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Maximum likelihood estimation in
meta-analytic structural equation

modeling
Frans J. Oorta* and Suzanne Jakb,c
Meta-analytic structural equation modeling (MASEM) involves fitting models to a common population
correlation matrix that is estimated on the basis of correlation coefficients that are reported by a number
of independent studies. MASEM typically consist of two stages. The method that has been found to
perform best in terms of statistical properties is the two-stage structural equation modeling, in which
maximum likelihood analysis is used to estimate the common correlation matrix in the first stage, and
weighted least squares analysis is used to fit structural equation models to the common correlation
matrix in the second stage. In the present paper, we propose an alternative method, ML MASEM, that
uses ML estimation throughout. In a simulation study, we use both methods and compare chi-square
distributions, bias in parameter estimates, false positive rates, and true positive rates. Both methods
appear to yield unbiased parameter estimates and false and true positive rates that are close to
the expected values. ML MASEM parameter estimates are found to be significantly less bias than two-
stage structural equation modeling estimates, but the differences are very small. The choice between
the two methods may therefore be based on other fundamental or practical arguments. Copyright ©
2016 John Wiley & Sons, Ltd.

Keywords: meta-analysis; structural equation modeling; simulation study; maximum likelihood; weighted least
squares
1. Introduction

The combination of meta-analysis and structural equation modeling (SEM) for the purpose of testing hypothesized
models is called meta-analytic structural equation modeling or MASEM (Cheung and Chan, 2005a). Using MASEM,
information from multiple studies can be used to test a single model that explains the relationships between
a set of variables or to compare several models that are supported by different studies or theories. MASEM
typically consists of two stages (Viswesvaran and Ones, 1995). In the first stage, correlation matrices are tested
for homogeneity across studies and combined together to form a pooled correlation matrix. Several methods to
synthesize correlation matrices have been proposed and evaluated (e.g., Becker, 1992, 1995, 2009; Cheung and
Chan, 2005a; Hafdahl, 2007, 2008). In the second stage, a structural equation model is fitted to the pooled
correlation matrix. For this stage, also several methods have been proposed (see Zhang (2011) for an overview).
The method that is generally found to perform best in terms of statistical properties and flexibility is the two-
stage structural equation modeling (TSSEM) approach of Cheung and Chan (2005a). In this method, maximum
likelihood (ML) estimation is used to estimate a pooled correlation matrix (Stage 1), and weighted least squares
(WLS) estimation is used to fit structural equation models to this correlation matrix (Stage 2). The purpose of the
present paper is to propose and evaluate an alternative way of conducting MASEM, using ML estimation in all
steps of the procedure.
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1.1. Two-stage structural equation modeling

In Stage 1 of TSSEM, correlation matrices are tested for homogeneity across studies using multigroup modeling,
after which they are combined to form a pooled correlation matrix. In Stage 2, the pooled correlation matrix is
taken as the observed matrix in a SEM analysis. Cheung and Chan (2005a) use ML to estimate the pooled
correlation matrix in the first stage and WLS to estimate model parameters in the second stage. In Stage 2 WLS
estimation, the inversed matrix of asymptotic variances and covariances of the Stage 1 correlation estimates
are used as the weight matrix in the WLS optimization function. This ensures that correlation coefficients that
are estimated with more precision (for example, coefficients that are based on more or larger studies) in Stage
1 obtain more weight in the estimation of model parameters in Stage 2.

Cheung and Chan (2005a) conducted a large simulation study in which the performance of TSSEM was compared
with two univariate approaches and onemultivariate approach. In the univariate approaches, the correlation elements
are pooled separately across studies based on bivariate information only. Cheung and Chan (2005a) use the term
univariate-r method to refer to the approach from Hunter and Schmidt (2004), which involves pooling the
untransformed correlation coefficients. The univariate-z method refers to the method of Hedges and Olkin (1985),
who proposed using Fisher’s z-transformed correlation coefficients. The multivariate approach with which they
compared TSSEM is the generalized least squares (GLS) method (Becker, 1992, 1995, 2009). The simulation showed
that the GLS method rejects homogeneity of correlation matrices too often and leads to biased parameter estimates
at Stage 2. The univariate methods lead to inflated Type 1 errors, while TSSEM leads to unbiased parameter estimates
and false positive rates close to the expected rates. The statistical power to reject an underspecified factor model was
extremely high for all four methods. TSSEM thus came out as best out of these methods. A software to apply TSSEM is
readily available in the R-Package metaSEM (Cheung, 2015a), which relies on the OpenMx package (Boker et al., 2011)
to fit the Stages 1 and 2models. In this way, metaSEM provides parameter estimates with standard errors, a chi-square
measure of fit, and likelihood-based confidence intervals for parameters at both stages of the analysis.
1.2. Meta-analytic structural equation modeling with maximum likelihood estimation

