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we give necessary and sufficient conditions for reflection 
positivity. We use a reflection-invariant cone to implement 
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1. Introduction

There is amazing synergy among a number of developments in operator algebra theory, 
quantum field theory, and statistical physics that first emerged in the 1960’s and 1970’s. 
At the time several of these advances appeared independently, but we now understand 
them as part of a larger picture. Their interrelation may well lead to further deep insights.

The advances we think of include, on the side of mathematics, the Tomita–Takesaki 
theory for von Neumann algebras [42,41], the j-positive states of Woronowicz [43], and 
the self-dual cones of Araki, Connes, and Haagerup [1,4,18]. On the side of physics, they 
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include the reflection positivity property discovered by Osterwalder and Schrader for 
classical fields [30–32]. In perspective, we now understand how these apparently different 
ideas overlap as central themes in mathematics and physics.

Following the ground-breaking mathematical work of Tomita and Takesaki, and moti-
vated by the work of Powers and Størmer on states of the CAR algebra [36], Woronowicz 
introduced j-positivity. In the context of a subalgebra A+ ⊆ A that is interchanged with 
its commutant A− ⊆ A by an antilinear homomorphism j : A → A, this means that a 
state ω : A → C satisfies

ω(j(A)A) ≥ 0 for all A ∈ A+, (bosonic case). (1)

For a σ-finite von Neumann algebra A+ ⊆ B(H) with modular involution j(A) = JAJ , 
Araki and Connes independently realized that the normal, j-positive states consti-
tute a self-dual cone in B(H). Connes proved that σ-finite von Neumann algebras 
are classified up to isomorphism by their self-dual cone; Haagerup’s subsequent gen-
eralization of these results to the non-σ-finite case led to the abstract formulation of 
Tomita–Takesaki Theory, which proved to have a lasting impact on operator algebra 
theory.

On the side of mathematical physics, Osterwalder and Schrader formulated the idea 
of reflection positivity in the context of the Green’s functions for the statistical mechan-
ics of classical fields. In hindsight, one understands that this idea is closely related to 
j-positivity, with j replaced by the time reflection Θ. In this context, reflection positivity 
is expressed as

S(Θ(F )F ) � 0 , (bosonic case) (2)

where S denotes the Schwinger functional defined on an algebra of test functions F , and 
the positivity (2) holds on a subalgebra of functions supported at positive time.

For fermionic systems, the reflection positivity condition can be given in terms of an 
antihomomorphism Θa on the Z2-graded algebra A of test functions. Here, the positive 
time subalgebra A+ supercommutes with the negative time subalgebra A−. Reflection 
positivity for a gauge-invariant functional S means that S(Θa(F )F ) ≥ 0 for all F ∈ A+. 
To connect with j-positivity, note that as the algebra is super-commutative, Θ(F ) =
i−|F |2Θa(F ) is an antilinear homomorphism. Here |F | denotes the Z2-degree of F , which 
is 0 for even and 1 for odd elements. In terms of Θ, the reflection positivity condition 
becomes

i|F |2S(Θ(F )F ) � 0 , (fermionic case). (3)

In our previous work [25,22], we discovered that (3) gives the correct formulation of 
reflection positivity for Majorana fermions, where the Z2-graded algebra is no longer 
super-commutative.
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In this paper we generalize this condition to the case of a neutral functional S on 
a Zp-graded (rather than Z2 graded) algebra. We find that the reflection positivity 
condition becomes

ζ |F |2S(Θ(F )F ) � 0 , (general case), (4)

with F a homogeneous element of A+ of degree |F |, and with ζ2p = ζp
2 = 1.

1.1. Applications to mathematical physics

The importance of the Osterwalder–Schrader construction stems from the fact that 
the Hilbert space of every known scalar quantum theory arises as a quantization defined 
by this framework; quantum theories with fermions or gauge fields arise as generalizations 
of this approach.

Another early application of reflection positivity was its use in papers of Glimm, Jaffe, 
and Spencer to give the first proof that interacting, non-linear quantum fields satisfy the 
Wightman axioms [15]. Shortly afterward, these authors used reflection positivity to give 
the first mathematical proof that discrete symmetry breaking and phase transitions exist 
in certain quantum field theories [16].

The analysis of Tomita–Takesaki theory led Bisognano and Wichmann to identify the 
TCP reflection Θ in quantum field theory with a specific case of the Tomita reflection j
defined for wedge shaped regions [3]. Sewell recognized that the Bisognano–Wichmann 
theory yields an interpretation of Hawking radiation from black holes [40]. Hislop and 
Longo analyzed the modular structure of double cone algebras in great detail [19]. Also 
much work of Borchers, Buchholz, Fredenhagen, Rehren, Summers, and others has been 
devoted to aspects of relations between local quantum field theory and Tomita–Takesaki 
theory.

Turning from quantum mechanics to lattice statistical physics, reflection positivity 
was established by Osterwalder and Seiler for lattice gauge theory [29], as well as for 
the super-commutative, Z2-graded algebra appearing in lattice QCD [33]. Reflection 
positivity was also central in the first proof of continuous symmetry breaking in lattice 
systems, through the proof and use of “infrared bounds” by Fröhlich, Simon, and Spencer 
[13]. Reflection positivity also led to many results by Fröhlich, Israel, Lieb, and Simon 
[12,11], for bosonic quantum systems in classical and quantum statistical physics.

1.2. Positive cones, twisted products

The analysis of reflection positivity in the papers [31,33,11] used a cone of reflection 
positive elements. This cone mirrors the positivity conditions (2)–(3) for bosonic and 
fermionic systems. The cone consists of elements

Θ(A)A, A ∈ A+ , (bosonic case) (5)
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where A+ is the algebra of observables on one side of the reflection plane. In terms of 
the antilinear homomorphism Θ, the cones of Osterwalder, Schrader, and Seiler consist 
of elements of the form

i|A|2Θ(A)A, A ∈ A+ , (fermionic case). (6)

In hindsight, it is clear that these cones are closely related to the self-dual cone of Araki, 
Connes and Haagerup.

In this paper, we isolate a minimal framework for reflection positivity, covering a 
variety of different and useful examples, including the above. In brief, we work with a 
Zp-graded, locally convex algebra A, equipped with an antilinear homomorphism Θ: A →
A called the reflection.

