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Temperature and fluid pressure conditions control rock 
deformation and mineralization on geological faults, and hence the 
distribution of earthquakes1. Typical intraplate continental crust 
has hydrostatic fluid pressure and a near-surface thermal gradient 
of 31 ± 15 degrees Celsius per kilometre2,3. At temperatures above 
300–450 degrees Celsius, usually found at depths greater than 10–15 
kilometres, the intra-crystalline plasticity of quartz and feldspar 
relieves stress by aseismic creep and earthquakes are infrequent. 
Hydrothermal conditions control the stability of mineral phases 
and hence frictional–mechanical processes associated with 
earthquake rupture cycles, but there are few temperature and 
fluid pressure data from active plate-bounding faults. Here we 
report results from a borehole drilled into the upper part of the 
Alpine Fault, which is late in its cycle of stress accumulation and 
expected to rupture in a magnitude 8 earthquake in the coming 
decades4,5. The borehole (depth 893 metres) revealed a pore fluid 
pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels 
and an average geothermal gradient of 125 ± 55 degrees Celsius 
per kilometre within the hanging wall of the fault. These extreme 
hydrothermal conditions result from rapid fault movement, which 
transports rock and heat from depth, and topographically driven 
fluid movement that concentrates heat into valleys. Shear heating 
may occur within the fault but is not required to explain our 
observations. Our data and models show that highly anomalous 
fluid pressure and temperature gradients in the upper part of the 
seismogenic zone can be created by positive feedbacks between 
processes of fault slip, rock fracturing and alteration, and landscape 
development at plate-bounding faults.

Borehole measurements from intraplate regions reveal near- 
hydrostatic fluid pressures and linear increases in effective stress with 
depth that are consistent with the crust being close to brittle failure and 
containing faults with friction coefficients of 0.6–1.0 and low cohesive 

strengths3. Laboratory measurements for many natural rocks have a 
similar (Byerlee) range of frictional strengths6. However, major active 
faults at plate boundaries appear anomalously weak. For example, 
the maximum horizontal stress adjacent to the San Andreas Fault in 
California is oriented at a high angle (65°–85°) to the fault and, despite 
ambient stress magnitudes similar to those in intra-plate regions,  
the geometry of the stress field yields a low shear stress resolved onto 
the fault, and hence a lower inferred frictional strength than that 
 predicted by Byerlee friction7. There is mounting evidence that this is 
true for many faults8.

The lack of noticeable heat flow anomalies adjacent to large plate 
boundary faults, most famously the San Andreas Fault9, also demon-
strates that less work is done on faults than predicted if Byerlee fric-
tional failure dissipated energy as heat. Drilling has revealed that heat 
generated by > 50 m of slip during the Tohoku-Oki 2011 earthquake 
(moment magnitude Mw =  9.0) produced only a small temperature 
anomaly, requiring an average friction coefficient during slip of < 0.1  
(ref. 10); similar results were found after the Wenchuan 2008 and  
Chi-Chi 1999 earthquakes11,12. Plate boundary faults must, therefore, 
be composed of materials that are mechanically weak on long time-
scales, even if weakness is a transient phenomenon during movement.

Brittle fault rocks form within the seismogenic zone via the physical 
comminution of rock and via temperature-sensitive chemical reactions 
with pore fluids. Experimental studies of dynamic friction confirm 
that slip weakening by up to one order of magnitude is common as 
the slip rate approaches values inferred for large earthquakes, though 
the mechanisms of weakening are debated13,14. The evolution of the 
coefficient of friction on a fault surface during and after an earth-
quake is time-dependent15. Of particular importance is the stability of 
phyllosilicate phases with low dynamic friction16, thermal expansion 
and the generation of physicochemical reaction products produced 
 during slip13, and the presence of low-permeability mineral cements 
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that enhance dynamic fluid pressurization mechanisms17. Temperature 
and fluids within fault zones are primary controls on material proper-
ties and slip-weakening mechanisms, and hence they strongly influence 
earthquake processes.

