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Genetic wiring maps of single-cell protein states 
reveal an off-switch for GPCR signalling
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As key executers of biological functions, the activity and abundance 
of proteins are subjected to extensive regulation. Deciphering 
the genetic architecture underlying this regulation is critical 
for understanding cellular signalling events and responses to 
environmental cues. Using random mutagenesis in haploid 
human cells, we apply a sensitive approach to directly couple 
genomic mutations to protein measurements in individual cells. 
Here we use this to examine a suite of cellular processes, such as 
transcriptional induction, regulation of protein abundance and 
splicing, signalling cascades (mitogen-activated protein kinase 
(MAPK), G-protein-coupled receptor (GPCR), protein kinase B 
(AKT), interferon, and Wingless and Int-related protein (WNT) 
pathways) and epigenetic modifications (histone crotonylation and 
methylation). This scalable, sequencing-based procedure elucidates 
the genetic landscapes that control protein states, identifying genes 
that cause very narrow phenotypic effects and genes that lead to 
broad phenotypic consequences. The resulting genetic wiring 
map identifies the E3-ligase substrate adaptor KCTD5 (ref. 1)  
as a negative regulator of the AKT pathway, a key signalling 
cascade frequently deregulated in cancer. KCTD5-deficient cells 
show elevated levels of phospho-AKT at S473 that could not be 
attributed to effects on canonical pathway components. To reveal 
the genetic requirements for this phenotype, we iteratively analysed 
the regulatory network linked to AKT activity in the knockout 
background. This genetic modifier screen exposes suppressors of the 
KCTD5 phenotype and mechanistically demonstrates that KCTD5 
acts as an off-switch for GPCR signalling by triggering proteolysis 
of Gβγ heterodimers dissociated from the Gα subunit. Although 
biological networks have previously been constructed on the basis 
of gene expression2,3, protein–protein associations4–6, or genetic 
interaction profiles7,8, we foresee that the approach described here 
will enable the generation of a comprehensive genetic wiring map 
for human cells on the basis of quantitative protein states.

Genetic perturbation approaches have been employed to study the 
wiring of human cells using (trans)gene expression9–12 or cell viability 
as readouts13. However, many cellular events do not affect cell fitness 
or result in large transcriptional effects. Using protein states as readouts 
for phenotypes12,14,15, we apply random mutagenesis in haploid cells 
to directly link genome mutations to protein phenotypes within the 
same cell.

Induction of the interferon-regulatory factor 1 (IRF1) by interferon-γ  
is under strong genetic control. We used this as a proof of concept to 
determine whether the genomic elements required for this phenotype 
could be revealed. A population of 108 gene-trap mutagenized human 
haploid HAP1 cells13,16,17 were expanded, fixed, permeabilized, and 
stained using antibodies directed against IRF1 before fluorescence- 
activated cell sorting (FACS) (Fig. 1a). Two populations of 1.5 ×  107 cells,  

corresponding to the cells with the highest and lowest IRF1 protein 
abundance, were isolated and used for mapping the gene-trap inte-
grations. Because of the high complexity of the library, the effect of 
genes on a measured phenotype could be assessed by counting the 
number of unique genomic mutations in each channel rather than 
by measuring the abundance of few distinct mutants. Approximately 
1.5 ×  107 gene-trap integration events were mapped in both popula-
tions, resulting in approximately one cell accounting for each mapped 
mutation. This pointed out all described pathway components18 
including STAT1, for which a high number of disruptive mutations 
were identified in the ‘low’ population and few in the ‘high’ population  
(135 versus 2 independent mutations, false discovery rate-corrected  
P value =  4.3 ×  10−37) and additional regulators (Fig. 1b, Extended Data 
Fig. 1a and Supplementary Table 1).

To identify genetic regulators affecting different protein fates, we 
used a series of specific antibodies to study protein phosphorylation 
(p38, ERK), splicing (XBP1), methylation (H3K27), crotonylation 
(H2AK119), glycosylation (LAMP1), and proteolysis (β -catenin)  
(Fig. 1c–i, Extended Data Fig. 1b and Supplementary Tables 2–8). In 
all cases, mutations in the gene encoding, or required for generation 
of, the antibody target were expectedly enriched in the ‘low’ cell popu-
lation. For example, we identified the PRC2 complex (EED, EZH2, and 
SUZ12; Fig. 1f), which mediates trimethylation of H3K27 (ref. 19), and 
the acetyltransferase EP300 (Fig. 1g), which was shown to transfer a 
crotonyl mark on histones20. In addition to the genes required for the 
respective antibody targets, numerous factors known to affect the trait 
of interest were identified. These included a series of lysosomal stor-
age disease genes that affect the abundance of the lysosomal marker 
LAMP1, which is in agreement with the increased number of enlarged 
lysosomes observed in cells derived from patients with lysosomal  
storage disease (Fig. 1h)21. In summary, genetic regulators affecting a 
variety of protein states in human cells could be identified.