Let A+ ⊆ A be a graded subalgebra, and A− = Θ(A+). We assume that Θ squares 
to the identity and inverts the grading. Then A is called the q-double of A+ if the linear 
span of A−A+ is dense in A, and if A+ paracommutes with A−, meaning that

A−A+ = q|A−||A+|A+A− , (7)

for homogeneous A± ∈ A±. Here q = e2πi/p is a pth root of unity, and |A| denotes 
the degree of A in Zp. The case p = 1 describes bosons, the case p = 2 describes 
fermions, and the case p > 2 corresponds to parafermions. We give more details in §2. 
The generalization of (5)–(6) is the reflection positive cone K+ with elements

ζ |A|2Θ(A)A , (general case). (8)

Here A is a homogeneous element of A+, and ζ is a square root of q, with ζp
2 = 1. The 

cone K+ is closed under multiplication, and point-wise fixed by the reflection Θ. We 
find it useful to consider the expression (8) as a specialization of a reflection-invariant, 
twisted product,

Θ(A) ◦A = ζ |A|2Θ(A)A . (9)

Parafermionic commutation relations were proposed in field theory by Green [17]. 
They are closely tied to representations of the braid group, which lead to a variety of 
different statistics, see for example [10]. Recently, Fendley gave a parafermionic repre-
sentation of Baxter’s clock Hamiltonian [8,9]. In [26], Jaffe and Pedrocchi gave sufficient 
conditions for reflection positivity on the 0-graded part of the parafermion algebra, and 
used this to study topological order [24]. Jaffe and Liu found a geometric interpreta-
tion of reflection positivity in the framework of planar para algebras, relating reflection 
positivity in that case to C∗ positivity [23]. Their proof uses an elegant pictorial inter-
pretation for the twisted product Θ(A) ◦ A in (9), as an interpolation between Θ(A)A
and AΘ(A).
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Recently the ideas from Tomita–Takesaki theory have been used by workers in string 
theory, for instance in the analysis of the black hole complementarity radiation, see [34]. 
It is tempting to conjecture that string theory representations of black-hole partition 
functions of the form ZBH = |Ztop|2, proposed in [28,14,35], have an origin in (and an 
explanation based on) reflection positivity.

1.3. Overview of the present paper

Let τ : A → C be a continuous, reflection positive ‘background functional’, and let 
H ∈ A be a reflection invariant element of degree zero. The main problem is to determine 
necessary and sufficient conditions on H for the functional

τH(A) = τ(Ae−H) (10)

to be reflection positive. In the case of statistical physics, H is a Hamiltonian and τH
defines the Boltzmann functional for the system. In the case of functional integrals for 
quantum theory, H is a perturbation of the action.

In §2 we give the basic definitions. In §3, we apply this general setting to a variety 
of different situations: Tomita–Takesaki theory and von Neumann algebras (describing 
bosonic systems), Grassmann algebras (describing fermionic classical systems), and Clif-
ford algebras and CAR algebras (describing fermionic quantum systems). Finally, we 
introduce the parafermion algebra and the CPR algebra, the analogues of Clifford and 
CAR algebras for parafermions.

Let us point out that in our general setting, we do not assume that A is a ∗-algebra, 
nor that τ is a state. This allows our framework to cover cases such as Berezin integration 
on Grassmann algebras [2], and neutral complex fields in the sense of [20,21].

In §4 and §5, we return to the problem of determining reflection positivity of τH in 
the general setting. Our first main result is Theorem 4.10; the Boltzmann functional τH
is reflection positive if H allows a decomposition

H = H− + H0 + H+ ,

where H+ is in A+, H− is the reflection of H+ in A−, and −H0 is in the closure of 
the convex hull of K+. Although the decomposition is familiar, the result is new for 
Hamiltonians of the generality that we study here.

Our second major result, Theorem 5.9, states that these conditions are not only suf-
ficient, but also necessary, under additional factorization and nondegeneracy hypotheses 
on the ‘background’ functional τ . These extra assumptions are reasonable, and generally 
assumed, in the framework of statistical physics.

In our third main result, Theorem 5.10, we formulate necessary and sufficient con-
ditions for reflection positivity in terms of the matrix of coupling constants across the 
reflection plane. These are the coefficients J0

IJ of H with respect to a distinguished, 
reflection-invariant basis BIJ of the zero-graded algebra A0. This is particularly relevant 
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in the context of statistical physics, where the Hamiltonian is usually given in terms of 
couplings. Theorem 5.10 then allows one to easily check reflection positivity in concrete 
situations.

We end the paper with an extensive list of examples in the context of lattice statistical 
physics. In §6, we discuss the lattices we use.

In §7, we specialize our results to bosonic classical and quantum systems. A spe-
cial feature of classical systems is that the lattice can contain fixed points under the 
reflection. We exploit this to prove the following: suppose that the reflection is in one 
of the coordinate directions, that the lattice is rectangular, and that it has nontrivial 
intersection with the reflection plane. Then every reflection-invariant nearest neighbor 
Hamiltonian yields a reflection positive Boltzmann measure.

In §8, we specialize our results to fermionic classical and quantum systems. In the 
classical case, the ‘background functional’ is the Berezin integral on the Grassmann 
algebra, and in the quantum case, it is the tracial state on the Clifford algebra or CAR 
algebra. The results in this section generalize the examples in our previous work [22].

In §9, we apply our results in the context of lattice gauge theories. In particular, we 
give a new, gauge equivariant proof of reflection positivity for the expectation defined by 
the Wilson action. In contrast to the proofs in [29,33,39,27], we prove reflection positivity 
on the full algebra of observables, not just on the gauge invariant subalgebra.

Finally, in §10, we give a complete characterization of reflection positivity for para-
fermions. This extends the results of [26] from the degree zero subalgebra A0

+ to the full 
algebra A+, and ties in with the results of Jaffe and Liu [23] on the geometric interpre-
tation of reflection positivity for planar para algebras.

2. Reflection positivity for ZZZp-graded algebras

In this section, we introduce the basic notions needed to treat reflection positivity in 
the Zp-graded setting.