Scientific drilling is the only way to determine ambient conditions 
directly and to measure physical and chemical properties within active 
fault zones8. Drilling studies have taken place in response to earth-
quakes of Mw =  6.9–9.0 in Japan, Taiwan, China and the USA8,10–12,18–21, 
and the results do not reveal anomalous temperatures or fluid  pressures 
(Fig. 1). Borehole injection experiments, earthquake aftershock  studies, 
and laboratory experiments on fault zone materials reveal that the 

earthquake process perturbs the fault zone, which then heals during 
the post-seismic period22–26.

The Alpine Fault of southern New Zealand is a major plate  boundary 
fault (Fig. 1) that produces large earthquakes every 291 ±  23 years 
and last ruptured in ad 17174,5. It has a Quaternary oblique dextral- 
reverse slip rate27 of 26 ±  5 mm yr−1. The oblique dextral-reverse slip 
has exhumed a suite of fault rocks from depths of 30 km in the past few 
million years27. The primary motivation of the Deep Fault Drilling 
Project (DFDP) is to understand ambient conditions, rock properties 
and geophysical phenomena immediately before a large earthquake, 
because little is known about active geological faults before they slip, 
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Figure 1 | Global context and regional setting. a, Geothermal gradient 
measured in DFDP-2B compared to global continental measurements 
(black curve) and previous active fault drilling measurements (circles) 
(Data are taken from the Global Heat Flow Database of the International 
Heat Flow Commission, version 2010, http://www.heatflow.und.edu.) 
SAFOD, the San Andreas Fault Observatory at Depth, USA; TCDP, 

the Taiwan Chelungpu-Fault Drilling Project; WFSD, the Wenchuan 
Earthquake Fault Scientific Drilling, China. b, Location on the Australia–
Pacific tectonic plate boundary of borehole DFDP-2B at 43.29065° S 
(WGS84 datum), 170.40646° E, with local depth datum at 94.84 m 
(NZGD2009 datum).
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Figure 2 | DFDP-2B borehole results. a, Observed mean temperature 
7–14 months after drilling (solid line; see Source Data for this figure 
online); and equilibrated fluid pressure estimates (circles, error bars 
show two standard errors) determined from mud pressure equilibration 

experiments carried out during breaks in drilling (Extended Data  
Tables 1 and 2). b, Temperature gradient and inferred locations of aquifers 
and aquitards. c, Geological summary. Source Data for Fig. 2 is available 
online.
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and initial conditions are assumed to affect earthquake nucleation, 
 rupture and seismic radiation.

Drilling of the DFDP-2B borehole was completed on 8 December 
2014. We penetrated a sequence of Quaternary gravel and lake silt, 
schist, protomylonite and mylonite (Fig. 2). The base of the borehole 
is estimated to be within 200–400 m of the principal slip-zone gouge, 
on the basis of site surveys and measurement of quartz grain sizes 
and textures in drill cuttings that are similar to mylonitic fault rocks 
exposed nearby. Comprehensive rock, mud, wireline (that is, down-
hole geophysical), and seismological observations were collected, and 
a fibre-optic cable was installed after drilling to acquire repeated precise 
temperature measurements.

Post-drilling equilibrated temperatures in the borehole reveal a zone 
above 700 m of true vertical depth (740 m drilled depth)  characterized 
by a gradient of 100–200 °C km−1, and a deeper zone with a gradient 
of 30–50 °C km−1 (Fig. 2). The fluid pressure gradient in the bore-
hole below the sedimentary layers is 8%–10% above hydrostatic, but 
an aquifer at the base of the sediments (230–240 m) is only slightly 
over-pressured (< 5 m head), meaning that the silts do not constitute a 
total hydraulic seal (Fig. 2).

