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Effect Analysis Using Nonlinear Structural Equation
Mixture Modeling

Axel Mayer,1 Nora Umbach,2 Barbara Flunger,3 and Augustin Kelava2
1RWTH Aachen University
2University of Tübingen

3Utrecht University

In this article, we present an approach for comprehensive analysis of the effectiveness of
interventions based on nonlinear structural equation mixture models (NSEMM). We provide
definitions of average and conditional effects and show how they can be computed. We extend
the traditional moderated regression approach to include latent continous and discrete (mix-
ture) variables as well as their higher order interactions, quadratic or more general nonlinear
relationships. This new approach can be considered a combination of the recently proposed
EffectLiteR approach and the NSEMM approach. A key advantage of this synthesis is that it
gives applied researchers the opportunity to gain greater insight into the effectiveness of the
intervention. For example, it makes it possible to consider structural equation models for
situations where the treatment is noneffective for extreme values of a latent covariate but is
effective for medium values, as we illustrate using an example from the educational sciences.

Keywords: average and conditional effects, latent interactions, mixture modeling, nonlinear
structural equation mixture modeling, nonnormally distributed predictors

Evaluating the effectiveness of a treatment or an intervention is a
relevant topic in empirical research. The main goal of this article
is to introduce a modern structural equation modeling (SEM)
approach that allows for comprehensive analysis of the effec-
tiveness of interventions and treatments by including latent
variables, quadratic and other nonlinear terms and mixtures.
The new approach can be considered a combination of recent
advancements in effect analysis (the EffectLiteR approach;
Mayer, Dietzfelbinger, Rosseel, & Steyer, 2016) and nonlinear
structural equation mixture modeling (NSEMM, Kelava,
Nagengast, & Brandt, 2014). For example, we consider regres-
sions such as the following

EðηjX ; ξÞ ¼ γ00 þ γ01 ξ þ γ02 ξ
2 þ γ10X þ γ11X ξ

þ γ12X ξ2 ; (1)

where η and ξ are latent variables measured by multiple
indicators and X is a binary treatment with values 0 and 1.
In contrast to standard moderated regression models, such a
parameterization for the regression EðηjX ; ξÞ makes it pos-
sible to consider situations where the treatment is non
effective for extreme values of the latent covariate but is
effective for medium values of the latent covariate or vice
versa. We discuss the definition of average and conditional
effects in this particular model as well as in more general
nonlinear models, their estimation as multigroup structural
equation models, and the use of latent classes to account
for unobserved heterogeneity and relax distributional
assumptions.

The article is structured as follows. We briefly introduce
the standard moderated regression model with manifest
variables and subsequently elaborate on complications that
arise when nonlinear terms, latent variables or both are
added to the model. We discuss our motivation for devel-
oping the new approach by highlighting its potential and the
new options it opens up for expanded effect analysis. We
first give an introduction to the EffectLiteR approach and
the NSEMM approach separately before describing the
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combined model, along with some possible ways of estimat-
ing it. In the illustration section, we use an empirical exam-
ple from the educational sciences to estimate average and
conditional effects. Finally, we discuss the opportunities and
limitations of the approach.

AVERAGE EFFECTS IN A MANIFEST MODERATED
REGRESSION MODEL

The effects of an intervention or a treatment X on a manifest
dependent variable Y taking into account a manifest con-
tinuous covariate Z are usually modeled using a moderated
regression model (Aiken & West, 1991; Cohen, Cohen,
West, & Aiken, 2003; Preacher & Hayes, 2004) in the form

EðY jX ; ZÞ ¼ γ00 þ γ01Z þ γ10X þ γ11X Z: (2)

The average effect AE10 of treatment condition X ¼ 1 versus
X ¼ 0 is defined as the average difference between treatment
groups; that is, AE10 ¼ E½EðY X ¼ 1; ZÞ � EðYj jX ¼ 0; ZÞ�
and can be computed based on regression coefficients and the
unconditional expectation of Z as follows: AE10 ¼
γ10 þ γ11EðZÞ (e.g., Mayer et al., 2016). An average effect is
sometimes also referred to as an average marginal effect
(Greene, 2007; Williams, 2012).

A more common way to obtain the average effect is to
mean center the continuous covariate Z, �Z ¼ Z � EðZÞ and
consider the regression:

EðY jX ; �ZÞ ¼ γ�00 þ γ�01 �Z þ γ�10X þ γ�11X �Z :

The average effect then corresponds to AE10 ¼ γ�10. In linear
models, both strategies give the exact same average effect
but potentially different standard errors, because in the
effect computation approach, we can account for the uncer-
tainty that comes with estimating EðZÞ. In the mean center-
ing approach on the other hand, we subtract a fixed value,
the sample estimate of EðZÞ, prior to the analysis, so there is
no way of accounting for its uncertainty. In the effect
computation approach, we can take the joint distribution of
the sample estimate of EðZÞ and the regression coefficients
and use this information to compute point estimates and
standard errors for the average effect, which allows uncer-
tainty to be taken into account (see Mayer et al., 2016, for
more details). Note that the mean centering approach and
the effect computation approach are identical if the true
value of EðZÞ is known.

Often, we are not only interested in the average effect but
also in conditional treatment effects for given values of the
covariate(s). The differential effectiveness is represented by
the regression coefficient γ11 (or equivalently γ�11) of the
interaction term. For a concrete value z of Z, the conditional
treatment effect is CE10ðzÞ ¼ γ10 þ γ11 z, or when a value �z
is used, CE10ð�zÞ ¼ γ�10 þ γ�11�z.

Whereas the moderated regression model is straightfor-
ward in models such as Equation 2, it is not as straightfor-
ward to extend it to models with conditional nonlinearities
and latent variables. In the following sections, we elaborate
on the problems that arise and provide a general approach to
dealing with these problems.

QUADRATIC AND OTHER NON LINEAR TERMS

An implicit assumption of the classic moderated regression
approach that is often overlooked and rarely tested is that
the preceding regression assumes a linear relationship
between the outcome Y and the covariate Z in the control
group and in the treatment group. However, if the true
relationship between Y and Z in at least one of the treatment
groups is actually nonlinear, we might erroneously conclude
based on the conditional linearity model that there are no
differential treatment effects, even though there are in fact
differences in treatment effects (Ganzach, 1997; Lubinski &
Humphreys, 1990). In our empirical example, we illustrate
such a case with real data. If we fit the preceding conditional
linearity model, we find a nonsignificant interaction term.
But as soon as we allow for a potentially different quadratic
relationship between Y and Z in both treatment groups: that
is, fit the model

EðY jX ; ZÞ ¼ γ00 þ γ01Z þ γ02Z
2 þ γ10X þ γ11X Z

þ γ12X Z2; (3)

we see that there are differential treatment effects. The
differential treatment effects in this concrete example
imply that people with medium values of the covariate
benefit most from the treatment, whereas people with
extreme values of the covariate (high or low) benefit less.
This finding clearly shows the need for a more complex
effect analysis that can incorporate nonlinear relationships
between variables.