In TSSEM, the pooled correlation matrix is treated as being observed, while the precision of the estimated
correlation coefficients is taken into account by using WLS estimation to fit a structural equation model in Stage
2. Instead, the structural equation model can be fitted to the observed correlations directly, by imposing
restrictions on the Stage 1 model. In this way, the structural equation model is nested in the Stage 1 model,
and both models can be fitted through ML estimation. This is an attractive approach because it provides an ML
chi-square to evaluate the overall goodness-of-fit of the structural equation model and a chi-square difference test
to evaluate the significance of the difference in fit between the two models. We will refer to this method as
maximum likelihood meta-analytic structural equation modeling (ML MASEM). In the next sections, we describe
TSSEM as a two-stage approach and ML MASEM as a three-step approach to MASEM. The first two steps of ML
MASEM are similar to the first stage of TSSEM, as will be explained after introducing the two methods.
Subsequently, we will compare the performance of TSSEM and ML MASEM in a simulation study.
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2. Two-stage structural equation modeling

Stage 1: Testing homogeneity of correlation matrices

Let Rg be the pg × pg sample correlation matrix and pg be the number of observed variables in the gth study.
Not all studies include all variables. For example, in a meta-analysis of three variables, the correlation matrices in
the first three studies may look like this:

R1 ¼
1

r21_1 1

r31_1 r32_1 1

2
64

3
75; R2 ¼

1

r32_2 1

� �
; and R3 ¼

1

r21_3 1

� �
:

Here, Study 1 contains all variables, Study 2 misses Variable 1, and Study 3 misses Variable 3. An estimate of the
population correlation matrix Ρ of all q variables is obtained by fitting a multigroup SEM model, where the model
for each group (study) is

Σg ¼ Dg Mg P Mg
T

� �
Dg: (1)

In this model, Ρ is the q× q population correlation matrix with diag(Ρ) = I, matrix Mg is a pg × q selection matrix
that accommodates smaller correlations matrices from studies with missing variables (pg< q), and Dg is a pg × pg
diagonal matrix that accounts for differences in scaling of the variables across the G studies. Setting Dg equal
across studies (Dg =D) would imply equality of covariance matrices rather than correlation matrices (Cheung
and Chan, 2009). Correct parameter estimates can be obtained using ML estimation, optimizing
Copyright © 2016 John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 156–167
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FML ¼
XG
g¼1

Ng

N
FML gð Þ; (2)

where Ng is the sample size in study g and N=N1 +N2 +…+NG, and

FML gð Þ ¼ log Σg

�� ��� log Sg
�� ��þ trace SgΣ�1

g

� �
� pg; (3)

where Sg is the pg × pg sample variance–covariance matrix in the gth study. In applications of TSSEM, Sg is often
not observed, but Rg is. In such cases, Rg can be substituted for Sg, and the estimated elements in Dg will be close
to 1 (Cheung, 2015b).

A chi-square measure of fit for the model in Equation [1] is available by comparing its FML value with the FML

value of a saturated model that is obtained by leaving out the selection matrix Mg and replacing Ρ with Ρg,

Σg ¼ Dg Pg Dg; (4)

with diag(Ρg) = I for all g. The difference between the resulting FML values of the models in Equations [1] and [4],
multiplied by N�G, has a chi-square distribution with degrees of freedom equal to the difference in numbers of
free parameters. If the chi-square value of this likelihood ratio test is significant, then the hypothesis of
homogeneity must be rejected.

If the correlation matrices are not homogeneous, it may not make sense to create a single pooled correlation
matrix to test the structural equation model in Stage 2. Possible solutions are to create subgroups of studies with
homogenous correlation matrices and to fit different Stage 2 models to each subgroup (Cheung and Chan,
2005b), or to allow study-level variation in the correlation coefficients by using a random effects approach
(Cheung, 2014). In the present study, we assume that homogeneity holds, and we do not evaluate homogeneity
or consider heterogeneous situations.

Stage 2: Fitting structural equation models

Cheung and Chan (2005a) proposed to use WLS estimation to fit structural equation models to the pooled
correlation matrix Ρ that is estimated in Stage 1. Fitting the Stage 1 model provides estimates of the population
correlation coefficients in Ρ as well as the asymptotic variances and covariances of these estimates, V. In Stage 2,
hypothesized structural equation models are fitted to the Stage 1 estimates of Ρ by minimizing the WLSs fit
function (also known as the asymptotically distribution free fit function; Browne, 1984):

FWLS ¼ r� ρMODELð ÞTV-1 r� ρMODELð Þ; (5)

where r is a column vector with the estimates of the unique elements in Ρ, indicated with r (instead of ρ-hat)
because the estimates are treated as observed values in the Stage 2 model. ρMODEL is a column vector with the
unique elements in the model implied correlation matrix (ΡMODEL), and V�1 is the inversed matrix of asymptotic
variances and covariances of the Stage 1 estimates, which is used as the weight matrix. For example, in order
to fit a factor model with k factors, one would specify ΡMODEL as

PMODEL ¼ Λ Φ ΛT þ Θ; (6)

where Φ is a k by k covariance matrix of common factors, Θ is a q by q (diagonal) matrix with residual variances,
and Λ is a q by k matrix with factor loadings. Minimizing the WLS function leads to correct parameter estimates
Figure 1. Population model used in data generation. Note: Fitting this model to data leads to eight degrees of freedom (6 * 7/2 = 21 observed
statistics, 6 factor loadings + 6 residual variances + 1 factor correlation = 13 estimated parameters, df = 21� 13 = 8). When fitting the model to
a correlation matrix, the diagonal elements do not count as observed statistics, and the diagonal elements of the model implied matrix are

constrained to be 1, leading to the same number of degrees of freedom.