The geothermal gradient in the upper 700 m of the DFDP-2B bore-
hole is unusual by global standards: 99% of geothermal  gradients 
 measured in deep (> 500 m) boreholes elsewhere are less than 
80 °C km−1 (ref. 2; Fig. 1). Values exceeding 80 °C km−1 are typically 
associated with volcanic regions, but there is no evidence for Neogene 

volcanism near the DFDP-2B site. The regional value determined from 
petroleum boreholes west of DFDP-2B is about 30 °C km−1 (ref. 28).

We model the thermal state near DFDP sites by considering simulta-
neous heat transport via (1) conduction, (2) rock advection driven by 
fault slip, and (3) fluid advection driven by local topography (Fig. 3).  
We assume uniform high permeability to some fixed depth (3 km 
or 5 km) above the principal slip zone of the Alpine Fault and low 
 permeability beneath it. Adjustable parameters are the value of high 
permeability, and the rate of reverse dip-slip fault movement, which 
is constrained by geological observations of late Quaternary offsets 
to lie within the range 6–14 mm yr−1 near the drilling site27. Drilling-
related temperature anomalies are modelled separately and excluded 
from our analysis by selecting observations made more than six months 
after drilling (Extended Data Figs 1 and 2). There is little variability in 
thermal diffusivity within the borehole (Extended Data Fig. 3). The 
three-dimensional model domain (Extended Data Fig. 4) is much larger 
than the specific region of interest. See Methods for details.

We aim to fit temperature observations from DFDP-2B (Fig. 2) and 
the geothermal gradient of 62 ±  2 °C km−1 measured in the 150-m-deep 
DFDP-1B borehole (Fig. 3)29. Our models are intentionally simplified, 
because they are under-constrained by observations, and intended 
only to gain general insight into hydrothermal structure in and around 
the fault zone. The best fit to DFDP-2B temperature observations is 
obtained with a fault dip-slip rate of 14 mm yr−1 and low permeability, 
but this solution does not fit DFDP-1B observations (Extended Data 
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Figure 3 | Thermal and fluid flow models. a, DFDP-1 and DFDP-2 
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sections with contours (in degrees Celsius) and fluid fluxes (arrows show 
fluxes > 0.15 m yr−1) extracted from a three-dimensional numerical model 
with 200 m horizontal resolution near DFDP-2 (Extended Data Fig. 4). 

Parameters for the model shown are: (1) a dip-slip rate of 8 mm yr−1;  
and (2) uniform permeability of 5.0 ×  10−16 m2 in a layer above 5 km  
below sea level within the Alpine Fault hanging wall. c, Comparison of 
model values (as shown in b), extracted from within 300 m of DFDP-2B  
(grey shading), with borehole observations. d, Fluid pressure and 
temperature inferred on the Alpine Fault plane. Thin lines are fluid 
pressure head (in metres, with reference to the density of water at the 
surface); and bold lines are temperature contours approximately equivalent 
to the temperature of illite–smectite transitions (100–175 °C).
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Fig. 5). The relatively low average curvature of the thermal profile, 
combined with the over-simplified hydrological structure, leads to an 
 inference that rock advection and thermal diffusion are the  primary 
heat transport mechanisms at 240–740 m depth in DFDP-2B; but 
the large difference in geothermal gradient between DFDP-1B and 
DFDP-2B requires that fluid advection is important in heat  transfer 
between sites and also requires a regional value of permeability  
> 5 ×  10−16 m2 (Extended Data Fig. 5). The DFDP-2B fluid pressure 
gradient indicates upward flow through the fractured rock mass near 
the borehole (Fig. 2a).

