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Remarks on Simple Proofs

Rosalie Iemhoff

This note consists of a collection of observations on the notion of simplicity in the
setting of proofs. It discusses its properties under formalization and its relation to the
length of proofs, showing that in certain settings simplicity and brevity exclude each
other. It is argued that when simplicity is interpreted as purity of method, different
foundational standpoints may affect which proofs are considered to be simple and
which are not.

Introduction

Mathematics is the science par excellence that can be simple and complex at the
same time. Complex in its intricate arguments, yet simple in the structure that proofs
are required to have, or in the theories that underlie these proofs. In contrast with the
use of the word in daily life, in mathematics, a simple argument does not necessarily
mean that it is easy to find. As we will see below, there exist simple yet ingenious
proofs that took some years to be discovered. And it often is the case that the first
proof found for a theorem is not the most simple one and that only later simpler
proofs than the original one are discovered.

What then are simple proofs? That question is not easy to answer, and I will not
attempt to do so here. Rather, this note addresses certain aspects of that question.
In particular, its possible meaning in the setting of formal systems, and its relation
to the notion of purity of method. It is furthermore claimed that in certain settings
some forms of simplicity exclude brevity or shortness of argument in that there are
theorems for which no proof can be both short and simple.
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This note is loosely based on a talk that I presented at the conference “Simplicity:
Ideals of Practice in Mathematics & the Arts” that took place at City University
of New York, April 3–5, 2013. It is not meant to be a philosophical account of
simplicity in mathematics, but rather a collection of observations from a working
mathematician on the matter.

Formalization

Most of us will agree that Carl Friedrich Gauss’ famous argument that the sum of
the first n natural numbers is equal to n.nC1/=2 is simple:

Proof The following sum shows that 2
∑n

iD1 i D n.n C 1/.

1 C 2 C : : : C n
n C n � 1 C : : : C 1 C

n C 1 C n C 1 C : : : C n C 1 D n.n C 1/

Therefore
∑n

iD1 i D n.nC1/=2.

And most of us will also agree that the proof by Andrew Wiles of Fermat’s Last
Theorem is complex (even without having seen it).

The two proofs illustrate many aspects of simplicity: the first is short and the
reasoning is elementary, the second one is long and complicated, too complicated
for most mathematicians to understand, actually. Gauss’ proof also illustrates
something else, namely that the simplicity of a proof may depend on the background
theory that in the practice of mathematics is mostly kept implicit. It uses, for
example, several facts about the operations of addition and multiplication on the
natural numbers that are not explicitly mentioned.

The proof given above we call informal to contrast it with a proof in a formal
theory in which every step is made explicit. Now although a formal proof in general
does not look like an informal proof, still, given a theory, one can speak of an
informal proof being expressed formally in the theory. This means that what one
considers the proof idea in the informal proof, its essence, is faithfully translated
into the formal setting. For example, in Gauss’ proof above, one could require of a
faithful formalization that the idea of summing up the first n numbers twice is part
of the formalization.

One would expect that the simplicity of an informal proof is somehow reflected
in faithful formalizations. On the other hand, the form of the foundational theory
very much influences the form of its proofs.

Clearly, in a formal theory that is minimal, proofs of even the simplest facts may
be long and cumbersome. And the richer and stronger the theory, the simpler the
proofs will be.
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In the extreme case a proven statement could be added to a theory as an axiom
and the statement thereby receives a trivial and certainly simple proof in the new
system thus obtained.

This, however, does not seem to be a strong argument against the independence
of the notion of simplicity from formalization, as the theories in which we wish to
carry out the formalization should be foundational theories, meaning that on the one
hand they consist of axioms and rules which are evidently true and on the other hand
are strong enough to formalize all or almost all of mathematics.

Therefore we will only consider foundational theories as formal theories in which
to formalize mathematical proofs. In general, adding a theorem to a formal system
will result in a theory not satisfying the first requirement of a foundational theory,
which is why the extreme case described above does not have to be considered.

One could require of the foundational theory that the idea of Gauss’ proof as
given above is expressible in a natural way and then claim that proof is simple and
will be so in every sufficiently strong foundational theory. But although this sounds
perfectly natural at first, it may not always be easy or possible to determine which
foundational theories satisfy these constraints. To explain my point, let us consider
two foundational theories: type theory and set theory.

