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Abstract. We study a problem proposed by Hurtado et al. [10] moti-
vated by sparse set visualization. Given n points in the plane, each
labeled with one or more primary colors, a colored spanning graph (CSG)
is a graph such that for each primary color, the vertices of that color
induce a connected subgraph. The Min-CSG problem asks for the min-
imum sum of edge lengths in a colored spanning graph. We show that
the problem is NP-hard for k primary colors when k ≥ 3 and provide a
(2 − 1

3+2�
)-approximation algorithm for k = 3 that runs in polynomial

time, where � is the Steiner ratio. Further, we give a O(n) time algorithm
in the special case that the input points are collinear and k is constant.

1 Introduction

Visualizing set systems is a basic problem in data visualization. Among the
oldest and most popular set visualization tools are the Venn and Euler diagrams.
However, other methods are preferred when the data involves a large number of
sets with complex intersection relations [2]. In particular, a variety of tools have
been proposed for set systems where the elements are associated with location
data. Many of these methods use geometric graphs to represent set membership,
motivated by reducing the amount of ink used in the representation, including
LineSets [1], Kelp Diagrams [7] and KelpFusion [11].

Hurtado et al. [10] recently proposed a method for drawing sets using outlines
that minimise the total visual clutter. The underlying combinatorial problem is
to compute a minimum colored spanning graph; see Fig. 1. They studied the
problem for n points in a plane and two sets (each point is a member of one or
both sets). The output is a graph with the minimum sum of edge lengths such
that the subgraph induced by each set is connected. They gave an algorithm that
runs in O(n6)-time,1 and a (12� + 1)-approximation in O(n log n) time, where �
is the Steiner ratio (the ratio between the length of a minimum spanning tree
and the length of a minimum Steiner tree). Efficient algorithms are known in
two special cases: One runs in O(n) time for collinear points that are already
sorted [10]; the other runs in O(m2 + n) time for cocircular points, where m is

1 An earlier claim that the problem was NP-hard [9] turned out to be incorrect [10].
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Fig. 1. Left: A set of points and three subsets, S1, S2, and S3, drawn as outlines in
different colors. Right: The corresponding (minimum) colored spanning graph. Refer
to Sect. 2 for an explanation of color use. (Color figure online)

the number of points that are elements of both sets [5]. This problem also has
applications for connecting different networks with minimum cost, provided that
edges whose endpoints belong to both networks can be shared.
Results and Organization. We study the minimum colored spanning graph
problem for n points in a plane and k sets, k ≥ 3. The formal definition and
some properties of the optimal solution are in Sect. 2. In Sect. 3, we show that
Min-kCSG is NP-complete for all k ≥ 3, and in Sect. 4 we provide an (2− 2

2+2� )-
approximation algorithm for k = 3 that runs in O(n log n + m6) time, where m
is the number of multichromatic points. This improves the previous (2 + �

2 )-
approximation from [10]. Section 5 describes an algorithm for the special case of
collinear points that runs in 2O(k22k) · n time. Due to space constraints, some
proofs are omitted; they can be found in the full version of this paper.

2 Preliminaries

In this section, we define the problem and show a property of the optimal solution
related to the minimum spanning trees, which is used in Sects. 3 and 4.
Definitions. Given a set of n points in the plane S = {p1, . . . , pn} and subsets
S1, . . . , Sk ⊆ S, we represent set membership with a function α : S → 2{1,...,k},
where p ∈ Sc iff c ∈ α(p) for every primary color c ∈ {1, . . . , k}. We call α(p) the
color of point p. A point p is monochromatic if it is a member of a single set Si,
that is, |α(p)| = 1, and multi-chromatic if |α(p)| > 1. For an edge {pi, pj} ∈ E in
a graph G = (S,E), we use the shorthand notation α({pi, pj}) = α(pi) ∩ α(pj)
for the shared primary colors of the two vertices. For every c ∈ {1, . . . , k}, we let
Gc = (Sc, Ec) denote the subgraph of G = (S,E) induced by Sc. All figures in
this paper depict only three primary colors: r, b, and y for red, blue, and yellow
respectively. Multi-chromatic points and edges are shown green, orange, purple,
or black if their color is {b, y}, {r, y} or {r, b}, or {r, b, y}, respectively. See, for
example, Fig. 1 (b).