In addition to previously identified regulators, these genetic surveys 
identified numerous loci affecting the protein phenotypes studied, 
suggesting that these traits could be controlled by extensive genetic 
networks. Assuming only expressed genes could affect a phenotype, 
we determined gene expression levels in HAP1 cells by RNA sequenc-
ing (RNA-seq) (Supplementary Table 9) and examined the identified 
regulators for each query phenotype. Importantly, the 25% lowest or 
non-expressed genes rarely affected phenotypes, suggesting few false 
positives among the identified genetic regulators (Extended Data  
Fig. 2). Next, we classified the identified regulators across all query 
phenotypes. This showed that some regulators affect a single meas-
ured trait whereas others display a broader phenotypic range (Fig. 2a). 
Examining functionally related genes linked to multiple phenotypes, 
we noticed similar behaviour across screens (Fig. 2a). We observed 
that the most strongly enriched Reactome term for genes connected 
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to more than one phenotype was chromatin biology (Fig. 2b), as seen 
for hubs in genetic interaction networks7, and more connected genes 
engaged more frequently in protein–protein interactions or affected cell 
fitness (Extended Data Fig. 3). Conversely, Reactome terms related to 
the specific query trait were identified for most regulators connected 
to only one trait (Fig. 2b). Finally, we assigned human genes in groups 
of approximately 1,000 on the basis of expression levels in HAP1 cells. 
We observed that transcription levels of a gene related to its likeli-
hood of being found as a regulator (Extended Data Fig. 4). Together, 
these results suggest that protein outputs are under complex genetic  
control, that this regulation is disproportionally elicited by the most 
highly expressed genes, and that regulators can be classified by their 
phenotypic range.

The identification of genes affecting cellular phenotypes opens the 
possibility of expanding known biological pathways. The AKT cascade 
affects many aspects of cell biology such as proliferation, cell survival, 
and metabolism22. Expectedly, many known pathway components were 
readily identified in a genetic screen measuring AKT phosphorylation 

at S473 (Fig. 2c, Extended Data Fig. 5 and Supplementary Table 10).  
Notably, the cullin E3 ligase adaptor KCTD5 (ref. 1) (but no other KCTD 
family member; Extended Data Fig. 6) was identified as a potent nega-
tive regulator together with CUL3 itself, and their observed phenotypes 
could be verified in different human cell lines using immunoblot analy-
ses (Extended Data Fig. 7a, b). Because KCTD5-deficient cells displayed 
elevated phospho-AKT (pAKT) levels that could not be explained by 
effects on the examined canonical pathway components (Extended Data  
Fig. 7c), we applied a genetic suppressor approach to dissect the 
underlying mechanism (Fig. 2d) by using the abundance of pAKT as 
a readout in KCTD5-deficient HAP1 cells (Fig. 2e and Supplementary 
Table 11). As expected, KCTD5 was not identified, but importantly 
neither was CUL3, indicating that the effect of CUL3 on pAKT requires 
KCTD5. Notably, when regulators of pAKT levels were compared 
between wild-type and KCTD5-deficient cells, a set of genes was identi-
fied that represented potent drivers of pAKT levels in KCTD5-deficient 
but not wild-type cells (Fig. 2c, e, f). These corresponded to G-protein 
β  and γ  subunits (GNB1, GNB2, and GNG5), their chaperone PDCL23, 
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Figure 1 | Genetic wiring maps for protein phenotypes measured in 
cultured human cells. a, Mutagenesis-based approach in haploid cells 
to study protein phenotypes (see Supplementary Table 16). b–i, Genetic 
screens using antibodies for the indicated targets. Per gene (dots), the 
frequency of mutations in the ‘high’ channel divided by the frequency of 
mutations in the ‘low’ channel is plotted as the mutation index (MI, y axis) 
against the total number of mutations assigned to the gene (x axis). Genes 
enriched in either channel (two-sided Fisher’s exact test, false discovery 

rate-corrected P ≤  0.05) are coloured (yellow, negative regulators; blue, 
positive regulators) and selected regulators are labelled; b, induced IRF1, 
c, phosphorylated p38(Thr180/Tyr182); d, phosphorylated ERK(Thr202/
Tyr204); e, spliced XBP1; f, trimethylated histone H3(K27); g, crotonylated 
histone H2A(K119); h, glycosylated LAMP1 (LSD, lysosomal storage 
disease); i, non-phosphorylated (active) β -catenin (Ser33/37/Thr41). 
Interactive graphs are available at https://phenosaurus.nki.nl.
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required to generate Gβ γ  dimers, and their effector PI3KCB24,25. 
Activation of PI3KCB by Gβ γ  is known to activate AKT signalling. 
This genetic modifier screen suggests that the activation of AKT by 
Gβ γ  is suppressed by KCTD5/CUL3.

