrectly,
for example an application of Modus Ponens on ∆ ` φ and
Σ ` φ′ → ψ where φ and φ′ are equivalent but not equal.

390



We used homework solutions to define a set of buggy rules
for mistakes that can be made in logax. With these rules
it is possible to give informative feedback. For example, if a
student wants to complete a proof

1. ¬q ,¬p ` ¬q Assumption
2. ¬q ` ¬p → ¬q Deduction 1
3. ` (¬p → ¬q)→ (q → p) Axiom c
4. ¬p → ¬q ` q → p

by applying Modus Ponens to lines 2, 3 and 4, she gets a
message that line 4 cannot be the result of an application
of Modus Ponens on lines 2 and 3, since the assumption of
line 2 does not belong to the set of assumptions in line 4.

6. EVALUATION
We evaluate the proofs generated by logax in two ways.

First, we compare the generated proofs with expert proofs.
There are some example proofs in textbooks, and there is
a large collection of proofs on the Metamath website1. We
cannot use the latter proofs directly, since the Metamath
proofs do not use the deduction theorem, and the same
holds for most of the example proofs in textbooks. There-
fore we perform a more indirect comparison. We use the
constructive proof of the deduction theorem to transform
proofs generated by logax in proofs without applications
of the deduction theorem, and compare these proofs with
the Metamath proofs. Since Metamath proofs build on each
other, we rewrite Metamath proofs such that proofs of used
lemmas are inlined, and subsequently delete unused or dupli-
cated proof lines. For our evaluation we compare 30 proofs.
The most important observation is that almost all proofs
are equal up to the order of the lines. In three cases the
proofs constructed by logax are shorter than the Metamath
proofs, and the other proofs are equally long.

In a second evaluation we investigate whether or not cor-
rect student solutions can be recognized by logax. We use
solutions of two homework exercises, and two exam exer-
cises. In the first exam exercise, students have to prove that
¬¬p → ¬q , r → q ` r → ¬p. The correct student solutions
to this exercise can be divided into two groups, where each
group contains solutions that are equal up to the order of
the lines. Solutions in the first group contain an application
of axioms a, b and c, and no application of the deduction
theorem. Solutions in the second group contain an applica-
tion of the deduction theorem, and of Axiom c. From the
19 correct solutions, the majority (16) belongs to the second
group, and the remaining three solutions to the first group.
The example solution provided by logax also belongs to
the second group. The solutions of the first group do not
(yet) appear in our DAM. Still, the tool can provide feed-
back for students who introduce Axiom b, since in this case
we can dynamically generate a DAM that does contain this
solution. In the future we might add an extra heuristic for
the use of Axiom b:

– If the top goal equals ∆ ` φ → χ, and ∆′ ` φ → ψ
and ∆′′ ` ψ → χ both appear in the DAM, where
∆′ ∪∆′′ ⊂ ∆, then add an instance (φ→ (ψ → χ))→
((φ→ ψ)→ (φ→ χ)) of Axiom b to the DAM.

In the second exam exercise, students have to prove p →
(¬q → ¬r), p → r ` p → q . Since this is a resit exam,

1http://us.metamath.org/mpegif/mmtheorems.html

Table 1: Recognized solutions
Exercise preferred non-pref. dynamic total
Exam 1 16 3 19
Exam 2 4 2 6
Homework 1 1 16 17
Homework 2 2 13 15

the number of participants is much lower. Only six students
handed in a correct solution to this exercise, and again the
solutions are divided into two groups, one using Axiom b
(two solutions), and one not using this axiom (four solu-
tions). The solution generated by logax belongs to the sec-
ond group. Solutions of the first group are not recognized by
the DAM that is generated at the start of the exercise, but
can be recognized by a dynamically generated DAM. The
first homework exercise resembles this examination exercise:
students have to prove that q ,¬p → (q → ¬r) ` r → p.
Here almost all student solutions (16) use Axiom a, b and c.
Only one student uses the deduction theorem instead of ax-
iom b. Here logax generates this last less followed path.
The second homework exercise is an exercise in predicate
logic, but it contains a propositional part that amounts to
a proof of (p → q) → ¬p ` q → ¬p. Again, there were
two groups of solutions: 13 students used Axiom a and the
deduction theorem, and 2 students used an extra applica-
tion of the deduction theorem instead of Axiom a. In this
case the preferred solution by logax is the solution with-
out use of Axiom a, but the DAM also contains a solution
with Axiom a. We summarize the results in Table 1. The
first column (preferred) shows the number of solutions that
corresponds to the preferred solution of logax, the second
the number that corresponds to a non-preferred solution,
and solutions in the third column can be recognized by a
dynamically generated DAM. The conclusion of this evalu-
ation is that with the use of dynamically generated DAMs,
we can recognize all student solutions, and also give hints.
Still we might optimize logax by adding more heuristics.

7. CONCLUSION AND FUTURE WORK
By using an existing algorithm for natural deduction, we

developed a correct and complete algorithm to generate Hil-
bert-style axiomatic proofs, and introduced a representation
of these proofs as a directed acyclic multi graph (DAM). We
use these DAMs in a new interactive tutoring tool logax to
provide hints and next steps, and to extract model solutions.
The comparison of our proofs with expert solutions shows
that the quality of the generated proofs is comparable to
that of expert proofs. The tool recognizes most of the steps
in a set of student solutions, and in case a step diverges
from the generated solution, logax can still provide hints
and next steps. We derived buggy rules from a set of student
solutions, and added these to logax. Comparison with a
test set showed that this set covers the majority of student
errors.