A colored spanning graph for the pair (S, α), denoted CSG(S, α), is a graph
G = (S,E) such that (Sc, Ec) is connected for every primary color c ∈ {1, . . . , k}.
The minimum colored spanning graph problem (Min-CSG), for a given pair
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(S, α), asks for the minimum cost
∑

e∈E w(e) of a CSG(S, α), where w(e) is the
Euclidean length of e. When we wish to emphasize the number k of primary
colors, we talk about the Min-kCSG problem.
Monochromatic Edges in a Minimum CSG. The following lemma shows
that we can efficiently compute some of the monochromatic edges of a minimum
CSG for an instance (S, α) using the minimum spanning tree (MST ) of Sc for
every primary color c ∈ {1, . . . , k}.

Lemma 1. Let (S, α) be an instance of Min-CSG and c ∈ {1, . . . , k}. Let
E(MST (Sc)) be the edge set of an MST of Sc, and let S′

c be the set of multi-
chromatic points in Sc. Then there exists a minimum CSG that contains at
least |E(MST(Sc))| − |S′

c| + 1 edges of E(MST (Sc)). The common edges of
E(MST (Sc)) and of such a minimum CSG can be computed in O(n log n) time.

Proof. Construct a monochromatic subset E′
c ⊂ E(MST(Sc)) by successively

removing a longest edge from the path in MST(Sc) between any two points in
S′

c. An MST(Sc) can be computed in O(n log n) time, and E′
c can be obtained in

O(n) time. The graph (Sc, E
′
c) has |S′

c| components, each containing one element
of S′

c, hence |E′
c| = |E(MST(Sc))| − |S′

c| + 1.
Let (S,EOPT) be a minimum CSG. While there is an edge e ∈ E′

c \ EOPT,
we can find an edge e∗ ∈ EOPT \E′

c such that exchanging e∗ for e yields another
minimum CSG. Indeed, since (Sc, E

OPT
c ) is connected, the insertion of the edge e

creates a cycle C that contains e. Consider the longest (open or closed) path P ⊆
C that is monochromatic and contains e. Note that at least one of the endpoints
of e is monochromatic, therefore P contains at least two monochromatic edges.
Since every component of (Sc, E

′
c) is a tree and contains only one multi-chromatic

point, there is a monochromatic edge e∗ ∈ EOPT \ E′
c in P . We have w(e) ≤

w(e∗), because there is a cut of the complete graph on Sc that contains both e and
e∗, and e ∈ E(MST(Sc)). Since α(e∗) = c, the deletion of e∗ can only influence
the connectivity of the induced subgraph (Sc, E

OPT
c ). Consequently, (S,EOPT ∪

{e} \ {e∗}) is a CSG with equal or lower cost than (S,EOPT). By successively
exchanging the edges in E′

c \ EOPT, we obtain a minimal CSG containing E′
c. 
�

Hurtado et al. [10] gave an O(n6)-time algorithm for Min-2CSG, by a reduc-
tion to a matroid intersection problem on the set of all possible edges on S, which
has O(n2) elements. Their algorithm for matroid intersection finds O(n2) single
source shortest paths in a bipartite graph with O(n2) vertices and O(n4) edges,
which leads to an overall running time of O(n6). We improve the runtime to
O(n log n + m6), where m is the number of multi-chromatic points.

Corollary 1. An instance (S, α) of Min-2CSG can be solved in O(n log n+m6)
time, where m is the number of multi-chromatic points in S.

Proof. By Lemma 1, we can compute two spanning forests on S1 and S2, respec-
tively, each with m components, that are subgraphs of a minimum CSG in
O(n log n) time. It remains to find edges of minimum total length that connect
these components in each color, for which we can use the same matroid inter-
section algorithm as in [10], but with a ground set of size O(m2). 
�
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3 General Case

We show that the decision version of Min-CSG is NP-complete. We define the
decision version of Min-CSG as follows: given an instance (S, α) and W > 0, is
there a CSG (S,E) such that

∑
e∈E w(e) < W?

Lemma 2. Min-kCSG is in NP.

Proof. Given a set of edges E, we can verify if (S,E) is a CSG(S, α) in O(k|S|)
time by testing connectivity in (Sc, Ec) for each primary color c ∈ {1, . . . , k},
and then check whether

∑
e∈E w(e) ≤ W in O(|E|) time. 
�

We reduce Min-3CSG from Planar-Monotone-3SAT, which is known to
be NP-complete [4]. For every instance A of Planar-Monotone-3SAT, we
construct an instance f(A) of Min-3CSG. An instance A consists of a plane
bipartite graph between n variable and m clause vertices such that every clause
has degree three or two, all variables lie on the x-axis and edges do not cross
the x-axis. Clauses are called positive if they are in the upper half-plane or
negative otherwise. The problem asks for an assignment from the variable set
to {true, false} such that each positive (negative) clause is adjacent to a true
(false) variable.