Copyright © 2016 John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 156–167
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with appropriate standard errors and a WLS-based chi-square test statistic TWLS (Cheung and Chan, 2005a,
Cheung, 2010).

Analyzing a correlation matrix as if it is a covariance matrix may lead to incorrect results (Cudeck, 1989). A
solution to this problem is to constrain the diagonal of the model implied correlation matrix to unity during
estimation (diag(ΡMODEL) = diag(I)).

Examples of fitting path models and factor models using TSSEM using the metaSEM-package can be found in
Cheung (2015a, 2015b) and Jak (2015). In addition, we provide an example of fitting the 2-factor model from
Figure 1 to a generated dataset based on 15 studies with a sample size of 200 each. The data and R script can
be found in the Supporting Information.
3. Maximum likelihood meta-analytic structural equation modeling

As an alternative to using WLS for fitting a ΡMODEL to the estimated Ρ in a single-group analysis, we propose to
retain the multigroup analysis and to use ML for fitting a common ΡMODEL to the observed Rg matrices. ML MASEM
consistently uses the individual studies’ correlation matrices as input to the analysis. The structural equation
model can be fitted to the observed Rg matrices by substituting ΡMODEL for Ρ in Equation [1],

Σg ¼ Dg Mg PMODEL Mg
T

� �
Dg: (7)

Multigroup ML analysis of Equation [7] yields an ML chi-square of overall goodness-of-fit (TML) and correct
standard errors, just as multigroup ML analysis of Equation [1]. Moreover, as ΡMODEL in Equation [7] is a restriction
of Ρ in Equation [1], the difference between the associated chi-square values has a chi-square distribution itself
with degrees of freedom equal to the difference in the numbers of free parameters in Ρ and ΡMODEL.

For example, if we choose the factor model of Equation [6] as ΡMODEL, then the multigroup structural equation
model is given by

Σg ¼ Dg Mg Λ Φ ΛT þΘ
� �

Mg
T

� �
Dg: (8)

Just as with TSSEM, a constraint on the diagonal of the model implied correlation matrix is added (diag(ΡMODEL)
= diag(I)), to ensure the correctness of the results when analyzing a correlation matrix. In summary, ML MASEM
consists of three steps, involving three nested models:

• Step 0: The saturated model (Equation [4]),
• Step 1: The homogeneity model (Equation [1]), and
• Step 2: The structural equation model (Equation [7]).

Table 1 gives an overview of the three models and the associated tests. The difference in fit of the first two
models provides a test of the homogeneity of correlation coefficients, and the difference in fit of the Steps 1
and 2 models provides a test of the structural equation model.

The ML MASEM models can be fitted using the OpenMx package (Boker et al., 2011). In the Supporting
Information, we provide annotated syntax to fit the two-factor model from Figure 1 to a simulated dataset with
15 studies with a sample size of 200 each.

3.1. A priori comparison of TSSEM and ML MASEM

The Step 1 model in ML MASEM is identical to the Stage 1 model in TSSEM. The difference between the two
procedures lies in the way the structural equation model is fitted to the data. Where TSSEM fits the structural
equation model to a single (estimated) pooled correlation matrix, ML MASEM fits the structural equation model
to the (observed) correlation matrices of all studies in a multigroup model. As the Step 2 model in ML MASEM still
is a multigroup model, you could say that the full three-step ML MASEM procedure stays within Stage 1 of TSSEM.

In ML MASEM, the Step 2 model is a special case of the Step 1 model, and the Step 1 model is a special case of
the Step 0 model. As a result, one could evaluate the fit of the structural equation model with the chi-square based
on the difference in fit of the Steps 0 and 2 models directly. A significant chi-square would then indicate
Table 1. An overview of models and associated tests in ML MASEM.

Model Equation Likelihood ratio test

Model 0 (saturated) Σg =Dg Ρg Dg
T

—

Model 1 (Step 1) Σg =Dg (Mg Ρ Mg
T) Dg

T Homogeneity of correlations (Model 1 versus Model 0)
Model 2 (Step 2) Σg =Dg (Mg ΡMODEL Mg

T) Dg
T Fit of structural equation model (Model 2 versus Model 1)

ML MASEM, maximum likelihood meta-analytic structural equation modeling.
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heterogeneity of correlation matrices, or misfit of the structural equation model, or both. To separate these two
sources of misfit, it is recommended to evaluate the homogeneity of the correlation matrices first (by comparing
model fit in Steps 0 and 1) and to evaluate the fit of the structural equation model by comparing the fit of the Step
2 model with the fit of the Step 1 model. In the remainder of this article, we focus on the structural equation
models, and all reported test statistics associated with ML MASEM are based on a comparison of the Step 1 model
with the Step 2 model.

