
Dynamic Temporal Decoupling

Kiriakos Simon Mountakis1, Tomas Klos2, and Cees Witteveen1(B)

1 Delft University of Technology, Delft, The Netherlands
C.Witteveen@tudelft.nl

2 Utrecht University, Utrecht, The Netherlands

Abstract. Temporal decoupling is a method to distribute a temporal
constraint problem over a number of actors, such that each actor can
solve its own part of the problem. It then ensures that the partial solu-
tions provided can be always merged to obtain a complete solution. This
paper discusses static and dynamic decoupling methods offering maximal
flexibility in solving the partial problems. Extending previous work, we
present an exact O(n3) flexibility-maximizing static decoupling method.
Then we discuss an exact O(n3) method for updating a given decoupling,
whenever an actor communicates a commitment to a particular set of
choices for some temporal variable. This updating method ensures that:
(i) the flexibility of the decoupling never decreases and (ii) every com-
mitment once made is respected in the updated decoupling. To ensure
an efficient updating process, we introduce a fast heuristic to construct
a new decoupling given an existing decoupling in nearly linear time. We
present some experimental results showing that, in most cases, updating
an existing decoupling in case new commitments for variables have been
made, significantly increases the flexibility of making commitments for
the remaining variables.

Keywords: Simple Temporal Problem · Decoupling · Flexibility

1 Introduction

In quite a number of cases a joint task has to be performed by several actors,
each controlling only a part of the set of task constraints. For example, consider
making a joint appointment with a number of people, constructing a building
that involves a number of (sub)contractors, or finding a suitable multimodal
transportation plan involving different transportation companies. In all these
cases, some task constraints are under the control of just one actor (agent), while
others require more than one agent setting the right values to the variables to
satisfy them. Let us call the first type of constraints intra-agent constraints and
the second type inter-agent constraints.

If there is enough time, solving such multi-actor constraint problems might
involve consultation, negotiation or other agreement technologies. Sometimes,
however, we have to deal with problems where communication between agents
during problem solving is not possible or unwanted. For example, if the agents
are in competition, there are legal or privacy issues preventing communication,
or there is simply no time for communication.
c© Springer International Publishing AG 2017
D. Salvagnin and M. Lombardi (Eds.): CPAIOR 2017, LNCS 10335, pp. 328–343, 2017.
DOI: 10.1007/978-3-319-59776-8 27

Dynamic Temporal Decoupling 329

In this paper we use an approach to solve multi-actor constraint problems in
the latter contexts: instead of using agreement technologies, we try to avoid them
by providing decoupling techniques. Intuitively, a decoupling technique modifies
a multi-actor constraint system such that each of the agents is able to select a
solution for its own set of (intra-agent) constraints and a simple merging of all
individual agent solutions always satisfies the total set of constraints. Usually,
this is accomplished by tightening intra-agent constraints such that inter-agent
constraints are implied. Examples of real-world applications of such decoupling
techniques can be found in e.g. [2,8].

Quite some research focuses on finding suitable decoupling techniques
(e.g., [1,2,7]) for Simple Temporal Problems (STPs) [3]. An STP S = (T,C)
is a constraint formalism where a set of temporal variables T = {t0, t1, . . . , tn}
are subject to binary difference constraints C and solutions can be found in low
polynomial (O(n3)) time. Since STPs deal with temporal variables, a decoupling
technique applied to STPs is called temporal decoupling. The quality of a tempo-
ral decoupling technique depends on the degree to which it tightens intra-agent
constraints: the more it restricts the flexibility of each individual agent in solving
their own part of the constraints, the less it is preferred. Therefore, we need a
flexibility metric to evaluate the quality of a temporal decoupling.

Originally, flexibility was measured by summing the differences between the
highest possible (latest) and the lowest possible (earliest) values of all variables
in the constraint system after decoupling ([6,7]). This so-called naive flexibility
metric has been criticized, however, because it does not take into account the
dependencies between the variables and, in general, seriously overestimates the
“real” amount of flexibility. An alternative metric, the concurrent flexibility met-
ric has been proposed in [15]. This metric accounts for dependencies between
the variables and is based on the notion of an interval schedule for an STP S:
For each variable ti ∈ T an interval schedule defines an interval [li, ui], such that
choosing a value within [li, ui] for each variable ti, always constitutes a solution
for S. The sum

∑n
i=1(ui − li) of the widths of these intervals determines the

flexibility of S. The concurrent flexibility of S then is defined as the maximum
flexibility we can obtain for an interval schedule of S and can be computed in
O(n3) (see [9]).

As shown in [15], the concurrent flexibility metric can also be used to obtain
an optimal (i.e. maximum flexible) temporal decoupling of an STP. This decou-
pling is a total decoupling, that is, a decoupling where the n variables are evenly
distributed over n independent agents and thus every agent controls exactly one
variable. It has been shown that this total decoupling is optimal for every parti-
tioning of the set of temporal variables if one considers the concurrent flexibility
metric as the flexibility metric to be used. In this paper, we concentrate on such
(optimal) total decouplings of an STP.

In all existing approaches, a single temporal decoupling is computed in
advance and is not changed, even if later on some agents announce their
commitment to a specific value (or range of values) for a variable they control.
Intuitively, however, we can use such additional information for the benefit of all

330 K.S. Mountakis et al.

agents, by possibly increasing the flexibility of variables they are not yet com-
mitted to. Specifically, when an agent announces a commitment to a sub-range
of values within the given interval schedule (that represents the current decou-
pling), we are interested in updating the decoupling such that the individual
flexibility of no agent is affected negatively.