Fig. 2. Construction for an instance A equivalent to the boolean formula (x1 ∨ x3 ∨
x5) ∧ (¬x1 ∨ ¬x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4). (Color figure online)

Given an instance A of Planar-Monotone-3SAT, we construct f(A) as
shown in Fig. 2 (refer to the full paper for a figure of a single variable gadget).
The points marked with small disks are called active and they are the only
multi-chromatic points in the construction. The dashed lines in a primary color
represent a chain of equidistant monochromatic points, where the gap between
consecutive points is ε. A purple (resp., black) dashed line represents a red and
a blue (resp., a red, a blue, and a yellow) dashed line that run ε close to each
other. Informally, the value of ε is set small enough such that every point in the
interior of a dashed line is adjacent to its neighbors in any minimum CSG. The
boolean assignment of A is encoded in the edges connecting active points. We
break the construction down to gadgets and explain their behavior individually.

The long horizontal purple dashed line is called spine and the set of yellow
dashed lines (shown in Fig. 3(a)) is called cage. The rest of the construction
consists of variable and clause gadgets (shown in Figs. 3(b) and (c)). The width
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Fig. 3. (a) Cage. (b) Variable gadget. (c) Clause gadget. (Color figure online)

of a variable gadget depends on the degree of the corresponding variable in the
bipartite graph given by the instance A. For every edge incident to the variable,
we repeat the middle part of the gadget as shown in Fig. 3(b) (see Fig. 2 for
variables of degree 1 and 2). The vertical black dashed lines are called ribs and
the set of three or four active points close to an endpoint of a rib is called switch.
The variable gadget contains switches of two different sizes alternately from left
to right. A 2-switch (resp., 2 δ-switch) is a switch in which active points are at
most 2 (resp., 2δ) apart. The clause gadgets are positioned as the embedding of
clauses in A; refer to Fig. 2. Each active point of a positive (negative) clause is
assigned to a 2δ-switch and positioned vertically above (below) the active point
of the rib, at distance 2δ from it.

Let E′ be the set of all monochromatic edges of a minimum CSG computable
by Lemma 1. Let r be the number of edges in the bipartite graph of A. The
instance f(A) contains 13r active points, so (S,E′) contains 13r connected com-
ponents. By construction, the number of ε-edges in a solution of f(A) between
components of (S,E′) is upper bounded by 39r (one edge per color per compo-
nent). Finally, we set W = (

∑
e∈E′ w(e)) + 39rε + r(2 + 2

√
2) + rδ(2 + 2

√
2) +

mδ(2
√

2 − 2) and we choose ε = 1
500r2 and δ = 1

10r . This particular choice of ε
and δ is justified by the proofs of Corollaries 2 and 3. By construction, f(A) has
the following property:

(I) For every partition of the components of (Sc, E
′
c) into two sets C1, C2, where

c is a primary color, let {p1, p2} be the shortest edge between C1 and C2.
Then either w({p1, p2}) = ε or p1 and p2 are active points in the same switch.

Definition 1. A standard solution of Min-3CSG is a solution that contains
E′ and in which every edge longer than ε is between two active points of the
same switch.

Lemma 3. Let A be a positive instance of Planar-Monotone-3SAT. Then
f(A) is a positive instance of Min-3CSG.

To prove the lemma, we construct a standard solution for f(A) based on the
solution for A. This proof, and subsequent proofs, argues about all possible ways
to connect the vertices in a switch of f(A). The most efficient ones are shown
in Fig. 4; these may appear in an optimal solution. Refer to the full paper for a
complete list.
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(b)(a) (c)

Fig. 4. Possible ways to connect the vertices in a switch of f(A). (a) One of the
two states of a 2-switch, encoding the truth value of the variable. (b) The two pos-
sible states of a 2δ-switch if the incident clause is not satisfied through this variable.
(c) The only possible state of a 2δ-switch if the incident clause is satisfied through this
variable. (Color figure online)

Lemma 4. If f(A) is a positive instance of Min-3CSG, there exists a standard
solution for this instance.