We then used label-free quantitative proteomics to compare  
wild-type and KCTD5-deficient cells to identify substrates of KCTD5/
CUL3. Hypothesizing that KCTD5 substrates are ubiquitinated and 
subsequently degraded, we searched for potential substrates and 
identified 70 proteins (out of a total of 3,701 quantified proteins; 
Supplementary Table 12) with increased abundance in KCTD5-
deficient cells (Fig. 3a and Supplementary Table 12). In parallel, we used 
the ubiquitin remnant motif antibody (di-Gly) to purify and quantify 
ubiquitinated proteins, yielding 217 downregulated ubiquitination sites 
(out of a total of 2,417 quantified sites) (Fig. 3b and Supplementary 
Table 12). Comparison of both datasets yielded only four proteins that 

showed fewer di-Gly remnants in KCTD5- deficient cells and increased 
protein levels. Remarkably, three out of four hits encoded Gβ γ  subunits  
(GNB1, GNB2, and GNG5) (Fig. 3c and Supplementary Table 13). 
Western blot analysis confirmed that both KCTD5 and CUL3 knockout  
cells contained elevated levels of GNB1 and GNG5 (Fig. 3d and 
Extended Data Fig. 8a). Together with the genetic suppressor screen, 
these data suggest a model in which KCTD5 limits pAKT activation 
through ubiquitin-mediated proteolysis of Gβ γ .

To determine the circumstances under which KCTD5 mediates deg-
radation of Gβ γ , we designed a comparative genetic strategy: using our 
FACS-based screening approach, we identified genes affecting GNB1 
abundance both in wild-type and in KCTD5-deficient HAP1 cells and 
searched for genotype-specific regulators. GNB1 was strongly enriched 
for disruptive mutations in the ‘low’ channel and KCTD5 stood out 
as a strong negative regulator in the wild-type screen, independently 
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Figure 2 | Protein phenotypes are regulated by extensive genetic 
networks and can be influenced by suppressor interactions. a, Mutation 
index of selected genes is plotted per screen (red, negative regulator; 
blue, positive regulator; grey, not significant). b, Network depicting 
query phenotypes (orange diamonds) connected to identified regulators 
(nodes). Unique regulators are grouped in the outer rim (indicating 

selected Reactome terms), while genes connected to multiple phenotypes 
are grouped towards the centre. c, Genetic screen for pAKT. d, Genetic 
suppressor approach to study KCTD5 mechanism. e, Screen for pAKT in 
Δ KCTD5 cells. f, Top Reactome terms identified specifically in KCTD5-
deficient cells. PIP3, phosphatidylinositol-3,4,5-trisphosphate.
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confirming that it acts as an important regulator of GNB1 abun-
dance (Fig. 3e and Supplementary Table 14). Notably, intersection of 
the wild-type and Δ KCTD5 datasets revealed that the Gα  subunits 
GNAI1, GNAI2, GNAI3, and RIC8A (encoding a protein required 
for Gα  subunit abundance)26 specifically regulated GNB1 levels in  
wild-type cells (Fig. 3f and Supplementary Table 15). This could be  
confirmed by western blot analysis using cells deficient for RIC8A 
in the absence or presence of KCTD5 (Fig. 3g). Because loss of Gα  
subunits decreases GNB1 levels in a KCTD5-dependent manner, it is 
possible that KCTD5 specifically targets those Gβ γ  dimers dissociated 

from Gα  subunits for degradation. Indeed, KCTD5 associated with 
Gβ γ  subunits but could not be detected in complex with purified  
Gα  subunits (Fig. 3h). Moreover, the addition of recombinant KCDT5 
protein to immobilized Gα β γ  resulted in binding of KCTD5 to the Gβ γ   
and simultaneous dissociation of Gα , demonstrating that Gα  and 
KCTD5 bind to Gβ γ  dimers competitively (Fig. 3i). Finally, mutations 
in Gβ  subunits have been observed in a variety of solid cancers and 
myeloid malignancies27. These oncogenic Gβ  subunits potently trigger 
AKT phosphorylation because of their inability to interact with Gα 27. 
Intriguingly, those oncogenic GNB1 point mutations also attenuated 
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Figure 3 | KCTD5 acts as off-switch for GPCR Gβγ signalling.  
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abundance (a) and decreased ubiquitination (b) in Δ KCTD5 cells.  
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immunoprecipitated, and analysed as before. k, Model of Gβ γ  regulation 
by KCTD5.
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KCTD5 binding (Fig. 3j). We propose that this attenuated binding  
contributes to the oncogenic activity of GNB1 point mutants, since 
liberation of wild-type Gβ γ  through Gα  depletion (as in RIC8A knock-
out cells) did not increase AKT phosphorylation when KCTD5 was 
present (Fig. 3g).