More precisely, the overall aim of this paper is to show that a decoupling
update method with the following nice properties do exist: first of all, it never
affects the current flexibility of the agents negatively, and, secondly, it never
decreases (and possibly increases) the individual flexibility of the variables not
yet committed to. We will also show that updating a temporal decoupling as the
result of a commitment for a single variable can be done in almost linear (amor-
tized) time (O(n log n)), which compares favourably with the cost of computing
a new optimal temporal decoupling (O(n3)).

Organisation. In Sect. 2 we discuss existing relevant work on STPs and tempo-
ral decoupling (TD). Then, in Sect. 3, extending some existing work, we briefly
show how a total TD can be computed in O(n3), using a minimum matching
approach. In Sect. 4, we first provide an exact approach to update an existing
decoupling after commitments to variables have been made. We conclude, how-
ever, that this adaptation is computationally quite costly. Therefore, in Sect. 5
we offer an alternative, heuristic method, that is capable to adapt a given tem-
poral decoupling in almost linear time per variable commitment. To show the
benefits of adapting the temporal decoupling, in Sect. 6 we present the results
of some experiments using STP benchmarks sets with the heuristic decoupling
update and compare the results with an exact, but computationally more inten-
sive updating method. We end with stating some conclusions and suggestions
for further work.

2 Preliminaries

Simple Temporal Problems. A Simple Temporal Problem (STP) (also
known as a Simple Temporal Network (STN)) is a pair S = (T,C), where
T = {t0, t1, . . . , tn} is a set of temporal variables (events) and C is a finite
set of binary difference constraints tj − ti ≤ cij , for some real number cij .1 The
problem is to find a solution, that is a sequence (s0, s1, s2, . . . , sn) of values such
that, if each ti ∈ T takes the value si, all constraints in C are satisfied. If such a
solution exists, we say that the STN is consistent. 2 In order to express absolute
time constraints, the time point variable t0 ∈ T , also denoted by z, is used. It
represents a fixed reference point on the timeline, and is always assigned the
value 0.

1 If both tj − ti ≤ cij and ti − tj ≤ cji are specified, we sometimes use the more
compact notations −cji ≤ tj − ti ≤ cij or tj − ti ∈ [−cji, cij].

2 W.l.g., in the remainder of the paper we simply assume an STN to be consistent.
Consistency of an STN can be determined in low-order polynomial time [4].

Dynamic Temporal Decoupling 331

Example 1. Consider two trains 1 and 2 arriving at a station. Train 1 has to
arrive between 12:05 and 12:15, train 2 between 12:08 and 12:20. People traveling
with these trains need to change trains at the station. Typically, one needs at
least 3 min for changing trains. Train 1 will stay during 5 min at the station
and train 2 stays 7 min before it departs. Let ti denote the arrival time for train
i = 1, 2. Let t0 = z = 0 represent noon (12:00). To ensure that all passengers have
an opportunity to change trains, we state the following STP S = (T,C) where:
T = {z, t1, t2}, and C = {5 ≤ t1 − z ≤ 15, 8 ≤ t2 − z ≤ 20, −2 ≤ t2 − t1 ≤ 4}.
As the reader may verify, two possible solutions3 for this STP are s = (0, 10, 10)
and s′ = (0, 15, 17). That is, there is a solution when both trains arrive at 12:10,
and there is also a solution where train 1 arrives at 12:15, while train 2 arrives
at 12:17. �

An STP S = (T,C) can also be specified as a directed weighted graph
GS = (TS , ES , lS) where the vertices TS represent variables in T and for every
constraint tj − ti ≤ cij in C, there is a directed edge (ti, tj) ∈ ES labeled by its
weight lS(ti, tj) = cij . The weight cij on the arc (ti, tj) can be interpreted as the
length of the path from ti to tj . Using a shortest path interpretation of the STP
S = (T,C), there is an efficient method to find all shortest paths between pairs
(ti, tj) using e.g. Floyd and Warshall’s all-pairs shortest paths algorithm [5]. A
shortest path between time variables ti and tj then corresponds to a tightest
constraint between ti and tj . These tightest constraints can be collected in an
n×n minimum distance matrix D = [dij], containing for every pair of time-point
variables ti and tj the length dij of the shortest path from ti to tj in the distance
graph. In particular, the first row and the first column of the distance matrix
D contain useful information about the possible schedules for S: The sequence
lst = (d00, d01, . . . , d0n) specifies the latest starting time solution for each time
point variable ti. Analogously, est = (−d00,−d10, . . . ,−dno) specifies the earliest
starting time solution.

Example 2. Continuing Example 1, the minimum distance matrix D of S equals

D =

⎡

⎣
0 15 19

−5 0 4
−8 2 0

⎤

⎦

The earliest time solution therefore is est = (0, 5, 8), and the latest time solution
lst = (0, 15, 19). �

Given S, the matrix D can be computed in low-order polynomial (O(n3))
time, where n = |T |, see [3].4 Hence, using the STP-machinery we can find
earliest and latest time solutions quite efficiently.

3 Of course, there are many more.
4 An improvement by Planken et al. [12] has shown that a schedule can be found in
O(n2wd)-time where wd is the graph width induced by a vertex ordering.