Although mean centering is easy to use to compute average
effects based on the standardmoderated regression framework,
it is no longer as easy when quadratic or other nonlinear
terms come into play, because the interpretation of γ�10 changes.
Note that the definition of an average effect introduced
carlier, AE10 ¼ E½EðY X ¼ 1; ZÞ � EðYj jX ¼ 0; ZÞ�, does
not depend on the concrete parameterization used for the
regression EðY jX ; ZÞ. We can therefore also apply it to the
quadratic model and compute the average effect based on
Equation 3 as AE10 ¼ γ10 þ γ11EðZÞ þ γ12EðZ2Þ:

However, in nonlinear models such as quadratic models,
the strategy of mean centering the covariate will no longer
yield the average effect, that is, in the regression:

EðY jX ; �ZÞ ¼ γ�00 þ γ�01 �Z þ γ�02 �Z
2 þ γ�10X þ γ�11X �Z

þ γ�12X �Z2
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the coefficient γ�10 is not equal to the average effect as
defined in this article. The reason is that the squared cen-
tered covariate no longer has mean zero (e.g., Busemeyer &
Jones, 1983).

Sometimes double mean centering is recommended (e.g.,
Lin, Wen, Marsh, & Lin, 2010). In double mean centering
the quadratic term is first computed based on the centered
covariate, and then the resulting quadratic term is centered
again. The regression equation includes the double-centered
quadratic term, and in this equation, γ�10 corresponds to the
average effect. However, when using double mean center-
ing, the interpretation of other coefficients might be
obscured and we can no longer easily compute conditional
effects. In addition, double mean centering cannot be gen-
eralized to more complex forms of nonlinear relationships.

LATENT VARIABLES AND MULTIGROUP SEM

Another problem with the classic moderated regression fra-
mework is that including latent variables in the effect ana-
lysis is not straightforward. In the social and behavioral
sciences, situations where we cannot directly observe the
values of some variables in the model are very common.
Such latent variables further complicate the analysis of
treatment effects in models with interactions, nonlinear
terms, or both. In manifest models, we can easily mean
center variables and compute product terms of continuous
or categorical variables before running the analysis. In latent
variable models, we need advanced modeling techniques
(e.g., Jedidi, Jagpal, & DeSarbo, 1997; Kelava et al.,
2014; Klein & Moosbrugger, 2000; Klein & Muthén,
2007; Muthén, 2001) to handle things like latent interactions
or latent quadratic terms. A latent variable model could
include several product terms consisting of all combinations
of latent or manifest continuous as well as categorical vari-
ables. We distinguish four scenarios for products of different
types of variables with different consequences for modeling.

1. Product of a continuous latent variable and a con-
tinuous (latent) variable. If at least one of the vari-
ables involved in the product term is a continuous
latent variable and the other one is a continuous
(latent) variable, there exist a plethora of approaches
that can be broadly classified into distribution analytic
approaches (e.g., Kelava et al., 2011; Klein &
Moosbrugger, 2000), product indicator approaches
(e.g., Jöreskog & Yang, 1996; Kenny & Judd, 1984;
Marsh, Wen, & Hau, 2004), Bayesian approaches
(e.g., Lee, Song, & Tang, 2007), and approaches
based on factor scores (e.g., Wall & Amemiya,
2003). Each of these approaches offers a different
solution to the problem that we cannot just compute
the product term when latent variables are involved,

because the values of the latent variables cannot be
observed directly. Some of these approaches assume
normal distributions for the variables that constitute
the product, which is a strong assumption (e.g.,
Kelava & Brandt, 2014).

2. Product of a continuous latent variable and a catego-
rical manifest variable. For scenarios in which one
variable is a categorical manifest variable and the other
is a continuous latent variable, the product term of the
two variables can be modeled indirectly using a multi-
group structural equation model (e.g., Bollen, 1989). As
a simple example similar to Equation 2 but with a latent
outcome and latent covariate, consider the regression
EðηjX ; ξÞ ¼ γ00 þ γ01 ξ þ γ10X þ γ11X ξ. To indir-
ectly model the product term X ξ, the outcome is
regressed on the covariate in both treatment groups
x ¼ 0; 1:

EðηjX ¼ x; ξÞ ¼ βx0 þ βx1ξ ; (4)

where βs denote group-specific regression coeffi-
cients. The coefficient of the product term γ11 is
then computed as the difference between the two
group-specific slopes: that is, γ11 ¼ β11 � β01.

3. Product of a categorical latent variable and a contin-
uous (latent) variable. Models with categorical latent
variables are widely known as latent class models or
mixture models. Latent class structural equation models
are similar to multigroup models with the exception that
group membership is unknown. A distinction can be
made between so-called direct and indirect approaches.
In a direct approach, the latent classes are considered to
be distinct subgroups within a heterogeneous popula-
tion with potentially class-specific measurement and a
class-specific structural model (e.g., Dolan & van der
Maas, 1998; Titterington, Smith, & Makov, 1985). The
direct approach can be used to model unobserved het-
erogeneity in the effects of one variable on the other,
and the product term for the latent categorical variable
and the (latent) continuous variable can be computed as
shown for the multigroup model. In an indirect
approach, all parameters except for the variance and
the expected value of the mixtures are constrained over
all latent classes (e.g., Bauer, 2005; Pek, Losardo, &
Bauer, 2011; Pek, Sterba, Kok, & Bauer, 2009). The
underlying assumption for this approach is not distinct
subgroups but that a latent variable of interest is itself
nonnormally distributed. With this approach, nonnorm-
ality of the latent dependent and independent variables
and therefore their indicators can be taken into account
(McLachlan & Peel, 2000).

4. Product of a categorical latent variable and a cate-
gorical manifest variable. If the latent variable and
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the manifest variable included in the product term are
both categorical variables, we need a combination of
the multigroup approach and the latent class model. In
such models, the categorical manifest variable is
sometimes called a knownclass variable (Muthén &
Muthén, 1998–2010). The groups and classes in this
model are formed by building all possible combina-
tions of values of the latent class variable and the
manifest categorical variable. This unfolding strategy
can also be used to model interactions between two or
more categorical variables (Mayer et al., 2016).