2.1. Graded topological algebras

Let p ∈ N, and let A be a Zp-graded unital algebra. The case p = 1 corresponds 
to bosons, the case p = 2 corresponds to fermions, and the case p > 2 corresponds 
to parafermions. The case p = 0 is also allowed; as Zp = Z/pZ = Z for p = 0, this 
corresponds to Z-graded algebras.

Denote the degree (or grading) of A ∈ A by |A| ∈ Zp, and denote the homogeneous 
part of degree k by Ak = {A ∈ A ; |A| = k}. The algebra A then decomposes as

A =
⊕
k∈Zp

Ak . (11)

We require that A is a locally convex topological algebra. This means that A is a locally 
convex (Hausdorff) topological vector space, for which the multiplication is separately 
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continuous. In the case p = 0, we will allow algebras for which the right hand side of 
(11) is dense in A.

Note that A need not be a ∗-algebra. The above setting therefore includes not only 
(graded) C∗-algebras and von Neumann algebras, but also Grassmann algebras and 
continuous inverse algebras.

2.2. Reflections and q-doubles

Reflection positivity will be defined with respect to a reflection Θ: A → A.

Definition 2.1 (Reflections). A reflection Θ: A → A is a continuous, anti-linear homo-
morphism which squares to the identity and inverts the grading.

In other words, we require that Θ2 = Id, and that |Θ(A)| = − |A| for homogeneous 
elements A ∈ A.

Remark 2.2. In the literature, RP is not always defined using an anti-linear homomor-
phism Θ, as we do. In fact, there are 4 possibilities. The transformation Θ may be 
linear or antilinear; it may be a homomorphism or an anti-homomorphism. In the con-
text of ∗-algebras, one can go back and forth between an antilinear homomorphism 
Θ and a linear anti-homomorphism Θ̃ by defining Θ̃(A) := Θ(A∗). In the context 
of super-commutative algebras (Grassmann fermions), one can go back and forth be-
tween an antilinear homomorphism Θ and a linear anti-homomorphism Θa by defining 
Θ(A) = i−|A|2Θa(A). In the general setting that we describe in this paper, it seems that 
the anti-linear homomorphism in Definition 2.1 is the only option.

Let A+ be a distinguished Zp-graded subalgebra of A, and write A− := Θ(A+) for its 
reflection. Define A−A+ := {A−A+ ; A± ∈ A±}. Let q be a complex number satisfying 
qp = 1 and |q| = 1. We require that A is the q-double of A+ in the following sense.

Definition 2.3 (q-double). The algebra A is the q-double of A+ if:

1. The linear span of A−A+ is dense in A.
2. The elements of A± satisfy the para-commutation relations

A−A+ = q|A−||A+|A+A− , for A± ∈ A± . (12)

The q-double is called bosonic if q = 1, fermionic if q = −1, and parafermionic if 
q = e2πi/p for integer p ≥ 3.

Remark 2.4. Consider the intersection A+ ∩ A−. From the para-commutation relation 
(12), we infer that for all A0 ∈ A+ ∩ A− and A± ∈ A±, we have
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A0A+ = q|A0||A+|A+A0 , A0A− = q−|A0||A−|A−A0 .

Combined with the fact that A−A+ is dense in A, this implies that A+∩A− is central in 
the bosonic case. In the fermionic case, this implies that A+∩A− is supercentral, meaning 
that {A0, A}+ = 0 for all A0 ∈ A+∩A− and A ∈ A. Here {A, B}+ = AB−(−1)|A||B|BA

is the graded commutator on A.

2.3. Functionals and reflection positivity

We define reflection positivity for neutral functionals.

Definition 2.5 (Neutral functionals). A functional � : A → C is neutral if �(A) = 0
whenever |A| 	= 0.

Neutral functionals on A are determined by their restriction to A0, defined in (11).

Definition 2.6 (Reflection invariance). A functional � : A → C is reflection invariant if 
�(Θ(A)) = �(A) for all A ∈ A.

For a given q of modulus 1, let ζ be a complex number with

q = ζ2 , and ζp
2

= 1 . (13)

Since ζ(k+p)2 = ζk
2 , the expression ζk

2 is well defined for k ∈ Zp.

Definition 2.7 (Sesquilinear form on A+). Let � be a neutral functional on A. Then 
〈A, B〉Θ,�,ζ is the sesquilinear form on A+, with

〈A,B〉Θ,�,ζ = ζ |A|2�(Θ(A)B) (14)

for homogeneous A, B ∈ A+.

Since � is neutral, (14) is nonzero only when |A| = |B|. In this case, ζ |A|2 = ζ |A| |B| =
ζ |B|2 . Although the form (14) depends on ζ, for most of this paper we fix the value of ζ
and drop the subscript in 〈A, B〉Θ,�.

Proposition 2.8 (Hermitian form on A+). Let � be a continuous, neutral functional on A. 
Then the sesquilinear form (14) is hermitian on A+ if and only if � is reflection invariant.

Proof. Let A, B ∈ A+ be homogeneous with |A| = |B|. Applying the para-commutation 
relation (12) to A ∈ A+ and Θ(B) ∈ A−, we obtain Θ(B)A = q−|A|2AΘ(B). Using this, 
we find
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〈B,A〉Θ,� = ζ |A|2�(Θ(B)A) = ζ−|A|2�(AΘ(B)) ,

〈A,B〉Θ,� = ζ |A|2�(Θ(A)B) = ζ−|A|2�(Θ(A)B) .

Setting X = Θ(A)B and Θ(X) = AΘ(B), we see that 〈B, A〉Θ,� = 〈A,B〉Θ,� for all 
A, B ∈ A+ if and only if �(Θ(X)) = �(X) for all X ∈ A−A+. As � is continuous and the 
linear span of A−A+ is dense in A, the statement follows. �
Remark 2.9. The above argument relies heavily on the fact that q is of modulus 1. For 
|q| 	= 1, reflection invariant functionals would not give rise to hermitian forms.

Definition 2.10 (Reflection positivity). Let � : A → C be a neutral linear functional. Then 
� is reflection positive on A+ with respect to Θ if the form (14) is positive semidefinite,

〈A,A〉Θ,� ≥ 0 , (15)

for all A ∈ A+.

Proposition 2.11. Every continuous, neutral, reflection positive functional � : A → C is 
reflection invariant.

Proof. Since (14) is sesquilinear and positive semidefinite, it is hermitian by polarization. 
The result now follows from Proposition 2.8. �

Note that Definition 2.10 depends on the choice of ζ.