332 K.S. Mountakis et al.

Temporal Decoupling. In order to find a solution for an STP S = (T,C) all
variables ti ∈ T should be assigned a suitable value. Sometimes these variables
are controlled by different agents. That is, T − {z} = {t1, . . . , tn} is partitioned
into k non-empty and non-overlapping subsets T1, . . . , Tk of T , each Tj corre-
sponding to the set of variables controlled by agent aj ∈ A = {a1, a2, . . . , ak}.
Such a partitioning of T − {z} will be denoted by [Ti]ki=1. In such a case, the
set of constraints C is split in a set Cintra =

⋃k
i=1 Ci of intra-agent constraints

and a set Cinter = C − Cintra of inter-agent constraints. Here, a constraint
ti − tj ≤ cji is an intra-constraint occurring in Ch if there exists a subset Th

such that ti, tj ∈ Th, else, it is an inter-agent constraint. Given the partitioning
[Tj]kj=1, every agent ai completely controls the (sub) STP Si = (Ti ∪ {z}, Ci),
where Ci is its set of intra-agent constraints, and determines a solution si for
it, independently from the others. In general, however, it is not the case that,
using these sub STPs, merging partial solutions si will always constitute a total
solution to S:

Example 3. Continuing Example 1, let train i be controlled by agent ai for i =
1, 2 and assume that we have computed the set of tightest constraints based on
C. Then S1 = ({z, t1}, {5 ≤ t1 − z ≤ 15}) and S2 = ({z, t2}, {8 ≤ t2 − z ≤ 19}).
Agent a1 is free to choose a time t1 between 5 and 15 and suppose she chooses
10. Agent a2 controls t2 and, therefore, can select a value between 8 and 19.
Suppose he chooses 16. Now clearly, both intra-agent constraints are satisfied,
but the inter-agent constraint t2 − t1 ≤ 4 is not, since 16 − 10 > 4. Hence, the
partial solutions provided by the agents are not conflict-free. �

The temporal decoupling problem for S = (T,C), given the partitioning [Tj]kj=1,
is to find a suitable set C ′

intra =
⋃k

i=1 C ′
i of (modified) intra-agent constraints

such that if s′
i is an arbitrary solution to S′

i = (Ti ∪ {z}, C ′
i), it always can be

merged with other partial solutions to a total solution s′ for S.5

We are interested, however, not in arbitrary decouplings, but an optimal
decoupling of the k agents, allowing each agent to choose an assignment for its
variables independently of others, while maintaining maximum flexibility. This
optimal decoupling problem has been solved in [14] for the total decoupling
case, that is the case where k = n and each agent ai controls a single time point
variable ti. In this case, the decoupling results in a specification of a lower bound
li and an upper bound ui for every time point variable ti ∈ T , such that ti can
take any value vi ∈ [li, ui] without violating any of the intra- or inter-agent
constraints. This means that if agent ai controls Ti then her set of intra-agent
constraints is Ci = {lj ≤ tj ≤ uj | tj ∈ Ti}.

The total flexibility the agents have, due to this decoupling, is determined by
the sum of the differences (ui − li). Therefore, the decoupling bounds l = (li)n

i=1

and u = (ui)n
i=1 are chosen in such a way that the flexibility

∑
i(ui − li) is

maximized. It can be shown (see [14]) that such a pair (l, u) can be obtained as
a maximizer of the following LP:

5 In other words, the set
⋃k

i=1 C
′
i logically implies the set C of original constraints.

Dynamic Temporal Decoupling 333

max
l,u

∑

i

(ui − li) (TD(D))

s.t. l0 = u0 = 0 (1)
li ≤ ui ∀i ∈ T (2)
uj − li ≤ dij ∀i �= j ∈ T (3)

where D is the minimum distance matrix associated with S.

Example 4. Consider the matrix D in Example 2 and the scenario sketched in
Example 3. Then the LP whose maximizers determine a maximum decoupling
is the following:

max
l,u

∑

i

(ui − li)

s.t. u0 = l0 = 0,

l1 ≤ u1, l2 ≤ u2

u1 − l0 ≤ 15, u2 − l0 ≤ 19
u0 − l1 ≤ −5, u2 − l1 ≤ 4
u0 − l2 ≤ −8, u1 − l2 ≤ 2

Solving this LP, we obtain
∑2

i=0(ui − li) = 6 with maximizers l = (0, 15, 13)
and u = (0, 15, 19). This implies that in this decoupling (l, u) agent a1 is
forced to arrive at 12:15, while agent a2 can choose to arrive between 12:13 and
12:19. �

Remark. Note that the total decoupling solution (l, u) for S also is a solution
for a decoupling based on an arbitrary partitioning [Ti]ki=1 of S. Observe that
(l, u) is a decoupling, if for any value vi chosen by ah and any value wj chosen
by ah′ for every 1 ≤ h �= h′ ≤ k, we have vi − wj ≤ dji and wj − vi ≤ dij .
Since (l, u) is a total decoupling, it satisfies the conditions of the LP TD(D).
Hence, ui − lj ≤ dij and uj − li ≤ dji. Since vi ∈ [li, ui] and wj ∈ [lj , uj],
we then immediately have vi − wj ≤ ui − lj ≤ dji and wj − vi ≤ uj − li ≤
dji. Therefore, whatever choices are made by the individual agents satisfying
their local constraints, these choices always will satisfy the original constraints,
too. �

Remark. In [14] the (l, u) bounds found by solving the LP TD(D) are used to
compute the concurrent flexibility flex (S) =

∑n
i (ui−li) of an STP S. Taking the

concurrent flexibility as our flexibility metric, the (l, u) bounds for decoupling are
always optimal, whatever partitioning [Ti]ni=1 is used: first, observe that due to
a decoupling, the flexibility of an STN can never increase. Secondly, if the (l, u)
bounds for a total decoupling are used, by definition, the sum

∑k
i=1 flex (Si) of

the (concurrent) flexibilities of the decoupled subsystems equals the flexibility
flex (S) of the original system. Hence, the total decoupling bounds (l, u) are
optimal, whatever partitioning [Ti]ni=1 used. �

334 K.S. Mountakis et al.

In this paper, we will consider concurrent flexibility as our flexibility metric.
Hence, a total decoupling is always an optimal decoupling for any partitioning
of variables. Therefore, in the sequel, we concentrate on total decouplings.

