
Received: 16 March 2016 Revised: 19 December 2016 Accepted: 22 December 2016

DOI 10.1002/smr.1852

S P E C I A L I S S U E P A P E R

Energy efficiency on the product roadmap: An empirical study
across releases of a software product

Erik Jagroep1,3 Giuseppe Procaccianti2 Jan Martijn van der Werf1

Sjaak Brinkkemper1 Leen Blom3 Rob van Vliet3

1Department of Information and Computing

Sciences, Utrecht University, Princetonplein 5,

3584 CC Utrecht, The Netherlands
2Department of Computer Science, Vrije

Universiteit Amsterdam, De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands
3Centric Netherlands B.V., P.O. Box 338, 2800

AH Gouda, The Netherlands

Correspondence

Erik Jagroep, Department of Information and

Computing Sciences, Utrecht University,

Princetonplein 5, 3584 CC Utrecht, The

Netherlands.

Email: e.a.jagroep@uu.nl

Abstract

In the quest for energy efficient Information and Communication Technology, research has mostly

focused on the role of hardware.

However, the impact of software on energy consumption has been acknowledged as significant by

researchers in software engineering. In spite of that, due to cost and time constraints, many soft-

ware producing organizations are unable to effectively measure software energy consumption

preventing them to include energy efficiency in the product roadmap.

In this paper, we apply a software energy profiling method to reliably compare the energy con-

sumed by a commercial software product across 2 consecutive releases. We demonstrate how

the method can be applied and provide an in-depth analysis of energy consumption of software

components. Additionally, we investigate the added value of these measurement for multiple

stakeholders in a software producing organization, by means of semistructured interviews.

Our results show how the introduction of an encryption module caused a noticeable increase in

the energy consumption of the product. Such results were deemed valuable by the stakehold-

ers and provided insights on how specific software changes might affect energy consumption. In

addition, our interviews show that such a quantification of software energy consumption helps

to create awareness and eventually consider energy efficiency aspects when planning software

releases.

KEYWORDS

energy efficiency, profiling, product roadmap, software product

1 INTRODUCTION

To make the Information and Communication Technology (ICT) sector

more environmentally sustainable, we found that research has mostly

focused on hardware improvements. Indeed, every new generation of

hardware improves its energy efficiency (EE) by either increased per-

formance (ie, more performance per watt) or decreased energy con-

sumption (EC) in absolute terms. Considering the growing number of

hardware devices, the impact of these improvements can be significant.

However, a crucial aspect that has been long overlooked is the role of

software.1 Although hardware ultimately consumes energy, software

provides the instructions that guide the hardware behavior.2

The sustainability of software is still in its infancy as a research topic.

Previous works3,4 define sustainability as a multidimensional concept

that identifies requirements for multiple software Quality Attributes

(QAs). In particular, environmental sustainability identifies EC require-

ments for EE. Sustainability requirements also impact other QAs: for

example, in the mobile domain, the EC of mobile applications directly

impacts usability, as it shortens battery life.5–7

Despite this, we do not witness a significant increase in the EE of

mobile applications over time.

On the contrary, software updates require the user to buy a new

mobile phone every few years, sometimes even without a clear ben-

efit in terms of performance. Additionally, new phones are often

equipped with higher capacity batteries, to prevent deterioration of the

operation time. Looking at larger software products, eg, business appli-

cations, a similar pattern can be observed. Depending on the deploy-

ment, increasingly more powerful hardware is required to run new

releases of applications. In contrast to the mobile domain, although, EC

measurements on business software products are more complicated

to perform. The diversity of deployments and levels of abstraction

(eg, virtualization and cloud computing) require more sophisticated

J Softw Evol Proc. 2017;29:e1852. wileyonlinelibrary.com/journal/smr Copyright © 2017 John Wiley & Sons, Ltd. 1 of 20
https://doi.org/10.1002/smr.1852

https://doi.org/10.1002/smr.1852
http://orcid.org/0000-0001-6925-6803
http://orcid.org/0000-0003-0122-8333


2 of 20 JAGROEP ET AL.

measurement approaches to properly analyze software EC.8 Recently,

several of such approaches have been proposed, both hardware9 and

software based,10 which were able to identify opportunities for consid-

erable savings in EC.

However, these approaches have not been adopted in industrial con-

texts so far. While Software Product Organizations (SPOs), eg, indepen-

dent software vendors and open-source foundations, have software

development as their core activity,11 having accurate software EC mea-

surements still requires significant investments in terms of resources

and specialized knowledge.12 As a consequence, SPOs do not plan

the evolution of their product, ie, with a product roadmap,13 on its

EE aspect, potentially leading to not meeting market requirements.14

For example, in the Netherlands the government specifies EC-related

requirements in their tenders.

In practice, performance is often used as a proxy for EE. Software

performance optimization is a more mature field of study, hence more

people with such skills are available on the market. However, although

much can also be derived from performance measurements, EC and

performance are not always positively correlated15–19; contradicting

goals could require a trade-off to be made.3 Hence, a deeper under-

standing of the matter is required to properly address the EC of the

software itself.

For this purpose, we formulate the following main research

questions:

RQ1: How can we reliably compare the EC of large-scale software

products across different releases?

In RQ1, we explicitly refer to large-scale software products as

multitenant, multiuser distributed software applications, as opposed

to, eg, single-user mobile applications, which are out of scope for

this study.

RQ1 is further divided in 2 subresearch question (Section 5):

• SQ1: How can we reliably measure the EC of a software product?

A prerequisite for comparing the EC of a software product is being

able to measure the software EC.

• SQ2: How can we attribute EC to individual software elements?

For SPOs to actually optimize the EC of their products, it is neces-

sary to identify how individual software elements affect EC. For a

more precise definition of what we mean as a software element, see

Section 3.

In Section 3, we describe the design of an experiment where we used

software profilers to obtain fine-grained, software-level estimations

and validated them with hardware measurements obtained via power

meters. The results of this experiment allow us to answer RQ1.

Additionally, we investigate the benefits of measuring the EC of a

software product for stakeholders in SPOs responsible for a product.

Comparing EC across releases of a software product will, most likely,

only be done when there is added value from this effort. To put EC on the

product roadmap,20 we formulated a second main research question:

RQ2: What is the added value for a software producing organization

to perform EC measurements on software products?

In Section 3, we describe the design of a secondary empirical study

encompassing interviews with the stakeholders from an SPO. The

results of this study allow us to answer RQ2, from the perspectives of

the different roles involved in software product development.

This paper extends our previously published work21 in several ways.

First of all, we performed a more in-depth analysis of the data, ie, includ-

ing software metrics in the analysis, propose a technique to visualize

the results in the form of radar graphs, and discuss the impact of EC

in software design. Moreover, this study poses an additional research

question (RQ2), answered by means of a series of interviews with prac-

titioners from the SPO, which provided the product for our experimen-

tation. During the interviews, we discussed our experimental results

and their implications for their product-related activities.

The remainder of this article is organized as follows: In Section 2,

we review the related work. In Section 3, Section 4, and Section 5,

we describe the design, execution, and results of our empirical studies

(experiment and interviews). We discuss the results in Section 6 and

threats to validity in Section 7. Concluding remarks and an outline for

future work are provided in Section 8.

2 RELATED WORK

2.1 Product roadmap

To identify the added value of EC measurements for product devel-

opment, a basic understanding of the product dynamics is required.

Changes in the product market have significantly shifted the focus

of software development towards the goal of achieving competitive

advantage.22 Since EC could be considered as a nonfunctional, strategic

aspect of software,3,4 this topic fits the software product management

competence model14 in the area of product planning, or more specifi-

cally product roadmapping. The product, or software, roadmap trans-

lates strategy into short- and long-term plans and could be considered

as planning the evolution of a product.13

An important aspect for creating a roadmap is being aware of the

lifecycle phase a product is in; beginning of life, middle of life, or end

of life.23 Depending on the phase different drivers, economical and

technical, direct investments for the product, taking into account the

current position of the product in the market. Software Product Orga-

nizations are, for example, not eager to invest in technology that has

become obsolete in a specific market segment. Depending on the life-

cycle phase, the SPO could consider different investment strategies to

minimize losses.

Parallel to the 3 phases, a different lifecycle representation is pre-

sented by Ebert and Brinkkemper20 ranging from strategic manage-

ment, product strategy, product planning, development, marketing, and

sales and distribution to service and support. The beginning of life

phase is characterized by creating a product strategy and planning,

which leads to the initial development of the product. Development

continues in the middle of life phase where the marketing, sales and

distribution, and service and support activities are key to deliver a

“mature” product to the market and keep the product financially viable.

During the end of life phase marketing, sales and distribution, and ser-

vice and support activities are key to minimize costs and stretch the

financial viability of the product. If required, a substitute product is

sought when a current product is considered end of life. Typically major

investments are done in the first 2 stages of the lifecycle.

From an EC point of view, the first 2 stages are where the prod-

uct team forms and executes short- and long-term plans for a product



JAGROEP ET AL. 3 of 20

and where measuring the EC could prove helpful to increase the prod-

uct success. Sales, an internal stakeholder for a software product,14

could benefit from having low EC as a unique selling point for the soft-

ware product. When nearing the end of life phase of a product, its EC

characteristics potentially contribute to extending the lifecycle by, eg,

lowering the total cost of ownership.

Apart from creating the roadmap, the product manager, the one

responsible for the future of a product,20 also has to ensure develop-

ment activities are in line with the roadmap. Among others, developers

should obtain requirements based on the roadmap, and the team has to

plan their releases (or sprints) to fulfill these requirements. Not meet-

ing the requirements, or not meeting them in time, could potentially

negatively affect the success of the software product.

2.2 Software energy consumption measurements

The available techniques for measuring software energy consumption

(SEC) are rapidly advancing, however, a distinction must be made on

the basis of the software execution environment. Energy consumption

measurements on mobile devices are commonly performed to pre-

vent the software from having a deteriorating effect on the battery life

of the device, eg, by software tools performing measurements on the

device itself (Joulemeter24 and eprof5), or by emulation tools that allow

developers to estimate the EC of their application on their develop-

ment environments.6 Since battery drain can be monitored relatively

easily, and mobile devices have similar hardware architectures, some

approaches were able to relate EC to source code lines25 with rea-

sonable accuracy (within 10% of the ground truth), although only for

Android applications. Additionally, as performance profilers are quite

mature in mobile computing, EC profilers can build upon such tools.26

In the area of large-scale software products, the execution envi-

ronment is more complex and approaches for energy profiling are

more elaborate. Hardware-based approaches (eg, in 1 study27) rely

on physical power meters to be connected to hardware devices. Such

approaches do not provide fine-grained measurements at software

level, ie, they are not able to trace the EC of single-software elements

such as processes or architectural components.