Before proving the other direction of the reduction, we show some proper-
ties of a standard solution. The active points in a switch impose some local
constraints. The black and purple points attached to horizontal dashed lines
determine the switch constraint : since these points have more colors than their
incident dashed lines, they each are incident to at least one edge in the switch.
Each rib determines a rib constraint to a pair of switches that contain its end-
points: at least one of these switches must contain an edge between its black
active points or else there is no yellow path between this rib and the cage. The
following lemmas establish some bounds on the length of the edges used to sat-
isfy local constraints of a pair of switches adjacent to a rib. We refer to this pair
as a 2-pair or 2δ-pair according to the type of the switch.

Lemma 5. In a standard solution, the minimum length required to satisfy the
local constraints of a 2-pair (resp., 2δ-pair) is 2(1 +

√
2) (resp., 2δ(1 +

√
2)).

Corollary 2. In a standard solution, every 2-pair is connected minimally.

Lemma 6. In a standard solution, for each clause gadget, there exists a 2δ-pair
with local cost at least 4δ

√
2.

Corollary 3. In a standard solution, for each clause gadget, there exists a 2δ-
pair connected as Fig. 4(c). All other 2δ-pairs are connected minimally as shown
in Fig. 4(b).

Lemma 7. Let f(A) be a positive instance of Min-3CSG. Then A is a positive
instance of Planar-Monotone-3SAT.

The following theorem is a direct consequence of Lemmata 2, 3, and 7.

Theorem 1. Min-kCSG is NP-complete for k ≥ 3.
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4 Approximation

Hurtado et al. [10] gave an approximation algorithm for Min-kCSG that runs in
O(n log n) time and achieves a ratio of 
k/2� + �k/2��/2, where � is the Steiner
ratio. The value of � is not known and the current best upper bound is � ≤ 1.21
by Chung and Graham [6] (Gilbert and Pollack [8] conjectured � = 2√

3
≈ 1.15).

For the special case k = 3, the previous best approximation ratio is 2+�/2 ≤ 2.6.
We improve the approximation ratio to 2, and then further to 1.81. Our first
algorithm immediately generalises to k ≥ 3, and yields an 
k/2�-approximation,
improving on the general result by Hurtado et al.; our second algorithm also
generalizes to k > 3, however, we do not know whether it achieves a good ratio.

Suppose we are given an instance of Min-3CSG defined by (S, α) where |S| =
n and the set of primary colors is {r,b,y}. We define αrb : Sr ∪Sb → 2{r,b} \{∅}
where αrb(p) = α(p) \ {y}. Let G∗ be an optimal solution for Min-3CSG, and
put OPT = ‖G∗‖. Algorithm A1 computes a minimum red-blue-purple graph
Grb = CSG(Sr ∪ Sb, αrb) in O(n log n + m6) time, where m = |Sr ∩ Sb| by
Corollary 1; then computes a minimum spanning tree Gy of Sy, and returns the
union Grb ∪ Gy. Since G∗ contains a red, a blue, and a yellow spanning tree, we
have ‖Grb‖ ≤ OPT and ‖Gy‖ ≤ OPT; that is, Algorithm A1 returns a solution
to Min-3CSG whose length is at most 2OPT.

Theorem 2. Algorithm A1 returns a 2-approximation for Min-3CSG; it runs
in O(n log n + m6) time on n points, m of which are multi-chromatic.

Algorithm A1 can be extended to k colors by partitioning the primary colors
into 
k

2 � groups of at most two and computing the minimum CSG for each
group. The union of these graphs is a 
k

2 �-approximation that can be computed
in O(kn6) time.

Algorithm A2 computes six solutions for a given instance of Min-3CSG,
G1, . . . , G6, and returns one with minimum weight. Graph G1 is the union of Grb

and Gy defined above. Graphs G2 and G3 are defined analogously: G2 = Gry∪Gb

and G3 = Gby ∪ Gr, each of which can be computed in O(n6) time by [10]. Let
Srby ⊆ S be the set of “black” points that have all three colors, and let H
be an MST of Srby, which can be computed in O(n log n) time. We augment
H into a solution of Min-3CSG in three different ways as follows. First, let
Grb:H be the minimum forest such that H ∪ Grb:H is a minimum red-blue-
purple spanning graph on Sr ∪ Sb. Grb:H can be computed in O(n log n + m6)
time by the same matroid intersection algorithm as in Corollary 1, by setting
the weight of any edge between components containing black points to zero.
Similarly, let Gy:H be the minimum forest such that H ∪ Gy:H is a spanning
tree on Sy, which can be computed in O(n log n) time by Prim’s algorithm.
Now we let G4 = H ∪ Grb:H ∪ Gy:H . Similarly, let G5 = H ∪ Gry:H ∪ Gb:H and
G6 = H ∪ Gby:H ∪ Gr:H .