Proposition 2.12. Let � : A → C be a neutral functional. Then � is reflection positive on 
A+ with parameter ζ if and only if it is reflection positive on A− with parameter ζ.

Proof. Define the sesquilinear form 〈 A , B 〉Θ,�,ζ on A− by

〈A ,B 〉Θ,�,ζ = ζ−|A|2� (Θ(A)B) (16)

for homogeneous A, B ∈ A−. The relation (12) yields

〈A ,B 〉Θ,�,ζ = ζ−|A|2� (Θ(A)B) = ζ |A|2� (BΘ(A)) = 〈Θ(B),Θ(A)〉Θ,� ,

where both Θ(A), Θ(B) ∈ A+. We infer that positivity of the form (14) on A+ is equiv-
alent to positivity of the form (16) on A−. �
Remark 2.13. Although we singled out the subalgebra A+, all the statements in the 
paper remain true if one exchanges A+ with A−, provided that one also exchanges the 
pair (q, ζ) with (q, ζ).
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Definition 2.14 (Quantum Hilbert space). Let � be a neutral, reflection positive functional 
on A. Let N ⊆ A+ be the kernel of the positive semidefinite form 〈A, B〉Θ,�. Then the 
quantum Hilbert space HΘ,� is the closure of A+/N , with inner product induced by the 
positive definite form 〈A, B〉Θ,�.

Denote the closure of Ak
+/N by Hk

Θ,�. Since � is neutral, one has 〈A, B〉Θ,� = 0 for 
homogeneous A, B ∈ A+ with |A| 	= |B|. It follows that Hk

Θ,� ⊥ Hk′

Θ,� for k 	= k′, so that

HΘ,� =
⊕
k∈Zp

Hk
Θ,� (17)

is a Zp-graded Hilbert space. In particular, in the fermionic case p = 2, the space HΘ,�

with the form (A, B) = �(Θ(A)B) is a super Hilbert space in the sense of [5].

2.4. The twisted product

For A ∈ A− and B ∈ A+, we introduce the twisted product A ◦B. It allows for a 
convenient reformulation of reflection positivity, and plays an important role in [26,22,
23].

Definition 2.15 (Twisted product). The twisted product is the bilinear map from A−×A+

to A defined by

A ◦B = ζ |A|2 AB = ζ |B|2 AB (18)

if A ∈ A− and B ∈ A+ are homogeneous with |A| = − |B|, and by B ◦A = 0 if they are 
homogeneous with |A| 	= − |B|.

Remark 2.16. If |B| = − |A|, then A ◦B = ζ−|A||B| AB interpolates between the products 
AB and BA = q−|B||A|AB. If |B| 	= − |A|, then �(AB) = �(BA) = 0 for any neutral 
functional � on A. As we will mainly be interested in expressions of the form �(A ◦B), 
we have put A ◦B = 0.

If � : A → C is a neutral functional, then the sesquilinear form can be expressed in 
terms of the twisted product as

〈A,B〉Θ,� = �(Θ(A) ◦B) , for A,B ∈ A+ . (19)

In particular, the reflection-positivity condition (15) is

� (Θ(A) ◦A) ≥ 0 , for A ∈ A+ . (20)
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2.5. The reflection-positive cone

A central idea in this paper is that the reflection-positive functionals on A can be 
characterized in terms of the reflection-positive cone K+ ⊆ A. In the bosonic case, this 
idea appeared first in connection to Tomita–Takesaki modular theory [43,1,4,18], and 
was later used in statistical physics [11]. In the fermionic case, reflection-positive cones 
were used in [33]. We extend the definition of reflection-positive cones to the Zp-graded 
setting as follows.

Definition 2.17. The reflection-positive cone K+ ⊆ A0 is the set

K+ = {Θ(A) ◦A |A homogeneous in A+} .

Denote the convex hull of K+ by co(K+), and denote its closure by co(K+). Since 
every element of K+ is of degree zero, co(K+) ⊆ A0. The following proposition shows 
that the set of continuous, neutral, reflection positive functionals on A is precisely the 
continuous dual cone of co(K+) in A0.

Proposition 2.18. Let � : A → C be a continuous, neutral, linear functional. Then the 
following are equivalent:

a) The functional � is reflection positive.
b) The functional � is nonnegative on K+.
c) The functional � is nonnegative on co(K+).

Proof. The equivalence of a) and b) follows from Definition 2.17 and equation (20). As 
K+ ⊆ co(K+), we infer that c) implies b). To show that b) implies c), note that since 
�(K+) ⊆ R

≥0 and � is linear, the image of the convex hull of K+ is contained in R≥0. 
As � is continuous, the same holds for its closure co(K+). �
Proposition 2.19. The linear span of K+ is dense in A0.

Proof. Expanding Θ(A + B) ◦ (A + B) and Θ(A + iB) ◦ (A + iB) for A, B ∈ A+, one 
finds that

Θ(A) ◦B + Θ(B) ◦A ∈ K+ −K+

Θ(A) ◦B − Θ(B) ◦A ∈ i(K+ −K+) .

Thus Θ(A) ◦B ∈ K+ −K+ + iK+ − iK+. Since the linear span of A−A+ is dense in A, 
the span of Θ(A+) ◦ A+ is dense in A0. �
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2.6. Boltzmann functionals

In physical applications, the relevant functionals τH are often perturbations of a fixed 
‘background’ functional τ by an operator H.

Let τ : A → C be a continuous, neutral, reflection positive functional on A. Let H ∈ A

be a reflection-invariant operator of degree zero,

Θ(H) = H, H ∈ A0 . (21)

If the exponential series for e−H converges, then theBoltzmann functional τH : A → C is 
defined by

τH(A) = τ(Ae−H) . (22)

Proposition 2.20. The Boltzmann functional τH is continuous, neutral, and reflection 
invariant.

Proof. It is continuous since both A → Ae−H and A → τ(A) are continuous. It is neutral 
since H is of degree zero and τ is neutral, and it is reflection invariant since both H and 
τ are reflection invariant. (This holds for τ by Proposition 2.11.) �
Remark 2.21. If τH is reflection positive for H ∈ A, then it is reflection positive for every 
shift H ′ = H + αI by a real number α ∈ R, since τH′ = e−α τH .