The models are broadly consistent with existing knowledge of fault 
slip rate and heterogeneous rock permeability in the hanging wall of 
the Alpine Fault. We expect permeability to be low within cataclasites 
near the principal slip zone and minor fault splays29, and that these 
cataclasites and splays will be barriers to fault-normal flow. We expect 
high permeability within the damage zone, producing an aquifer that 
enhances fault-parallel flow, and beneath mountains of the hanging 
wall where warm springs are common30. The region of relatively low  
geothermal gradient at the base of DFDP-2B (Fig. 2) is a discrete 
hydrological domain and interpreted as an aquifer associated with 
the damage zone, but we were unable to verify its properties owing 
to engineering difficulties. Fluid pressure equilibration experiments 
(‘slug tests’) conducted during drilling of DFDP-2B indicate bulk-rock 
permeability around the borehole of the order of 10−15 m2 (Extended 
Data Tables 1 and 2). In summary, we infer that fault slip moves rock 
and heat from depth, and topographically driven fluid flow through 
fractured rocks concentrates heat into valleys (Fig. 3).

Our results have broad implications for understanding earth-
quakes and fault zone geology, because temperature and fluid pressure 
 anomalies inferred close to the principal slip zone are large. Lateral 
changes in temperature and fluid pressure may exceed 50 °C and 4 MPa, 
respectively (Fig. 3d), and this must affect chemical, mineralogical and 
seismogenic processes. Our models predict considerable along-strike 
variations in the depth of smectite alteration (< 100–175 °C), which 
may influence dynamic fault strength at shallow depths during earth-
quakes. In some hanging-wall valley locations, our models predict 
that pore fluid temperatures could exceed 200 °C at only 1 km depth, 
and nearby future boreholes could sample the Alpine Fault principal 
slip zone at temperatures above the smectite–illite transition. Large 
along-strike temperature anomalies cause pore fluid density and 
 viscosity  variations that influence fluid–rock interactions and provide 
a  mechanism for deeper fluid convection, even though heat transport 
by fluids in low-permeability deeper rocks may be minor. Mineralogical 
evidence from near the Alpine Fault confirms that boiling occurs in the 
upper and mid-crust31 and that meteoric fluids circulate through the 
entire seismogenic zone32.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Temperature observations were made using wireline logging tools before bore-
hole completion, and an optic-fibre cable after completion. The optic-fibre cable 
was installed and cemented outside steel casing, and interrogated by distributed 
temperature sensing (DTS) analysis based on Raman scattering of laser light from 
a source at the surface33. A summary of temperature measurements is shown in 
Extended Data Fig. 1.

Details of drilling operations, scientific equipment and protocols are  published 
elsewhere34 and the borehole geometry is provided in the Source Data for  
Fig. 2. Drilling ended on 8 December 2014 and the steel casing was cemented on 
17 December 2014. Residual cement was drilled out from within the casing to a 
depth of 400 m depth on 8 January 2015 (< 4 h operations).

Temperatures measured by logging tools were influenced by the history of 
drilling fluid circulation in the borehole, but this drilling-related temperature 
anomaly diffused away and was small (about 1 °C) by January 2015. There is a 
high level of repeatability between later measurements (Extended Data Fig. 2), 
and the very small temperature variation of about 0.3 °C observed between March 
2015 and February 2016 is not converging exponentially on a single value with 
time. We interpret these changes to represent a non-drilling-related phenomenon. 
The Source Data for Fig. 2 contains an average value of the four latest profiles, 
which were measured between July 2015 and February 2016 and are not affected 
by borehole operations. Observed thermal equilibration times of several weeks are 
consistent with the bulk thermal diffusivity profile in the borehole that was inferred 
from mineralogical analysis of rock cuttings (Extended Data Fig. 3).

Pore fluid pressure values (Fig. 1) were derived from analyses of mud level 
equilibration during breaks in drilling. Equilibrium borehole hydraulic heads were 
estimated at a range of borehole lengths (Extended Data Tables 1 and 2). These 
observations were modelled with an exponential function (R2 >  0.93 for all tests) by 
adjusting three parameters: the initial mud level perturbation, the decay constant 
and the equilibrium mud level, M. Hydraulic head, H, was then calculated using 
the measured mud density, D, and the vertical length of the borehole at the time 
of the test, L, using the equation H =  D(L + M) − L.