3 Total Decoupling by Minimum Matching

In the introduction we mentioned that an (optimal) total decoupling can be
achieved in O(n3) time. In the previous section, we presented an LP to compute
such a decoupling. If the STP has n variables, the LP to be solved has 2n
variables and n2 constraints. Modern interior-point methods solve LPs with n
variables and m constraints in roughly O(n3m) [13]. Thus, the complexity of
solving total decoupling as an LP might be as high as O(n5). In a previous
paper ([9]), we have shown that computing the concurrent flexibility of an STP
can be reduced to a minimum matching problem (see [10]) using the distance
matrix D to construct a weighted cost matrix D∗ for the latter problem.

This reduction, however, does not allow us to directly compute the corre-
sponding flexibility maximizers (l, u). In this section we therefore show that
there is a full O(n3) alternative method for the LP-based flexibility method
to compute the concurrent flexibility and the corresponding maximizers (l, u),
thereby showing that an optimal total decoupling can be computed in O(n3).

Flexibility and Minimum Matching. Given an STN S = (T,C) with mini-
mum distance matrix D, let flex (S) be its concurrent flexibility, realised by the
maximizers (l, u). Hence, flex (S) = f(l, u) =

∑n
i=1(ui − li). Unfolding this sum

–as was noticed in [9]– we obtain

f(l, u) =
∑

i∈T

(ui − li) =
∑

i∈T

(uπi
− li) (4)

for every permutation π of T .6 Since (l, u) is a total decoupling, we have

uj − li ≤ dij ∀i �= j ∈ T (5)
uj − lj = (uj − z) + (z − lj) ≤ d0j + dj0 ∀j ∈ T (6)

Hence, defining the modified distance matrix (also called weight matrix) D∗ =
[d∗

ij]n×n by

d∗
ij =

{
dij , 1 ≤ i �= j ≤ n

d0i + di0, 1 ≤ i = j ≤ n

we obtain the following inequality:

f(l, u) ≤ min{
∑

i∈T

d∗
iπi

: π ∈ Π(T)} (7)

6 To avoid cumbersome notation, we will often use i ∈ T as a shorthand for ti ∈ T .

Dynamic Temporal Decoupling 335

where Π(T) is the space of permutations of T . Equation (7) states that the maxi-
mum flexibility of an STN is upper bounded by the value of a minimum matching
in a bipartite graph with weight matrix D∗. The solution of such a matching
problem consists in finding for each row i in D∗ a unique column πi such that
the sum

∑
i∈T d∗

iπi
is minimized. As we showed in [9], by applying LP-duality

theory, Eq. (7) can be replaced by an equality: f(l, u) = minπ∈Π(T)

∑
i∈T d∗

iπi
, so

the concurrent flexibility flex (S) = f can be computed by a minimum matching
algorithm as e.g. the Hungarian algorithm, running in O(n3) time.

Finding a Maximizer (l , u) Using Minimum Matching. With the fur-
ther help of LP-duality theory i.c., complementary slackness conditions [10], the
following result is immediate:

Observation 1. If π is a minimum matching with value m for the weight matrix
D∗, then there exists a maximizer (l, u) for the concurrent flexibility flex(S) of
S, such that flex (S) = m and for all i ∈ T , uπi

− li = d∗
iπi

.

Now observe that the inequalities stated in the LP-specification TD(D) and
the inequalities uπi

− li = d∗
iπi

in Observation 1 all are binary difference con-
straints. Hence, the STP S′ = (T ′, C ′), where

T ′ = L ∪ U = {li | i ∈ T} ∪ {ui | i ∈ T},
C ′ = {ui − lj ≤ d∗

ij | i, j ∈ T} ∪ {li − uπi
≤ −d∗

iπi
| i ∈ T} ∪ {li − ui ≤ 0 | i ∈ T}

is an STP7 and every solution s′ = (l1, . . . ln, u1, . . . , un) of S′ in fact is a max-
imizer (l, u) for the original STP S, since the flexibility associated with such a
solution (l, u) satisfies flex (S) ≥ f(l, u) =

∑
i∈T (ui − li) ≥ ∑

i∈T d∗
iπi

= flex (S).
Hence, this pair (l, u) is a maximizer realizing flex (S).

In particular, the earliest and latest solutions of S′ have this property. Hence,
since (i) D∗ can be obtained in O(n3) time, (ii) a minimum matching based on
D∗ can be computed in O(n3), and (iii) the STN S′ together with a solution
s = (l, u) for it can be computed in O(n3), we obtain the following result:

Corollary 1. Given an STN S = (T,C) with distance matrix D, an optimal
total decoupling (l, u) for S can be found in O(n3).

4 Dynamic Decoupling by Updating

A temporal decoupling allows agents to make independent choices or commit-
ments to variables they control. As pointed out in the introduction, we want to
adapt an existing (total) temporal decoupling (l, u) whenever an agent makes
a new commitment to one or more temporal variables (s)he controls. To show
that such a commitment could affect the flexibility other agents have in making
their possible commitments, consider our leading example again:
7 We should note that this STP has two external reference variables u0 = l0 = 0.