In applications to statistical physics, H represents the Hamiltonian of the system, 
which is usually a hermitian operator in a ∗-algebra. Note however that we do not 
require A to be a ∗-algebra, nor that H be hermitian. This is important for applications 
in quantum field theory, where H represents the action.

2.7. Factorization

The central question is to determine whether or not τH is reflection positive in terms 
of tractable conditions on H. The first step is to show reflection positivity of the ‘back-
ground’ functional τ . This can often be done with the help of the following factorization 
criterion, expressing that A− and A+ are independent under τ .

Definition 2.22 (Factorizing functionals). Let τ : A → C be a continuous, neutral, re-
flection invariant functional. Then τ is factorizing if there exists a neutral, continuous 
functional τ+ on A+ such that

τ(Θ(A) ◦B) = τ+(A) τ+(B) ,

for all A, B ∈ A+ with |A| = |B|.
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Since τ is reflection invariant, this is equivalent to

τ(A ◦B) = τ−(A) τ+(B) for all A ∈ A−, B ∈ A+ , (23)

where τ−(B) := τ+(Θ(B)) for B ∈ A−. Since the span of A−A+ is dense in A, a 
factorizing functional τ is uniquely determined by τ+ : A+ → C.

Proposition 2.23. Every factorizing functional τ : A → C is reflection positive.

Proof. If A ∈ A+ is homogeneous, τ(Θ(A) ◦A) = τ+(A)τ+(A) ≥ 0. �
2.8. Strictly positive functionals

The notion of strictly positive functionals generalizes the notion of faithful states 
to algebras without involution, such as Grassmann algebras. Let � : A+ → A+ be a 
continuous, antilinear map which inverts the grading, 

∣∣A�
∣∣ = − |A|.

Definition 2.24. The functional τ+ : A+ → C is strictly positive with respect to � if

τ+(A�A) > 0

for all nonzero A ∈ A+.

If A is a ∗-algebra and � is the ∗-involution, then τ+ is strictly positive if and only if 
it is a (not necessarily normalized) faithful state.

Remark 2.25. The existence of a strictly positive, factorizing functional τ : A → C implies 
that A− ∩ A+ = C1, since the restriction of τ to A− ∩ A+ must have trivial kernel.

3. Applications

The above setting is motivated by a large number of applications and examples in both 
mathematics and physics. Before we continue our investigation into reflection positivity 
of the Boltzmann functionals τH , we pause to outline a number of situations that fit 
into the general scheme outlined in §2. For more detailed applications in the context of 
lattice statistical physics, we refer to §6–10.

3.1. Tensor products

Let Θ+ : A+ → A− be an antilinear isomorphism of von Neumann algebras, and 
let A = A− ⊗ A+ be the (spatial) tensor product of A− and A+. Then Θ(A ⊗ B) =
Θ+(B) ⊗Θ−1

+ (A) defines a reflection on A, and A is a bosonic q-double of A+. Reflection 
positivity in this setting was studied by Woronowicz under the name j-positivity [43].
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If τ+ is a state on A+, then the induced state τ(Θ+(A) ⊗ B) = τ+(A)τ+(B) on A is 
factorizing, and hence reflection positive. If � is the involution on A+, then τ+ is strictly 
positive in the sense of Definition 2.24 if and only if it is faithful. In practice, τ and τ+
will often be tracial states.

3.2. Tomita–Takesaki modular theory

Let A = B(H) be the algebra of bounded operators on a Hilbert space H. Let A+ ⊆ A

be a factor, and let A− = A′
+ be its commutant. If Ω ∈ H is cyclic and separating 

for A+, then the modular involution J : H → H yields an antilinear homomorphism 
Θ(A) = JAJ , with Θ(A+) = A−.

This makes A a bosonic q-double of A+. Indeed, the algebras A− and A+ commute 
by definition. To see that the linear span of A−A+ is dense in A, note that since A+ is 
a factor, (A−A+)′ ⊆ A+ ∩ A′

+ = C1. Thus (A−A+)′′ = A, and the linear span of A−A+
is dense in A by the double commutant theorem.

Although the state τ(A) = 〈Ω, AΩ〉 is in general not factorizing, it is reflection positive 
on A+. Indeed, with Δ the modular operator for (A+, Ω), we have

τ(Θ(A)A) = 〈Ω, JAJAΩ〉 = 〈JA∗Ω, AΩ〉 = 〈Δ1/2AΩ, AΩ〉 ≥ 0

for all A ∈ A+. Since the restriction τ+ of τ to A+ is faithful, it is strictly positive in the 
sense of Definition 2.24, with � given by the ∗-involution.

It was shown by Connes and Haagerup [4,18] that A+ is characterized up to unitary 
isomorphism by the natural positive cone

P�
+ = {Δ1/4A∗AΩ ; A ∈ A+} ,

related to the reflection-positive cone K+ of Definition 2.17 by

P�
+ = K+Ω .

From the fact that P�
+ is self-dual (as discovered independently by Araki [1, Thm. 3]

and Connes [4, Thm. 2.7]), it follows that τH is reflection positive if and only if e−HΩ is 
an element of P�

+. In §4, we provide tractable conditions on the Hamiltonian H which 
ensure that this is the case.

3.3. Grassmann algebras

Classical fermions are described by the Grassmann algebra A =
∧
V , where V is 

an oriented Hilbert space of finite, even dimension N . This is the unital algebra with 
generators v, w ∈ V and relations

vw + wv = 0 .



A. Jaffe, B. Janssens / Journal of Functional Analysis 272 (2017) 3506–3557 3521
An arbitrary basis ψi of V yields generators satisfying

ψiψj = −ψjψi for i 	= j

ψ2
i = 0 for all i .

The Grassmann algebra is Z-graded, and hence in particular Z2-graded. The degree of 
a homogeneous element A ∈ A is denoted by |A| ∈ Z2, and we denote the even and odd 
part of A by A0 and A1.