These four scenarios for products of different types of vari-
ables illustrate the challenges substantive researchers face when
modeling interactions with latent variables in a moderated
regression framework. As soon as at least one variable is not
directly observed, we need to go beyond computing simple
products of (manifest) variables to adequately model interac-
tions. The scenarios also show the need for an integrative
approach that combines the aforementioned ways of handling
latent interactions.

STATISTICAL MOTIVATION

Dealing with two challenges of classic moderated regression
models, namely the unclear definition and computation of
effects when nonlinear terms are involved and the complex-
ities of modeling nonlinear terms when latent variables are
involved, requires a new approach for comprehensive ana-
lysis of the effects of interventions based on NSEMM. To
illustrate the need for a new approach, consider again
Equation 1:

EðηjX ; ξÞ ¼ γ00 þ γ01 ξ þ γ02 ξ
2 þ γ10X þ γ11X ξ

þ γ12X ξ2;

Even in such a seemingly simple regression example with only
six coefficients, a relatively complex combination of pre-
viously mentioned methods is required to adequately model
the regression with latent variables: For the quadratic term ξ2,
we need a method for the product of two latent variables (e.g.,
a distribution analytic approach); for the interaction terms X ξ
and X ξ2, we need a multigroup approach because X is a
binary variable; and if wewant to account for the nonnormality
of ξ, we also need a indirect latent class approach. Finally,
because we cannot easily center ξ and ξ2 in the two groups, we
need clear definitions of average and conditional effects as well
as the necessary computations to estimate these effects.

In this article, we therefore introduce a combination of
the recently proposed EffectLiteR approach (Mayer et al.,
2016; Mayer, Nagengast, Fletcher, & Steyer, 2014) for
analyzing average and conditional effects and NSEMM

(Kelava et al., 2014) to provide applied researchers with
modern technology to evaluate the effectiveness of an inter-
vention or a treatment. The new approach applies to models
such as Equation 1 but also other forms of interactions and
nonlinearities. It goes beyond existing approaches in allow-
ing for higher order interactions between different types of
variables, interactions involving nonlinear terms, and com-
putations of effects in latent variable models.

SUBSTANTIVE MOTIVATION

From a substantive point of view, nonlinear effects can be
very helpful in examining treatment effects. Applied
researchers develop interventions with the objective of help-
ing those in need: for example, fostering motivation in
students with low motivation, or reducing anxiety among
those individuals who suffer from intense anxiety. However,
whether interventions are actually able to improve outcomes
in extreme groups (i.e., individuals with especially high or
low values in the variable of interest) is seldom assessed.
There is thus a need to analyze conditional effects in detail.

In our empirical example from educational science, we
examine the relationship between self-efficacy and boredom
in a control group and a treatment group. Previous findings
suggest that students with higher ability report a higher level
of boredom in school than their peers with lower ability
(Plucker & McIntyre, 1996). In addition, there have been
controversial discussions on the association between stu-
dents’ required level of challenge in a lesson and resulting
boredom. More specifically, Csikszentmihalyi (1975) argued
that boredom results from a lack of challenge. By contrast,
Götz, Frenzel, and Haag (2006) showed that students can
face boredom both due to underchallenge (e.g., already
knowing the content well) and overchallenge (e.g., problems
with understanding). Research on the association between
students’ abilities and boredom (also regarding the compar-
ison of high-ability students with those of average or low
ability) has yielded inconsistent results: Positive, negative,
curvilinear, or no associations have all been reported (for an
overview, see Farmer & Sundberg, 1986; Preckel, Götz, &
Frenzel, 2010). In this article we test whether a u-shaped
relationship between students’ self-efficacy and boredom is
influenced by a treatment (autonomy support vs. no auton-
omy support). Autonomy support is assumed to affect stu-
dents’ boredom in class (Daschmann, Goetz, & Stupnisky,
2011; Tze, Klassen, & Daniels, 2014). To account for the
expected complexity of the associations between self-effi-
cacy and boredom, we explore whether students with mod-
erate self-efficacy will show stronger effects than students
with more extreme (low or high) values of self-efficacy.
Both self-efficacy and boredom are measured by multiple
indicators and are modeled as latent variables. Such a com-
prehensive effect analysis with latent variables would not
have been possible with existing approaches.
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THE EFFECTLITER APPROACH

We first introduce the EffectLiteR and NSEMM
approaches separately, then we develop the combined
model and apply it to our substantive example. The
EffectLiteR approach is a comprehensive framework for
evaluating the differential effectiveness of an intervention or
a treatment. We denote the discrete treatment variable as X
with values x ¼ 0; 1; . . . ; p, the continuous (latent) outcome
variable as η, a single categorical covariate as K with values
k ¼ 0; 1; . . . ; j, and a vector of (latent) covariates as ξ ¼
ð1; ξ1; ξ2; . . . ; ξqÞ0 using z ¼ 0; 1; . . . ; q to refer to entries
in ξ. When considering multiple categorical covariates, K is
obtained by unfolding all discrete covariates K1;K2; . . . , that
is, the values of K then represent all possible combinations of
values of multiple categorical covariates. The regression of η
on X , K, and ξ is denoted by EðηjX ;K; ξÞ, where different
parameterizations for this regression can be considered.

Nonparametric Definitions of Effects

A core component of the EffectLiteR approach is the
nonparametric definitions of average and conditional
effects based on the regression EðηjX ;K; ξÞ. Under the
assumption of no omitted confounders, these effects
correspond to effect definitions given in the causal infer-
ence literature (e.g., Imbens & Rubin, 2015; Pearl, 2009;
Rubin, 1974; Steyer, Mayer, & Fiege, 2014). In short,
we define a conditional effect function with values that
are the conditional effects of intervention X ¼ t,
t ¼ 1; 2; . . . ; p, compared to the control group X ¼ 0:

CEt0ðK; ξÞ ¼ Eðη X ¼ t;K; ξÞ � Eðηj jX ¼ 0;K; ξÞ:
(5)

Note that Mayer et al. (2016), used slightly different nota-
tion, first introducing the regression EðηjX ;K; ξÞ, which can
always be written as:

EðηjX ;K; ξÞ ¼ g0ðK; ξÞ þ g1ðK; ξÞ � IX¼1 þ . . .