Thermal and hydrological models were constructed and solved using FLAC3D 
(version 5.0, finite difference method, Itasca Consulting Group, http://www.
itascacg.com/software/flac3d) and FEFLOW (finite element method, MIKE 
Powered by DHI, https://www.mikepoweredbydhi.com/products/feflow). The 
numerical solution was computed in two steps. In the first step, a two-dimensional 
crustal exhumation model, similar to previous geodynamic models that predict 
 localization of slip on the Alpine Fault35, was simulated using FLAC3D to a depth of 
30 km for 10 million years. The rate of dip-slip movement was treated as a variable 
parameter. The two-dimensional result was then used to apply a basal temperature 
boundary condition to a three-dimensional model with topography (Extended 

Data Fig. 4; FLAC3D and FEFLOW solutions). No-flow boundary  conditions 
were applied for fluid and heat at the sides of the model. At the basal surface, 
a no-fluid-flow condition was imposed. An atmospheric temperature and pore 
pressure condition was applied at the top surface. A low permeability of 10−18 m2 
was imposed beneath the fault. The heat equation solved is:

κ∂ /∂ = / + ∇ ⋅∇ − / ⋅∇ − / ⋅∇ =u uT t H C T C C T C C T( ) ( ) 0b b f b f r b r

where H is internal heat productivity, κb is the bulk thermal diffusivity, T is 
 temperature, Cf, Cr and Cb are volumetric heat capacities of fluid, rock and the bulk 
mixture, respectively, uf and ur are the vector fluxes of fluid and rock respectively, 
and ∇  =  (∂ /∂ x, ∂ /∂ y, ∂ /∂ z) is the gradient operator.

Uniform permeability above the fault was treated as a variable parameter. In 
initial simulations using FLAC3D the permeability extended to 5 km below sea 
level. A hanging-wall permeability of (5.5 ±  2.0) ×  10−16 m2 and a fault dip-slip rate 
of 7.7 ±  2.7 mm yr−1 produced an adequate fit to DFDP-2 observations, but with 
a strong trade-off between the two parameters: faster dip-slip rates require lower 
permeabilities. Model runs were then completed using FEFLOW with uniform per-
meability to 3 km below sea level and temperature-dependent fluid density. Results 
are shown in Extended Data Figs 5, 6 and 7. Because density was temperature- 
dependent in FEFLOW model runs, we report hydraulic conductivity (factor of 
about 10−7 conversion at the near surface).

We did not limit fluid recharge rate or allow the piezometric surface to adjust. 
If we had, then even higher values of permeability could fit our data and may be 
more realistic: the piezometric surface and lateral fluid pressure gradients would  
be lowered. It is likely that permeability is both anisotropic and localized, for  example, 
within and near the damage zone, along lithologic layers, or within fractured 
zones. However, such models are under-constrained by observations, so were not  
constructed. Minor faults may also create local seals that compartmentalize flow.
Data availability. Data that support the findings of this study are available as 
Extended Data Tables 1 and 2 and Source Data for Fig. 1. Additional relevant data 
(for example, individual temperature logs shown in Extended Data Fig. 1) will be 
made available online35, in forthcoming publications, or data are available from 
the corresponding author upon reasonable request.

33. Hartog, A. in Optical Fiber Sensor Technology 241–301 (Springer, 2000).
34. Sutherland, R. et al. Deep Fault Drilling Project (DFDP), Alpine Fault boreholes 

DFDP-2A and DFDP-2B technical completion report. GNS Sci. Rep. 2015, 
1–269 (2015).

35. Upton, P. & Koons, P. O. in A Continental Plate Boundary: Tectonics at South 
Island, New Zealand Vol. 175 (eds Okaya, D., Stern, T. A. & Davey, F.) 253–270 
(American Geophysical Union, 2007).