Maximum likelihood meta-analytic structural equation modeling may have some statistical advantages over
TSSEM because the same estimation method is used for all models, and the Steps 1 and 2 models are nested.
For this reason, it is interesting to compare the performance of ML MASEM and TSSEM in terms of estimation bias,
false positive rates, and true positive rates. It is noted, however, that we already know that TSSEM yields parameter
estimates, false positive rates, and true positive rates that are very close to the expected values (Cheung and Chan,
2005a). Still, we expect that the statistical performance of ML MASEM is at least as good as the performance of
TSSEM.
4. Simulation study

We will use simulated data to investigate the performance of ML MASEM and compare it with TSSEM as proposed
by Cheung and Chan (2005a). As the two methods involve identical homogeneity models, we will focus on the
structural equation models and calculate estimation bias, false positive rates, and power using the structural
equation models in both the multigroup ML estimation in ML MASEM and the single group WLS estimation in
TSSEM. The design and population model of our simulation study are chosen similar to the design and population
model in the Cheung and Chan (2005a) study.

As a result, we have numbers of studies equal to 5, 10, and 15, with 50, 100, 200, 500, and 1000 respondents
each. The population model is a two-factor model with six variables, with parameter values for Λ, Φ, and Θ as
shown in Figure 1. We generated continuous multivariate normal data using the MASS package in the R program
(R Development Core Team, 2011), after which we computed the correlation matrices. As it is not realistic that all
studies reported correlations between all variables, some variables were removed from some studies. Table 2
shows the patterns of missing variables in conditions with 5, 10, and 15 studies. These patterns are equal to
the missing data patterns in Cheung and Chan (2005a). Conditions with more studies have more missing variables
than conditions with fewer studies; the percentages of missing variables are equal to 20%, 33%, and 46% for
conditions with 5, 10, and 15 studies, respectively. This seems to be realistic as researchers who want to include
more studies in their meta-analysis will include more studies with missing variables. As the pattern is fixed a priori,
the missingness may be considered missing completely at random (Graham et al., 1996) and will not bias
parameter estimates. We generated 500 datasets for each of the 15 conditions. The TSSEM and ML MASEM
analyses were performed using the same datasets, to make sure that differences in the outcomes are due to
differences between the methods and not due to differences in the data. With 500 datasets, the 95% prediction
interval around the chosen α-level of 0.05 is [0.031–0.069].
Table 2. The patterns of missing data in conditions with 5, 10, and 15 studies.

Conditions with 5 studies Conditions with 10 studies Conditions with 15 studies

Observed variable Observed variable Observed variable

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

Study 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Study 2 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
Study 3 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0
Study 4 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1
Study 5 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1
Study 6 0 0 0 1 1 1 0 0 0 1 1 1
Study 7 1 0 0 0 1 1 1 0 0 0 1 1
Study 8 1 1 0 0 0 1 1 1 0 0 0 1
Study 9 1 1 1 0 0 0 1 1 1 0 0 0
Study 10 0 1 1 1 1 0 0 0 1 1 1 0
Study 11 0 0 0 0 1 1
Study 12 1 0 0 0 0 0
Study 13 1 1 0 0 0 0
Study 14 0 1 1 0 0 0
Study 15 0 0 0 1 1 0

Note: 1 = variable present in study; 0 = variable absent in study.

Copyright © 2016 John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 156–167
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4.1. Estimation bias

We investigated estimation bias by fitting the model of Figure 1 to the data with both ML MASEM and TSSEM. The
factor variances are not estimated but fixed at unity for identification. The estimated parameters are as follows: six
factor loadings, six residual variances, and one covariance between the two factors. The percentage of relative
estimation bias is calculated as mean(estimate�population value) / population value * 100. According to Muthén
et al. (1987), relative estimation bias less than 10% can be considered negligible. Because positive and negative
bias will cancel each other out in the calculation of relative bias, we also evaluate absolute bias, calculated as
mean(|estimate� population value|) / population value * 100. Differences in absolute bias in the estimation of
factor loadings and factor covariances were tested through analysis of variance with “method” as a within factor
with two levels (ML MASEM and TSSEM) and number of studies (three levels) and sample size of the studies (five
levels) as between factors.

4.2. False positive rates

The distribution of TML (obtained from ML MASEM) and TWLS (obtained from TSSEM) and false positive rates for the
tests of overall goodness-of-fit were inspected by fitting the correct model (Figure 1) to the datasets (df = 8,
α= 0.05). The mean, standard deviation, and rejection rates of TML and TWLS, as well as QQ-plots and
Kolmogorov–Smirnov tests of the empirical versus theoretical chi-square distributions were used to evaluate
the TML and TWLS distributions. We also calculated false positive rates for the significance test of a single parameter
estimate, by fitting a model in which Variable 4 has a redundant cross loading on the first factor. False positives for
this single parameter estimate were determined in two ways. Firstly, on the basis of the likelihood ratio test, by
checking the chi-square difference between models with and without the redundant parameter (df = 1,
α= 0.05). Secondly, on the basis of the 95% likelihood based confidence interval (Neale & Miller, 1997) of the
estimate for the redundant parameter, by counting the number of times that the interval did not include zero.
Differences in false positive rates associated with ML MASEM and TSSEM were tested using McNemar’s test for
dependent proportions, at a significance level of 0.05.