Software-based approaches can be roughly categorized in 2 sets:

source code instrumentation10 and energy profilers.28 Source code

instrumentation consists in injecting profiling code into the applica-

tions code (or byte code), to capture all the necessary events related

to EC. For example, JalenUnit29 is a bytecode instrumentation method

that can be used to detect energy bugs and understand energy distri-

bution. JalenUnit infers the EC model of software libraries from execu-

tion traces. However, source code instrumentation always results in a

noticeable overhead in performance.

Energy profilers rely on fine-grained power models30 to deliver more

accurate measurements at software level. Typically, profilers use per-

formance measurements to explain and characterize software and its

EC characteristics.31,32 The power model is typically generated via lin-

ear regression from performance measurements or resource usage

data. This technique could be potentially applied on multiple soft-

ware products using public repositories and benchmarks, an approach

known as green mining.33 Unfortunately, because of lack of publicly

available performance data, green mining is still an immature area.

Despite the differences, these approaches all focus on identifying

energy hotspots,34 ie, elements or properties, at any level of abstrac-

tion of the system architecture, that have a measurable and significant

impact on EC.

We see 2 potential issues with applying source code instrumentation

on large scale, eg, 30 000 lines of code, software products: the per-

formance overhead and the required investment (in time and money)

to instrument the code.35 Hence, we do not see them as viable in an

industrial setting. On the other hand, energy profilers do not require

a high effort to be adopted, but are shown to be inaccurate in their

measurements.28 Hence, for the purpose of our study (see Section 3),

we use software profilers to obtain fine-grained, software-level esti-

mations and validate them with hardware measurements obtained via

power meters.

2.3 Software architectural aspects of energy

consumption

The EC can be significantly influenced by the way software is designed

and architected. For example, recent study shows data locality plays an

important role in the EC of multithreaded programs.36 An information

viewpoint37 could be used to structurally consider this aspect. Char-

acterizing software using performance measurements, on the other

hand, is more related to the deployment and functional viewpoint.

Combining multiple viewpoints of a software product, ie, creating a

perspective,37 enables stakeholder to structurally address concerns on

different aspects of the system design.

Software architecture (SA) also allows a stakeholder to explore

design trade-offs for the software.3 Increased performance, a quality

attribute for the software, does not always have a direct relation with

EC.38 A different design trade-off is to exchange modules or services

for more energy efficient sustainable variants, eg, cloud federation.39

Software architecture helps to identify adjustments on different levels

in complex environments.40

2.4 Energy consumption comparison between

releases

Comparing aspects across releases is often discussed in terms of soft-

ware evolution.41 However, only few papers were found that investi-

gate the EC of software and include a comparison between different

releases. In 1 study42 a comparison is made between 3 releases of rTor-

rent by “mining” EC and performance data. A direct relation is described

between the granularity of the measurements and the ability to deter-

mine the cause of changes in EC. Another approach is to characterize

software using Petri nets.43 Assuming that a complex software product

can be fitted into a Petri net, analysis could show the path of low-

est EC to perform a specific task. If the changes in a new release can

be included in the Petri net, the difference(s) between releases can

be quantified.

2.5 Awareness

A different approach is to increase developer awareness in software

EE. The “Eco” programming model,44 for example, introduces energy



4 of 20 JAGROEP ET AL.

FIGURE 1 The functional architectures for Document Generator releases 7.3 (left) and 8.0 (right) portrayed on a commercial deployment. The
changes are in red

TABLE 1 Specifications of the hardware and software used for the experiment

Application Server Database Server

Hardware HP Proliant G5, 2 x Intel Xeon E5335 HP Proliant G5, 1 x Intel Xeon E5335

(8 cores @ 2 GHz), 8 GB DDR2 memory, 300 GB (4 cores @ 2 GHz), 8 GB DDR2

hard disk @ 15.000 RPM memory, 300 GB hard disk @ 15.000 RPM

Operating system Windows Server 2008 R2 Standard (64-bit), Service Pack 1 Windows Server 2008 R2 Standard (64-bit), Service Pack 1

Software DOCGEN 7.3 and 8.0 Oracle 11.0.2.0.4.0

and temperature awareness in relation to the software and challenges

developers to find energy friendly solutions. Awareness of the soft-

ware community about the impact of software on EC is increasing.45

However, Pinto et al12 point out that this is still far too little to make

a difference.

In spite of recent progress, the state-of-the-art in software EE did

not reach sufficient quality yet to deliver reliable, detailed measure-

ments. Comparing the EC between releases can be used to create

awareness at the right place for an SPO, and hence exert control over

the EC of their software.

3 STUDY DESIGN

To answer the research questions presented in the Section 1, we per-

formed 2 empirical studies: an experiment to compare the EC of a com-

mercial software product (Document Generator [DG]) across different

releases and an interview with stakeholders from an SPO.

3.1 Experiment design

Our experiment follows the guidelines provided in previous

studies46–49 and the “green mining” method42 consisting of 7 pre-

scribed activities; (1) choose a product and context, (2) decide on

measurement and instrumentation, (3) choose a set of versions, (4)

develop a test case, (5) configure the testbed, (6) run the test for

per each version and configuration, and (7) compile and analyze the

results. In this Section, we describe our experimental design, in terms

of product under study, setup, metrics, and protocol used for the

experimentation. We report on compiling and analyzing the results in

Section 4 and Section 5, respectively.

3.1.1 Product under study

Document Generator is a commercial software product that is used to

generate a variety of documents ranging from simple mailings to com-

plex documents concerning financial decisions. The product is used by

over 300 organizations in the Netherlands, counting more than 900

end-users, and annually generates more than 30 million documents.

This experiment focuses on 2 releases of DG, 7.3 and 8.0, allowing us

to compare the effects of a major release change.50

In Figure 1, the SA is shown for the DG releases included in the

experiment. Starting with the Connector element, we have a central

hub in the SA responsible for receiving user input through the Inter-

face, collecting data from the Composer and handling communication

with the service bus. Together with the Composer element, responsible

for merging document templates and definitions with database data,

the Connector element handles all activities before documents are

generated. Utilities and Interface respectively provide configuration

options and an interface for DG. The final element on the application

server is the Server element responsible for the actual generation of the

documents and delivering the documents to where they are required.

The database server hosts an Oracle SQL Database. Specifications of

the hardware used in our experiment, ie, the application and database

server, are provided in Table 1.

3.1.2 Differences between releases

Looking at the SA, the major difference between the 2 selected releases

is the encryption provider introduced on the application server in

release 8.0. Data encryption was introduced in release 8.0 for DG to

comply with the upcoming General Data Protection Regulation set up

for the European Union. In the case of DG “Microsoft Enhanced Cryp-

tographic Provider” is used: A module that software developers can

dynamically link when cryptographic support is required. Encryption is

applied in relation to the “Server” element to remain independent from

the database that is used, ie, encrypted data is sent to the database.

Another difference, which is not visible in the SA, can be found in

the data model for the database. As release 8.0 is a compliant with a

new document management system, the data structure is more com-

plicated compared to release 7.3. We cross-checked our findings with



JAGROEP ET AL. 5 of 20

FIGURE 2 Overview of how the RQ and SQs of the experiment are linked to the reported metrics

the DG architect, to ensure completeness of our list of relevant changes

between releases.

3.1.3 Test case

For the experiment, we selected the core functionality of DG, the gener-

ation of documents, as test case. Document Generator was instructed

to erase existing documents of a certain type and consecutively regen-

erate these documents. The selected document type contains both

textual information and financial calculations, and a total number of

5014 documents was generated per each execution of the test case.

During each execution, the 8 processes “Interface,” “Run,” “Connector,”

“Server,” “Oracle,” “TNSLSNR,” “omtsreco,” and “oravssw” processes

were monitored on their respective servers. As the Microsoft Enhanced

Cryptographic Provider is not an executable but a dynamic library, it

could not be monitored in isolation.

3.1.4 Metrics

Comparing literature (cf. to other studies31,42,51), we find similarities in

the measurement method that is applied but a clear difference in the

reported metrics.

Although all report EC, the metrics target different stakeholders

while still providing the details required to be in control of the soft-

ware EC. During the design of an experiment, a choice should be

made on what metrics are to be reported, as they should facilitate dis-

cussion between stakeholders, eg, product managers and (potential)

customers,20 especially in the case of a pioneering topic like the EC of

software.9 In Figure 2, we show how the research questions driving

our empirical experiment (RQ1, further divided into SQ1 and SQ2) are

answered in terms of quantitative metrics. In the following, we further

motivate our metric selection and rationale.

As regards the EC of software, we measured the SEC and Unit Energy

Consumption (UEC) metrics.51 The SEC is the total energy consumed

by the software, whereas the UEC is the measure for the energy con-

sumed by a specific unit of the software. In our experiment, the units,

ie, software elements in our RQ, are the individual processes that com-

prise the product. This is not to be intended as a formal definition

of what a software element is, but it is rather a choice determined

by a practical aspect: Our profiling method and tools are only able to

attribute EC at a process level. Any finer granularity, although desirable,

is not possible with current techniques.

In addition to the EC, we recorded hardware resource usage, as it can

be used to accurately relate EC to individual software elements.31,32,51

Profiling the performance requires the user to have a basic under-

standing of the hardware components that have to be monitored (eg,

hardware-specific details) and the context in which they are installed.

Following the definition of the UEC,51 in our experiment, we moni-

tored the following hardware resources:

• Hard disk: disk bytes/sec, disk read bytes/sec, and disk write

bytes/sec

• Processor: % processor usage

• Memory: private bytes, working set, and private working set

• Network: bytes total/sec, bytes sent/sec, and bytes received/sec

• IO: input/output (IO) data (bytes/sec), IO read (bytes/sec), and IO

write (bytes/sec)

We also collected software metrics for both DG releases using

CppDepend 6.0.0*. The tool provides several software size and com-

plexity measures, such as “cyclomatic complexity” and “nesting depth,”

which allows us to more extensively identify differences between DG

releases. These metrics are related to SQ1 as ideally they could provide

an early indication of software EC at design time: by analyzing whether

there are any correlations between specific software metrics and the

EC of the different releases, we could provide such an indication.

Reporting software metrics is also useful to identify poten-

tial trade-offs between EE and other aspects of software quality

(eg, maintainability).

3.2 Interview design

To follow up our experiment, we investigated how the results were

picked up by the DG team through interviews. More specifically, we

looked into their views on the information provided by the EC measure-

ments and the effects of having this information on their tasks. Addi-

tionally, we explored the opinions and views on how EC measurements

in relation to software can be promoted within their organization. To

provide the most complete answer on RQ2, we aim to include differ-

ent roles within the DG team in the study and provide insight on the

operational aspects in relation to DG, eg, its development and strategic

aspects like the product roadmap. For the interviews, we followed the

guidelines presented in other studies.46,52

As the interviews took place after the case study, we could build on a

common understanding of SEC between the interviewer and intervie-

wees. However, given the relatively little experience of the team with

SEC, we still decided to conduct semistructured interviews. Structured

interviews would have limited the interviewees to only think of those

*http://www.cppdepend.com/

http://www.cppdepend.com/


6 of 20 JAGROEP ET AL.