GPCRs are the largest receptor family mediating many physiological 
responses. Their activity is tightly controlled and reset upon activa-
tion. Although the activity of Gβ γ  dimers can be neutralized through 
re-association with Gα  subunits, we here present an unexpected  
proteolysis-based mechanism, which irreversibly removes dissociated  
Gβ γ  dimers, limiting activation of their effector molecule PI3K  
(Fig. 3k). Although other KCTD proteins have been linked to GPCR 
signalling before28, these were associated with specific receptor 
sub-complexes and did not trigger proteolysis because of their inability 
to interact with CUL329,30.

By examining a variety of protein-related phenotypes, we reveal 
extensive underlying genetic networks enriched for highly transcribed 
genes. The identification of genetic suppressors in modifier screens can 
readily provide mechanistic insights into the investigated phenotypes. 
Together, these genetic explorations applicable to any specific antibody 
may facilitate the generation of a phenotypic map for human cells.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Cell lines and culture. HAP1 cells17 were cultured in IMDM-medium 
(ThermoFisher Scientific) supplemented with 10% heat-inactivated fetal calf serum 
(FCS; ThermoFisher Scientific or Sigma) and penicillin–streptomycin–glutamine 
solution (ThermoFisher Scientific). HEK293T-, SKBR3-, A549-, and U2OS cells 
were obtained from authentic stocks (American Type Culture Collection) and 
maintained in DMEM (ThermoFisher Scientific) containing the aforementioned 
supplements. HAP1 wild-type and knockout cell lines were monitored for ploidy, 
authenticated by genotyping, and all lines were tested for mycoplasma and verified 
to be negative.
Generation of knockout cell lines. Knockout cell lines (Supplementary Table 17) 
were generated by using the CRISPR/Cas9 system. HAP1 cells were transfected 
with the plasmid px330 (Addgene 42230) containing the guide RNA (gRNA) 
for a gene of interest (Supplementary Table 18) and a vector containing a gRNA 
to the zebrafish TIA gene (5′ -GGTATGTCGGGAACCTCTCC-3′ ) as well as a 
P2A-blasticidin resistance cassette flanked by two TIA target sites. This allowed 
incorporation of the blasticidin resistance gene into the locus, resulting in a stable 
knockout similarly as described31. After blasticidin selection (10 μ g ml−1), resistant 
clones were expanded. To create double knockouts, KCTD5-knockout cells were 
transfected with two gRNAs targeting RIC8A.

In contrast to HAP1 cells, HEK293T cells were co-transfected with two different 
gRNAs (px330) and pMX-ires-Blast, followed by blasticidin selection (80 μ g ml−1).

gRNAs against KCTD5 were also cloned into a lentiviral red fluorescent protein 
(RFP)–CRISPR backbone (Addgene 75162). SKBR3-, A549-, and U2OS cell lines 
were infected with lentiviral supernatant and RFP-positive cells were sorted after 
4 days.
Generating libraries of mutagenized HAP1 cells. To produce gene-trap retrovirus 
required for mutagenesis of HAP1 cells, HEK293T cells were seeded in T175 flasks 
at 40% confluence. Medium was replaced with DMEM supplemented with 30% 
FCS before transfection with 6.6 μ g gene-trap vector and either green fluorescent 
protein32 or blue fluorescent protein. In addition, the packaging plasmids Gag-pol, 
VSVg, and pAdv16 were co-transfected. Viral supernatant was harvested 48 h after 
transfection and subsequently concentrated by ultracentrifugation at 22,000 r.p.m. 
for 2 h at 4 °C. Pellets were resuspended in 200 μ l phosphate buffered saline (PBS, 
Life Technologies) and stored overnight at 4 °C. This procedure was repeated twice 
a day for 3 consecutive days.