4.3. True positive rates (power)

To investigate the power to detect non-zero parameters, we generated data according to the population model
given in Figure 1 but with an additional 0.10 loading of Variable 4 on the first factor. We fitted models with and
without the cross loading to these datasets. Power was determined for the overall goodness-of-fit (by counting
true positives of the chi-square difference test with df = 8, α= 0.05) and for the test of the single additional 0.10
loading (chi-square difference test with df = 1, α=0.05). In addition, we counted the number of times that the
95% confidence interval of the additional parameter estimate did not include zero.

We compare the power of ML MASEM and TSSEM to each other and to the power that is expected on the basis
of the non-centrality parameter that was estimated by fitting the covariance matrix implied by the Stage 2 model
(Model 2 as in Figure 1) to the covariance matrix implied by the Stage 2 model with the cross loading (Model 2
with the additional loading) (Saris and Satorra (1993). Differences in true positive rates with ML MASEM and TSSEM
were tested using McNemar’s tests for dependent proportions, at a significance level of 0.05.
1
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5. Results

5.1. Convergence

All results are based on only those datasets for which convergence was reached at all stages or steps of the
modeling process of the particular method. The number of analyzed datasets varies between 493 and 500, but
in most conditions, neither method showed any convergence problem (cf. the last two columns of Tables 3, 4,
6, and 7).

5.2. Estimation bias

Table 3 gives the percentages of relative estimation bias in a selection of parameters: the first three factor loadings
and the covariance between the two common factors. Although ML MASEM generally shows less estimation bias
than TSSEM, all bias is very small, ranging from 0.0% to (minus) 3.5%. Percentages of absolute bias in Table 4 are
larger than the percentages of relative bias, ranging from 1.2% to 8.7% for the factor loadings, which is still well
below the 10% to 15% considered satisfactory by Muthén et al. (1987). However, absolute bias in the factor
covariance is more than 20% in the conditions with the smallest sample size. Absolute bias gets smaller with
increasing sample size.

Although the differences in bias between ML MASEM and TSSEM are very small, analysis of variances on the
absolute bias indicate that ML MASEM estimates are significantly less biased in conditions with smaller sample
sizes (N= 50, N=100). The results of the significance tests can be found in Table S1 in the Supporting Information.
Copyright © 2016 John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 156–167
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Table 4. Percentages of absolute estimation bias for selected parameters.

λ11 λ21 λ31 ϕ21 #Converged

ML WLS ML WLS ML WLS ML WLS ML WLS

5
studies

N= 50 6.982 7.133 7.566 7.759 8.429 8.721 22.385 22.861 498 497
N= 100 5.115 5.137 5.617 5.655 6.369 6.520 15.946 16.044 499 499
N= 200 3.494 3.475 3.651 3.656 4.516 4.565 11.086 11.175 500 500
N= 500 2.199 2.203 2.187 2.192 2.657 2.655 7.090 7.111 500 500
N= 1000 1.484 1.491 1.678 1.678 1.994 2.009 5.136 5.143 499 500

10
studies

N= 50 6.164 6.237 6.220 6.357 7.029 7.408 20.354 20.899 500 500
N= 100 3.980 3.973 4.495 4.492 4.961 5.035 13.626 13.749 500 500
N= 200 2.830 2.825 3.135 3.127 3.557 3.586 9.796 9.843 500 500
N= 500 1.860 1.861 1.925 1.916 2.359 2.364 5.534 5.542 500 500
N= 1000 1.237 1.236 1.326 1.327 1.643 1.636 4.347 4.347 500 497

15
studies

N= 50 5.738 5.704 6.147 6.289 7.431 7.732 18.855 19.185 500 500
N= 100 4.034 3.976 4.311 4.317 5.690 5.711 12.938 13.056 500 499
N= 200 2.707 2.738 3.042 3.046 3.714 3.736 9.583 9.663 499 500
N= 500 1.721 1.729 1.821 1.826 2.243 2.257 5.779 5.781 493 500
N= 1000 1.211 1.209 1.363 1.361 1.606 1.622 4.142 4.138 493 494

Overall 3.384 3.395 3.632 3.667 4.280 4.371 11.106 11.236

ML, maximum likelihood; ML MASEM, maximum likelihood meta-analytic structural equation modeling; WLS,
weighted least squares; TSSEM, two-stage structural equation modeling.
Note: ML=ML MASEM, WLS= TSSEM. Convergence indicates the number of datasets for which the analysis
converged to a solution. Bold figures indicate cases in which TSSEM results were smaller than ML MASEM results.
Absolute bias is per condition as: mean(|estimate�population value|) / population value * 100.