TABLE 2 The questions comprising the interview including the goal for each question

Question Goal

What do you think of Elicit position of interviewee.

measuring the energy

consumption of software?

Does it seem useful Elicit position of interviewee.

to measure this

aspect of the software?

What do you think of Determine opinion on

the changes that are measurements and differences.

measured across releases?

Are you able to relate Gain insight in < role > -perspective.

the measurement to

your tasks as < role > ?

How would you apply Gain insight in value of

the information that is provided? measurements for < role > .

Looking at the data, did you Identify gaps in

miss aspects that would have been measurement information.

useful to include in the measurements?

What do you think of software Identify relations with

energy consumption in relation SEC and determine opportunities

to quality attributes for trade-off analysis.

of the software?

What do you think of software Identify relations with SEC

energy consumption in relation to and determine opportunities

software metrics (e.g. lines of code, for further analysis.

number of types, complexity measures)?

In your opinion, what is required Identify strategic

to put SEC on the agenda opportunities from

within the organization? SPO perspective.

What is required to have Identify opportunities

you consider this from < role > -perspective.

aspect as part of the job?

Abbreviations: SEC, software energy consumption; SPO, Software Product Organization.

aspects that have a direct relation with the specific questions, instead of

actively considering SEC in relation to their tasks and responsibilities.

On the other hand, an unstructured interview could result in intervie-

wees focusing on only those aspects they are more experienced in and

might not be directly related to SEC.

The questions comprising the semistructured interview were for-

mulated during multiple brainstorming sessions between the authors,

and tailored to help answer RQ2 in light of the experiment results. For

each question (Table 2), a goal was formulated in relation to determin-

ing the added value for an SPO. Note that the order of presentation

corresponds with the order in which the questions will be posed to the

interviewees. Given the novelty of the topic (ie, SEC) and the focus on

the added value from the perspective of a product team and SPO, we

were not able to validate our questions through a pilot interview with

a person independent from the research.

For the interview itself, each interview was conducted following a

protocol where the interviewees are first presented with a summary

of the data, ie, our previous work,21 followed by the interview ques-

tions. During the interviews, notes were made on the important aspects

mentioned by interviewees and, with consent of the interviewee, the

interviews were recorded. Processing the interviews was done directly

after the interview, to prevent inaccuracies due to poor recall,52 and

encompassed the identification of themes across interviews: aspects

that are mentioned by multiple interviewees or are stressed from the

perspective of a specific role. The notes made during interviews served

as a guide to identify themes and were completed, eg, by adding missed

aspects, using the recordings. As such, the notes served as a qualitative

summary of the individual interviews and the main source to extract the

final set of themes.

4 STUDY EXECUTION

4.1 Experiment execution

4.1.1 Setup

In line with the deployment portrayed in Figure 1, 2 servers have been

used: 1 for the application and 1 for the database. The setup is depicted

in Figure 3. The specifications of the application and database servers

are provided in Table 1. To ensure consistency regarding external fac-



JAGROEP ET AL. 7 of 20

FIGURE 3 Experiment environment

tors (eg, room temperature), the servers were installed in the same data

center.

Both releases of DG were installed on the application server and

Oracle was installed on the database server. The setup of the experi-

ment, including the servers, is comparable with a commercial setting of

the product. In the experiment, both releases use the same data set of

an actual customer. To increase the consistency across measurements,

we found that a script is used to generate 5014 documents using DG.

4.1.2 Baseline measurements

To obtain a clean measurement of the EC related solely to DG, we deter-

mined the idle EC for the hardware that is used. This represents our

baseline, and as such is subtracted from the total EC during measure-

ment, under the assumption that the increase in EC solely depends on

running the software under test. As the idle EC heavily depends on the

used hardware, this number should be determined separately for each

hardware device in the experiment by performing measurements while

the hardware is running without any active software.

However, using this method, the EC is not only related to DG, but

also includes the effects of measurement software and operating sys-

tem (OS)–specific activities (eg, background daemons), which we are

not (yet) able to consider separately and thus considered to be part of

the idle measurement. As we cannot completely control these aspects,

we stopped any service and process known not to be required by the

software product under test to minimize their effects (eg, the auto-

matic Windows update service). Additionally, we used a separate log-

ging server to minimize the overhead caused by the data collection

process.

Another aspect that we had to consider is the cooldown time, a

server needs after rebooting: after a reboot, several services related

to the OS are active without direct instructions from a user. As these

services require computational resources, they will most likely pollute

measurements if the experiment starts while these services are run-

ning. Hence, measurements have to be taken in a “steady state,” ie,

when the extra services become inactive.

As with the idle baseline, the cooldown time was determined for

every hardware device included in the experiment. Energy consump-

tion and performance measurements give an indication of when the

steady state is reached. The cooldown time for our servers was deter-

mined to be 15 minutes.

4.1.3 Hardware– and software–based measurements

A measurement method concerning software EC should include both

hardware and software approaches to obtain the right level of detail

in the measurements. In terms of hardware measurements, we relied

on power metering devices. As these meters are installed between a

device and its power source, a meter was needed for each power sup-

ply unit of the devices under test. Although these meters are capable

of achieving high levels of accuracy, their specifications was taken into

account in the data analysis as even measurement errors of a fraction

of a percentage point might prove significant at software level. Each

of the servers in our setup is instrumented with a single WattsUp? Pro

(WUP) device † (see Figure 3). WattsUp devices record the total EC of

the hardware once per second.

To profile individual software processes, we used software energy

profilers (see Section 2). These tools estimate the EC of both the

whole system and individual processes at run time, using power models

based on computational and hardware resource usage. Unfortunately,

most energy profilers record measurements with a 1-second inter-

val, although a higher frequency is desirable.33 While the usability and

accuracy of energy profilers still have margins for improvement,28,30

the reported measurements could still be used to detect differences in

EC. In other words, although measurements in absolute terms may not

be fully accurate, the relative differences between EC of the 2 releases

we analyzed still provided useful insights.

In our experiment, we used the tool Joulemeter (JM) of Microsoft

that allows to estimate the power consumption of a system down to

the process level. Joulemeter estimates EC on a model that first needs

to be calibrated for the hardware it runs on. Previous experience with

JM28 shows that although JM provides a general idea of EC, it differs

significantly from the actual EC. Since only 1 process can be measured

per instance of JM, a separate instance for each of the concurrent

DG processes is instantiated (see Section 3.1.1). Although relatively

coarse, measurements on process level (ie, the concurrency views on

the system37) can be translated to more fine-grained aspects using an

architectural perspective.51

The hardware resource usage of the application and database

servers were measured using the standard performance monitor (perf-

mon) provided with Microsoft Windows. Performance data is remotely

collected using the logging server, thereby minimizing the overhead of

measurement on the actual hardware.

† http://www.wattsupmeters.com/secure/products.php?pn=0, last visited on Monday 19th

December, 2016

http://www.wattsupmeters.com/secure/products.php?pn=0


8 of 20 JAGROEP ET AL.

TABLE 3 Comparison of server power consumption in different “idle” scenarios including measured time

Server Idle Idle (JM running) Idle (JM measuring)

Total time Avg. Power (W) Total time Avg. Power (W) Total time Avg. Power (W)

Application 57:11:30 274.54 54:06:21 275.28 54:06:21 276.18

Database 57:11:30 252.59 54:06:21 252.79 54:06:21 253.39

Summarizing the data collected for each individual measurement

we have

• WattsUp measurements of the EC at the level of the hardware;

• Joulemeter estimates for each of the processes together with an

estimate of the total EC;

• one perfmon file containing resource usage data for both the appli-

cation and the database server;

• the start and end timestamp for each measurement;

After each measurement, both servers were been reverted to the

initial state, restarted, and were left untouched for the determined

cooldown times.

4.1.4 Data synchronization

An important requirement for data analysis is to have synchronized

measurements. As measurements are obtained from different sources,

their timestamps have to be synchronized to avoid irregularities in the

data. For example, if a specific activity is performed and the timestamps

across sources are not in sync, there is a risk of missing the data related

to this activity. To address this issue, in our experiment, we continu-

ously synchronized the clocks for all measurement sources using the

Network Time Protocol.

4.1.5 Measurement protocol

While the green mining method42 provides a solid basis for design-

ing an experiment, no details are provided on how to actually per-

form reliable measurements within an experiment. To this end, we pro-

pose the following protocol applying the information presented in this

section, which is an extension to the activities presented by the previ-

ous study42:

1. Restart environment;

2. Check time synchronization;

3. Close unnecessary applications;

4. Start performance measurements;

5. Remain idle for a sufficient amount of time;

6. Start EC measurements;

7. Run measurement and wait for run to finish;

8. Collect and check data;

9. Revert environment to initial state;

The protocol ensures consistency across measurements and

improves the reliability of each measurement.46

4.2 Interview execution

The interviews were conducted with the architect, the product

manager,20 a developer and a tester of the DG team, the latter also

being the “scrum master,” and took place between 4 to 7 months

after the results of the SEC measurements (ie, in reference Jagroep

et al21) became available. Given the nationality of the team, the inter-

views were conducted in Dutch, which meant we had to translate the

interview questions to Dutch and the interview results from Dutch to

English. Also, as not the entire team was situated in the same office

building, we had to conduct 1 interview remotely. On average an inter-

view lasted approximately 1 and a half hour.

For the analysis, the notes made during the interviews appeared suf-

ficient to identify all relevant themes and in practice, the recordings

were only played back once to confirm the themes. Unfortunately, even

though all interviewees gave their consent for recording the interview,

only 3 out of the 4 interviews were successfully recorded. In the case

where we lacked the recording, we cross-checked the processed results

with the interviewee for inaccuracies: None were identified.

The results of the interviews are reported in the results sections

(Section 5), sorted by the themes that we identified. Combined with the

other information at hand, these results are used to provide an answer

to RQ2 (Section 6).

5 RESULTS

5.1 Experiment results

In this section, we extensively report our experimental results. The

complete dataset is openly available ‡.

Both the WUP and the JM measurements report the EC as an aver-

age of the instantaneous power over the sampling interval.

To calculate the total EC, we either multiply the average power with

the time the system was running, or sum up the recorded energy mea-

surements. We report our findings in watt (W) or watthour (Wh) where

applicable.

5.2 Baseline measurements

The results of the idle and JM overhead measurements are presented

in Table 3 along with the measurement time to determine the averages.