Over the last years type theory, and in particular homotopy type theory, has
gained increasing attention as a foundational theory for mathematics, while set
theory has for a long time already been considered by many to be the main founda-
tional theory. Interestingly, fundamental concepts such as the natural numbers are
treated very differently in type theory and set theory. Thus it is conceivable that
certain intuitive proof ideas can in one theory be captured by simple and natural
formulations and in the other theory only by complicated ones or cannot be captured
in a faithful way at all. For such statements the notion of simplicity still makes
sense for the informal proof, but it is not quite clear how to transfer it to their
formalized versions, as it seems to depend very much on whether one works in
the type-theoretic or the set-theoretic framework.

Thus the above argues that while simplicity, even though hard to define, seems to
be a genuine property of informal proofs that some satisfy and others do not, it may
be hard to determine how far such a property is preserved under formalization and
to establish which foundational theory captures the informal arguments best.

Foundational Theories

What about foundational theories themselves? Is there a way to distinguish the
simple from the complex as it comes to foundational theories? Do there exist simple
foundations for mathematics?
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Albert Einstein, in a famous quote has said: I have deep faith that the principle
of the universe will be beautiful and simple.1 One possible interpretation of that
statement, though not the only one, is that the foundations of physics can be captured
in simple laws. Mathematicians and philosophers have shown similar belief in the
simplicity of the fundamentals of mathematics. By trying to reduce mathematics to
logic, for example. Here simplicity should, I think, be read as self-evident.

The existence of a self-evident foundational theory would, of course, not exclude
the possibility that some theorems have complicated proofs, but it would show that
ultimately, truths can be reduced to a set of simple principles. Under the strict
interpretation, meaning that the theory should be complete and really elementary,
Kurt Gödel has proved this to be impossible. But under the weaker interpretation,
meaning that the theory, although possibly not elementary or complete, is evident
and large parts of mathematics can be carried out in it, such theories do indeed exist.

Given such foundational theories, the question naturally arises, which is the most
fundamental, or self-evident, or simplest one. Three questions that although not
strictly equal are intimately linked.

The discussion above about set theory and type theory indicates that it may be
hard to conclusively state which theory is more fundamental or self-evident than the
other. And it may well be that it depends on the subject one wishes to capture in
the foundational theory which is the better choice in terms of simplicity and self-
evidence.

Purity of Method

Closely related to simplicity is the notion of purity of method which refers to the
property of proofs of being pure, where, following [4], proofs are called pure if they
concern themselves only with the concepts contained in the theorems proved.

Such pure proofs should, for example, not contain reasoning about geometric ob-
jects when the conclusion of the proof is a statement about the natural numbers. The
Prime Number Theorem roughly stating that the asymptotic behavior of the number
of primes not exceeding a given number n is n=log n, illustrates this phenomenon
nicely. The first proofs of this theorem were given by Jacques Hadamard and Charles
Jean de la Vallée Poussin independently [7, 10]. These proofs were not elementary
in that they referred to objects far more complex than numbers, using techniques
from complex analysis, while the elementary proofs later found independently by
Atle Selberg [9] and Paul Erdős [6] did not.2

1Another quote on simplicity by Einstein that I love but that is somewhat beside the point here:
Everything should be made as simple as possible, but not simpler.
2Interestingly, Dorian Goldfeld [8] cites Godfrey Harold Hardy from a lecture to the Mathematical
Society of Copenhagen in which he says about the theorem [1]: A proof of such a theorem, not
fundamentally dependent on the theory of functions, seems to me extraordinarily unlikely.
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But is it correct to consider the later proofs more elementary than the first ones?
In some cases it seems more or less clear that a proof method is not pure, as is the
case for the use of mechanics in analysis.

As pointed out in [4] (footnote 6 on page 165), the mathematician Joseph-Louis
Lagrange tried to liberate analysis from such impure notions, and Bernard Bolzano’s
search for a purely analytic proof of the intermediate value theorem is another
example of this phenomenon, given in [5].

However, in other cases it is not so clear what purity means, especially in
the context of logics that can be presented both syntactically and semantically.
Consider, for example, category theory or algebra versus proof theory. In which
of these formalisms should the proofs of theorems about logical notions such as,
for example, unifiers and interpolants, be carried out? The fact that proof-theorists,
like myself, sometimes reprove theorems for which the original proof is categorical
and category-theorists do the converse, seems to support the idea that not for every
theorem there always is an obvious purest proof.