þ gpðK; ξÞ � IX¼p : (6)

The gtðK; ξÞ function in Equation 6 corresponds to the
CEt0ðK; ξÞ function in Equation 5. Average and conditional
effects are then unambiguously defined as expectations or con-
ditional expectations of the effect function CEt0ðK; ξÞ (see also
Table 1 in Mayer et al., 2016). For example, we might want to
consider average effects, E½CEt0ðK; ξÞ�; effects given a treat-
ment condition E½CEt0ðK; ξÞjX ¼ x�; effects given values of
one or more categorical covariates E½CEt0ðK; ξjK ¼ k�; effects
given values of one or more continuous covariates
E½CEt0ðK; ξÞjξ ¼ ξ�; or combinations thereof.

Multigroup SEM With Stochastic Group Sizes

To estimate average and conditional effects, we often
need to specify a functional form for the regression
EðηjX ;K; ξÞ and a statistical model. In principle, we
could, for example, use the general linear model, gen-
eralized linear models, or mixed models, among others.
Mayer et al. (2016) proposed computing the effects
based on a multigroup structural equation model with
stochastic group sizes. This general approach has several
advantages: It can easily deal with latent dependent
variables and covariates, it allows for stochastic regres-
sors, it naturally includes higher order interactions, and
many recent developments from the SEM literature can
be incorporated into the effect analysis.

The complete EffectLiteR model consists of a group-
invariant measurement model relating manifest variables in
the vector y to latent variables in the vector
η ¼ ðη; ξ1; ξ2; . . . ; ξqÞ0, a group-specific structural model
specifying the regression of η on ξ, and a specification of
the group sizes:

Group� invariant measurement model

y ¼ νþ Λη þ ε (7)

Structural model for group (X = x; K = k)

η ¼ αxk þ Bxk ηþ ζ (8)

¼

αxk0
μxk1
μxk2
..
.

μxkq

0
BBBBB@

1
CCCCCA

þ

0 αxk1 αxk2 . . . αxkq
0 0 0 . . . 0
0 0 0 . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 0 . . . 0

0
BBBB@

1
CCCCA

η
ξ1
ξ2
..
.

ξq

0
BBBBB@

1
CCCCCA

þ

ζ 0
ζ 1
ζ 2
..
.

ζ q

0
BBBBB@

1
CCCCCA

Group sizes for group (X = x; K = k)

PðX ¼ x;K ¼ kÞ ¼ f ðκxkÞ ; (9)

where ν is a vector of group-invariant measurement
intercepts, Λ is a matrix of group-invariant loadings, ε
is a vector of measurement error variables, αxkz are
regression coefficients, μxkz ¼ EðξzjX ¼ x;K ¼ kÞ, ζ ¼
ðζ 0; ζ 1; . . . ; ζ qÞ0 is a vector of structural residuals, and
κxk denotes the parameters for the group sizes. Different
functions can be chosen for f , depending on the exact
parameterization of the model for the group sizes.
Although Mayer et al. (2016) suggested using a
Poisson model, a multinomial logit model or a
Bayesian model, as used later in this article, are also
possible, among others.
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COMPUTING EFFECTS

Based on the parameters of the EffectLiteR structural
model (Equation 8), we can derive the parameters of the
conditional effects function CEt0ðK; ξÞ (Equation 5). Note
that the specification as multigroup structural equation
model with stochastic group sizes implies a specific func-
tional form for the conditional effect function, which
includes higher order interactions:

CEt0ðK; ξÞ ¼ γ0t0 ξ þ γ0t1 ξ IK¼1 þ γ0t2 ξ IK¼2 þ . . .þ γ0tj ξ IK¼j

where γtk ¼ ðγtk0; γtk1; . . . ; γtkqÞ0 is a vector of regression
coefficients, and IK¼k is an indicator variable for ðK ¼ kÞ.
The coefficients γtk of the effect function are computed based
on the coefficients αxk of the structural model (Equation 8):

γt0 ¼ αt0 � α00 for k¼ 0 (10)

γtk ¼ αtk � αt0 � α0k þ α00 for k�0 : (11)

For a derivation of these results, see Equations 17 to 18 in
Mayer et al. (2016). Once we have the parameters for the
effect functions, we can compute average and conditional
effects, such as E½CEt0ðK; ξÞ�, E½CEt0ðK; ξÞjX ¼ x�, or
E½CEt0ðK; ξÞjK ¼ k�, based on these parameters and condi-
tional and unconditional expectations of covariates (in the
linear case). Because these computations can be tedious in
complex examples, the open source R package EffectLiteR
is available to do these computations automatically.

THE NSEMM APPROACH

Introduction to NSEMM

The EffectLiteR approach builds on traditional multi-
group SEM and therefore relies on (xk)-conditional lin-
earity of the regression of η on ξ. If the classic
maximum-likelihood-based variance–covariance matrix
of parameter estimates is used in combination with the
delta method to obtain standard errors of average and
conditional effects, we also need to assume (xk)-condi-
tional normality of latent variables. Both assumptions
are likely to be violated in models where the true rela-
tionship between η and ξ is nonlinear.

To deal with such scenarios, Kelava et al. (2014)
developed the NSEMM approach, which combines the
strength of contemporary parametric nonlinear SEM
(Klein & Moosbrugger, 2000; Klein & Muthén, 2007)
and semiparametric structural equation mixture modeling
(Arminger, Stein, & Wittenberg, 1999; Bauer, 2005;
Jedidi et al., 1997; Muthén, 2001).

NSEMM Model

The NSEMM model consists of a measurement model and a
structural model. Both of them can potentially be latent
class-specific, as in traditional structural equation mixture
modeling (SEMM). In addition to classic SEMM, the
NSEMM approach adds nonlinear terms for the latent pre-
dictors ξ in the structural model, so that the resulting model
equations are

Measurement model for latent class c

y ¼ νc þ Λc η þ ε (12)

Structural model for latent class c

η ¼ αc þ Bcηþ Γc hðξÞ þ ζ ; (13)

where η ¼ ðη; ξ 0Þ0, hð�Þ is a function that maps the vector ξ
to a vector of product terms of ξ (e.g., interactions or
quadratic terms), and Γc is a matrix of the nonlinear regres-
sion coefficients of hðξÞ on η. Note that we use slightly
different notation. Kelava et al. (2014), introduced the
NSEMM approach using the different equations for the
x-side and the y-side of the model. In contrast to Kelava
et al. (2014), the specification chosen here allows for the
visualization of the parameters for the class-specific mean
structure of the latent predictors ξ in the equation for the
structural model (in αc). For reasons that become apparent
later in the article, this feature is especially convenient for
the combination of EffectLiteR and NSEMM, where these
parameters are needed for the computation of average and
conditional effects.