To mutagenize HAP1 cells, 40 million cells were seeded and transduced with 
concentrated virus in the presence of 8 μ g ml−1 protamine sulphate (Sigma). 
After two additional rounds of transduction (> 90% fluorescent cells), the mutant 
library was expanded before analysis of an intracellular phenotype by FACS  
staining.
FACS-based phenotypic screens. Mutagenized HAP1 cells (3 ×  109) were either 
treated to induce the phenotype of interest (Supplementary Table 16) or directly 
harvested by dissociation (trypsin-EDTA, Life Technologies). To fix the state of 
a particular phenotype, dissociated cells were resuspended in a volume of BD 
fix buffer I (BD Biosciences) corresponding to pellet volume at 37 °C for 10 min. 
Cells were washed with PBS containing 10% FCS and subsequently permeabilized 
for 30 min on ice using cold BD permeabilization buffer III (BD Biosciences). 
After washing twice in PBS/10% FCS, cells were filtered through a 40 μ m strainer 
(BD Falcon). Primary antibody staining was performed in 100 μ l per 107 cells 
(Supplementary Table 18) for 1 h at room temperature. After two washing steps 
(PBS/10% FCS), cells were incubated with secondary antibodies (coupled to Alexa 
Fluor 488, 568, or 647, Life Technologies) at 1:1,000 dilution for 1 h, protected 
from light. DNA was counterstained using either 1 μ g ml−1 4′ ,6-diamidino-2- 
phenylindole (DAPI) or 10 μ g ml−1 propidium iodide (Life Technologies) solution.  
If propidium iodide staining was performed, cells were also treated with  
100 μ g ml−1 RNase A (Qiagen).

Depending on the gene-trap fluophore/secondary antibody fluophore  
combination, cells were sorted on an Astrios Moflo or a Biorad S3 cell sorter, using 
appropriate laser-filter combinations. For every phenotype of interest, the specificity  
of the staining was determined with a negative (no primary antibody) control. 
To remove diploid cells containing heterozygous mutations, cells were first gated 
on the basis of DNA content (1n). Subsequently, gates were set on the basis of the 
log(signal intensity) in the appropriate channel, to include the lowest (dim) and 
highest (bright) 1–5% of the whole cell population. Cells (8 ×  106 to 20 ×  106) were 
sorted into PBS/FCS for low and high populations each.
Amplification of insertion sites. After sorting, insertion sites were retrieved  
similarly as described13. Briefly, cells were pelleted by centrifugation and resus-
pended in a 1:1 mix of PBS and lysis buffer AL (Qiagen) with the addition of 
proteinase K. De-crosslinking was performed overnight at 56 °C with agitation, and 

genomic DNA was purified with a QIAamp DNA Mini Kit (Qiagen) and used as 
input for linear amplification-mediated polymerase chain reactions (LAM-PCR). 
These were performed in a total volume of 50 μ l with 0.5–2 μ g genomic DNA, 1 mM 
MgSO4, 0.75 pmol double-biotinylated primer (5′/double biotin/GGTCTCCA 
AATCTCGGTGGAAC-3′ ), Accuprime Taq HiFi (0.4 μ l), and the supplied buffer 
II (Life Technologies) and amplified for 120 cycles.

PCR reactions were pooled, and biotinylated single-stranded DNA (ssDNA) 
was isolated by addition of 2×  binding buffer (6 M LiCl, 10 mM Tris, 1 mM EDTA, 
pH 7.5) and M270 streptavidin-coated Dynabeads (Life Technologies) for 2 h at 
room temperature.

Bead-coupled DNA was washed with PBS containing 0.05% Triton X-100 
(Sigma). Before introducing Illumina sequencing adaptors, ssDNA linkers were 
ligated to the non-biotinylated (3′ ) end of the PCR products using one of the fol-
lowing two protocols. Depending on the number of LAM-PCR reactions (N), the 
ligation was performed in a total volume of N ×  10 μ l, using N ×  12.5 pmol ssDNA 
linker (5′ /phospho/ATCGTATGCCGTCTTCTGCTTGACTCAGTAGTTGTGCG 
ATGGATTGATG/dideoxycytidine/3′ ), 2.5 mM MnCl2, 1 M betaine, N ×  0.5 μ l  
of Circligase II (Illumina), and supplied reaction buffer. Alternatively, we used 
N ×  12.5 pmol of a pre-adenylated linker (5′ /adenyl/ATCGTATGCCGTCTTCT 
GCTTGACTCAGTAGTTGTGCGATGGATTGATG/dideoxycytidine/3′ ) and 
2 μ g Escherichia coli-purified TS2126 thermostable RNA ligase 1 from Thermus 
scotoductus bacteriophage33 in an N ×  10 μ l reaction containing 18.75% PEG6000, 
N ×  (2.5 μ g BSA, 2.5 mM MnCl2, 1 μ l buffer (500 mM MOPS, 100 mM KCl, 50 mM 
MgCl2, 10 mM dithiothreitol)). Ligation was performed at 60 °C for 2 h in non-stick 
1.5 ml tubes (Life Technologies), followed by three wash steps with PBS/0.05% 
Triton X-100 (Sigma). To introduce the adaptor sequences required for Illumina 
sequencing (P5 and P7), 50 μ l reactions were set up (one for two LAM-PCR reac-
tions), containing 25 pmol of each primer, 5 μ l buffer II, and 0.6 μ l Accuprime 
Taq HiFi.