We have not yet evaluated logax in class. In the fall of
2016 we will perform a first evaluation with students. We
will measure student satisfaction with logax, and use log-
ging in combination with pre-tests and post-tests to analyze
their learning. Special attention will be paid to the mistakes
that students make in the post-test. We hypothesize, based
on repair theory, that since logax assists students in con-

391



structing proofs, creative errors will occur less frequently,
since students do not construct their own repairs when they
meet an impasse. However, students can still make mistakes,
and it might be the case that they make more mistakes in,
for example, writing down the conclusion of an application
of Modus Ponens. Since logax adds assumptions automat-
ically, students might make errors in adding assumptions
if they do not use logax. Future evaluations will show
whether or not this indeed happens.

Typically, axiomatic proofs build on each other: for ex-
ample, a proof of ` ¬¬p → p can be used as a lemma in
another proof. In the future we will extend our tool with
the possibility to add lemmas and extra rules. This will
also make it possible to provide a greater and more diverse
collection of relatively simple exercises.

8. ACKNOWLEDGMENTS
We thank Marianne Berkhof and Daan de Wit for their

work on the student interface, and our students from the
course ‘Logic and Computer Science’ for their permission to
use their solutions in our research. We thank our anonymous
referees for their constructive comments.

9. REFERENCES
[1] V. Aleven, B. M. Mclaren, J. Sewall, and K. R.

Koedinger. A new paradigm for intelligent tutoring
systems: Example-tracing tutors. International
Journal on Artificial Intelligence in Education,
19(2):105–154, 2009.

[2] Arun-Kumar. Introduction to logic for computer
science, 2002. Retrieved from http:
//www.cse.iitd.ernet.in/˜sak/courses/ilcs/logic.pdf.

[3] Association for Computing Machinery (ACM) and
IEEE Computer Society Joint Task Force on
Computing Curricula. Computer science curricula
2013: Curriculum guidelines for undergraduate degree
programs in computer science, 2013. See http:
//www.acm.org/education/CS2013-final-report.pdf.

[4] M. Ben-Ari. Mathematical Logic for Computer
Science. Springer Science & Business Media, 3rd
edition, 2012.

[5] A. Bolotov, A. Bocharov, A. Gorchakov, and
V. Shangin. Automated first order natural deduction.
In Proceedings IICAI’05: the 2nd Indian International
Conference on Artificial Intelligence, pages 1292–1311,
2005.

[6] K. Broda, J. Ma, G. Sinnadurai, and A. Summers.
Friendly e-tutor for natural deduction. In Proceedings
TFM’06: the Conference on Teaching Formal
Methods: Practice and Experience, 2006.

[7] J. S. Brown and K. VanLehn. Repair theory: A
generative theory of bugs in procedural skills.
Cognitive Science, 4(4):379–426, 1980.

[8] H. Enderton. A Mathematical Introduction to Logic.
Elsevier Science, 2001.

[9] F. F. P. Galafassi. Agente pedagógico para mediação
do processo de ensino-aprendizagem da dedução
natural na lógica. PhD thesis, Universidade do Vale do
Rio dos Sinos, 2012.

[10] F. F. P. Galafassi, A. V. Santos, R. K. Peres, R. M.
Vicari, and J. C. Gluz. Multi-plataform interface to an
ITS of proposicional logic teaching. In J. Bajo et al.,
editor, Proceedings PAAMS’15: Highlights of Practical
Applications of Agents, Multi-Agent Systems, and
Sustainability, volume 524 of Communications in
Computer and Information Science, pages 309–319.
Springer, 2015.

[11] C. Gottschall. The gateway to logic. See https://logik.
phl.univie.ac.at/˜chris/gateway/formular-uk.html.

[12] J. Harrison. Handbook of Practical Logic and
Automated Reasoning. Cambridge University Press,
New York, NY, USA, 1st edition, 2009.

[13] L. Kalmár. Über die axiomatisierbarkeit des
aussagenkalküls. Acta scientiarum mathematicarum,
7:222–243, 1935.

[14] J. Kelly. The essence of logic. The essence of
computing series. Prentice Hall, 1997.

[15] C. Leary and L. Kristiansen. A Friendly Introduction
to Mathematical Logic. SUNY Geneseo, 2015.

[16] J. Lodder, B. Heeren, and J. Jeuring. A pilot study of
the use of LogEx, lessons learned. In Proceedings
TTL’15: the Fourth International Conference on Tools
for Teaching Logic, 2015. CoRR abs/1507.03671.

[17] J. Lodder, B. Heeren, and J. Jeuring. A domain
reasoner for propositional logic. Journal of Universal
Computer Science, 22(8):1097–1122, 2016.

[18] N. D. Megill. Metamath: A Computer Language for
Pure Mathematics. Lulu Press, Morrisville, North
Carolina, 2007.

[19] E. Mendelson. Introduction to Mathematical Logic.
Discrete Mathematics and Its Applications. CRC
Press, sixth edition, 2015.

[20] B. Mostafavi and T. Barnes. Evolution of an
intelligent deductive logic tutor using data-driven
elements. International Journal of Artificial
Intelligence in Education, pages 1–32, 2016.

[21] Y. Nievergelt. Foundations of Logic and Mathematics:
Applications to Computer Science and Cryptography.
Birkhäuser Boston, 2002.

[22] D. Perkins. Strategic proof tutoring in logic. Master’s
thesis, Carnegie Mellon, 2007.

[23] W. Sieg. The AProS project: Strategic thinking &
computational logic. Logic Journal of the IGPL,
15(4):359–368, 2007.

[24] J. van Benthem. Logica voor informatica. Pearson
Education Benelux B.V., 2003.

[25] K. P. Varga and M. Várterész. Computer science,
logic, informatics education. Journal of Universal
Computer Science, 12(9):1405–1410, 2006.

392