The NSEMM approach is a latent class model. Different
parameter constraints need to be introduced to the model
depending on the intended interpretation of these classes. As
in traditional SEMM, a distinction can be made between the
previously mentioned direct approaches, where latent
classes are considered to be distinct subgroups within a
heterogeneous population with class-specific nonlinear rela-
tionships, and indirect approaches, where latent classes are
used as a tool to account for non normally distributed
(latent) variables.

COMBINED EFFECTLITER AND NSEMM MODEL

Combining EffectLiteR and NSEMM opens up possibilities
in both worlds. In the proposed synthesis of the two
approaches, we extend the EffectLiteR approach to models
with conditional nonlinearities and nonnormalities and show
how the NSEMM approach can be used to compute various
kinds of effects of interest. The EffectLiteR approach ben-
efits from the addition of quadratic and other nonlinear
effects, semiparametric relationships within groups, unob-
served heterogeneity in regression coefficients (direct
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mixture approach), and non normality of latent predictor
variables. The NSEMM approach, meanwhile, benefits
from the addition of clear definitions of average and condi-
tional effects, effect sizes, stochastic group sizes, and higher
order interactions involving categorical variables.

The Combined Model

To combine the EffectLiteR and the NSEMM approaches,
we need a combination of latent classes and observed
groups (intervention groups and values of categorical cov-
ariates); that is, the classes in the combined model are
formed by all possible combinations of latent classes and
observed groups in the model. We define a new variable C�

that is similar to K in the EffectLiteR model, but can be
considered a more general version of K also including
latent classes. The values c� of C� represent all possible
combinations of values of (multiple) categorical covariates
and latent classes. The combined model equations then
consist of three parts: (a) the class-invariant measurement
model from the EffectLiteR approach, (b) the class-specific
structural model from the NSEMM approach possibly
including quadratic and other nonlinear terms, and (c) the
model for the stochastic class sizes from the EffectLiteR
approach. Formally, the combined model equations are
given by:

Invariant measurement model

y ¼ ν þ Λη þ ε
(14)

Structural model

η ¼ αxc� þ Bxc� ηþ Γxc� hðξÞ þ ζ
(15)

Model for group sizes

PðX ¼ x;C� ¼ c�Þ ¼ f ðκxc� Þ :
(16)

Notice that we assume a group- and class-invariant measure-
ment model for our effect model. The model for group sizes
is not further specified. Depending on the method of estima-
tion, different models are possible, including multinomial
models, Poisson models, or Bayesian approaches.

Computing Effects in the Combined Model

Based on the parameters of the combined EffectLiteR–
NSEMM model, we can again compute average and condi-
tional effects of intervention X ¼ t versus the control group
X ¼ 0. A conditional effect given a value c� of C� and a
value ξ of ξ is defined as:

CEt0ðC� ¼ c�; ξ ¼ ξÞ ¼
EðηjX ¼ t;C� ¼ c�; ξ ¼ ξÞ
� EðηjX ¼ 0;C� ¼ c�; ξ ¼ ξÞ

and can be computed by inserting the corresponding
values into the structural model. The parametric form of
the effect function itself, CEt0ðC�; ξÞ, depends on the
specification of the hðξÞ function. The computation of
the gamma coefficients (see Equations 10 & 11) gener-
alizes to the combined EffectLiteR–NSEMM model,
because the class-specific conditional regressions are lin-
ear in (ξ; hðξÞ). In our empirical example, we demonstrate
the computations for the special case of quadratic regres-
sion in both intervention groups. Finally, we can compute
average and various conditional effects as expectations
and conditional expectations of CEt0ðC�; ξÞ. In nonlinear
models with latent classes, there is no general solution
and the computation needs to be worked out for special
cases, as we illustrate for our quadratic model with a
nonnormal predictor.

Estimation and Software

The combined EffectLiteR and NSEMM model can be
estimated in state-of-the-art software packages. Mplus
(Muthén & Muthén, 1998–2012) provides the known-
class/latent class option in combination with the latent
moderated structural equations (LMS) approach for latent
interactions. Bayesian estimation is possible as well: In
this article we used R (R Core Team, 2013) and rely on a
slightly modified input generated by the R package bla-
vaan (Merkle & Rosseel, 2015), which itself provides an
interface between lavaan (Rosseel, 2012) and JAGS
(Plummer, 2015). Software code is provided in the sup-
plementary materials. The R package nlsem (Umbach,
Naumann, Brandt, & Kelava, in press) can be used for
some special cases of the model, but does not yet have
an option for knownclasses as of writing this article.
Other software packages might provide similar options
but probably require additional effort by the user to
specify the likelihood or the Bayesian model.

ILLUSTRATIVE EXAMPLE

Research Question

To illustrate the proposed EffectLiteR–NSEMM
approach, we use an empirical example from a quasi-
experimental field study in 16 ninth-grade physics class-
rooms with one experimental group and one control
group. In this example, we want to examine how effec-
tive the treatment (manipulated autonomy support by the
teacher) is in reducing students’ state of boredom and
whether that treatment effect depends on students’ self-
efficacy. We modeled the relationship between boredom
and self-efficacy in each treatment group as quadratic,
because we wanted to allow for a potentially u-shaped
relationship between boredom and self-efficacy: Students

562 MAYER ET AL.



with very low or very high self-efficacy might be more
bored compared to students with medium values of self-
efficacy. A different quadratic relationship within treat-
ment groups would then imply a u-shaped form of the
effect function. We hypothesize a u-shaped effect func-
tion, where the treatment is most effective in reducing
boredom for medium values of self-efficacy and less
effective for extreme values (high or low) of self-
efficacy.

We do not present a comprehensive analysis of the study.
Instead, the primary goal of our article is to illustrate the
EffectLiteR–NSEMM approach as a means of estimating
average and conditional effects based on NSEMM. We
restrict ourselves to boredom as the dependent variable
and to only one latent predictor, self-efficacy. For an exten-
sive analysis of the differential effects, see Flunger, Mayer,
and Umbach (in prep.).

Participants and Procedure

We used a complete data set based on listwise deletion for
illustrative purposes. The total sample size for which com-
plete data are availabe is N ¼ 297, where Nc ¼ 156 students
in eight classes were assigned to the control group and Nt ¼
141 (also eight classes) were assigned to the treatment
group. Twenty-nine students were excluded due to missing
values on one or more of the measures.