Theorem 3. Algorithm A2 returns a (2− 1
3+2� )-approximation for Min-3CSG;

it runs in O(n log n + m6) time on an input of n points, m of which are multi-
chromatic.
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Proof. Consider an instance (S, α) of Min-3CSG, and let G∗ = (S,E∗) be
an optimal solution with ‖E∗‖ = OPT. Partition E∗ into 7 subsets: for every
color γ ∈ 2{r,b,y} \ ∅, let E∗

γ = {e ∈ E∗ : α(e) = γ}, that is E∗
γ is the set of

edges of color γ in G∗. Put β = ‖E∗
rby‖/OPT. Then we have 2(1 − β)OPT =

(2‖E∗
r‖+ ‖E∗

rb‖+ ‖E∗
ry‖)+ (2‖E∗

b‖+ ‖E∗
rb‖+ ‖E∗

by‖)+ (2‖E∗
y‖+ ‖E∗

ry‖+ ‖E∗
by‖).

Without loss of generality, we may assume 2‖E∗
y‖+‖E∗

ry‖+‖E∗
by‖ ≤ 2

3 (1−β)OPT.
First, consider G1 = Grb ∪ Gy. The edges of G∗ whose colors include red or

blue (resp., yellow) form a connected graph on Sr∪Sb (resp., Sy). Consequently,

‖Grb‖ ≤ ‖E∗
r‖ + ‖E∗

b‖ + ‖E∗
rb‖ + ‖E∗

ry‖ + ‖E∗
by‖ + ‖E∗

rby‖. (1)
‖Gy‖ ≤ ‖E∗

y‖ + ‖E∗
ry‖ + ‖E∗

by‖ + ‖E∗
rby‖. (2)

The combination of (1) and (2) yields

‖G1‖ ≤ ‖Grb‖ + ‖Gy‖ ≤ OPT + ‖E∗
ry‖ + ‖E∗

by‖ + ‖E∗
rby‖

≤ OPT +
2
3
(1 − β) · OPT + β · OPT =

5 + β

3
OPT. (3)

Next, consider G4 = H ∪Grb:H ∪Gy:H . The edges of G∗ whose colors include
yellow contain a spanning tree on Sy, hence a Steiner tree on the black points
Srby. Specifically, the black edges in E∗

rby form a black spanning forest, which is
completed to a Steiner tree by some of the edges of E∗

y ∪E∗
by ∪E∗

ry. This implies

‖H‖ ≤ ‖E∗
rby‖ + � · (‖E∗

y‖ + ‖E∗
by‖ + ‖E∗

ry‖)

≤ β · OPT + �
2
3
(1 − β) · OPT =

(

β +
2
3
� − 2

3
β�

)

OPT.

Since H is a spanning tree on the black vertices Srby, (1) and (2) reduce to

‖Grb:H‖ ≤ ‖E∗
r‖ + ‖E∗

b‖ + ‖E∗
rb‖ + ‖E∗

ry‖ + ‖E∗
by‖, (4)

‖Gy:H‖ ≤ ‖E∗
y‖ + ‖E∗

ry‖ + ‖E∗
by‖. (5)

The combination of (4) and (5) yields

‖Grb:H‖ + ‖Gy:H‖ ≤ (OPT − ‖E∗
rby‖) + ‖E∗

ry‖ + ‖E∗
by‖

≤ (1 − β) · OPT +
2
3
(1 − β) · OPT =

5
3
(1 − β) · OPT.

Therefore,

‖G4‖ = ‖H‖ + ‖Grb:H‖ + ‖Gy:H‖ ≤
(

5
3

+
2
3
(� − β − β�)

)

OPT. (6)

If we set β = 2�
3+2� , then both (3) and (6) give the same upper bound

min(‖G1‖, ‖G4‖)
OPT

≤ 5 + β

3
= 2 − 1

3 + 2�
≤ 1.816,

where we used the current best upper bound for the Steiner ratio � ≤ 1.21
from [6]. 
�
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5 Collinear Points

In this section we consider instances of Min-kCSG, (S, α), where k ≥ 3 and
S consists of collinear points. An example is shown in Fig. 5. Without loss of
generality, S = {p1, . . . , pn} and the points pi, 1 ≤ i ≤ n, lie on the x-axis
sorted by x-coordinates. We present a dynamic programming algorithm that
solves Min-kCSG in 2O(k22k) · n time.