Suppose that V = V− ⊕ V+, where V± are Hilbert spaces of even dimension n. It is 
important to keep track of the orientation of V , as this determines the sign of the Berezin 
integral. If ψ1, . . . , ψn is a positively oriented orthonormal basis of V+, then

μ+ = ψ1 ∧ . . . ∧ ψn

is a positively oriented volume on V+. Similarly, if μ− is a positively oriented volume 
on V−, then the orientation of V is defined by declaring μ = μ− ∧ μ+ to be positively 
oriented. Since we are only working with vector spaces V± of even dimension,

μ = μ− ∧ μ+ = μ+ ∧ μ− . (24)

The algebra A is the linear span of A−A+, where A± =
∧
V± are the Grassmann 

algebras of V±. Suppose that θ : V+ → V− is an antilinear, volume preserving vector 
space isomorphism. We extend it to an antilinear isomorphism θ : V → V with θ2 = Id, 
and θ(V+) = V−. Let Θ: A → A be the unique antilinear homomorphism that agrees 
with θ on V ⊆ A. By (24) and the fact that Θ(μ±) = μ∓, we find

Θ(μ) = Θ(μ− ∧ μ+) = μ+ ∧ μ− = μ . (25)

Note that for all A± ∈ A, we have

A−A+ = (−1)|A−||A+|A+A− .

In particular, this holds for A± ∈ A±, so A is the fermionic q-double of A+. With ζ = i, 
a functional � : A → C is reflection positive if

i|A|2�(Θ(A)A) ≥ 0 for A ∈ A+ . (26)

Definition 3.1. The Berezin integral is the functional τ : A → C defined by zero on 
∧k

V

for k < dim(V ), and by τ(μ) = 1.

Proposition 3.2. If τ and τ+ are the Berezin integrals on A and A+, then τ is neutral, 
reflection invariant, and factorizing; τ(Θ(A) ◦B) = τ+(A)τ+(B) for all A, B ∈ A+ with 
|A| = |B|. In particular, τ is reflection positive.
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Proof. The Berezin integral is concentrated on 
∧top

V , which is of degree 0 ∈ Z2, as 
V is of even dimension. Therefore, it is neutral. It is reflection invariant by (25), and 
reflection positivity follows from the factorization property by Proposition 2.23.

To prove factorization, note that τ(Θ(A)B) = τ+(A)τ+(B) for all A,B ∈ A+. It there-
fore suffices to show that τ(Θ(A) ◦ B) = τ(Θ(A)B). Here we use that τ(Θ(A) ◦ B) is 
nonzero only if A and B are multiples of μ+. In that case, |A| = |B| = 0 in Z2, since V+
is even dimensional, so that Θ(A) ◦B = Θ(A)B. �

For Grassmann algebras, the antilinear map � : A+ → A+ is the Hodge star operator. 
It is defined by the requirement that

A� ∧B = 〈A,B〉μ+ for all A,B ∈ A+ ,

where μ+ = ψ1∧ · · ·∧ψn is the volume of an oriented basis of V+. The map � inverts the 
Z2-grading; since it maps 

∧k
V+ to 

∧n−k
V+, and since n = dim(V+) is even, we find ∣∣A�

∣∣ = |A| = − |A|.

Proposition 3.3. The Berezin integral τ+ : A+ → C is strictly positive with respect to the 
hodge star operator �.

Proof. We have

τ+(A�A) = 〈A,A〉 τ+(μ+) = 〈A,A〉 > 0

for all nonzero A ∈ A+. �
Remark 3.4. Note that unlike in §3.1, the functional τ+ is not the restriction of τ to 
A+ ⊆ A, since τ vanishes identically on A+. Also, in contrast to §3.2, the antilinear map 
� is neither a homomorphism nor an anti-homomorphism. The Grassmann algebra is not 
a ∗-algebra, and the Berezin integral is not a state.

3.4. Clifford algebras and CAR algebras

A fermionic quantum system is described by the Clifford algebra A = Cl(V ). Here V
is the complexification of a real Hilbert space VR with inner product h : VR × VR → R. 
On the complex Hilbert space V , this gives rise to an inner product 〈v, w〉 and a bilinear 
form hC(v, w).

The Clifford algebra A = Cl(V ) is the unital algebra over C with generators v ∈ V

and relations

vw + wv = 2hC(v, w)1 .

Note that A is Z2-graded. We denote the degree of a homogeneous element A ∈ A
by |A| ∈ Z2, and we denote the even and odd part of A by A0 and A1, respectively. 
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The complex conjugation v → v on V extends uniquely to an anti-linear anti-involution 
A → A∗ on Cl(V ) that sends A0 to A0 and A1 to A1. If VR has an orthonormal basis 
{ci}i∈S , then the operators ci ∈ Cl(V ) satisfy the Canonical Anticommutation Relations

cicj = −cjci for i 	= j , (CAR-1)

c2i = 1 for all i , (CAR-2)

c∗i = c−1
i . (CAR-3)

Definition 3.5. The tracial state τ : Cl(V ) → C is the unique linear functional with 
τ(1) = 1 and τ(v1 · · · vk) = 0 if v1, . . . , vk are pairwise orthogonal with respect to hC.

Suppose that V = V+⊕V− is an orthogonal decomposition with respect to the bilinear 
form hC, and that θ : V → V is an antilinear isomorphism of (V, hC) with θ(V+) = V−
and θ2 = Id. Since hC(V+, V−) = {0}, the subalgebras A± = Cl(V±) supercommute;

A−A+ = (−1)|A+||A−|A+A−

for all A± ∈ A±. As V = V+ ⊕ V−, the linear span of A−A+ is A, and A− ∩ A+ = C1.
The map θ : V → V extends uniquely to an antilinear homomorphism Θ: A → A with 

Θ(A±) = A∓. It squares to the identity and inverts the grading, |Θ(A)| = |A| = − |A|. 
It follows that A is the fermionic q-double of A+. The reflection Θ is a ∗-homomorphism 
if and only if θ(v) = θ(v), but we will not require this to be the case.

Proposition 3.6. The tracial state τ on A is neutral, faithful, factorizing, and reflection 
positive on A+.