336 K.S. Mountakis et al.

Example 5. In Example 3 we obtained a temporal decoupling (l, u) = ((0, 15, 13),
(0, 15, 19)). Here, agent 1 was forced to arrive at 12:15, but agent 2 could
choose to arrive between 12:13 and 12:19. Suppose agent 2 commits to arrive
at 12:13. As a result, agent 1 is able to arrive at any time in the interval
[9, 15]. Then, by adapting the decoupling to the updated decoupling (l′, u′) =
((0, 9, 13), (0, 15, 13)), the flexibility of agent 1 could increase from 0 to 6, taking
into account the new commitment agent 1 has made. If the existing commitment
(l, u), however, is not updated, agent 1 still has to choose 12:15 as its time of
arrival. �

In order to state this dynamic decoupling or decouple updating problem more
precisely, we assume that at any moment in time the set T consists of a subset
Tc of variables committed to and a set of not committed to, or free, variables Tf .
The commitments for variables ti ∈ Tc are given as bounds [lci , u

c
i], specifying

that for i ∈ Tc, ti is committed8 to choose a value in the interval [lci , u
c
i]. The

total set of commitments in Tc is given by the bounds (lc, uc). We assume that
these committed bounds do not violate decoupling conditions.

Whenever (l, u) is a total decoupling for S = (T,C), where T = Tc ∪ Tf ,
we always assume that (l, u) respects the commitments, i.e. [li, ui] = [lci , u

c
i] for

every ti ∈ Tc, and (l, u) is an optimum decoupling for the free variables in Tf ,
given these commitments. Suppose now an agent makes a new commitment for
a variable ti ∈ Tf . In that case, such a commitment [vi, wi] should satisfy the
existing decoupling, that is li ≤ vi ≤ wi ≤ ui, but as a result, the new decoupling
where [li, ui] = [vi, wi], T ′

c = Tc ∪ {ti}, and T ′
f = Tf − {ti} might no longer be

an optimal decoupling w.r.t. T ′
f (e.g. see Example 5). In that case we need to

update (l, u) and to find a better decoupling (l′, u′).
The decoupling updating problem then can be stated as follows:

Given a (possibly non-optimal) total decoupling (l, u) for an STP S =
(T,C), with T = Tc ∪ Tf , find a new total decoupling (l′, u′) for S such
that
1. no individual flexibility of free variables is negatively affected, i.e., for

all j ∈ Tf , [lj , uj] � [l′j , u
′
j]

9;
2. all commitments are respected, that is, for all j ∈ Tc, [l′cj , u′c

j] = [lcj , u
c
j];

3. the flexibility realized by (l′, u′), given the commitments (l′c, u′c), is
maximum.

Based on the earlier shown total decoupling problem TD(D), this decoupling
update problem can also be stated as the following LP:

max
∑

j

(u′
j − l′j) (DTD(D,Tc, Tf , (l, u))

8 Note that this is slightly more general concept than a strict commitment of a variable
ti to one value vi.

9 That is, the interval [l′j , u
′
j] contains [lj , uj].

Dynamic Temporal Decoupling 337

s.t. u′
0 = l′0 = 0 (8)

u′
j − l′i ≤ dij ∀i �= j ∈ T (9)

uj ≤ u′
j , l′j ≤ lj ∀j ∈ Tf (10)

l′j = lj , u′
j = uj ∀j ∈ Tc (11)

Here, (l, u) is the existing total decoupling.
In fact, by transforming DTD-instances into TD-instances, we can show

that the dynamic decoupling (decoupling updating) problem can be reduced to
a minimum-matching problem and can be solved in O(n3), too.10

5 A Fast Heuristic for Updating

Although the dynamic total decoupling problem can be reduced to the static tem-
poral decoupling problem, in practice, the computational complexity involved
might be too high. While an initial decoupling might be computed off-line, an
update of a decoupling requires an on-line adaptation process. Since the costs
of solving such a dynamic matching problem are at least O(n2) per update, we
would like to alleviate this computational investment. Therefore, in this section
we discuss a fast heuristic for the decoupling updating problem. Using this heuris-
tic, we show that an updated decoupling can be found in (amortized) O(n log n)
per update step if O(n) updates are assumed to take place.

The following proposition is a simple result we base our heuristic on:

Proposition 1. If (l, u) is a total decoupling for S with associated weight matrix
D∗, then, for all j ∈ T , lj = maxk∈T (uk − d∗

kj) and uj = mink∈T (lk + d∗
jk).

Proof. Since (l, u) is a maximizer of the LP TD(D), ui − lj ≤ d∗
ij , for every i, j ∈

T . Hence, for each i, j ∈ T , we have lj ≥ maxk∈T (uk−d∗
kj) and ui ≤ mink∈T (lk+

d∗
ik). Now, on the contrary, assume that for some i ∈ T , li > mink∈T (uk − d∗

ki).
Then the bounds (l′, u) where l′ = l, except for l′i = mink∈T (uk − d∗

ki), would
satisfy the constraints ui − l′j ≤ d∗

ij for every i, j ∈ T , as well as l′j ≤ uj for
every j ∈ T . Hence, (l′, u) is a decoupling as well. But then (l′, u) satisfies the
conditions of the LP TD(D) but

∑
j(uj − l′j) >

∑
j(uj − lj), contradicting the

fact that (l, u) is a maximizer of this LP. Hence, such an i ∈ T cannot exist. The
proof for ui < mink∈T (lk + dik) goes along the same line and the proposition
follows. �

The converse, however, of this proposition is not true: not every solution (l, u)
satisfying the two equalities is a maximum decoupling. It can only be shown that
in such a case (l, u) is a maximal total decoupling. That means, if (l, u) satisfies

10 As has been observed by a reviewer, there exists an O(n2) algorithm for the dynamic
variant of the minimum-matching problem. It is likely that our dynamic decoupling
problem can be solved by such a dynamic minimum matching algorithm in O(n2)
time, too.