Fig. 5. An example with optimal solution for collinear points. (Color figure online)

Our first observation is that if the points in S are collinear, we may assume
that every edge satisfies the following property.

If {pa, pb}, a < b, is an edge, then there is no r, a < r < b, such that
α({pa, pb}) ⊆ α(pr). (�)

Lemma 8. For every graph G = (S,E), there exists a graph G′ = (S,E′) of the
same cost that satisfies (�) and for each color c ∈ {1, . . . , k}, every component of
(Sc, Ec) is contained in some component of (Sc, E

′
c). In particular, Min-kCSG

has a solution with property (�).

Proof. Let G = (S,E) be a graph, and let XG denote the set of triples (i, j; r)
such that 1 ≤ i < r < j ≤ n, {pi, pj} ∈ E, and α({pi, pj}) ⊆ α(pr). If XG = ∅,
then G satisfies (�). Suppose XG �= ∅. For every triple (i, j; r) ∈ XG, successively,
replace the edge {pi, pj} by two edges {pi, pr} and {pr, pj} (i.e., subdivide edge
{pi, pj} at pr). Note that α({ph, pi}), α({pi, pj}) ⊆ α(pi), consequently pi and pj

remain in the same component for each primary color c ∈ α({pi, pj}). Each step
maintains the total edge length of the graph and strictly decreases XG. After
|XG| subdivision steps, we obtain a graph G′ = (S,E′) as required. 
�

In the remainder of this section we assume that every edge has property (�).
Furthermore, all graphs considered in this section are defined on an interval of
consecutive vertices of S.

Corollary 4. Let G = (S,E) be a graph and let i ∈ {1, . . . , n}.
1. If e ∈ E is an edge between {p1, . . . , pi} and {pi+1, . . . , pn} and α(e) = γ,

then the endpoints of e are uniquely determined. Specifically, if e = {pa, pb}
with 1 ≤ a ≤ i < b ≤ n, then a ∈ {1, . . . , i} is the largest index such that
γ ⊂ α(pa), and b ∈ {i + 1, . . . , n} is the smallest index such that γ ⊂ α(pb).

2. If two edges e1, e2 ∈ E overlap, then α(e1) �= α(e2).
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Proof.

(1) Suppose, to the contrary, that there is index j, a < j ≤ i, such that γ ⊂
α(pj). Then edge {pa, pb} and point pr violate (�). The case that there is
some j, i + 1 ≤ j < b, leads to the same contradiction.

(2) Without loss of generality e1 = {pa, pb} and e2 = {pi, pj} with a ≤ i < b ≤ j.
Then both edges e1 and e2 are between {p1, . . . , pi} and {pi+1, . . . , pn},
contradicting part (1). 
�

The basis for our dynamic programming algorithm is that Min-kCSG has the
optimal substructure and overlapping substructures properties when the points
in S are collinear. We introduce some notation for defining the subproblems. For
indices 1 ≤ a ≤ b ≤ n, let S[a, b] = {pa, . . . , pb}. For every graph G = (S,E) and
index i ∈ {1, . . . , n}, we partition the edge set E into three subsets as follows:
let E−

i be the set of edges induced by S[1, i], E+
i the set of edges induced by

S[i + 1, n], and E0
i the set of edges between S[1, i] and S[i + 1, n]. With this

notation, Min-kCSG has the following optimal substructure property.
Lemma 9. Let G = (S,E) be a minimum CSG, i ∈ {1, . . . , n}, and X be the
family of edge sets X−

i on S[1, i] such that (S,X−
i ∪ E0

i ∪ E+
i ) is a CSG. Then

(S,X−
i ∪ E0

i ∪ E+
i ) is a minimum CSG iff X−

i ∈ X has minimum cost.