The measurements were collected over 5 runs per scenario, spanning

more than 50 hours of measurement time. Starting with the idle EC,

we found an average power consumption of 274.54 W and 252.59 W

for respectively the application and database server. Considering that

the servers are almost identical, we can only allocate this difference of

21.95 W to the extra processor available in the application server.

An interesting finding is the fact that there is minimal to no overhead

on the account of JM. Further investigation showed a base memory

usage by JM, which increased when JM was actually logging measure-

ment data. While logging, performance measurements show increases

‡ https://www.dropbox.com/sh/kk9kastzo2cypur/AABA3ZuWbSi-F4k8o8Af6KJJa?dl=0

https://www.dropbox.com/sh/kk9kastzo2cypur/AABA3ZuWbSi-F4k8o8Af6KJJa?dl=0


JAGROEP ET AL. 9 of 20

TABLE 4 Summary of the experimental results on the application server for both
Document Generator releases

Application Server

7.3 8.0 Diff

𝜇 𝜎 𝜇 𝜎 𝛥

Run length (hh:mm:ss) 2:48:16 4 s 2:48:28 7 s +12 s

Processed documents 5014 5014
WUP (Wh) 774.59 1.18 777.56 0.84 +2.97

Run Total (Wh) 765.20 0.32 766.21 0.63 +1.01

Process (Wh) 0.0002 0.00009 0.0003 0.0001 +0.0001

Server Total (Wh) 765.18 0.33 766.21 0.63 +1.03

Process (Wh) 0.744 0.00002 0.758 0.007 +0.014

Connector Total (Wh) 765.19 0.34 766.22 0.63 +.03

Process (Wh) 0.144 0.004 0.22 0.004 +0.76

Abbreviation: WUP, WattsUp.

TABLE 5 Summary of the experimental results on the database server
for both DG releases

Database Server

7.3 8.0 Diff

𝜇 𝜎 𝜇 𝜎 𝛥

Run length (hh:mm:ss) 2:48:16 4 s 2:48:28 7 s +12 s

Processed documents 5014 5014
WUP (Wh) 716.99 0.45 718.16 0.61 +1.17

Oracle Total (Wh) 706.37 0.29 707.27 0.51 +0.9

Process (Wh) 5.63 0.02 5.62 0.02 -0.01

Abbreviation: WUP, WattsUp.

in the memory usage of the JM instances, which are periodically

“reset” to a base memory usage. Our guess is that the pattern in mem-

ory usage corresponds to incrementally adding measurements to the

comma-separated values (CSV) file. Despite this variability in memory

usage, we could not detect any change in EC.

As part of the baseline measurements, we also determined the

power consumption interval of the servers. Based on 36 hours of run-

ning the servers at full capacity, we determined a maximum power

consumption of 367.3 W for the application server and 291.2 W

for the database server providing a range of 92.02 W and 38.41 W,

respectively. Again, we can only explain the difference due to the

impact of the additional processor, showing that, all other things

equal, the power consumption range increases with a factor of 2.4.

Using the range, we are able to normalize the measured power con-

sumption and better investigate the impact of the software on the

hardware EC.

5.3 DG measurements

We performed 20 executions for each DG release (7.3 and 8.0). Dur-

ing each execution, we collected the data described in Section 4.1.5.

Tables 4 and 5 summarize the results in terms of mean (𝜇) and stan-

dard deviation (𝜎) for the application and database server, respec-

tively. Notice that the process-level results for the database server only

include the JM results for the Oracle process. The other processes were

excluded from the table because their EC was reported as 0 by JM,

despite them being active. The Interface process on the application

server, that runs the graphical user interface (GUI) of DG, was not active

during the experiment as the DG execution was scripted.

Comparing the measurements between releases, 2 differences are

clearly visible. First, the run length increases by 12 seconds on average

in the 8.0 release. A second difference is the overall increase in EC of DG

8.0 compared to 7.3 of 4.14 Wh according to the WUP measurements:

2.97 Wh for the application server and 1.17 Wh for the database server.

Such increase, to a lower extent, is also reflected in the JM data.

This difference cannot be explained only by the increase in execution

time: If we subtract the average amount of energy consumed by DG in

12 seconds from the 8.0 average, we still find a difference of 2.05 Wh

and 0.32 Wh.

The SEC for both DG releases is calculated by subtracting the “idle

with JM” EC from the total EC as reported by the WUP for the length

of the run.

For release 7.3, we find a SEC of 2.57 Wh for the application server

and 8.03 Wh for the database server. Measurements for release 8.0

provide a SEC of 4.61 Wh and 8.34 Wh for the application and database

server.

Placing the SEC in the perspective of the ranges calculated for each

server, we find that only a relative low portion of the available resources

is actually used by DG. Even when considering the total power con-



10 of 20 JAGROEP ET AL.

TABLE 6 Software metrics obtained using CppDepend 6.0 for the DG releases

Size Metrics DG 7.3 DG 8.0

Lines of code 31 770 33 770

Types 1389 1663

Projects 74 103

Namespaces 89 117

Methods 9658 10 999

Fields 10 757 14 726

Source files 1698 2170
Complexity Metrics Units

Max cyclomatic complexity for methods 152 165 Paths

Max cyclomatic complexity for types 2723 3145 Paths

Average cyclomatic complexity for methods 2.48 2.53 Paths

Average cyclomatic complexity for types 37.35 40.78 Paths

Max nesting depth for methods 30 32 Scopes

Average nesting depth for methods 0.89 0.82 Scopes

Max # methods for types 535 614 Methods

Average # methods for types 7.63 7.2 Scopes

Abbreviation: DG, Document Generator.

TABLE 7 The SEC according to Joulemeter calculated using
the total power consumption and the power consumption per
process

Application Server Database Server

Release 7.3 8.0 7.3 8.0

Total EC (Wh) 1.45 1.57 5.69 5.72

Process level EC (Wh) 0.89 0.97 5.69 5.62

Abbreviations: EC, energy consumption; SEC, software energy
consumption.

sumed by the servers, the average power consumption figures for

release 7.3 are 276 W and 255.66 W for the application and database

server. For release 8.0, the averages are 277 W and 256.00 W, respec-

tively. Considering this in relation with the power interval, we reported

in our baseline measurements, at most 1.87% and 8.36% of the applica-

tion and database server capacity is used, respectively. These figures in

our opinion underline why virtualization, or resource sharing in general,

could still be an important aspect to reduce the EC related to software.

5.4 Joulemeter estimations

The SEC can also be calculated using the estimations provided by JM

(Table 7). Using this data, we find a SEC of 1.45 Wh and 5.69 Wh for

the application and database server with release 7.3, and 1.57 Wh

and 5.72 Wh with release 8.0. There are evident differences between

these SEC figures and the ones obtained using WUP. In our data, we

observe that the WUP on average provides a higher SEC of 1.12 Wh

and 2.34 Wh for the application and database servers. This difference

is probably due to an underestimation given by the JM power model.

Apart from the total EC, the JM data allows us to calculate the SEC

according to measurements on process level, ie, the Run, Server, and

Connector processes on the application server and the Oracle process

on the database server. The measurements for release 7.3 provide a

SEC of 0.89 Wh and 5.69 Wh for the application and database server.

With release 8.0, we find a SEC of 0.97 Wh and 5.62 Wh, respectively.

The large differences in the SEC figures could be an indication that,

despite our efforts, several processes are still active in the background

alongside the DG processes.

5.5 Software metrics

The results of the analysis on software metrics are shown in Table 6.

Our results show a size increase of DG 8.0 in terms of lines of code

(LOC) (6.3%) and number of types (19.64%), projects (33.19%), names-

paces (31.46%), methods (13.88%), fields (33.23%), and source files

(27.80%). Since our case study was performed after the releases were

commercially available, we were not able to determine all churn mea-

sures presented in 1 study.42 Specifically, the added and removed lines

and the file churn require a fine-grained tracking during development.

If we consider EC in relation to the metrics, we find that the EC per

line of code is 0.047 Wh for release 7.3 and 0.044 Wh for release 8.0,

suggesting an increased efficiency per line. This increased efficiency

also holds for the other size-related metrics. However, any usage of

LOCs for quantitative analysis of software products is under the strong

assumption that every LOC is equivalent in terms of efficiency.

Inefficiently written code (eg, resulting in more LOC) could result in

a lower and incorrect EC per line of code.

5.6 Interview results

The interview results on the stakeholders’ views on EC measurements

are presented below, arranged by the common topics that emerged

across the interviews. For each topic, we combined the results gained

from each interviewee.

Sustainability: In general, sustainability, including EC, is perceived as

an important topic in the Dutch software industry and this importance



JAGROEP ET AL. 11 of 20

has increased with the recent climate deals§. Dutch municipalities,

which comprise a large part of the DG customer base, are compelled

to consider sustainability in their processes and are becoming aware of

the role IT can play. However, given the novelty of this area there are no

hard requirements from the customers (yet).

The tester, from his product owner perspective, and product man-

ager were enthusiastic about measuring the EC of DG as a way to gain

competitive advantage. Striving for a reduced EC and thereby environ-

mental impact is seen as desirable for the product and the company as

a whole.

However, the team was convinced that the impact of renewing

hardware on the EC is higher than changing software. According to

the developer “hardware changes are easily made and are still the

low-hanging fruits when it comes to EC.” Although it is important to

monitor the resource utilization, eg, CPU utilization, to control and

improve software, renewing hardware is expected to grant higher eco-

nomic savings.

Experimentation: Overall, the interviewees were satisfied with the

results of the experiment and found no reasons for concern. The func-

tionality, ie, encryption, was added to comply with regulation and the

differences were not significant. On a strategic level, the product man-

ager was pleased by the fact that this aspect of the software could be

measured and made tangible. Until now the aspect of EC was relatively

abstract, especially in relation to software.

The results did raise the interest of the architect and developer:

Specifically, they were surprised by the elements and processes that

were shown to be affected. However, further investigation into the mat-

ter would (among others) require isolating the encryption provider and

testing this aspect separately (eg, encrypt and decrypt a number of

rows) to determine its impact. Given that, analysis of the code would

still be required to find the actual cause(s) of the unforeseen change.

Consequently, a business case was made to further investigate

the impact of the encryption provider on the software including the

costs for investigating and potentially redesigning. Weighing the costs

against the projected benefits (ie, lower EC and potential increased

performance), it did not appear beneficial to invest in this matter at

this time. Still, this aspect will be monitored as it could become more

important in the future.

Software EE might become more important when the scale of the

transactions increases. In the experiment, DG was instructed to gen-

erate 5014 documents, which is only a small fraction of the 30 million

annually generated documents. If the software is made more efficient,

this is bound to have a significant effect on the resources, and as a

consequence, this will also affect the forthcoming EC.

In this sense, performing experimentation on a larger scale would be

useful. For example, the tester and the developer suggested increas-

ing the duration of the experiments. Simulating DG usage for an entire

working day could help the tester detect EC patterns over time and pos-

sibly provide input for a smarter scheduling schema. For the developer,

a longer experiment duration could help detecting errors and bugs that

only show after a longer period. The effect of small loops or try-catch

recursions, for example, can keep piling up over time until their pres-

§ http://ec.europa.eu/clima/policies/international/negotiations/paris/index_en.htm

ence is noticed. On the long run, they could significantly affect the

resource usage by the software. Even though errors like these are often

not critical and can be resolved by rebooting the system, as a devel-

oper they are valuable to ensure system stability over time. Also, testing

in different environments, eg, software as a service (SaaS), with multi-

ple servers, layers of virtualization, and different hardware resources

in general, was considered an interesting increase in scale.