Data were gathered using student questionnaires at two
time points in the second half of 2011 in physics classes in
German academic track schools. First, trait measures (e.g.,
students’ self-efficacy) were gathered. Approximately 2
months after the first point of data collection, state mea-
sures (e.g., boredom) were assessed while the regular phy-
sics teachers either taught a standardized autonomy-
supportive teaching unit (experimental condition) or a
standardized teaching unit that did not deliver autonomy
support (control condition). The state measures were col-
lected at three time points, once before the start of the
lesson, once during the teaching unit (after around 45
min), and once at the end of the lesson. Both teaching
units dealt with the principles of heat transfer (Denecke,
Kirsch, & Schuett, 2007; Duit & Mikelskis-Seifert, 2010).
This topic was chosen because it enabled us to implement
an experiment in the teaching unit that could either be done
by the students themselves (experimental condition) or be
shown to the students (control condition).

To control for potential effects of students’ preknow-
ledge, classes in which students already had been taught
about heat transfer and classes in which heat transfer had
not been taught yet were randomly distributed in equal
numbers to the experimental and control groups. In this
example, we focus on the second state measurement of
boredom, which was collected directly after students had
carried out experiments on their own.

Measures

Boredom. In our analysis, we used the latent vari-
able boredom as the dependent variable η. It was mea-
sured by a scale with two indicators (Cronbach’s
α ¼ :80) that were taken from Pekrun, Goetz, Zirngibl,
Hofe, and Blum (2002):

Y12: I am bored.
Y22: I am so bored, I can barely keep myself awake.

The response format was a 5-point Likert scale which ran-
ged from 1 (not at all true) to 5 (completely true).

Treatment variable. The autonomy-supportive
intervention X encompassed both a training for the phy-
sics teacher and a standardized teaching unit for the
whole class of students. The intervention took place in
two subsequent physics lessons (90 min). The training
consisted of extensive information on autonomy suppor-
tive strategies in an informational leaflet and an informa-
tional training session for each teacher individually.
Based on materials for teaching the principles of heat
transfer (Denecke et al., 2007), a teaching unit that
focused on three autonomy-supportive strategies (i.e.,
provision of rationales, choices, and informational lan-
guage) was developed. The physics teachers in the con-
trol condition did not receive training and the teaching
unit for the control condition did not entail autonomy-
supportive strategies. In this condition, an experiment
was shown to the students.

Self-efficacy. The self-efficacy scale consisted of four
items (Cronbach’s α ¼ :93) adapted from Pekrun et al. (2002).
We modeled a latent predictor ξ with these four indicators:

Y11: In physics, I am sure that I can understand the most
difficult material.

Y21: I am convinced that I can understand even the most
complex material that the teacher introduces.
Y31: I am convinced that I can achieve good results in
exams in physics.
Y41: I am convinced that I can master the skills taught in
physics.

The response format was a 5-point Likert scale that ranged
from 1 (not at all true) to 5 (completely true).

Statistical Model

In our example, we want to illustrate two particular
features of the EffectLiteR–NSEMM combination,
namely quadratic effects and nonnormal distributions of
latent predictor variables in an effect analysis. So we
fitted the following model:
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Group-invariant τ-equivalent measurement model

Y12
Y22
Y11
Y21
Y31
Y41

0
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1
CCCCCCA

¼
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þ
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(17)

Group-specific structural model

η
ξ

� �
¼ αx0

μc1

� �
þ 0 αx1

0 0

� �
η
ξ

� �
þ αx2

0

� �
ξ2

� �þ ζ 0
ζ 1

� �

(18)

Group sizes

PðC ¼ cÞ ¼ κc (19)

Note that we treat the group sizes of the treatment groups
as fixed, because they have been fixed by the experimental
design. We only model the size of the latent classes as
stochastic. A path diagram of the model is shown in Figure 1.

Effect Model

The effect model is based on the regression:

EðηjX ; ξÞ ¼ γ00 þ γ01 ξ þ γ02 ξ
2 þ γ10X þ γ11X ξ

þ γ12X ξ2 ; (20)

where the regression coefficients can be computed based
on model parameters with γ00 ¼ α00, γ01 ¼ α01, γ02 ¼ α02,
γ10 ¼ α10 � α00, γ11 ¼ α11 � α01, and γ12 ¼ α12 � α02.
Because the chosen functional form of both treatment
group-specific regressions is quadratic, the effect func-
tion, which is their difference, is also quadratic:

CE10ðξÞ ¼ Eðη X ¼ 1; ξÞ � Eðηj jX ¼ 0; ξÞ (21)

¼ γ10 þ γ11 ξ þ γ12 ξ
2 :

To compute the average effect, we also need the uncondi-
tional expectations of ξ and ξ2. These can also be computed
based on model parameters using standard formulas for
conditional and unconditional expectations:

X = 0

ξ

Y11

Y21

Y31

Y41

ε11

ε21

ε31

ε41

η

Y12

Y22

ξ2

ε12

ε22

1

λ1

λ2

λ3

1

1

α01

α02 ζ0

X = 1

ξ

Y11

Y21

Y31

Y41

ε11

ε21

ε31

ε41

η

Y12

Y22

ξ2

ε12

ε22

1

λ1

λ2

λ3

1

1

α11

α12 ζ0

FIGURE 1 Path diagram for our illustrative example. It shows the two treatment group-specific regressions of the dependent variable η on ξ and ξ2.
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EðξÞ ¼ α00 � PðC ¼ 0Þ þ α10 � PðC ¼ 1Þ ;
Eðξ2Þ ¼ Eðξ2jC ¼ 0Þ � PðC ¼ 0Þþ
Eðξ2jC ¼ 1Þ � PðC ¼ 1Þ :

where Eðξ2 C ¼ 0Þ ¼ α200 þ Varðζ 1
�� ��C ¼ 0Þ and

Eðξ2 C ¼ 1Þ ¼ α210 þ Varðζ 1
�� ��C ¼ 1Þ. The average effect is

E½CE10ðξÞ� ¼ γ10 þ γ11EðξÞ þ γ12Eðξ2Þ, and various condi-
tional effects can be computed by inserting values of ξ into the
effect function. For example, the conditional effect for ξ ¼ 1 is
CE10ðξ ¼ 1Þ ¼ γ10 þ γ11 þ γ12.