Proof. If (S,X−
i ∪E0

i ∪E+
i ) is a minimum CSG, but some Y −

i ∈ X costs less than
E−

i , then (S, Y −
i ∪ E0

i ∪ E+
i ) would be a CSG that costs less than G = (S,E),

contradicting the minimality of (S,X−
i ∪ E0

i ∪ E+
i ). If X−

i ∈ X has minimum
cost, but G = (S,E) costs less than (S,X−

i ∪ E0
i ∪ E+

i ), then E−
i ∈ X would

costs less than X−
i , contradicting the minimality of X−

i ∈ X . 
�
Lemma 9 immediately suggests a näıve algorithm for Min-kCSG: Guess the

edge set E0
i ∪E+

i of a minimum CSG G = (S,E), and compute a minimum-cost
set X−

i on S[1, i] such that (S,X−
i ∪ E0

i ∪ E+
i ) is a CSG. However, all possible

edge sets E0
i ∪ E+

i could generate 2Θ(n) subproblems. We reduce the number
of subproblems using the overlapping subproblem property. Instead of guessing
E0

i ∪ E+
i , it is enough to guess the information relevant for finding the minimal

cost X−
i on S[1, i]. First, the edges in E0

i can be uniquely determined by the
set of their colors (using Corollary 4 (1)). Second, the only useful information
from E+

i is to tell which points in S[1, i] are adjacent to the same component
of (S[i + 1, n]c, (E+

i )c), for each primary color c ∈ {1, . . . , k}. This information
can be summarized by k equivalence relations on the sets (E0

i )1, . . . , (E0
i )k. We

continue with the details.
We can encode E0

i by the set of its colors Γi = {α(e) : e ∈ E0
i }. For i ∈

{1, . . . , n}, a set of edges X0
i between S[1, i] and S[i+1, n] is valid if there exists

a CSG G = (S,E) such that X0
i = E0

i .

Lemma 10. For i ∈ {1, . . . , n}, an edge set X0
i between S[1, i] and S[i + 1, n]

is valid iff for every primary color c ∈ {1, . . . , k}, there is an edge e ∈ X0
i such

that c ∈ α(e) whenever both S[1, i]c and S[i + 1, n]c are nonempty.

We encode the relevant information from E+
i using k equivalence relations as

follows. For every c ∈ {1, . . . , k}, the components of (S[i + 1, n]c, (E+
i )c) define
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an equivalence relation on (E0
i )c, which we denote by πc

i : two edges in (E0
i )c

are related iff they are incident to the same component of (S[i + 1, n]c, (E+
i )c).

Let Πi = (π1
i , . . . , πk

i ). The equivalence relation πc
i , in turn, determines a graph

(S[1, i]c, E(πc
i )): two distinct vertices in S[1, i]c are adjacent iff they are incident

to equivalent edges in (E0
i )c (that is, two distinct vertices in S[1, i]c are adjacent

iff they both are adjacent to the same component of (S[i + 1, n]c, (E+
i )c)). See

Fig. 6 for examples of E0
i and Πi. The condition that (S,X−

i ∪ E0
i ∪ E+

i ) is a
CSG can now be formulated in terms of E0

i and Πi (without using E+
i directly).

Lemma 11. Let G = (S,E) be a CSG, i ∈ {1, . . . , n}, and X−
i an edge set on

S[1, i]. The graph (S,X−
i ∪ E0

i ∪ E+
i ) is a CSG iff the graph (S[1, i]c, (X−

i )c ∪
E(πc

i )) is connected for every c ∈ {1 . . . , k}.
We can now define subproblems for Min-kCSG. For an index i ∈ {1, . . . , n},

a valid set E0
i , and equivalence relations Πi = (π1

i , . . . , πk
i ), let X (E0

i ,Πi) be the
family of edge sets X−

i on S[1, i] such that for every c ∈ {1 . . . , k}, the graph
(S[1, i]c, (X−

i )c ∪E(πc
i )) is connected. The subproblem A[i, E0

i ,Πi] is to find the
minimum cost of an edge set X−

i ∈ X (E0
i ,Πi).

Note that for i = n, A[n, ∅, (∅, . . . , ∅)] is the minimum cost of a CSG for
an instance (S, α) of Min-kCSG. Next, we establish a recurrence relation for
A[i, E0

i ,Πi], which will allow computing A[n, ∅, (∅, . . . , ∅)] by dynamic program-
ming. For i = 1, we have A[1, E0

1 ,Π1] = 0 for any valid E0
1 and Π1. For all i,

1 < i ≤ n, we wish to express A[i, E0
i ,Πi] in terms of A[i − 1, E0

i−1,Πi−1]’s for
suitable E0

i−1 and Πi−1.
We say that two valid edge sets E0

i−1 and E0
i are compatible if there exists

an X−
i ∈ X (E0

i ,Πi) for some Πi such that E0
i−1 = (X−

i ∪ E0
i )0i−1. We can

characterize compatible edge sets as follows.