The team also felt strong towards the idea of presenting results in

relation to a benchmark instead of “raw” measurement data. Compari-

son between releases directly identifies differences and can be used to

pinpoint those aspects that have evolved disproportionally. Presenting

raw measurement data, eg, CPU utilization, would require more effort

to understand the measurements, correctly interpret the results, and

translate results to concrete actions.

With respect to EC, the interviewees did not see a clear relation

with software metrics. Software metrics are mostly used as an indica-

tion for the maintainability attribute of the software and as a means

to monitor the evolution of DG in general. Higher technical debt, for

example, could be an indication of poor maintainability of the software.

Especially, the comparison with other products is important, which is an

internal indicator for the quality of the development activities.

Functional vs nonfunctional aspects: In general, the software devel-

opment practice of the team can be characterized as functionality

driven.53

The architect stated: “writing code concerns functional aspects,

not performance or energy. Developers do not consider nonfunctional

aspects while writing code.” It was made clear that the only way a

developer would work on, for example, performance is to make the

requirement very concrete and functional; eg, a window should open in

1 second.

With respect to EC and the quality attributes of the software prod-

uct, the product manager admitted that this aspect was, due to the

functionality driven development, not high on the priority list. As there

are currently no customer requirements on this aspect, the prod-

uct manager could not justify a trade-off in favor of sustainability

against, eg, performance. It would be valuable to consider EC on this

level but from a strategic perspective that would require more aware-

ness on the customer side to justify why certain decisions are made.

For DG, the risk was considered too high to make these trade-offs

themselves.

On the other side, the developer pointed out the necessity of

certain design decisions that have been made. Although not related

to DG, the developer mentioned the usage of the HTTPS proto-

col, which according to him requires twice as much resources com-

pared to simple HTTP. On large-scale systems, the decision to apply

HTTPS is bound to have a significant impact on the EC sometimes

without having a clear benefit in certain cases. Any design decision

should include trade-off considerations between the relevant quality

attributes.

The team agreed that if EC is labeled as a key factor by the orga-

nization, then decisions on adding or changing functionality should be

made in the design phase and EC should be a prominent factor in the

decision-making process. In a sense, EC should be considered the same

as the other quality attributes for the software, and trade-offs should

be made depending on the organizational policies. The tester admitted

http://ec.europa.eu/clima/policies/international/negotiations/paris/index_en.htm


12 of 20 JAGROEP ET AL.

FIGURE 4 Boxplots summarizing the total and software power consumption measurements for the application and database servers

that testing on nonfunctional aspects, which EC is considered to be, is

in general not done extensively. Given the current stage of the product

life cycle where the product is transformed to a SaaS solution, there is

no high priority to do so.

Relating measurements to roles: With respect to the measurements

in relation to his tasks, the developer argued that the measurements

are foremost an indication of whether he has done his job right. If large,

unexpected discrepancies are observed, it could be an indication that a

mistake has been made in the code itself. As such the measurements are

used as a check. The same holds for software metrics, which essentially

are used as a means to check whether any changes are in line with the

adjustments that have been made.

As a software producing organization, the product manager sa

added value in having a unique selling point and also saw potential

to strengthen the organizations’ image with respect to sustainability.

Compared to competing products, simply providing insight in the EC

of the software could help in winning over customers. Performing EC

measurements not only potentially helps the customer become more

sustainable but also visibly lets the organization take responsibility for

their contribution.

The tester noted that a focus on nonfunctional aspects requires dif-

ferent tests performed in different environments. The added value for

him as tester specifically was marginal in the form of the knowledge

gained by performing these tests. Finally, the architect noted the strate-

gic advantage of performing these measurements and added the poten-

tial increase in software quality. An aspect like EC requires trade-offs to

be made and stimulates to rethink design decisions.

Putting EC on the agenda: To put EC of software products on

the agenda would require a change in mindset within the organiza-

tion. Progress with the software itself, ie, functional improvements,

is most important, but there are other developments that require a

broader perspective on the software. For example, the scale of soft-

ware products is changing, eg, on-premise to cloud, which also affects

the resources used by the software. In the end, to structurally consider

EC, all interviewees agreed that the costs and financial gains should be

made visible.

Also making EC tangible, like in this study, is essential. Presenta-

tions on being sustainable have been given in the past and often left

the team with more questions than answers. From the perspective of

the product manager, this topic can not be forced upon products due

to other factors weighing in, but making EC concrete helps to include

this aspect in the decisions that need to be made. The tester however

disagreed and noted that a top-down approach would help to have an

organization-wide focus on this aspect of software and will hopefully

stimulate attention from the bottom up.

The future of DG: Currently release 9.0 for DG is being developed

where the system is redesigned to a SaaS product. The bulk of the

work for the architect is to redesign the system in terms of (functional)

aspects that were originally not designed to be, for example, multi-

tenant. Again, the architect stressed that a new development viewpoint

would only guide development activities (eg, by providing insight in

changed dependencies) while still a lot of work has to be done on code

level.

Apart from the development activities, there is awareness on the

“different dynamics” with a SaaS product; shared resources, multite-

nancy, a changing pricing model, continuous delivery, and the total cost

of ownership in general. Deploying DG as a SaaS product will most likely

emphasize nonfunctional requirements for the system, thus requiring

a better comprehension on these aspects. In line with the insights pro-

vided earlier, the team expected EC to be more relevant in SaaS deploy-

ments where a lower EC can directly affect the total cost of ownership

and thereby the strategy for a product.



JAGROEP ET AL. 13 of 20

FIGURE 5 Performance of the penalized regression model (in red) vs Joulemeter (in blue). Measured values by WattsUp are in black

6 DISCUSSION

In this section, we discuss the results presented in the previous section,

answer the research subquestions for RQ1, and provide an answer

to RQ2.

6.1 SQ1: Measuring the EC

The protocol that was applied in the experiment ensures that the rel-

evant variables (that can be influenced) are under the control of the

researcher. It also provides guidelines for the data collection and pro-

cessing. By following the measurement protocol, we obtained con-

sistent and comparable data across measurements, confirmed by the

small standard deviations found with each item, and were able to com-

pare different releases of DG from an EC perspective (Figure 4).

This allows us to conclude that the measurement method we

adopted can be used to reliably measure the EC of a software product.

In terms of software metrics, because of our limited dataset we

could not perform a statistical correlation analysis. Although the size

metrics show an increased efficiency per line, we cannot claim a cau-

sation link between such increase and the increase in EC. However,

we argue more valuable insights can be gained from the complexity

metrics. The cyclomatic complexity for types and methods is expressed

in the number of independent paths through program source code

where an independent path is a path that has at least 1 edge that

has not been traversed before in any other paths. A high cyclomatic

complexity over time increases the probability of errors while main-

taining the software (ie, decreases maintainability). The nesting depth

represents the depth of a nested scope in a method body where a

lower nesting depth is better for the readability and testability of the

software.

As per the size metrics, we cannot claim a direct causation link

between the increase in complexity and the EC. However, given their

relation to QAs (see the ISO 25010 standard), the complexity metrics

could indicate a potential impact on the design of a system architecture

in terms of allowing or precluding other QAs.

This allows trade-offs between different sustainability require-

ments, thereby enabling decision making with respect to the EC of a

software product.

For example, one could consider EC in relation to its maintainabil-

ity and specifically its technical debt (ie, results of past decisions that

negatively affect its future54). Maintainability is a QA that is normally

associated with the technical sustainability dimension.

Looking at the reported complexity metrics, we find an increase in

the average cyclomatic complexity values, whereas the average nest-

ing depth for methods decreases with release 8.0. Most notable is the

increase perceived in the average cyclomatic complexity for types from

37.35 to 40.78 paths. A lower cyclomatic complexity in general indi-

cates an improved maintainability and testability of the software and an

improved readability of the code itself. While this might seem a deteri-

oration of the software quality, this finding might indicate a (deliberate)

trade-off has been made between the maintainability and security QAs.

6.2 SQ2: Relating EC to software elements

To answer SQ2, we used JM to estimate the EC of individual software

processes composing our application. We also validated the accuracy

of JM, building a separate model from our performance dataset using

linear regression. The model outperforms JM at machine-level predic-

tion, ie, trying to predict the total system EC, see Figure 5. More details

on this model are provided in the Appendix.

However, if we aggregate the estimation obtained using our model

for all the processes running in the application, we obtain very simi-

lar percentages to those computed via JM. Given this validation, we

must conclude that JM provides a fairly accurate estimation of the EC

of specific processes.

Although both JM and our regression model are unable to attribute

the total SEC to specific processes, our profiling method allows us to

observe relevant changes between the different processes composing

our software product, which allows us to make informed hypotheses

about the impact of each elements on our software product. For

example, the Oracle process in the database server is by far the most



14 of 20 JAGROEP ET AL.

FIGURE 6 Radar graph showing the impact of Document Generator release 8.0 on energy consumption (EC) and the relevant hardware aspects

energy consuming. This indicates that the database is a potential

hotspot8 and, as such, a candidate for optimization.

The most apparent difference between the DG releases is the intro-

duction of the encryption provider element on the application server.

Unfortunately, as this element is a library, we were not able to per-

form measurements specifically on it and isolate its energy impact.

We are, however, able to analyze the effects that are caused by

the addition of this elements and infer possible explanations for EC

differences.

According to the architect, the introduction of the encryption

provider was accompanied by minor changes in the Server element.

Interestingly though, while an increase in EC is found in the Server

element, the main EC difference was found in the Connector ele-

ment going from 0.144 Wh to 0.215 Wh. This difference could not be

explained on the basis of the adjustments applied in release 8.0. This

unforeseen change in EC was the reason for the architect to further

investigate the matter in the near future.

Regarding the difference in run length, an explanation is sought in

the encryption that is applied, possibly extending the time required to

set up a connection and communicate data. Apart from increased dura-

tion of the run, we also found that the net number of seconds reported

by JM increases with release 8.0 for the Server, Connector, and Oracle

processes. Considering that JM uses a linear model to estimate EC, a

higher execution time should result in a higher EC for these processes.

However, this only holds for the processes running on the application

server.

Overall, we can conclude that the changes applied in release 8.0

increased the SEC by 4.14 Wh for the generation of 5014 docu-

ments. Although small, these differences could add up significantly with

each installation and generated document: In literature,42 a savings of

0.25 W is shown to potentially equal the power use of an American

household for a month.

With these results, stakeholders of DG are now able to quantify

and justify changes in EC. Considering the cause of this increase, ie,

being compliant with a new document management system and ready

for the General Data Protection Regulation, the stakeholders deemed

the increase in EC as acceptable. To increase efficiency, however, the

software architect will still look into the Connector element.

6.3 Visualizing software energy consumption

Besides measuring on process level, the resource usage data described

in Section 3.1.4 was measured at server level. This data allows

us to characterize the hardware aspects that affect the EC range

(Section 5.2) and visualize the impact of release DG 8.0 on the servers.