338 K.S. Mountakis et al.

the equations above, there does not exist a decoupling (l′, u′) containing (l, u)
that has a higher flexibility.

It turns out that these maximal total decouplings and their updates can be
computed very efficiently: given a (non-maximal) total decoupling (l, u), and a
set T = Tc ∪ Tf of committed and free variables, there exists a very efficient
algorithm to compute a new total decoupling [l′, u′] such that

1. (l′, u′) preserves the existing commitments: for all j ∈ Tc, [l′j , u
′
j] = [lj , uj];

2. [l′, u′] respects the existing bounds of the free variables: for all j ∈ Tf ,
[lj , uj] � [l′j , u

′
j];

3. (l′, u′) satisfies the conditions stated in Proposition 1 above w.r.t. the free
variables, i.e. (l′, u′) is a maximal decoupling with respect to variables in Tf .

The following surprisingly simple algorithm finds a maximal flexible total
decoupling for a set Tf ∪ Tc of free and committed temporal variables that
satisfies these conditions. The algorithm iteratively updates the existing (l, u)-
decoupling bounds for the variables in Tf until all free variables satisfy the
equations stated in Proposition 1.

Algorithm 1. Finding an update (l′, u′) of an existing total decoupling (l, u)
Require: (l, u) is a total decoupling for S; D∗ = [d∗

ij] is the weight matrix; T = Tf ∪Tc;
1: l′ = l ; u′ = u;
2: for i = 1 to |Tf | do
3: mini := maxk∈T (u′

k − d∗
ik);

4: maxi := mink∈T (l′k + d∗
kj);

5: if l′i > mini then
6: l′i ← mini

7: if u′
i < maxi then

8: u′
i ← maxi

9: return (l′, u′);

It is easy to see that the algorithm preserves the existing commitments for
variables in Tc, since only bounds of free variables in Tf are updated.

It is also easy to see that the existing bounds [lj , uj] of free variables j ∈ Tf

are respected: For every j it holds that either uj < maxj (l′j > minj , respectively)
or uj = maxj (l′j > minj , respectively). Hence, u′

j ≥ uj and l′j ≤ lj .
To show that the obtained decoupling (l′, u′) is maximal with respect to the

free variables, we state two key observations: first of all, in every step i it holds
that l′i ≥ mini and u′

i ≤ maxi, because (l, u) is a decoupling and the (mini,maxi)
bounds are not violated during updating. Secondly, once the bounds (l′i, u

′
i) for

a variable i ∈ Tf have been updated to mini and maxi, (l′i, u
′
i) will never need

to be updated again, since mini depends on values u′
k that might increase or

stay the same; hence mini cannot decrease in subsequent steps. Likewise, maxi

depends on values l′k that might decrease or stay the same. Therefore, maxi

cannot increase in later steps. Therefore, it is sufficient to update the bounds for
the variables only once.

Dynamic Temporal Decoupling 339

As a result, at the end all free variables have been updated and achieved their
minimal/maximal bound. Then a maximal total decoupling has been obtained,
since all variables in Tf will satisfy the equations stated in Proposition 1.

Example 6. Continuing our example, notice that the weight matrix D∗ obtained
via the minimum distance matrix D (see Example 2) equals

D∗ =

⎡

⎣
0 15 19

−5 10 4
−8 2 6

⎤

⎦

Given the decoupling (l, u) = ((0, 15, 13), (0, 15, 19)) with Tf = {t1, t2}, let
agent 2 commit to t2 = 13. We would like to compute a new decoupling
maximizing the flexibility for t1. Note that min1 = max{5, 5, 9} = 9 and
max1 = min{15, 25, 15} = 15. Hence, the heuristic finds an updated decoupling
(l′, u′) = ((0, 9, 13), (0, 15, 13)).

Complexity of the Heuristic. As the reader quickly observes, a naive imple-
mentation of Algorithm 1 would require O(n2)-time to obtain an updated decou-
pling: To update a single variable i ∈ Tf , we have to compute mini and maxi.
This costs O(n) per variable and there may be n variables to update.

Fortunately, if there are O(n) updating steps, the computational cost per
step can be significantly reduced: First compute, for each i ∈ T , a priority
queue Qmin(i) of the entries uk − d∗

ik, k ∈ T , and a priority queue Qmax(i) of
the entries lk + d∗

ki, k ∈ T . The initialisation of these priority queues will cost
O(n . n log n) = O(n2. log n).

After a new commitment for a variable j, say [vj , wj], we have to compute a
decoupling update. It suffices to update the priority queues Qmin(i) and Qmax(i)

for every i ∈ Tf . In this case, the element uj − d∗
ij in the queue Qmin(i) has to

be changed to wj −d∗
ij and the element lj in queue Qmax(i) has to be changed to

vj + d∗
ji. Maintaining the priority order in the priority queues will cost O(log n)

per variable. Hence, the total cost for computing a new decoupling are O(n log n).
If there are O(n) updates, the total cost of performing these O(n) updates are
O(n2. log n) + O(n).O(n. log n) = O(n2. log n). Hence, the amortized time costs
per update are O(n. log n).