RESULTS

Results for the NSEMM Model

The results from our NSEMM model are summarized
in Table 1, which shows all estimated model parameters

for the basis model. Notice that the effects of interest
are not parameters of the basis model, but will be com-
puted subsequently based on the fitted model. In addi-
tion, we plot the two group-specific regressions in
Figure 2. By visual inspection, we see a quadratic
relationship in the treatment group, but not in the
control group. This is also reflected in the parameter
for the quadratic effect in the control group
(α02 ¼ �0:01;CI ½�0:16; 0:15�) versus the parameter in
the treatment group (α12 ¼ 0:36;CI ½0:18; 0:55�).

Results for the Effect Analysis

Based on the model parameters (Table 1), we computed the
parameters of the effect function, the unconditional expecta-
tions of ξ and ξ2, as well as several average and conditional
effects of interest. The results of the effect analysis are
shown in Table 2. The average effect of the treatment is

TABLE 1
Estimated Parameters of the Basis Nonlinear Structural Equation Mixture Modeling Model

Quantiles

Coefficient M SD 2.5% 50% 97.5%

ν1 –0.77 0.05 –0.88 –0.77 –0.66
ν2 0.12 0.11 –0.11 0.12 0.33
ν3 0.79 0.13 0.52 0.79 1.05
ν4 1.01 0.13 0.74 1.01 1.26
λ1 0.95 0.04 0.88 0.95 1.03
λ2 0.88 0.04 0.79 0.88 0.97
λ3 0.79 0.04 0.71 0.79 0.88
α00 3.87 0.60 2.73 3.85 5.07
α10 5.67 0.71 4.32 5.66 7.10
α01 –0.16 0.46 –1.09 –0.15 0.68
α11 –2.26 0.54 –3.36 –2.26 –1.22
α02 –0.01 0.08 –0.16 –0.01 0.15
α12 0.36 0.09 0.18 0.36 0.55
Varðζ 0jX ¼ 0Þ 1.20 0.17 0.90 1.19 1.57
Varðζ 0jX ¼ 1Þ 0.70 0.11 0.49 0.69 0.94
μ01 1.76 0.18 1.47 1.74 2.18
μ11 3.54 0.17 3.22 3.53 3.89
Varðζ 1jC ¼ 0Þ 0.32 0.13 0.15 0.30 0.64
Varðζ 1jC ¼ 1Þ 0.57 0.15 0.32 0.55 0.90
PðC ¼ 0Þ 0.39 0.09 0.22 0.38 0.60
PðC ¼ 1Þ 0.61 0.09 0.40 0.62 0.78
Varðε12jX ¼ 0Þ 0.55 0.12 0.32 0.54 0.81
Varðε12jX ¼ 1Þ 0.38 0.08 0.24 0.38 0.55
Varðε22jX ¼ 0Þ 0.56 0.12 0.34 0.55 0.81
Varðε22jX ¼ 1Þ 0.31 0.07 0.18 0.30 0.46
Varðε11jX ¼ 0Þ 0.24 0.05 0.15 0.23 0.34
Varðε11jX ¼ 1Þ 0.16 0.03 0.10 0.16 0.24
Varðε21jX ¼ 0Þ 0.32 0.05 0.24 0.32 0.44
Varðε21jX ¼ 1Þ 0.21 0.04 0.15 0.21 0.30
Varðε31jX ¼ 0Þ 0.34 0.06 0.24 0.34 0.46
Varðε31jX ¼ 1Þ 0.43 0.06 0.32 0.43 0.57
Varðε41jX ¼ 0Þ 0.36 0.06 0.27 0.36 0.48
Varðε41jX ¼ 1Þ 0.43 0.06 0.32 0.42 0.56

Note. X is the treatment variable, C is the latent class variable, ν1 to ν4 are measurement intercepts, λ1 to λ3 are loadings, ε12 to ε41 are measurement error
variables, α00 to α12 are regression coefficients for the structural model, ζ 0 and ζ 1 are structural residuals, and μ01 and μ11 are group-specific means of ξ See
also Equations 17 to 19. Fixed parameters are not shown.
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E½CE10ðξÞ� ¼ �0:73,CI ½�0:98;�0:47�, indicating an aver-
age effect of the autonomy-supportive intervention in redu-
cing boredom in students. We also computed different
conditional effects for values 1 to 4 of self-efficacy (see
Table 2). To further illustrate the conditional effect function,
we plotted the function in Figure 3, which is the difference
between the two group-specific regressions shown in
Figure 2. It illustrates that the treatment is most effective
in reducing boredom for medium values of self-efficacy and
less effective for extreme values of self-efficacy. It can be
seen that for extreme values of self-efficacy, the 95% cred-
ibility intervals of the conditional effects of the autonomy-
supportive intervention do contain zero, whereas for med-
ium values of self-efficacy, the credibility intervals no
longer contain zero.

Notice that due to the nonlinear relationship, the aver-
age effect is not identical to the effect at the mean of the
covariate: Compare the average effect (Table 2) with the
value of the effect function at the mean of ξ, which is
EðξÞ ¼ 2:84, in the effect plot (Figure 3). The two are
different, and which one is more relevant depends on
what we are interested in: The average effect gives the
population level effect, and the effect at ξ ¼ 2:84 gives
the conditional effect for a person with this particular value
of ξ.

Another interesting aspect of our empirical example is
that when we use the standard specification for a mod-
erated regression model without the quadratic term,
the coefficient of the interaction term is very close to
zero and its credibility interval includes zero
ðγ11 ¼ 0:01;CI ½�0:24; 0:24�Þ. So, based on the misspeci-
fied model, we would erroneously conclude that the
autonomy-supportive intervention is equally effective
for everybody and we would miss an important aspect
of the differential effectiveness.

DISCUSSION

In this article, we presented an approach for comprehen-
sive analysis of the effectiveness of interventions based
on NSEMM. The proposed approach offers new ways to
evaluate the differential effectiveness of interventions for
substantive researchers in experimental and quasi-experi-
mental studies by expanding the standard modeling
approach to treatment effects. It goes beyond the tradi-
tional moderated regression techniques by allowing for
the incorporation of latent continuous and discrete vari-
ables, higher order interactions of treatments and

TABLE 2
Resuls for the Effect Analysis

Quantiles

Coefficient M SD 2.5% 50% 97.5%

γ10 1.80 0.93 –0.09 1.82 3.69
γ11 –2.10 0.71 –3.55 –2.11 –0.62
γ12 0.37 0.12 0.11 0.37 0.62
EðξÞ 2.85 0.07 2.71 2.85 2.98