Proof. Neutrality is clear from the definition. To see that τ is factorizing, i.e. τ(A−A+) =
τ(A−)τ(A+) for A± ∈ A±, note that if both A− = v1 · · · vk and A+ = w1 · · ·wl are 
products of pairwise orthogonal vectors, then as V+ ⊥ V−, also A−A+ is a product of 
pairwise orthogonal vectors. It follows that τ(A−A+) is zero for operators of this type. 
Since every A ∈ A can be decomposed as A = τ(A)1 +(A −τ(A)1) with the second term 
a sum of products of orthogonal vectors, we have τ(A−A+) = τ(A−)τ(A+) as required. 
Reflection positivity therefore follows from Proposition 2.23. To show that τ is faithful, 
consider the linear map ι :

∧
V → Cl(V ) that sends A = v1 ∧ . . .∧ vn to ι(A) = v1 · · · vn

if v1, . . . , vn are pairwise orthogonal. Since ι is a vector space isomorphism, and since 
〈A, A〉 = τ(ι(A)∗ι(A)), we have τ(A∗A) > 0 if A 	= 0. �

The CAR algebra A is the C∗-algebra defined as the norm closure of A = Cl(V ) in 
B(HGNS). Here HGNS is the GNS-Hilbert space, the closure of A with respect to the 
inner product 〈A, B〉τ = τ(A∗B). Similarly, A± is the norm closure of A±. As the linear 
span of A−A+ is norm dense in A, the CAR algebra A is the q-double of A+.
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3.5. Parafermion algebras and CPR algebras

The motivation to consider reflection positivity for Zp-graded algebras comes from 
Parafermion Algebras.

Let Λ be an ordered set, and let ϑ : Λ → Λ be an order reversing, fixed point free 
involution. Then Λ is the disjoint union of Λ+ and Λ− = ϑ(Λ+), where Λ+ is the 
maximal subset with ϑ(λ) < λ for all λ ∈ Λ+. A typical example is Λ = Z + 1/2, with 
ϑ(λ) = −λ and Λ± = ±(N + 1

2 ).
A collection of parafermions of order p is a family of operators cλ, indexed by Λ. 

The parafermions are characterized by a primitive pth root q of unity, and satisfy the 
Canonical Parafermion Relations

cλcλ′ = q cλ′cλ , for λ < λ′ , (CPR-1)

cpλ = 1 , (CPR-2)

c∗λ = c−1
λ . (CPR-3)

If we set the degree of each ci equal to 1, then the algebra generated by the parafermions 
is graded by Zp = Z/pZ.

Definition 3.7. The Parafermion Algebra A(q, Λ) is the Zp-graded ∗-algebra generated 
by the parafermions cλ of degree p.

Denote the degree of A ∈ A(q, Λ) by |A| ∈ Zp. Products of parafermions provide a 
natural basis {CI}I∈I for A(q, Λ). The elements are labelled by the set I = Z

(Λ)
p of 

maps I : Λ → Zp with Iλ 	= 0 for only finitely many λ ∈ Λ. For I ∈ Z
(Λ)
p , define the basis 

element

CI =
−−→∏
λ∈Λ

c Iλ
λ , (27)

where 
−→∏

λ∈Λ indicates that the order of the factors cIλλ in the product respects the order 
of Λ. Note that C0 = 1 is the identity in A(q, Λ).

Definition 3.8. The tracial state τ : A(q, Λ) → C is the linear functional with τ(1) = 1
and τ(CI) = 0 for I 	= 0.

Proposition 3.9. This is indeed a faithful, tracial state on A(q, Λ).

Proof. It suffices to show that

τ(C∗
ICJ) = τ(CJC

∗
I ) = δIJ . (28)

For this, note that the basis CI transforms under the anti-linear anti-involution ∗ as
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C∗
I =

←−−∏
λ∈Λ

c−Iλ
λ , (29)

where 
←−∏

i∈S denotes that the order of the factors is the reverse of their order in Λ. Since 
C∗

ICJ and CJC
∗
I are multiples of CJ−I , the expression τ(C∗

ICJ) is zero if I 	= J . If I = J , 
then τ(C∗

ICI) = τ(CIC
∗
I ) = 1. �

Let HGNS be the Hilbert space closure of A(q, Λ) with respect to the nondegenerate 
inner product 〈A, B〉τ = τ(A∗B). It carries the usual GNS-representation of A(q, Λ), 
and has orthonormal Hilbert basis {CI}I∈Z

(Λ)
p

.

Definition 3.10. The CPR algebra A(q, Λ) is the Zp-graded C∗-algebra arising as the 
norm closure of A(q, Λ) in B(HGNS).

Define the antilinear isomorphism Θ: A(q, Λ) → A(q, Λ) of the parafermion algebra 
by

Θ(cλ) = c−1
θ(λ).

Proposition 3.11. The tracial state τ on A(q, Λ) is reflection invariant; for all A in 
A(q, Λ), we have

τ(Θ(A)) = τ(A) . (30)

Proof. Denote by θ(I) the index with θ(I)λ = Iϑ(λ). Then Θ(CI) is a multiple of C−θ(I), 
and Θ(C0) = 1 = C0. Since τ(CI)τ(C−θ(I)) = 0 for I 	= 0 and τ(C0) = 1, we have 

τ(Θ(CI)) = τ(CI) for all I ∈ Z
(Λ)
p . As Θ is antilinear, this shows that τ is reflection 

invariant. �
It follows that Θ extends to an antilinear homomorphism of the C∗-algebra A(q, Λ), 

and that (30) holds for all A ∈ A(q, Λ).
Let A±(q, Λ) be the norm closure of the algebra generated by the parafermions cλ

with λ ∈ Λ±. Then A(q, Λ) is the q-double of A+(q, Λ). Indeed, A(q, Λ) is the norm 
closure of the linear span of the product A−(q, Λ)A+(q, Λ). Furthermore, it follows from 
(CPR-1) that homogeneous elements A± ∈ A±(q, Λ) satisfy

A−A+ = q|A−||A+|A+A− .

Proposition 3.12. The tracial state τ extends to a neutral, faithful, factorizing, reflection 
invariant state on A(q, Λ), which is reflection positive on A+(q, Λ).