Lemma 12. Two valid edge sets E0
i−1 and E0

i are compatible iff every edge e
in the symmetric difference of E0

i−1 and E0
i is incident to pi.

For two valid compatible edge sets, Ei−1 and Ei, and a sequence of equiv-
alence relations Πi, we define equivalence relations Π̂i−1 = (π̂1

i−1, . . . , π̂
k
i−1) as

follows. For every primary color c ∈ {1, . . . , k}, let the equivalence relation π̂c
i−1

on (E0
i−1)c be the transitive closure of the union of four equivalence relations:

two edges in (E0
i−1)c are related if (1) they both incident to pi; (2) they both are

in (E0
i )c and πc

i -equivalent; (3) they are both in (E0
i )c and each are equivalent

to some edge in (E0
i )c that are πc

i -equivalent; (4) one is incident to pi and the
other is in (E0

i )c and πc
i -equivalent to some edge in (E0

i )c incident to πc
i .

Lemma 13. Let E0
i−1 and E0

i be two valid compatible edge sets, and Πi =
(π1

i , . . . , πc
i ). Let E−

i−1 be a set of edges on S[1, i−1], and put E = E−
i−1 ∪E0

i−1 ∪
E0

i . Then, Π̂i−1 has the following property: E−
i ∈ X (E0

i ,Πi) if and only if

(d1) E−
i−1 ∈ X (E0

i−1, Π̂i−1); and
(d2) if c ∈ α(pi) and S[1, i]c �= {pi}, then pi is incident to an edge in (E0

i−1)c

or an edge in (E0
i )c that is πc

i -equivalent to some edge incident to S[1, i−1]c.
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(a)

S[1, i − 1]

πblue
i

S[i, n]

(b)

S[1, i − 2]

πblue
i−1

S[i − 1, n]

(c)

S[1, i − 2]

πblue
i−1

S[i − 1, n]

Fig. 6. (a) E0
i and πblue

i . (b) E0
i+1 and πblue

i+1 , where E0
i+1 and E0

i are compatible. (c)
E0

i+1 and πblue
i+1 violate condition (d2). (Color figure online)

Lemma 14. For all i ∈ {2, . . . , n}, we have the following recurrence:

A[i, E0
i ,Πi] =

∑

{ph,pi}∈E0
i

w({ph, pi}) + min
E0

i−1compatible
A[i − 1, E0

i−1, Π̂i−1]. (7)

Theorem 4. For every constant k ≥ 1, Min-kCSG can be solved in O(n) time
when the input points are collinear.

Proof. We determine the number of subproblems. By Corollary 4, every valid
E0

i contains at most |2{1,...,k} \ {∅}| = 2k − 1 edges. We have |(E0
i )c| ≤ 2k−1,

since 2k−1 different colors contain any primary color c ∈ {1, . . . , k}. The num-
ber of equivalence relations of a set of size t is known as the t-th Bell number,
denoted B(t). It is known [3] that B(t) ≤ (0.792t/ ln(t+1))t < 2O(t log t). Conse-
quently, the number of possible Πi is at most (B(2k−1))k. The total number of
subproblems is O(n2k(B(2k−1))k), which is O(n) for any constant k. We solve
the subproblems A[i, E0

i ,Πi], 1 < i ≤ n, by dynamic programming, using the
recursive formula (7). The time required to evaluate (7) is O(2k) for the sum
of edge weights and O(2k(B(2k−1))k) to compare all compatible subproblems
A[i − 1, E0

i−1, Π̂i−1], that is, O(1) time when k is a constant. Therefore, the
dynamic programming can be implemented in O(n) time. 
�

6 Conclusions

We have shown that Min-3CSG is NP-complete in general and given a O(n)
time algorithm for Min-kCSG in the special case that all points are collinear and
k is a constant. We also improved the approximation factor of a polynomial time
algorithm from (2+ 1

2�) [10] to (2− 2
2+2� ) when k = 3. It remains open whether

there exists a PTAS for Min-kCSG, k ≥ 3. Several other special cases are open
for Min-3CSG, such as when the points in S are on a circle or in convex position.
We can generalize Min-kCSG so that the edge weights need not be Euclidean
distances. Given an arbitrary graph (V,E) and a coloring α : V → P({1, . . . , k}),
what is the minimum set E′ ⊆ E such that (V,E′) is a colored spanning graph?
Since the 2-approximation algorithm presented here did not rely on the geometry
of the problem, it extends to the generalization; however, this problem may be
harder to approximate than its Euclidean counterpart.
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