In the next section we will verify the quality of such maximal flexible decou-
plings experimentally, comparing them with maximum flexible total decouplings
and a static decoupling.

6 Experimental Evaluation

We discuss an experimental evaluation of the dynamic total decoupling method.
These experiments have been designed (i) to verify whether updating a decou-
pling indeed significantly increases the decoupling flexibility compared to using
a static decoupling and (ii) to verify whether the heuristic significantly reduces
the computational investments in updating as expected.

340 K.S. Mountakis et al.

Material. We applied our updating method to a dataset of STP benchmark
instances (see [11]). This dataset contains a series of sets of STP-instances with
STPs of varying structure and number of variables. Table 1 contains the main
characteristics of this benchmark set. The size of the STP-instances in this
dataset varies from instances with 41 variables with 614 constraints to instances
with 4082 nodes and 14110 constraints. In total, these sets contain 1122 STP-
instances. We used MATLAB (R2016b) on an iMac 3.2 Ghz, Intel Core i5, with
24 Gb memory to perform the experiments.

Table 1. STP Benchmarksets used in the experiments.

Benchmark set NR instances Min vars AV vars Max vars

bdh 300 41 207 401

Diamonds 130 111 857 2751

Chordalgraphs 400 200 200 200

NeilYorkeExamples 180 108 1333 4082

sf-fixedNodes 112 150 150 150

Method. For each instance in the benchmark set we first computed a maximum
decoupling (l, u) with its flexibility flex =

∑n
j=1(uj − lj), using the minimum

matching method. Then, according to an arbitrary ordering < t1, t2, . . . tn >
of the variables in T , each variable ti is iteratively committed to a fixed value
vi, where vi is randomly chosen in an interval (li, ui) belonging to the current
temporal decoupling (l, u). After each such a commitment, we compute a new
updated decoupling (li, ui) where Tc = {t1, . . . ti} and Tf = {ti+1, . . . tn}. The
total flexibility of the new decoupling (li, ui) is now dependent upon the n−i free
variables in Tf and will be denoted by f i

h. We initially set f0
h = flex. In order

to account for the decreasing number of free variables after successive updates,
we compute after each update the heuristic update flexibility per free variable in
Tf : f i

h/(n− i). To compare these flexibility measures with the static case, for the
latter we take the total flexibility of the free variables flex i =

∑n
j=i+1(uj−lj) and

then compute the flexibility per free time variable without updating: flex i/(n−i).
As a summary result for each benchmark instance k, we compute

1. the average over all updates of the static flexibility per free variable: av stat =∑n
i=1 flex

i/((n − i) · n)
2. the average over all updates of the heuristic update flexibility per free variable:

av h =
∑n

i=1 f i
h/((n − i) · n)

Note that the ratio rel flexh = av h/av stat indicates the impact of the
heuristic updating method for a particular instance: a value close to 1 indi-
cates almost no added flexibility (per time variable) by updating, but a value
of 2 indicates that the flexibility (per time variable) doubled by updating the
decoupling.

Dynamic Temporal Decoupling 341

Finally, we collected the rel flexh results per instance for each benchmark set
and measured their minimum, mean and maximum values per benchmark set.

Results. The rel flexh results are grouped by benchmark set and their mini-
mum, mean, and maximum per benchmark set are listed in Table 2.

Table 2. Statistics of flexibility ratio’s rel flexh of decoupling updates vss static decou-
pling per benchmark set.

Benchmark set Min Mean Max

bdh-agent-problems 1.00 1.00 1.002

Diamonds 1.34 1.95 2.39

Chordalgraphs 1.08 1.31 1.65

NeilYorkeExamples 1.20 1.74 2.39

sf-fixedNodes 1.21 1.38 1.78

As can be seen, except for bdh-agent-problems, dynamic updating of a tem-
poral decoupling increases the mean flexibility per variable rather significantly:
For example, in the diamonds and NeilYorke benchmark sets, updating almost
doubled the flexibility per free time variable.11

We conclude that, based on this set of benchmarks, one might expect a sig-
nificant increase in flexibility if a decoupling is updated after changes in commit-
ments have been detected, compared to the case where no updating is provided.

To verify whether the heuristic was able to reduce the computation time sig-
nificantly, unfortunately, we can only present partial results. The reason is that
for the more difficult instances in these benchmark sets, computing the updates
with an exact minimum matching method was simply too time-consuming.12

We therefore selected from each benchmark set the easy13 instances and col-
lected them in the easy-<benchmark> variants of the original benchmark sets.
We then measured the mean computation time per benchmark set for both
the exact and heuristic updating method and also the mean performance ratio
rel flex/rel flexh of the exact versus the heuristic update method. The latter
metric indicates how much the exact method outperforms the heuristic method
in providing flexibility per time variable. The results are collected in Table 3.
11 The reason that in the bdh-agent problems the updating did not increase, is prob-

ably due to the fact that in these instances, as we observed, the flexibility was
concentrated in a very few time point variables. Eliminating the flexibilities by com-
mitments of these variables did not affect the flexibility of the remaining variables
that much.

12 Some of the more difficult benchmark problems even did not finish within 36 h.
13 A benchmark problem instance in [11] was considered to be “easy” if the exact

update method finished in 15min. For the bdh-agent set we collected the instances
until easybdh 8 10 50 350 49, for the diamonds set all instances up to diamonds-38-
5.0, for the chordal graphs all instances until chordal-fixedNodes-150,5,1072707262,
for the NeilYorkeExamples all instances until ny-419,10, and for the sf-fixedNodes
the instances until sf-fixedNodes-150,5,1072707262.