Specifically, we use the disk bytes/sec, % processor usage and working

set to respectively calculate the hard disk, CPU, and memory dimen-

sions. Note that the network dimension is not included because these

metrics were also excluded for measurement on server level.

To create the visualization, we follow the approach described in 1

study55 to create a radar graph. For each dimension, we calculate the

normalized delta using the averages across measurements. Because

the values are normalized, a delta larger than “1” shows a deteriora-

tion compared to release 7.3 and vice versa. Given the focus on EC, we

included this dimension in our calculation.

The results for each server are shown in Figure 6. The line sur-

rounding the green area is the benchmark for the normalized delta and

represents release 7.3. The line surrounding the red area, representing

release 8.0, indicates that the impact of the encryption provider on the

available resources is mainly through the memory and hard disk usage,

ie, delta > 1. Note that the radar graph is zoomed in, ie, the maximum

value of the graph is set to 1.2, to better portray the results. This find-

ing is contrast with the expectations of the DG development team: The

encryption was regarded as increasing the load on the CPU, however,

the normalized delta for the CPU usage is 1.00 and shows no difference

across releases. Most prominent is the deterioration of the EC, with

deltas of 1.13 and 1.16, respectively, which clearly skews into the red

area of the graph.

6.4 RQ2: The added value of EC measurements

for the SPO

Through interviews, we obtained insights into how EC information for

a software product affects different roles in the DG product team. With

respect to the differences found between the DG releases, there was no

reason for concern as the EC increase was considered marginal. How-

ever, a clear lack of reference material also prevented the interviewees

to put the increase in perspective with other products. As such, a first



JAGROEP ET AL. 15 of 20

aspect of added value for each role was to have EC measurements in

the first place.

The lack of reference material implies that EC measurements could

potentially provide a strategic advantage with respect to competitors.

Even though all roles acknowledged the potential, only the product

manager and architect roles are actually able to extract value from this

advantage. The product manager can promote improvements on the

energy consuming behavior of the product and stress the (temporary)

uniqueness of these efforts, potentially leading to increased sales and

an improved market position. On top of that, the product manager is

able to include EC requirements on the roadmap and steer develop-

ment towards strengthening this aspect of the software. The architect,

on the other hand, can plan technical adjustments that help to reduce

the total cost of ownership for a product.

One added value that holds for all interviewees is the increased

awareness on the topic of sustainability and the relation with soft-

ware products. Before the experiment was performed, sustainability

was considered as a topic that should be addressed with other aspects

in the organization, ie, renewing hardware. The relation with software

would not have come to mind, which would be a missed opportunity

according to the interviewees.

A final added value is related to nonfunctional aspect in general and

not specifically to the EC measurements. By positioning EC in rela-

tion to quality attributes of the software, the measurements helped to

reintroduce nonfunctional aspects on the agenda. The focus on func-

tionality made that nonfunctional aspects were often only considered

when issues were experienced by the customer. Keeping nonfunctional

aspects in mind allows to have more control over the software and the

quality thereof.

6.5 Energy consumption on the product roadmap

Although the provided delta analysis provides practitioners valuable

insights in the EC of their software product, the creation of energy

efficient software starts with the design of the software,45 ie, with its

architecture. Changes on this level often require thorough prepara-

tion and development and should be planned ahead on the roadmap.

Especially when a balance has to be found with planning and realizing

customer requirements.22

As the performed case study shows, the development team tends to

mainly focus on the functional aspects, and postpone trade-off anal-

ysis of the relevant QAs. With the presented analysis, EC becomes

tangible for the developers and, as such, allows them to start reason-

ing about the consequences of implementation choices. In this way, EC

can be introduced as one of the QAs to be taken into account and the

measurements themselves serve to create awareness on the topic. Ide-

ally, increased awareness would result in the inclusion of EC-related

requirements on the roadmap.

With EC-related requirements on the planning, EC becomes an

aspect of the system design. Different studies have evaluated EC with

respect to system design. For example, a recent study shows data local-

ity plays an important role in the EC of multithreaded programs.36

Similarly, Trefethen and Thiyagalingam38 have shown that increased

performance does not always have a direct relation with EC. These

studies show the need for a separate EC perspective on software archi-

tecture. We envision an EC perspective3 for software architects to ana-

lyze and evaluate the EC of a software product. Applying a separate EC

perspective enables practitioners to structurally consider aspects that

concern the design of a system. On top of that, the knowledge gained

from applying the perspective helps in making informed decisions on

trade-offs with other design decisions.

For example, relating the EC to the functional views of a soft-

ware architecture, the architect can analyze the EC per functionality

and decide on the basis of performance indicators, such as execution

time or frequency, whether the functionality requires separate atten-

tion. With the presented delta analysis, the consequences of the pro-

posed changes can be analyzed. By applying the EC, perspective dif-

ferent trade-offs are possible. For example, to exchange modules or

services for more energy efficient sustainable variants, such as cloud

federation.39

Since the roadmap encompasses the future direction of a product,

the roadmap could be considered a “to be” system design. As such, a

product roadmap allows for the controlled evolution of the product.

From an economic perspective, (re-)designing software should be

done with the life cycle in mind. For each investment in the prod-

uct, a business case should be created to ensure scarce resources are

directed to where they add most to the product, and organizational,

strategy.

The life cycle stage for DG, for example, is 2-fold because there is

a current product and a planned new product. Release 8.0 is consid-

ered a mature product, ie, middle of life, but is going towards end of

life on the technological aspect. However, strategic management has

decided that DG is to be renewed and the product is redesigned to a

SaaS solution. While the new version will replace the current one, the

decision was also made to label this new version as release 9.0 to main-

tain the marketing position for the product. Release 9.0 is currently in

its beginning of life phase and the decision of the architect to look into

the Connector element is should be considered with release 9.0 in mind.

Investigating this element for release 8.0 would not be considered as

economically viable.

7 THREATS TO VALIDITY

This section discusses the threats to internal, external, and construct

validity46,48,49 of our research.

7.1 Internal validity

The internal validity is concerned with the uncontrolled factors that

might affect the results of the experiment.

Energy measurement reliability. Although we were able to clearly

identify differences between the estimated EC of the selected pro-

cesses, the estimations only accounted for percentages of the variation

in EC. A brief cross–validation conducted by means of a self-obtained

regression model based on resource consumption information (see

Appendix) was still unable to fully explain the total EC. Hence, addi-

tional work is needed to have a clear and reliable attribution of the

energy impact of single processes.

Sampling Interval. Both hardware and software measurement

approaches have a sampling interval of 1 second. Given the nature



16 of 20 JAGROEP ET AL.

of electrical power, this low-sampling frequency might result in an

underestimation of EC because of high-frequency energy components.

However, this interval is also commonly used in the state of the art.42

Operating system effects. In the experiment, the EC of the OS was

included in the reported SEC for DG as we could not measure the OS

separately. Ideally, the OS would be considered as a separate layer with

its own, distinguishable EC. Also, we cannot fully exclude the possibility

of OS processes and services becoming active in the background during

a measurement. A deeper analysis of the performance measurements

could detect such background activities; however, this was deemed out

of scope for our study. Instead, we mitigated this threat by performing

a large number of trials (20 per each release) that should average out

these effects as much as possible.

Interaction among multiple applications. The EC of software not

related to DG was measured and taken into account (as overhead) while

calculating the SEC. These measurements were performed separately

to obtain clean overhead figures. However, by doing so, we assume a

negligible impact of the interaction among DG and other applications

running in the system.

7.2 External validity

The external validity addresses the extent to which the results can be

generalized beyond the experiment.

Experiment setting. Our experiment is limited to a single application

and tested on a single testbed. Hence, we cannot generalize the effect

size of changes in the EC on our target population of commercial soft-

ware products. Nevertheless, we argue that our work can be useful to

generate awareness in software developers and architects about the

knowledge gap in software EE.

Hardware specificity. One of the main factors that could influence

the EC measurements is the specific hardware; new generations of

hardware often yield improved performance and EE. We mitigated this

thread by performing extensive baseline measurements to determine

the idle EC. We argue that differences might be found when compar-

ing the absolute numbers but that the relative proportions should be

consistent across different hardware setups.

Measurement equipment. We applied both hardware and software

measurement approaches to obtain our experimental data. Given the

diversity of power meters and software tools available, each with

their own advantages and limits, there is an unavoidable dependency

on the equipment when it comes to the accuracy and detail of the

measurements.

Team and organization dynamics. The added value identified for the

different roles included in the interview could be specific for the team

and the organization in which the team operates. An organization that

does not have policies on sustainability or does not operate in a market

that requires to do so, will probably not experience the added value as

described. The same holds for a team that does not have any affinity

with the topic of sustainability.

Interview results. We acknowledge that the number of interviewees,

4 out of a 6-person team, is too small to generalize the results. How-

ever, given the specific focus of the interview on the experiment results

in the context of a software product team and SPO, we could not extend

our population beyond our specific case. Still, we managed to include

all roles represented in the DG team and our results should be con-

sidered as a first insight into SEC from the relevant perspectives for a

software product.

7.3 Construct validity

Construct validity addresses the degree to which the measures capture

the concepts of interest in the experiment.

Metrics vs outcome. A central aspect in performing EC measure-

ments is to have a clear view on the metrics that should be reported.

To mitigate this threat, in our experiment design, we extensively report

on our metrics selection and rationale for the experiment and the

stakeholders.

Regarding the metrics themselves, a consolidated list is already avail-

able in the literature.32

Definition of change. The goal of our study is to relate software

changes with their effects on the EC. Although we can empirically

assess the difference between the EC of the 2 application releases, we

do not aim to provide a general definition of what a “change” represents

in software. For that purpose, we simply use 2 different releases of the

DG product. Then, we provide insight as to which specific changes could

affect the observed difference in EC. Further work is needed to pinpoint

(and predict) the exact EC impact of a generic software change.

Interview questions. The interview questions allowed us to iden-

tify potential added value of EC measurements for an SPO, and the

semistructured nature provided room for the interviewees to express

themselves beyond our predefined set of questions. However, as the

questions themselves were not validated, we acknowledge a differ-

ent approach, ie, direct questions on the added value of EC measure-

ments, could yield different results. While formulating the interview

questions, however, we carefully considered the trade-off with the gen-

eralizability of our results as such an approach could yield results that

are too specific with respect to the software product, the target market,

and the SPO.

8 CONCLUSIONS

Software sustainability, and in particular software EE, is hardly

addressed in industrial contexts. Previous work12 shows that because

of lack of tools and knowledge, EE is not on the software roadmap of

most SPOs. To investigate this aspect, we posed 2 main research ques-

tions: “How can we reliably compare the EC of large-scale software

products across different releases?” (RQ1), further divided in 2 subre-

search questions: “How can we reliably measure the EC of a software

product?” (SQ1) and “How can we attribute EC to individual software

elements?” (SQ2), and “What is the added value for a software produc-

ing organization to perform EC measurements on software products?”