36. Sutherland, R. et al. Deep Fault Drilling Project DFDP-1 and -2. Operational Datasets 
version 1, http://doi.org/10.5880/ICDP.5052.001 (GFZ Data Services, 2017).
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Extended Data Figure 1 | Borehole temperature measurements taken on successive dates (year/month/day). Grey lines indicate measurements using 
logging tools; coloured lines those taken using DTS.
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Extended Data Figure 2 | Enlargement of borehole temperature measurements, showing that the magnitude of DTS temperature changes with 
time. 
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Extended Data Figure 3 | Bulk mean thermal diffusivity profile for 
borehole DFDP-2B. Data inferred from quantitative X-ray diffraction 
analysis of rock cuttings (geometric mean of mineral-specific diffusivities).
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Extended Data Figure 4 | Three-dimensional model mesh geometry with variable node spacing of 200 m, 500 m or 1,000 m.
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Extended Data Figure 5 | Fit of FEFLOW models to observations at 
DFDP-2B by varying parameters. Variable parameters are the (uniform) 
hanging-wall permeability to 3 km below sea level, and the dip-slip rate on 
the Alpine Fault. White dots indicate the parameter combinations of specific 
models. RMS, root mean square.
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Extended Data Figure 6 | Temperature profiles predicted by models 
(colour) compared to observations at DFDP-2B (black). (m asl, metres 
above sea level.)
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Extended Data Figure 7 | Shallow temperature gradient predicted by 
models at DFDP-1B. Note that the temperature gradient may be slightly 
over-estimated by the model, because local fault curvature is not accurately 
resolved by our model and the DFDP-1B location is placed slightly farther 
into the base of the hanging wall in the model than it is in reality.
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Extended Data Table 1 | Pore fluid pressure head, H, determined from borehole length, L, 
equilibrium mud level, M, and mud density, D

Estimated standard errors are labelled using the symbol S. Mud levels and hydraulic heads are relative to the local ground surface.

L
m

M
m

SM
m

D
kg m-3

SD+
kg m-3

SD-
kg m-3

Hi
m

SHi+
m

SHi-
m

274.87 -2.8 3.1 1020 5 5 2.7 3.4 3.4

286.87 -3.4 3.1 1071 5 5 16.6 3.6 3.6

396.14 -5.0 3.1 1068 21 23 21.6 8.9 9.7
-8.4 18.0
-7.8 18.6
-5.7 20.9
-4.1 22.5
-3.4 23.4
1.2 28.2
-2.6 24.2
-1.0 25.9
-0.6 26.3
-0.9 25.9

396.14 -0.7 0.4 1055 40 40 21.0 15.9 15.9
0.0 21.7
-0.1 21.7

396.14 -2.5 2.0 1062 8 12 21.8 3.9 5.1
-5.3 18.8

486.06 -3.0 3.3 1075 5 5 33.2 4.3 4.3
-6.6 29.4
-9.5 26.2

520.03 -10.2 3.1 1068 5 5 24.2 4.2 4.2

539.51 -7.3 6.1 1058 5 5 23.2 4.2 4.2

770.29 -18.6 5.5 1091 5 5 49.7 7.1 7.1
-10.3 58.7
-20.6 47.5

818.00 -16.3 3.1 1098 5 5 61.9 5.3 5.3

SL = 0.05 m.
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Extended Data Table 2 | Mean pore fluid pressure heads, H, and 
standard errors, SH, determined for each borehole length, L, and 
true vertical depth, TVD

See data in Extended Data Table 1. Hydraulic heads are relative to the local ground surface.

L
m

TVD
m

H
m

SH
m

274.87 274.74 2.7 3.4

286.87 286.74 16.6 3.6

396.14 395.30 22.5 0.7

486.06 482.30 29.6 2.0

520.03 514.46 24.2 4.2

539.51 532.57 23.2 4.2

770.29 726.38 52.0 3.4

818.00 762.77 61.9 5.3
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