342 K.S. Mountakis et al.

Table 3. Comparing the time (sec.) and performance ratio of the exact and heuristic
updating methods (easy variants of benchmark instances)

Benchmark set CPU heuristic CPU exact Performance ratio

easy-bdh-agent-problems 0.21 2.75 1.00

easy-diamonds 0.38 67.65 1.05

easy-chordalgraphs 0.78 12.6 1.06

easy-NeilYorkeExamples 0.61 135.62 1.01

easy-sf-fixedNodes 0.13 4.71 1.03

From these results we conclude that even for the easy cases, the heuristic
clearly outperforms the exact update method, being more than 10 times and
sometimes more than 200 times faster. We also observe that the heuristic method
does not significantly lose on flexibility: The performance ratio’s obtained are
very close to 1.

7 Conclusions and Discussion

We have shown that adapting a decoupling after a new variable commitment
has been made in most cases significantly increases the flexibility of the free,
non-committed, variables. We also showed that this updating method did not
induce any disadvantage to the actors involved: every commitment is preserved
and the current decoupling bounds are never violated. We introduced a simple
heuristic that replaces the rather costly computation of a decoupling with maxi-
mum flexibility by a computation of a decoupling with maximal flexibility. This
heuristic reduces the computation time per update from O(n3) to O(n · log n)
(amortized) time. As we showed experimentally, the computational investments
for the heuristic are significantly smaller, while we observed almost no loss of
flexibility compared to the exact method.

In the future, we want to extend this work to computing flexible schedules
for STPs: Note that the update heuristic also can be used to find a maximal
flexible schedule given a solution s of an STP. Such a solution is nothing more
than a non-optimal decoupling (s, s) for which, by applying our heuristic, an
O(n log n) procedure exists to find an optimal flexible schedule. Furthermore,
we are planning to construct dynamic decoupling methods in a distributed way,
like existing approaches to static decoupling methods have done.

References

1. Boerkoel, J., Durfee, E.: Distributed reasoning for multiagent simple temporal
problems. J. Artif. Intell. Res. (JAIR) 47, 95–156 (2013)

2. Brambilla, A.: Artificial Intelligence in Space Systems: Coordination Through
Problem Decoupling in Multi Agent Planning for Space Systems. Lambert
Academic Publishing, Germany (2010)

Dynamic Temporal Decoupling 343

3. Dechter, R.: Constraint Processing. Morgan Kaufmann, USA (2003)
4. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49,

61–95 (1991)
5. Floyd, R.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
6. Hunsberger, L.: Algorithms for a temporal decoupling problem in multi-agent plan-

ning. In: Proceedings of the Association for the Advancement of Artificial Intelli-
gence (AAAI-02), pp. 468–475 (2002)

7. Hunsberger, L.: Group decision making and temporal reasoning. Ph.D. thesis,
Harvard University, Cambridge, Massachusetts (2002)

8. van Leeuwen, P., Witteveen, C.: Temporal decoupling and determining resource
needs of autonomous agents in the airport turnaround process. In: Proceedings of
the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology, WI-IAT 2009, vol. 02, pp. 185–192. IEEE Computer
Society, Washington, DC, USA (2009)

9. Mountakis, S., Klos, T., Witteveen, C.: Temporal flexibility revisited: maximizing
flexibility by computing bipartite matchings. In: Proceedings Twenty-Fifth Inter-
national Conference on Automated Planning and Scheduling (2015). http://www.
aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10610

10. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall Inc., Upper Saddle River (1982)

11. Planken, L.: Algorithms for simple temporal reasoning. Ph.D. thesis, Delft
University of Technology (2013)

12. Planken, L., de Weerdt, M., van der Krogt, R.: Computing all-pairs shortest paths
by leveraging low treewidth. J. Artif. Intell. Res. 43(1), 353–388 (2012). http://dl.
acm.org/citation.cfm?id=2387915.2387925

13. Potra, F.A., Wright, S.J.: Interior-point methods. J. Comput. Appl. Math.
124(1–2), 281–302 (2000). http://www.sciencedirect.com/science/article/pii/
S0377042700004337. Numerical Analysis 2000. Vol. IV: Optimization and Non-
linear Equations

14. Wilson, M., Klos, T., Witteveen, C., Huisman, B.: Flexibility and decoupling in
the simple temporal problem. In: Rossi, F. (ed.) Proceedings International Joint
Conference on Artificial Intelligence (IJCAI), pp. 2422–2428. AAAI Press, Menlo
Park, CA (2013). http://ijcai.org/papers13/Papers/IJCAI13-356.pdf

15. Wilson, M., Klos, T., Witteveen, C., Huisman, B.: Flexibility and decoupling in
simple temporal networks. Artif. Intell. 214, 26–44 (2014)

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10610
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10610
http://dl.acm.org/citation.cfm?id=2387915.2387925
http://dl.acm.org/citation.cfm?id=2387915.2387925
http://www.sciencedirect.com/science/article/pii/S0377042700004337
http://www.sciencedirect.com/science/article/pii/S0377042700004337
http://ijcai.org/papers13/Papers/IJCAI13-356.pdf

	Dynamic Temporal Decoupling
	1 Introduction
	2 Preliminaries
	3 Total Decoupling by Minimum Matching
	4 Dynamic Decoupling by Updating
	5 A Fast Heuristic for Updating
	6 Experimental Evaluation
	7 Conclusions and Discussion
	References