(RQ2). We presented the design and results of 2 empirical studies: an

experiment performed on the EC of a commercial software product

and an interview with the stakeholders from the SPO of the product. In

the previous section, we provided an answer to both RQs.

To reliably measure the EC of a software product (SQ1), we fol-

lowed a rigorous methodology and we extensively documented our

energy profiling method. Our experimental results show that the total



JAGROEP ET AL. 17 of 20

EC of DG increased with release 8.0 w.r.t. 7.3. While this increase was

expected, actual EC data now verifies it quantitatively. The stakehold-

ers deemed this increase as justifiable, and the SPO experts could use

the results to establish a better causation link.

The second subquestion (SQ2) addresses how to attribute EC to indi-

vidual software elements. By means of energy profilers, our experiment

includes the estimation of the EC at process level. Our analysis showed

that energy profilers can only explain percentages of the total EC for

the application server and an even lower percentage for the database

server. We tried to find a regression model to fill this gap in the data

(see Appendix) but were unable to create an accurate model at the pro-

cess level. However, our method successfully identified changes in EC

at process level. Any differences found in the measurements between

releases are considered to be caused by at least one of these changes

and as such should be further investigated in further experimentation.

Ideally, aspects of the energy profile can be related to the individual

software elements to find quantifiable possible explanations for any

changes in the EC.

With respect to the second main research question (RQ2), we iden-

tified that the added value of EC measurements is on both operational

and strategic level. On operational level, such measurements provide a

new technique to identify inefficiencies in software. On a more strate-

gic level, the SPO is able to increase the success of a software product

by planning its evolution also in terms of EE. In general, putting EE on

the software roadmap is expected to produce an improvement in the

overall quality of the product, also in relation to other quality attributes.

However, to exploit the added value of software EE to its fullest, the

team must be aware of its potential.

In future work, we will further focus on the development phase, ie, to

provide software developers with direct EC feedback during develop-

ment. The insights we gained from the follow-up interview allow us to

understand what form of feedback is more suitable and helpful for the

team. A related direction for future research is to further investigate

the metrics that characterize a software product in terms of EE. Finally,

an accurate attribution of EC to specific software elements requires

further research. Current tools and techniques such as regression mod-

els, while promising, still suffer from many limitations. Ideally, such

models should be extended to also include (eg,) OS-level processes, or

better, to accurately separate the EC of these processes from the SEC.

More complex data analysis and machine learning techniques have to

be investigated.

Our research contributes towards levering research on the EC of

software products to a new level, instead of maintaining focused on the

“low-hanging fruits” as found with the interviews. The results show that

software EE is a pioneering field that still requires a large amount of

empirical evidence before providing solid foundations and principles.

For this reason, we strongly encourage other researchers to contribute

to this field of research, and we make our data available (see Section 5)

for reproduction and replication of our results, to stimulate the com-

munity towards new and interesting findings.

ACKNOWLEDGMENTS

We would like to thank Edwig Huisman, Yuri Idris, and Ronald Roos

for their help in setting up the experiment and actively proposing

and discussing possibilities for improvement; and Fabiano Dalpiaz,

Garm Lucassen, and Leo Pruijt for their valuable discussions and feed-

back. Also, we would like to thank Jordy Broekman for his contribution

concerning the energy consumption visualization techniques. Further-

more, as this work is an extension of a previously published paper,21 we

would like to thank the reviewers and the editors of this special issue

for their valuable comments.

REFERENCES

1. Lago P, Kazman R, Meyer N, Morisio M, Müller HA, Paulisch F, Scan-
niello G, Penzenstadler B, Zimmermann O. Exploring initial challenges
for green software engineering: summary of the first GREENS work-
shop, at ICSE 2012. ACM SIGSOFT Software Eng Notes. 2013;38(1):
31–33.

2. Sun Y, Zhao Y, Song Y, Yang Y, Fang H, Zang H, Li Y, Gao Y. Green
challenges to system software in data centers. Front Comp Sc China.
2011;5(3): 353–368. doi:10.1007/s11704-011-0369-3.

3. Jagroep E, van der Werf JM, Brinkkemper S, Blom L, van
Vliet R. Extending software architecture views with an
energy consumption perspective. Computing. 2016:1–21.
doi:10.1007/s00607-016-0502-0.

4. Lago P, Koçak SA, Crnkovic I, Penzenstadler B. Framing sustainability
as a property of software quality. Commun ACM. 2015;58(10): 70–78.
doi:10.1145/2714560.

5. Pathak A, Hu YC, Zhang M. Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with Eprof. Proceedings
of the 7th ACM European Conf. on Computer Systems, EuroSys ’12. New
York, NY, USA: ACM; 2012:29–42. doi:10.1145/2168836.2168841.

6. Mittal R, Kansal A, Chandra R. Empowering developers to estimate app
energy consumption. Proceedings of the 18th annual international confer-
ence on mobile computing and networking, Mobicom ’12. New York, NY,
USA: ACM; 2012:317–328. doi:10.1145/2348543.2348583.

7. Chen H, Luo B, Shi W. Anole: a case for energy-aware mobile applica-
tion design. Parallel Processing Workshops (ICPPW), 2012 41st Interna-
tional Conference on, Pittsburgh, Pennsylvania, USA; 2012:232–238.

8. Procaccianti G, Lago P, Vetro A, Fernández DM, Wieringa R. The green
lab: experimentation in software energy efficiency. Proceedings of the
37th International Conference on Software Engineering (ICSE), Florence,
Italy; 2015:941–942.

9. Grosskop K, Visser J. Identification of application-level energy
optimizations. Proceeding of ICT for Sustainability (ICT4S), Zurich,
Switserland; 2013:101–107.

10. Noureddine A, Rouvoy R, Seinturier L. Monitoring energy hotspots in
software. Autom Software Eng. 2015;22:1–42.

11. Jansen S, Brinkkemper S, Souer J, Luinenburg L. Shades of gray: opening
up a software producing organization with the open software enter-
prise model. J Syst Software. 2012;85(7): 1495–1510.

12. Pinto G, Castor F, Liu YD. Mining questions about software energy
consumption. Proceedings of the 11th working conference on mining soft-
ware repositories, MSR 2014. New York, NY, USA: ACM; 2014:22–31.
doi:10.1145/2597073.2597110.

13. Fricker SA. Software Product Management. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2012;53–81.

14. Bekkers W, van de Weerd I, Spruit M, Brinkkemper S. A framework
for process improvement in software product management. In: Riel
A, O‘Connor R, Tichkiewitch S, Messnarz R, eds. Systems, Software
and Services Process Improvement, Communications in Computer and
Information Science, vol. 99. Berlin Heidelberg: Springer; 2010:1–12.
doi:10.1007/978-3-642-15666-3_1.

15. Esmaeilzadeh H, Cao T, Yang X, Blackburn S, McKinley K. What
is happening to power, performance, and software?. IEEE Micro.
2012;32(3):110–121.

16. Trefethen AE, Thiyagalingam J. Energy-aware software: challenges,
opportunities and strategies. J Comput Sci. 2013;4(6): 444–449.



18 of 20 JAGROEP ET AL.

17. Rangan KK, Wei G-Y, Brooks D. Thread motion: fine-grained power
management for multi-core systems. SIGARCH Comput Archit News.
2009;37(3): 302–313.

18. Pinto G, Castor F. On the implications of language constructs for con-
current execution in the energy efficiency of multicore applications.
Proceedings of the 2013 Companion Publication for Conference on Systems,
Programming, & Applications: Software for Humanity, SPLASH ’13. New
York, NY, USA: ACM; 2013:95–96.

19. Cao T, Blackburn SM, Gao T, McKinley KS. The Yin and Yang of power
and performance for asymmetric hardware and managed software.
Proceedings of the 39th Annual International Symposium on Computer
Architecture, ISCA ’12. Washington, DC, USA: IEEE Computer Society;
2012:225–236.

20. Ebert C, Brinkkemper S. Software product management—an industry
evaluation. J Syst Software. 2014;95(0): 10–18.

21. Jagroep EA, van der Werf J, Brinkkemper S, Procaccianti G, Lago P,
Blom L, van Vliet R. Software energy profiling: comparing releases
of a software product. IEEE/ACM International Conference on Software
Engineering, Austin, Texas: IEEE; 2016:523–532.

22. Fotrousi F, Fricker SA. Software Analytics for Planning Product Evolution.
Cham: Springer International Publishing; 2016;16–31.

23. Li J, Tao F, Cheng Y, Zhao L. Big data in product lifecycle management.
The Int J Adv Manuf Technol. 2015;81(1): 667–684.

24. Gupta A, Zimmermann T, Bird C, Nagappan N, Bhat T, Emran S.
Detecting energy patterns in software development. Microsoft
Research Microsoft Corporation One Microsoft Way Redmond, WA;
2011:98052.

25. Li D, Hao S, Halfond WGJ, Govindan R. Calculating source
line level energy information for android applications. Proceed-
ings of the 2013 international symposium on software testing and
analysis, ISSTA 2013. New York, NY, USA: ACM; 2013:78–89.
doi:10.1145/2483760.2483780.

26. Liu Y, Xu C, Cheung S-C. Characterizing and detecting performance
bugs for smartphone applications. Proceedings of the 36th Interna-
tional Conference on Software Engineering, Hyderabad, India: ACM;
2014:1013–1024.

27. Ferreira MA, Hoekstra E, Merkus B, Visser B, Visser J. Seflab: a lab
for measuring software energy footprints. Greens: IEEE, San Francisco;
2013:30–37.

28. Jagroep E, van der Werf JMEM, Jansen S, Ferreira M, Visser J. Profil-
ing energy profilers. Proceedings of the 30th Annual ACM Symposium on
Applied Computing, ACM; 2015:2198–2203.

29. Noureddine A, Rouvoy R, Seinturier L. Unit testing of energy con-
sumption of software libraries. Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC ’14. New York, NY, USA: ACM;
2014:1200–1205. doi:10.1145/2554850.2554932.

30. Noureddine A, Rouvoy R, Seinturier L. A review of energy measure-
ment approaches. SIGOPS Operating Syst Review. 2013;47(3): 42–49.
doi:10.1145/2553070.2553077.

31. Kalaitzoglou G, Bruntink M, Visser J. A practical model for evaluat-
ing the energy efficiency of software applications. Ict for Sust. 2014
(ICT4S-14). Stockholm : Atlantis Press; 2014.

32. Bozzelli P, Gu Q, Lago P. A systematic literature review on green soft-
ware metrics, Technical Report, Technical Report: VU University Ams-
terdam; 2013.

33. Hindle A, Wilson A, Rasmussen K, Barlow EJ, Campbell JC, Romansky S.
Greenminer: a hardware based mining software repositories software
energy consumption framework. Proceedings of the 11th Working Con-
ference on Mining Software Repositories, MSR 2014. New York, NY, USA:
ACM; 2014:12–21. doi:10.1145/2597073.2597097.