Eðξ2Þ 9.33 0.41 8.55 9.32 10.15

E½CE10ðξÞ� –0.73 0.13 –0.98 –0.73 –0.47
CE10ðξ ¼ 1Þ 0.07 0.38 –0.68 0.07 0.82
CE10ðξ ¼ 2Þ –0.92 0.17 –1.26 –0.92 –0.58
CE10ðξ ¼ 3Þ –1.17 0.19 –1.53 –1.17 –0.78
CE10ðξ ¼ 4Þ –0.68 0.19 –1.05 –0.68 –0.30

Note. 10, 11, and 12 are parameters of the effect function, ξ is the latent
covariate self-efficacy, and CE10 stands for the conditional effect function
of training condition X ¼ 1 vs. control condition X ¼ 0.
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FIGURE 2 Plot of the group-specific regressions of η on ξ and ξ2 in the control group (left side) and the treatment group (right side) with 95% credibility
intervals.
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covariates, and conditionally nonlinear terms, which are
useful for more differentiated modeling of covariate and
outcome relationships. The proposed approach also
extends more recent models for analyzing moderation
effects. For example, it adds latent nonlinear terms and
the mixture components for nonnormally distributed pre-
dictors to the EffectLiteR model, it adds effect defini-
tions and computations to the NSEMM model, and it
adds stochastic regressors and stochastic group sizes to
the multigroup SEM approach. The proposed extensions
can help researchers gain new insights into the differen-
tial effectiveness of interventions, as we illustrated in
our empirical example. With traditional approaches, it
would have been impossible to consider the interaction
between the categorical treatment variable and the
squared latent covariate as well as the nonnormal dis-
tribution of the predictor. With traditional approaches, it
would also have been unclear how to obtain average and
conditional effects on the basis of such a model.

Advantages of the Proposed Approach

Given the need to examine treatment effects in more detail,
several issues have to be considered that go along with the
specification and estimation of nonlinear regression models
with latent variables. It is here that the advantages of the
proposed approach come into play.

First, it is clear that nonlinear effects can be helpful in
examining treatment effects. In our empirical example from

educational science, we examined the relationship between
self-efficacy and boredom. We tested whether a u-shaped
(i.e., quadratic) relationship between self-efficacy and bore-
dom is influenced by a treatment. This means that students
with moderate self-efficacy showed stronger effects than
students with more extreme (low or high) values of self-
efficacy. The examination of the differential treatment effect
is only made possible by the inclusion of higher order
interactions of treatments and latent covariates. However,
choosing the appropriate type of nonlinearity (e.g., u-shaped
or logistic curves) is an issue which needs to be addressed
separately. In some situations, it could make sense to apply
even more flexible types of functions (e.g., regression
splines) to approximate an unknown nonlinear relationship
between latent covariates and outcome.

Second, integrating covariates into regression models
when treatment effects are examined does not prevent
unobserved heterogeneity of the treatment effects.
Omitting covariates could lead to varying relationships
and (conditional and unconditional) treatment effects
across unobserved groups. Therefore, it makes sense to
test for unobserved heterogeneity by applying a mixture
modeling approach (e.g., McLachlan & Peel, 2000). For
example, it could happen that a specific (unknown) group
of students does not respond to a treatment or interven-
tion because they did not pay attention during an auton-
omy training. Or students might differ strongly in their
(unknown) motivation to participate in an autonomy-sup-
portive learning setting. That is, if students believe that
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FIGURE 3 Plot of the conditional effect function CE10ðξÞ with 95% credibility interval. The y-axis shows effects of the treatment condition compared to the
control condition. The x-axis shows values of the latent covariate ξ (self-efficacy).
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their own ability in a subject is low, an intervention might
have negative effects for them (e.g., Durik, Shechter,
Noh, Rozek, & Harackiewicz, 2015), because even
though they might be allowed to choose among different
tasks, they might have the feeling that they are not able to
solve any of them successfully. In addition, if students
have notably high competence beliefs in an area, they
could also easily get demotivated through an autonomy-
supportive intervention that is aimed at the pace of reg-
ular students. Applying mixture modeling techniques as
proposed in our approach offers many possibilities to
detect such subgroups, even if the driving variables
have not been observed.

Third, the estimation of nonlinear (manifest and latent)
models depends strongly on distributional assumptions. For
example, most procedures for the estimation of latent non-
linear effects assume normality of the latent variables (e.g.,
Klein & Moosbrugger, 2000; Marsh et al., 2004). This
assumption leads to biased estimates and increased Type I
error rates (e.g., Brandt, Kelava, & Klein, 2014). Therefore,
to obtain correct inferences about (conditional and uncondi-
tional) treatment effects, it is important to account for a
potential nonnormal distribution of the latent variables.
This can be done by applying a mixture distribution to
approximate the nonnormality of the latent variables. This
was done in our empirical example.

Limitations and Future Directions

The proposed approach extends the possibilities for a differ-
ential evaluation of treatment effects in a latent variable
framework. However, there are several aspects that are not
covered by the proposed approach.

First, the proposed approach does not account for
clustered (i.e., nested) data structures as they are typically
encountered in many disciplines, including educational
sciences. When dealing with clustered data, these depen-
dencies should be controlled for to obtain unbiased esti-
mates and standard errors of conditional and average
treatment effects. In the same vein, random coefficients,
which could account for the heterogeneity of relationships
between latent covariates and outcomes, are not part of
the proposed approach. The proposed approach could be
extended to overcome this limitation. Furthermore, to the
best of our knowledge, current statistical software does
not offer ready-to-use frequentist estimators or implemen-
tations of such a model.

Second, the proposed approach concentrates on very
specific parametric (nonlinear) relationships between
latent variables. In recent years, several Bayesian
approaches have been proposed that allow for very flex-
ible semiparametric relationships (e.g., regression splines;
Kelava & Brandt, 2014). This limitation could be

overcome by broadening the proposed framework for
such relationships. However, in this context, deriving
conditional and average effects is not straightforward,
because higher order central and noncentral moments
need to be incorporated (Brandt, Umbach, & Kelava,
2015). Nevertheless, accounting for a situation in which
latent covariates have a flexible relationship with the out-
come is necessary for differential and more realistic mod-
eling of treatment or intervention effects.

Third, although the implementation of the proposed
approach as presented in our empirical example is given
in the supplementary material, there are no ad-hoc rou-
tines within popular statistical software packages that
can be applied by substantive researchers. This group
is very interested in knowing how treatments unfold
within specific intervals of a latent covariate (e.g., a
substantive research question could be: How large is
the intervention effect in the face of severe levels of
depression?). Thus, easy-to-use implementations of the
proposed approach could enhance its use across a
broader audience.
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