In category theory one aims to put a notion into its proper categorical context
in order to start reasoning about it. In proof theory one does the same, but then
for a proof-theoretic rather than a categorical context. These contexts are very
different in nature. Broadly, one could say that in category theory one provides a
lot of structure and then considers a notion as part of that large framework. Proof
theory, on the other hand, is in general more concerned with the generation of
structure from below: one supplies some minimal principles that should be satisfied
and then reasons about the notion on the basis of these principles. Either of the
two approaches is superior over the other with respect to some theorems in that
these theorems have shorter proofs in that foundational system than in the other.
Therefore it seems at present hard to decide which foundational view is likely to
produce more or purer proofs than the other, and it may well be that the outcome
depends on the theorem or subject at hand.

Arana and Detlefsen [5] discuss the epistemological significance of a conception
of purity that they call topical. They argue convincingly that this significance lies in
providing stable means of reducing certain ignorance in investigations. I would like
to add that the distinction between proof-theorists and category-theorists elaborated
on above may be exploited here as well. Namely, it shows that in practice it may
be hard to settle whether there has been sufficient reduction of ignorance, since
an argument may reduce the ignorance of a logician of the first kind more than
of a logician of the second kind, or vice versa. Still, given a specific view on
mathematics, be it proof-theoretical or categorical or otherwise, I think the notion
of purity is meaningful against such a background and the theory developed in [5]
insightful and plausible.
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Brevity

Jean Dieudonné wrote: . . . and that it is good discipline for the mind to seek not only
economy of means in working procedures but also to adapt hypotheses as closely
to conclusions as possible [3, p. 11]. When interpreting closeness as not containing
notions that are not directly related to those in the theorem, then the question arises
whether what Dieudonné aims for can always be achieved, that is, whether proofs
can be both short and simple. In this section, a proof is considered to be simple if it
is close to the theorem it proves, and thus does not contain notions with no or only
a distant relation to the ones in the theorem.

There are examples in the literature that suggest that at least in certain settings
proofs cannot be both short and simple in the sense just defined. For example, in
the setting of predicate logic a somewhat restrictive but reasonable interpretation of
closeness could be that of being cut-free, where proofs are presented in a sequent
calculus. The sequent calculus is a proof system (or rather a family of proof systems)
that manipulates sequents, expressions consisting of and corresponding to formulas,
in an elegant, concise manner, which renders it convenient for reasoning about
meta-mathematics. Without defining what cut-free means, what is important for this
exposition is that in cut-free proofs all formulas are, in some sense of the word,
subformulas of those in the conclusion of the proof, which is why being cut-free
may be considered a reasonable interpretation of closeness.

Since it has been shown that there exist tautologies that have short proofs but no
short proofs that are cut-free, under this interpretation there are theorems for which
there do not exist proofs that are both short and simple.

This phenomenon, that proofs cannot be both short and close to the theorem
they prove, also occurs elsewhere. In propositional logic it is possible to express for
every n the n-th Pigeonhole Principle stating that when n C 1 pigeons are placed
in n holes at least one hole must contain more than one pigeon. These principles
have simple proofs in the sense of being close to the principle they prove, but these
proofs are long, of size exponential in n. Sam Buss [2] developed an ingenious
method to express and use counting in propositional logic and obtained short proofs
of the Pigeonhole Principles that are of size polynomial in n. These proofs, however,
are complicated and could be considered less close to the Pigeonhole Principle and
thus less simple. Therefore the example of the Pigeonhole Principle suggests that
also under this reading of simplicity shortness and simplicity may in certain settings
exclude each other.

Proofs, Short and Simple

In conclusion, drawing from my own experience I have argued in the above that it
may be hard to establish whether simplicity is preserved under formalization, and
whether a foundational theory is simpler or more fundamental than another. I have
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discussed aspects of the concept of purity in the setting of proofs and provided
examples illustrating that for certain interpretations of simplicity, shortness and
simplicity exclude each other in that there are true statements that cannot have
proofs that satisfy both properties, as least in certain settings.

These observations are meant as food for thought rather than as a full account of
the notion of simplicity of proofs.

The notion is a natural albeit complicated one, which is why the title of this
section is meant slightly ironically, as in the study of simplicity in the context of
proofs hardly anything is ever short and simple.
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