Eighteen cycles of PCR were performed at an annealing temperature of 55 °C  
for 30 s followed by an extension (at 68 °C) for 105 s, using primers 5′ -AATGA 
TACGGCGACCACCGAGATCTGATGGTTCTCTAGCTTGCC-3′  and 5′ -CAAG 
CAGAAGACGGCATACGA-3′ . Libraries were purified with PCR purification  
columns (Qiagen) and sequencing was performed with a concentration of  
18 pM per lane (51-bp or 65-bp single reads) on either HiSeq2000 or HiSeq2500  
instruments (Illumina) using sequencing primer 5′ -CTAGCTTGCCAAACCTAC 
AGGTGGGGTCTTTCA-3′ .
Insertion site mapping and analysis. After deep sequencing of the low- and high-
sorted populations, gene-trap insertion sites were determined as unique reads 
aligning unambiguously to the human genome (hg19) using Bowtie34, allowing 
for a single mismatch. Aligned reads were mapped using hg19 protein-coding gene 
coordinates (Refseq) to identify intragenic insertion sites and their orientation 
with respect to the gene using intersectBED35. For this analysis, insertion sites 
integrated in sense within a gene were considered disruptive. To prevent potential 
confounding, insertion sites in genomic regions assigned to overlapping genes 
were discarded, as well as integrations in the 3′  untranslated region (UTR) of genes 
as the gene-trap cassette might have been be less effective there in ablating gene 
function. To identify genes enriched for disruptive gene-trap integrations in either 
the high- or low-query populations, the number of unique disruptive mutations 
in each gene and in the total of one population (for example, signal high) was 
counted and compared with those values in the other population (for example, 
signal low) using a two-sided Fisher’s exact test. Resulting P values were adjusted 
for multiple testing using the Benjamini–Hochberg false discovery rate correction. 
For each gene, a mutation index (MI) was calculated corresponding to the ratio 
of the number of disruptive integrations per gene in both populations normalized 
by the number of total integrations in each channel:

/=
 

−
MI Number of sense insertions in gene in high population

(Total number of sense insertions in high population)

(Number of sense insertions in gene in high population)

−

Number of sense insertions in gene in low population
(Total number of sense insertions in low population)

(Number of sense insertions in gene in low population)

For genes without a single insertion site in only one of the channels, a value of  
1 was assigned so as not be omitted from the plots. Reactome pathway36 enrich-
ment analysis for gene groups was performed using ConsensusPathDB37, and 
network analysis was done in Cytoscape 3.