F. J. OORT AND S. JAK
The main effect of number of studies and the main effect of sample size were significant for all parameters. For two
of the parameters, their interaction effect was also significant. Inspection of the means per condition (Table 4) shows
that absolute estimation bias decreases with larger sample sizes and with more studies, and that, for the first two
factor loadings, the effect of sample size is stronger with lesser studies. There were significant main effects of
method on all parameters except the first factor loading, indicating significantly less bias with ML MASEM than with
TSSEM. For all parameters, there was a significant interaction effect of method and sample size on bias, indicating
that the decrease in bias with increasing sample size is stronger with ML MASEM than with TSSEM.
Table 5. Means, standard deviations, and rejection rates of TML and TWLS (df = 8, α=0.05).

TML (ML MASEM) TWLS (TSSEM)

Mean sd Rejection rate Mean sd Rejection rate

5 studies N= 50 8.283 3.964 0.066 8.383 4.045 0.068
N= 100 8.249 4.233 0.066 8.303 4.265 0.070
N= 200 7.805 3.791 0.048 7.831 3.806 0.048
N= 500 8.203 4.258 0.052 8.219 4.270 0.052
N= 1000 8.175 4.160 0.054 8.180 4.159 0.054

10 studies N= 50 8.464 4.348 0.064 8.640 4.520 0.074
N= 100 8.007 4.102 0.050 8.095 4.200 0.058
N= 200 8.014 3.988 0.050 8.053 4.030 0.052
N= 500 8.185 4.093 0.062 8.199 4.108 0.062
N= 1000 8.009 3.937 0.042 8.050 3.934 0.042

15 studies N= 50 8.524 4.130 0.078* 8.766 4.372 0.092*
N= 100 8.076 4.198 0.062 8.151 4.285 0.066
N= 200 7.924 3.862 0.044 7.973 3.921 0.046
N= 500 7.785 3.797 0.037 7.855 3.844 0.042
N= 1000 8.148 4.014 0.055 8.231 4.037 0.059

ML MASEM, maximum likelihood meta-analytic structural equation modeling; TSSEM, two-stage structural
equation modeling.
Note: Bold figures indicate cases in which TSSEM results were closer to the expected mean (8.00), standard
deviation (4.00), or rejection rate (0.05).
*The rejection rates for ML MASEM and TSSEM are significantly different at α=0.05.
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Table 6. False positives rates for redundant model parameter.

LRT (α=0.05) 95% CI #Converged

ML MASEM TSSEM ML MASEM TSSEM ML MASEM TSSEM

5 studies N= 50 0.057 0.063 0.055 0.063 493 492
N= 100 0.050 0.044 0.050 0.044 498 498
N= 200 0.050 0.052 0.050 0.052 500 500
N= 500 0.046 0.048 0.046 0.048 500 500
N= 1000 0.056 0.060 0.054 0.060 499 499

10 studies N= 50 0.040 0.042 0.040 0.042 497 496
N= 100 0.044 0.048 0.044 0.048 499 500
N= 200 0.046 0.046 0.046 0.046 499 499
N= 500 0.068 0.066 0.066 0.066 500 499
N= 1000 0.052 0.052 0.052 0.052 500 496

15 studies N= 50 0.048 0.050 0.048 0.050 498 499
N= 100 0.058 0.058 0.058 0.056 497 497
N= 200 0.068 0.068 0.068 0.066 499 499
N= 500 0.055 0.054 0.057 0.054 493 500
N= 1000 0.047 0.046 0.047 0.046 493 496

ML MASEM, maximum likelihood meta-analytic structural equation modeling; TSSEM, two-stage structural equation
modeling; CI, confidence interval; WLS, weighted least squares; ML, maximum likelihood; LRT, likelihood ratio test.
Note: Bold figures indicate cases in which WLS has better (lower) false positive rates than ML. Proportions are
calculated based on converged solutions only. Rejection rates do not differ significantly between ML and WLS
in any of the conditions at α= 0.05.
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Overall, ML MASEM is doing significantly better than TSSEM, although the differences are so small that they
may be negligible in practice. In the Supporting Information (Tables S2 and S3), we added the average width
and the coverage rates of the 95% likelihood-based confidence intervals for the selection of parameters. The
estimates and coverage rates of the confidence intervals were very similar for ML MASEM and TSSEM.

5.3. Distributions of the test statistics

Table 5 gives the means and standard deviations of the test statistics obtained with ML MASEM (TML) and TSSEM
(TWLS). In all conditions, both test statistics approximate the chi-square distribution well, as the mean and standard
Table 7. Theoretical (Exp.) and empirical (ML and WLS) power of the overall test, the likelihood ratio test, and
the likelihood-based confidence intervals to detect a cross loading of 0.10 (α=0.05).