34. Procaccianti G, Lago P, Vetrò A, Méndez Fernández DM, Wieringa R.
The green lab: experimentation in software energy efficiency. Proceed-
ings of the 37th International Conference on Software Engineering – Volume
2, ICSE ’15, Florence, Italy, IEEE Press; 2015:941–942.

35. Yang Q, Li JJ, Weiss DM. A survey of coverage-based testing tools.
Comput J. August 2009;52(5): 589–597.

36. Pinto G, Castor F, Liu YD. Understanding energy behaviors of thread
management constructs. SIGPLAN Not. 2014;49(10): 345–360.
doi:10.1145/2714064.2660235.

37. Rozanski N, Woods E. Software Systems Architecture: Working with
Stakeholders using Viewpoints and Perspectives. Upper Saddle River, NJ:
Addison-Wesley; 2011.

38. Trefethen AE, Thiyagalingam J. Energy-aware software: challenges,
opportunities and strategies. J Comput Sci. 2013;4(6): 444–449.
doi:10.1016/j.jocs.2013.01.005. http://www.sciencedirect.com/
science/article/pii/\ignorespacesS1877750313000173, Scalable
Algorithms for Large-Scale Systems Workshop (ScalA2011),
Supercomputing 2011.

39. Procaccianti G, Lago P, Lewis GA. A catalogue of green archi-
tectural tactics for the cloud. Maint. and Evol. of Service-Oriented
and Cloud-Based Systems (MESOCA), 2014 IEEE 8th Int’l Symp. on the,
Gyeongju, Republic of Korea; 2014:29–36.

40. Ferreira AM, Pernici B. Managing the complex data center environ-
ment: an integrated energy-aware framework. Computing. 2014:1–41.
doi:10.1007/s00607-014-0405-x.

41. Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora
P. An exploratory study of the evolution of communicated information
about the execution of large software systems. J Software: Evol Process.
2014;26(1): 3–26.

42. Hindle A. Green mining: a methodology of relating software change
and configuration to power consumption. Empirical Software Eng.
2013:1–36. doi:10.1007/s10664-013-9276-6.

43. Zhang G, Zhang K, Zhu X, Chen M, Xu C, Shao Y. Modeling and analyzing
method for CPS software architecture energy consumption. J Software.
2013;8(11):2974–2981. http://www.ojs.academypublisher.com/index.
php/jsw/article/view/jsw081129742981.

44. Zhu HS, Lin C, Liu YD. A programming model for sustainable software.
Proceedings of the 37th International Conference on Software Engineering
– Volume 1, ICSE ’15, Florence, Italy: IEEE Press; 2015:767–777.

45. Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff
N, Venters C. Sustainability design and software: the Karlskrona man-
ifesto. Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on, vol. 2: IEEE; 2015:467–476.

46. Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A. Exper-
imentation in Software Engineering. Heidelberg: Springer Publishing
Company, Incorporated; 2012.

47. Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin
DC, Emam KE, Rosenberg J. Preliminary guidelines for empirical
research in software engineering. IEEE Trans Software Eng. 2002;28(8):
721–734.

48. Runeson P, Höst M. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Eng. 2009;14(2):
131–164.

49. Juristo N, Moreno AM. Basics of Software Engineering Experimentation.
1st ed. New York: Springer Publishing Company, Incorporated; 2010.

50. Xu L, Brinkkemper S. Concepts of product software. European Journal of
Information Systems. 2007;16(5): 531–541.

51. Jagroep EA, van der Werf JMEM, Spauwen R, Blom L, van Vliet
R, Brinkkemper S. An energy consumption perspective on software
architecture. Software Architecture, LNCS: Springer, Dubrovnik/Cavtat;
2015:239–247.

52. Yin R. Case Study Research: Design and Methods, Applied Social Research
Methods. Thousand Oaks: SAGE Publications; 2009. http://books.
google.ca/books?id=FzawIAdilHkC.

53. Bass L, Clements P, Kazman R. Software Architecture in Practice, SEI
Series in Software Engineering. Upper Saddle River, NJ: Pearson
Education; 2012.

54. Kruchten P, Nord RL, Ozkaya I. Technical debt: from metaphor to the-
ory and practice. IEEE Software. 2012;29(6): 18–21.

55. Mosley H, Mayer A. Benchmarking national labour market perfor-
mance: a radar chart approach. Technical Report, WZB Discussion
paper; 1999.

http://www.sciencedirect.com/science/article/pii/ ignorespaces S1877750313000173
http://www.sciencedirect.com/science/article/pii/ ignorespaces S1877750313000173
http://www.ojs.academypublisher.com/index.php/jsw/article/view/jsw081129742981
http://www.ojs.academypublisher.com/index.php/jsw/article/view/jsw081129742981
http://books.google.ca/books?id=FzawIAdilHkC
http://books.google.ca/books?id=FzawIAdilHkC


JAGROEP ET AL. 19 of 20

56. Kansal A, Zhao F, Liu J, Kothari N, Bhattacharya AA. Virtual machine
power metering and provisioning. Proceedings of the 1st ACM Sym-
posium on Cloud Computing, SoCC ’10. New York, NY, USA: ACM;
2010:39–50.

57. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach. New York: Springer Science &
Business Media; 2003.

58. Andersen R. Modern Methods for Robust Regression. Thousand Oaks:
Sage; 2008.

59. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat
Soc Series B Stat Methodol. 1996;58(1): 267–288.

How to cite this article: Jagroep E, Procaccianti G, van der

Werf JM, Brinkkemper S, Blom L, van Vliet R. Energy

efficiency on the product roadmap: An empirical study

across releases of a software product. J Softw Evol Proc.

2017;29:e1852. https://doi.org/10.1002/smr.1852

APPENDIX

Regression Model to Predict the EC of Software Elements

The percentages of EC that JM reports on process level (on average

61.9% for the application server and 69.3% for the database server)

indicate that we are still unable to explain a relatively large amount

of the energy overhead of software execution. We initially attributed

this to a lack of accuracy of JM: The tool is based upon a linear model

that takes into account only a limited amount of hardware resources.56

Hence, we hypothesized that this energy estimation gap could be due

to unaccounted resources in the linear model. For this reason, we built

a special–purpose linear model, trained by using performance data and

the EC measured by the WUP. In this section, we briefly explain the tech-

niques we adopted and our results. To train the models, we used the

values from a single-experiment execution (see Section 4) as training

set. We then use the remaining executions as test sets to evaluate the

performance of our models.

Our first version of the regression model was obtained by means of

multiple generalized linear models selection.57 We selected the SEC

as a response, and through a genetic algorithm, we generated multi-

ple instances of linear models, using resource usage data as predictors

(specifically, the used predictors were CPU time, IO bytes/sec, mem-

ory private bytes, and working set: The other predictors (Section 3.1.4)

were excluded due to collinearity). We fitted both level-1 and level-2

models, by analyzing interactions between the predictors. The models

generated with this method were characterized by strong overfitting to

the specific machine. Figure A1 shows why the model performs poorly:

If fitted to the application server data, it performs well when predicting

data from the same machine (Figure A1[A]) but is unable to predict the

database server data with reasonable error (Figure A1[B]).

By performing some diagnostics on the model, we found out

that there were a number of observations with high leverage (ie,

significantly influencing the regression coefficients). In addition, the

FIGURE A1 Overfitting of level 2 linear regression model trained on application server data. SEC indicates software energy consumption

https://doi.org/10.1002/smr.1852


20 of 20 JAGROEP ET AL.

FIGURE A2 Comparison of nonrobust and robust regression models, trained on application server data and predicting database server data. SEC
indicates software energy consumption

TABLE A1 Example comparison of the energy estimation for Joulemeter and our special-purpose
linear model for the Oracle process

Total SEC (Wh) Energy Impact: Oracle-Joulemeter (Wh) Energy Impact: Oracle-Model (Wh)

8.239 5.618 (68.18%) 5.724 (69.47%)

Abbreviation: SEC, software energy consumption.

data were also characterized by a high number of outliers. Hence, we

opted for robust regression,58 a form of regression analysis that gives

more reliable results in such conditions. Indeed, such method per-

formed significantly better: In Figure A2, you can see a comparison

of the performance of the 2 models. A large systematic error is still

present, but in terms of Mean Absolute Percentage Error, we were able

to improve from of 12.6 to 2.6.

However, the fitted regression models exhibit negative coefficients.

If we assume that a software process will use a positive and finite

share of the system resources, this is probably not realistic. Hence,

we adopted penalized linear regression,59 a regression technique that

enables to specify constraints for the model features. This was done to

enforce a positive value for the predictors.

The model obtained through penalized regression outperforms JM

at machine-level prediction, ie, trying to predict the total system EC,

see Figure 5. Our model has a Mean Absolute Percentage Error of

0.005 when compared to WUP measurements, as opposed to the 0.08

of JM. Given these promising results, we used the same model to pre-

dict the impact at process level. The prediction values were obtained by

using the resource usage data of the single processes (as measured by

Perfmon, see Section 3.1.4) as an input to the model. The intercept coef-

ficient of the model was subtracted from the prediction, to remove the

machine-dependant idle power estimation. Through this technique, we

are able to obtain a realistic estimation of the energy impact for each

process (in Table A1, an example for an execution of Oracle is shown).

If we aggregate the estimation obtained using our model for all the

processes running in our application, however, we obtain very similar

percentages to those computed via JM. Given this validation, we must

conclude that JM provides a fairly accurate estimation of the EC of

specific processes.

Hence, a relatively high percentage of EC cannot be attributed to

specific processes. This is a strong indication that other factors are play-

ing a role. Examples might be OS-level processes and system calls that

the profiler is unable to detect as separate processes. Further work

must be done to reliably attribute EC to specific software elements.


	Energy efficiency on the product roadmap: An empirical study across releases of a software product
	Abstract
	Introductionxmltex *1.5pt?>
	Related Work
	Product roadmap
	Software energy consumption measurements
	Software architectural aspects ofxmltex ?> energy consumption
	Energy consumption comparison between releases
	Awareness

	Study Design
	Experiment design
	Product under study
	Differences between releases
	Test case
	Metrics

	Interview design

	Study Execution
	Experiment execution
	Setup
	Baseline measurements
	Hardware– andxmltex ?> software–based measurements
	Data synchronization
	Measurement protocol

	Interview execution

	Results
	Experiment results
	Baseline measurements
	DG measurements
	Joulemeter estimations
	Software metrics
	Interview results

	Discussion
	SQ1: Measuring thexmltex ?> EC
	SQ2: Relating EC toxmltex ?> software elements
	Visualizing software energy consumption
	RQ2: Thexmltex ?> added value ofxmltex ?> EC measurements forxmltex ?> the SPO
	Energy consumption onxmltex ?> the product roadmap

	Threats toxmltex ?> Validity
	Internal validity
	External validity
	Construct validity

	Conclusions
	References