RNA-seq data of ten independent wild-type HAP1 cells were aligned using 
Tophat38, assigned to Ensembl genes, and expression levels determined by 
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HTSeq-count39. Read counts in protein-coding genes were normalized to  
10 million reads followed by log2 transformation. To avoid negative normalized  
values, 1 was added to each gene expression value. To map mutations to the 
genome, a file based on Refseq coordinates containing all unique genomic protein- 
coding regions was used. Genes occurring in both the Ensembl-based expression 
data as well as the Refseq-based insertion site data were considered for further 
expression analysis (16,800 genes). For the binned expression analysis, 17 bins of 
approximate equal size (~ 988 genes per bin) were created.
KCTD5 cloning and expression. The KCTD5 gene was cloned into the pETNKI-
strepII-3C-LIC-kan vector40 for expression of strepII-3C-KCTD5. The construct 
was transformed into E. coli BL21(DE3) and cells were grown in Lysogeny broth 
(LB) medium supplemented with 30 μ g ml−1 kanamycin at 37 °C until absorbance 
at 600 nm was 0.6. The temperature was decreased to 20 °C and protein expression 
was induced by addition of 0.4 mM IPTG. After 16 h of expression at 20 °C, cells 
were harvested by centrifugation. The cell pellet was resuspended in lysis buffer 
(50 mM Tris-HCl pH 8.0, 250 mM NaCl, 1 mM TCEP, and protease inhibitor tablet) 
and cells were lysed by sonication. The lysate was cleared by centrifugation and the 
soluble fraction was applied to Streptactin beads (IBA Lifesciences). Beads were 
washed with 50 mM Tris-HCl pH 8.0, 250 mM NaCl, 1 mM TCEP, and protein was 
eluted by 2.5 mM desthiobiotin in the same buffer. The strepII tag was removed 
upon incubation of the protein with GST-3C protease overnight at 4 °C. KCTD5 
was further purified by size-exclusion chromatography on an S200 16/60 column 
(GE Healthcare) in 50 mM Tris pH 8.0, 250 mM NaCl, 1 mM TCEP. KCTD5 eluted 
from the column in a single peak. Fractions containing the protein were pooled and 
glycerol was added (20% final concentration) before the protein was concentrated 
and stored in aliquots at − 80 °C.
Conditioned medium. For the genetic screen for active β -catenin, before sorting 
HAP1 cells were stimulated for 4 h with 10% WNT3A-conditioned medium and 
4% R-spondin1-conditioned medium41.
Immunoprecipitations and immunoblotting. To detect protein–protein interac-
tions, cells were lysed with ice-cold CHAPS buffer (30 mM Tris-Cl pH 7.5, 150 mM 
NaCl, 1% CHAPS) containing protease and phosphatase inhibitor cocktail (Roche). 
After sonication, cell debris was pelleted and the cleared supernatant was incubated 
with anti-Flag M2 agarose beads (Sigma-Aldrich) at 4 °C for 2 h. An aliquot of the 
lysate was kept and served as input control. After five wash steps with CHAPS 
buffer, SDS sample buffer was added to the beads. After boiling the samples at 
95 °C for 5 min, precipitated proteins were separated by gel electrophoresis. Proteins 
were transferred onto polyvinylidene fluoride (PVDF) membranes and detected 
with the indicated antibodies (Supplementary Table 19). For gel source data, see 
Supplementary Fig. 1. For western blots, a representative example is presented 
obtained from at least two independent experiments.
Proteomics. For ubiquitination site profiling, 15 mg amounts of protein of 
KCTD5-knockout and wild-type HAP1 cells were alkylated with 10 mM chloro-
acetamide and digested overnight with trypsin (1:50 at 37 °C); for proteome pro-
filing, 50 μ g amounts were additionally pre-digested with LysC (1:75, 4 h at 37 °C). 
Ubiquitinated peptides were enriched by immunoaffinity purification using a 
PTMScan Ubiquitin Remnant Motif (K-ε -GG) Kit (Cell Signaling Technology)42,43. 
(Ubiquitinated) peptide mixtures were analysed by nanoLC-MS/MS on an 
Orbitrap Fusion Tribrid mass spectrometer equipped with a Proxeon nLC1000 
system (Thermo Scientific) using a nonlinear 210 min gradient, as described  
previously44. Raw data files were processed with MaxQuant version 1.5.0.30, 
searching against the human-reviewed Uniprot database (October 2014, 20,195 
entries). A false discovery rate was set to 1% for both protein and peptide levels, and 
GG(K) was set as an additional variable modification for analysis of ubiproteome 
samples. (Ubiquitinated) peptides and proteins were quantified with label-free 
quantitation using default settings45.

Properties of genes with broader or narrower phenotypic range. Genes that scored 
significantly in at least one of the phenotypes analysed in this study (see Fig. 2b)  
were intersected with public protein–protein interaction data from BioGRID, 
release 3.4.144 (https://thebiogrid.org)46. BioGRID data were filtered for human 
proteins and physical interactions. Intersection of the data in this manner allowed 
1,988 of 2,085 genes scoring in at least one genetic screen to be mapped to the 
protein–protein interaction data. For statistical analysis, these 1,988 genes were 
grouped into having a narrower phenotypic range (that is, scoring in one or two 
screens; 1,478 genes) or having a broader phenotypic range (that is, scoring in 
three or more screens; 510 genes). For these two groups, the difference in the 
number of protein–protein interactions was analysed using an unpaired two-
sided t-test. To test the representation of genes required for fitness in either group, 
the 2,085 genes contributing to at least one phenotype were intersected with  
fitness-affecting genes in HAP1 cells13. The proportion of fitness-related genes 
in either the narrower (that is, scoring in one or two screens) or broader (that 
is, scoring in three or more screens) phenotypic range group was tested using 
a χ2 test.
Data availability. All sequencing datasets have been deposited in the NCBI Sequence 
Read Archive under accession number SRP099134. In addition, all processed 
screen results are accessible in an interactive database (https://phenosaurus.nki.nl/).  
Source Data for the main and Extended Data figures are provided in the online 
version of the paper.
Code availability. Code used for data analysis or other data are available from the 
corresponding authors upon reasonable request.
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Extended Data Figure 1 | Validation of selected identified regulators. 
a, Wild-type, JAK1-, LMNB1-, and LMNA1-deficient HAP1 cells were 
treated with IFN-γ  for the indicated amount of time, lysates were prepared 
and analysed by immunoblotting. b, Wild-type, PRPF39-deficient, and 
PRPF39-deficient HAP1 cells reconstituted with Flag-tagged PRPF39 were 
treated with the protein synthesis inhibitor anisomycin for 4 h; lysates were 
prepared and analysed by immunoblotting.
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Extended Data Figure 2 | Gene expression is a requirement for phenotypic contribution. a, The datasets for the two screens were filtered to 
display only the genes falling within the top 25% (4,200 genes) highest and non- or lowest-expressed genes in HAP1 cells. b, Bar plot representing the 
quantification of all screens (analysed as in a).
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Extended Data Figure 3 | Analysis of genes linked to few or many 
phenotypes. a, Number of reported physical protein–protein interactions 
as a function of the number of phenotypes analysed in this study affected 
by a gene. b, As in a but with genes categorized as affecting either few (one 
or two; 1,478 genes) or many (three or more; 510 genes) traits. Two-sided 
unpaired t-test shows a modest but significant difference in the average 
number of protein–protein interactions between both groups. The y axis 
is cropped at 256 protein–protein interactions for better visibility and the 