N Overall test LRT 95% CI #Converged

Exp. ML WLS Exp. ML WLS ML WLS ML WLS

5 studies 50 0.102 0.114 0.127 0.216 0.236 0.254 0.242 0.254 496 495
100 0.170 0.170 0.160 0.384 0.377 0.388 0.377 0.390 499 499
200 0.331 0.317 0.311 0.656 0.643 0.647 0.643 0.647 499 499
500 0.764 0.736 0.724 0.962 0.962 0.960 0.962 0.960 497 500

1000 0.983 0.984 0.980 1.000 1.000 1.000 1.000 1.000 499 497
10 studies 50 0.118 0.112 0.133 0.259 0.264 0.283 0.266 0.281 498 498

100 0.208 0.210 0.222 0.462 0.452* 0.471* 0.452* 0.471* 500 499
200 0.416 0.396 0.400 0.753 0.718* 0.730* 0.718* 0.730* 500 500
500 0.868 0.830 0.828 0.987 0.986 0.986 0.986 0.986 500 500

1000 0.997 0.998 0.998 1.000 1.000 1.000 1.000 1.000 500 493
15 studies 50 0.113 0.112 0.130 0.246 0.222 0.234 0.222 0.232 495 500

100 0.196 0.244 0.254 0.440 0.436 0.432 0.434 0.436 500 498
200 0.391 0.400 0.400 0.727 0.726 0.724 0.726 0.730 500 497
500 0.842 0.852 0.852 0.982 0.974 0.974 0.974 0.974 494 500

1000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 499 493

ML, maximum likelihood; WLS, weighted least squares; ML MASEM, maximum likelihood meta-analytic structural
equation modeling; TSSEM, two-stage structural equation modeling; LRT, likelihood ratio test.
Note: ML=ML MASEM, WLS= TSSEM. Bold figures indicate cases in which TSSEM power is closer to the expected
power that is based on the non-centrality parameter than ML MASEM.
*The tests rejection rates for ML MASEM and TSSEM within the condition are significantly different at α= 0.05.
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deviations are very close to their expected values (mean= 8, sd = 4), with the TML values generally slightly closer
than the TWLS values. Table 4 also shows the false positive rates, that is, the rates of rejecting the correct model.
The false positive rates appear to converge to the expected value (0.05) when the sample size increases, which is
in accordance with the findings of Cheung and Chan (2005a). The results are very similar for ML MASEM and
TSSEM, with the only statistically significant difference found in the condition with 15 studies with sample sizes
of 50. In the Supporting Information, we provide QQ-plots and the results of Kolmogorov–Smirnov tests
comparing the distributions of TML and TWLS with the theoretical distribution and with each other. The plots
and tests indicate that there are no significant differences between the distributions of TML and TWLS in any of
the conditions. In the condition with 15 studies of size 50, both TML and TWLS differed significantly from the
theoretical distribution (p=0.03 for TML, p< 0.01 for TWLS). In the condition with 10 studies of size 50, only TWLS

differed significantly (p= 0.04).

5.4. False positive rates of redundant parameter

The false positive rates of the redundant cross loading are shown in Table 6. These were very close to the
expected 0.05 in all conditions and were not found to differ significantly between ML MASEM and TSSEM.

5.5. True positive rates (power)

Table 7 gives the true positive rates or power to reject the model without a cross loading for the overall goodness-
of-fit test (df = 8), for single parameter test (df = 1), and for the 95% confidence interval. As expected, the power
increases with sample size. The number of studies does not affect power that much, probably because the
numbers of studies do not vary much (5, 10, and 15) and the number of missing variables increases with the
number of studies. Both methods reach acceptable power levels with sample sizes of 500 or larger. ML MASEM
generally shows power results that are somewhat closer to the expected power than TSSEM, but the TSSEM often
yields slightly more true positives. In the two conditions with ten studies and sample sizes of 100 or 200, the
rejection rate for TSSEM was found to be significantly higher than the rejection rate for ML MASEM. The power
in the conditions with 15 studies is somewhat lower than in the conditions with ten studies. This is caused by
the simulation design with larger numbers of missing values in conditions with 15 studies. Specifically, none of
the five studies that were added in the 15-study condition provided correlations for Variable 4 with the three
indicators of the first factor (Variables 1 to 3), because either Variable 4 was missing or Variables 1 to 3 were
missing. When we evaluated the power of the test on a cross loading of Variable 4 on the first factor, the datasets
in the conditions with 15 studies therefore did not contain any additional information regarding this cross loading.
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6. Discussion

The simulation study showed that ML MASEM and TSSEM generally yield very similar results, although ML MASEM
parameter estimates are significantly less biased when sample sizes are small. Test statistics, confidence intervals,
false positive rates, and true positive rates do not differ between the two methods.

6.1. Advantages and disadvantages of ML MASEM

Although the differences were not large, ML MASEM leads to significantly less bias in parameter estimates than
TSSEM. Besides differences in average estimation bias, there are some fundamental and practical differences,
which may guide a researcher’s choice between the two methods. A theoretical advantage of ML MASEM is that
the same estimation method is used for all models involved, so that the structural equation model can be
evaluated as a special case of the homogeneity model.