median number of protein–protein interactions in each group is indicated. 
Box plots and error bars drawn according to Tukey’s representation.  
c, Comparison of fitness contribution for genes affecting few (one or two) 
versus many (three to ten) phenotypes. Genes specifically required for 
fitness in HAP1 cells13 were intersected with the genes contributing to 
phenotype-affecting genes and the proportion occurring in either group 
was tested using a two-sided χ2 test.
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Extended Data Figure 4 | Expression levels relate to phenotypic 
contribution. a, A total of 16,800 interrogatable genes were ranked 
on expression levels in HAP1 cells and binned into 17 bins containing 
approximately 1,000 genes per bin. In each bin, the number of genes 
identified as a regulator of at least one phenotypic trait was counted.  
b, To account for differences between screens, the same binned approach 
as in a was applied for the number of genes contributing to each 

individual phenotypic trait additionally. c, To analyse the relationship 
between expression levels and mutation frequencies the number of sense 
insertions per gene in the glycosylated LAMP1 screen is plotted per bin, 
demonstrating that the observed increase in phenotypic contribution from 
bins 8–17 is not due to a higher average mutation frequency. Box plots and 
error bars drawn according to Tukey’s representation.
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Extended Data Figure 5 | Genetic wiring map for phosphorylation of 
AKT at S473 identifies known regulators of this process. Outcome of 
genetic screen for AKT phosphorylation at S473. Data were generated 
and analysed as in Fig. 1. Selected known factors affecting AKT 

phosphorylation are labelled and their role in the signalling cascade is 
indicated in the cartoon. Individual gene-trap insertions (black dots) and 
their distribution across the gene bodies in the high and low channels 
(pAKT staining intensity) are shown for INPP4A and RICTOR.
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Extended Data Figure 6 | Effect of different KCTD family members on AKT phosphorylation at S473. KCTD family members are highlighted in the 
dataset described previously.
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Extended Data Figure 7 | KCTD5 regulates phosphorylation of AKT 
in different human cell lines without affecting levels of common 
regulators. a, Immunoblot confirming the effect of KCTD5 and CUL3 on 
AKT phosphorylation (S473) as detected in the genetic screen. Wild-type 
HAP1 cells and HAP1 cells deficient in KCTD5 or CUL3 were lysed and 
probed with specific antibodies by immunoblotting. b, Indicated wild-type 
and KCTD5-deficient HEK293 cells (two independent clones) were lysed 

and probed with specific antibodies by immunoblotting. Three additional 
cell lines (SKBR3, A549, and U2OS) were infected with a mix of two 
different lentiviral gRNAs targeting KCTD5 (RFP–CRISPR backbone). 
RFP-positive cells were sorted after 4 days and immunoblotted with the 
indicated antibodies. c, Wild-type or KCTD5-deficient HAP1 cells (three 
independent clones) were lysed and analysed with specific antibodies by 
immunoblotting.
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Extended Data Figure 8 | The Gβγ dimer is destabilized in the presence 
of KCTD5. a, Wild-type HAP1 cells and HAP1 cells deficient in KCTD5 or 
CUL3 were lysed and probed with specific antibodies by immunoblotting. 
Increased levels of GNB1 and GNG5, as well as increased phosphorylation 

of AKT at S473, are comparable in cells deficient for KCTD5 or Cullin3.  
b, For RIC8A* , transcript uc001lof.3 was considered because the longer  
5′  UTR in Refseq reduced the observed effect size.
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