Maximum likelihood meta-analytic structural equation modeling is also more flexible in the application of
equality constraints across studies in the structural equation model: Some parameters in the structural equation
model could be set equal across a subset of studies, another parameter could be set equal across another subset
of studies and yet other parameters could be freely estimated in all studies, provided that the (groups of) studies
contain enough identification information. Free estimation of model-implied correlation coefficients in specific
studies is always possible, but if one wants to free a specific parameter for a group of studies, then these studies
must of course contain sufficient information to identify this parameter.

Maximum likelihood meta-analytic structural equation modeling can be conducted with OpenMx, but
specifying the OpenMx script is laborious. It would be useful to automate the writing of the OpenMx script. For
now, we have made an example OpenMx script available as Supporting Information, which can be modified to
fit new examples.

The example script also shows how the root mean square error of approximation (RMSEA) and comparative fit
index (CFI) of the structural equation model can be calculated using the output of the different models. The
RMSEA is calculated using the chi-square difference between Models 2 and 1, that is, the chi-square value that
represents the misfit of the structural model. The CFI is calculated using this chi-square and the chi-square
Copyright © 2016 John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 156–167
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difference obtained by fitting an independence model as Model 2. We are not aware of earlier work showing the
correctness of the CFI and RMSEA obtained in this way. However, as the chi-square values for the structural model
are found to be very similar for ML MASEM and TSSEM in our simulation study, the calculated fit indices will also
be very similar.
6.2. Advantages and disadvantages of TSSEM

Two-stage structural equation modeling has practical advantages over ML MASEM. In TSSEM, the structural equation
model is not a multigroup model, so that estimation convergence is much faster than in ML MASEM. The necessity
to calculate a weight matrix (the inverse of the matrix of asymptotic variances and covariances of the pooled
correlation coefficients) may count as a disadvantage of TSSEM, but fortunately the readily available R package
metaSEM takes this burden off of the user. As a result, TSSEM may actually be easier to use than ML MASEM.

Another possible disadvantage of TSSEM is that the pooled correlation matrix that is estimated in the
multigroup SEM in Stage 1 is taken as an observed matrix in the single group SEM in Stage 2. In ML MASEM, misfit
in the structural model may be partly alleviated by adjusting the estimates of the pooled correlations, which is not
possible in TSSEM, where the pooled correlation matrix of Stage 1 is not part of the model. This could lead to
larger rejection rates with TSSEM. Still, in our study, TSSEM did not show more false positives than ML MASEM,
but it did yield slightly more true positives. Notably, true positive rates for both methods were generally
somewhat higher than expected.
6.3. Handling heterogeneity with TSSEM and ML MASEM

In applications of MASEM, correlation matrices will often not be homogenous, rendering the fixed effects Stage 2
models inappropriate. One of the options to handle heterogeneity is to create subgroups of studies that can be
considered homogeneous with respect to the correlation coefficients. These subgroups can be created based
on study-level variables such as type of respondents in the study, experimental versus non-experimental studies,
and type of measurement instruments used. If no interesting study-level variables are available, it may be an
option to use a cluster analytic approach (Cheung and Chan, 2005b).

Another alternative is to use random effects modeling, which does not assume homogeneity of effect sizes across
studies. Cheung (2013, 2014) shows how the Stage 1 model can be estimated using the random effects approach,
after which the study-level variance is accounted for, and the Stage 2 model can be fitted to the pooled correlation
matrix using the asymptotic variances and covariances from Stage 1 as the weight matrix in WLS estimation.

Maximum likelihood meta-analytic structural equation modeling has not yet been extended to include random
effects. It would be useful to be able to estimate study-level variance for the Stage 2 parameters directly. As
mentioned earlier, one way in which ML MASEM can handle heterogeneity is to freely estimate one or more of
the parameters across studies.
6.4. Future research

We compared the performance of ML MASEM with TSSEM, but not to other methods, as in earlier research TSSEM
was found to have the best statistical properties of the available MASEM methods (Cheung and Chan, 2005a).
However, TSSEM and ML MASEM are not yet compared with newer versions of the GLS method (Hafdahl,
2007), which could be the focus of future research.

As mentioned before, the calculation of fit indices like the RMSEA and CFI within ML MASEM is new. Further
research is needed to evaluate the appropriateness of these fit indices.

The simulation study we performed was small and only served to investigate whether ML MASEM is a viable
alternative to TSSEM. The results obtained in our study cannot be generalized to the broad range of realistic
conditions one could imagine. Although we found no differences between TSSEM and ML MASEM in the evaluated
conditions, there may still be situations in which one of the methods outperforms the other. It could, for example, be
that with larger and more complex models, in combination with small numbers of studies and small sample sizes,
the estimated weight matrix in TSSEM becomes unstable, leading to a better performance with ML MASEM. Future
studies may examine the performance of the methods with different numbers of studies, more variables, more
complex models, varying sample sizes, and with more variation in numbers and patterns of missing variables.
6.5. Conclusion

Our simulation study showed that using ML MASEM leads to almost identical results as using TSSEM. ML MASEM
estimates are less biased than TSSEM estimates, but the differences are very small. ML MASEM is a viable
alternative method to TSSEM.
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