Proof. The state τ extends from A(q, Λ) to A(q, Λ) by τ(A) = 〈Ω, AΩ〉, where Ω is the 
cyclic vector in HGNS. Reflection invariance follows from the previous discussion, and it 
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is clear from the definition that τ(A) = 0 if A is homogeneous of nonzero degree. It is 
faithful since τ(C∗

ICJ) = δIJ , cf. Proposition 3.9.
If I± ∈ Z

Λ±
p , then CI−CI+ is proportional to CI−+I+ . It follows that τ(CI−CI+) is 

zero unless I− = I+ = 0, in which case it is equal to 1. If we expand A± ∈ A±(q, Λ) in 
a norm convergent sum

A± =
∑

I∈Z
Λ±
p

a±I CI ,

then τ(A−A+) = a−0 a
+
0 . Since τ(A±) = a±0 , it follows that τ factorizes, τ(A−A+) =

τ(A−)τ(A+). Reflection positivity then follows from Proposition 2.23. �
Remark 3.13. Note that in the fermionic case q = −1, the relations CPR 1–3 for the 
CPR algebra coincide with the relations CAR 1–3 for the CAR algebra. Thus the CPR 
algebra for p = 2 and q = −1 is isomorphic to the CAR algebra.

4. Sufficient conditions for reflection positivity

We return to the general setting of §2, which in particular encompasses the applica-
tions in the previous section. We assume that:

Q1. A is a Zp-graded, locally-convex, topological algebra.
Q2. A is the q-double of A+.
Q3. τ : A → C is continuous, neutral and reflection positive.

In this setting, and under the natural condition that exp: A → A is continuous, we give 
the following sufficient condition on an element H ∈ A0 of degree zero for its Boltzmann 
functional τH(A) = τ(Ae−H) to be reflection positive. Namely, this is the case if H
admits a decomposition

H = H− + H0 + H+ , (31)

with H+ ∈ A+, with −H0 ∈ co(K+), and with H− = Θ(H+).
We will show in §5 that these conditions are necessary as well as sufficient, under the 

additional assumptions that τ is factorizing and strictly positive. These extra assump-
tions are not needed for the results in the present section. This is relevant for applications 
in quantum field theory and Tomita–Takesaki theory, where the background functional 
τ is generally not factorizing.

4.1. The reflection-positive cone

The results in this section rely heavily on the reflection positive cone K+, introduced 
in §2.5. By Proposition 2.18, the (continuous) dual cone of K+ is the set of (continuous), 
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neutral, reflection positive functionals � : A → C. A key point in the characterization of 
reflection positive functionals is proving that K+ is multiplicatively closed.

Theorem 4.1. The cone K+ is multiplicatively closed, and it is pointwise invariant under 
reflection. Namely, K+K+ ⊆ K+, and Θ|K+ = Id.

The proof uses the following two lemmas. We formulate them separately, as we will 
need them later on.

Lemma 4.2. Let A, B ∈ A+. Then the reflection of Θ(A) ◦B is Θ(B) ◦A. In particular, 
Θ(A) ◦A is reflection invariant.

Proof. For A, B ∈ A+ of homogeneous degree |A| = |B|, one has

Θ(Θ(A) ◦B) = Θ
(
ζ |A||B| Θ(A)B

)
= ζ

|A||B|
AΘ(B)

= ζ
|A||B|

q|A||B| Θ(B)A = Θ(B) ◦A ,

as claimed. If |A| 	= |B|, then the twisted product is zero. �
Lemma 4.3. If A1, A2, B1, B2 in A+ are homogeneous with |A1| = |B1| and |A2| = |B2|, 
then

(Θ(A1) ◦B1) (Θ(A2) ◦B2) = Θ(A1A2) ◦B1B2 . (32)

Proof. Note that

(Θ(A1) ◦B1) (Θ(A2) ◦B2) = ζ |A1|2ζ |A2|2 Θ(A1)B1 Θ(A2)B2

= ζ |A1|2ζ |A2|2q−|B1||Θ(A2)|Θ(A1)Θ(A2)B1B2

= ζ(|A1|+|A2|)2 Θ(A1A2)B1B2 .

Here we use |B1| = |A1|, |Θ(A2)| = − |A2| and q = ζ2. As |A1A2| = |A1|+ |A2|, the final 
expression equals Θ(A1A2) ◦B1B2. �
Proof of Theorem 4.1. The cone K+ is reflection invariant by Lemma 4.2, and multi-
plicatively closed by Lemma 4.3. �

As we will mainly be interested in continuous reflection positive functionals, we will 
need to extend Theorem 4.1 to the closure co(K+) of the convex hull co(K+) of K+. Note 
that co(K+) ⊆ A0, as every element of K+ is of degree zero. By polarization, we obtain 
a useful characterization of co(K+).
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Proposition 4.4. Let K ∈ A0. Then K ∈ co(K+) if and only if both:

1. The element K can be written as a finite sum

K =
∑

I,J∈I
JIJ Θ(CI) ◦ CJ , (33)

with CI ∈ A+ labelled by a finite set I.
2. Let (JIJ)I be the matrix with entries JIJ , labelled by I, J ∈ I. Then (JIJ)I is positive 

semi-definite, and JIJ = 0 if |CI | 	= |CJ |.

Proof. Every K ∈ co(K+) can be written as K =
∑

r∈I prΘ(Xr) ◦ Xr, a finite convex 
combination of elements of K+. In particular, it is of the form (33) with JIJ = pIδIJ . 
Conversely, suppose that K is of the form (33). Since the matrix (JIJ)I is positive 
semidefinite, its eigenvalues pr are nonnegative. As (JIJ)I respects the grading, the 
corresponding eigenvectors (xr

I)I∈I can be chosen so that xr
I = 0 unless CI has a fixed 

degree |CI | = dr. It follows that Xr =
∑

I x
(r)
I CI is homogeneous of degree |Xr| = dr, 

and K =
∑

r Θ(Xr) ◦Xr ∈ co(K+). �
We can thus characterize the closure co(K+) of co(K+) as follows:

Corollary 4.5. An element K ∈ A0 is in co(K+) if and only if K = limn→∞ Kn, with 
Kn ∈ K+ as in (33).

Corollary 4.6. The closed, convex cone co(K+) is multiplicatively closed, and it is point-
wise invariant under reflection,

co(K+) · co(K+) ⊆ co(K+) , and Θ|co(K+) = Id.

Proof. As Θ: A → A is a continuous R-linear map, Θ|K+ = Id implies that Θ|co(K+) =
Id. To prove that co(K+) · co(K+) ⊆ co(K+), note that as multiplication A× A →
A is separately continuous, left multiplication by A ∈ K+ is a continuous linear map 
LA : A → A. As LA(K+) ⊆ K+, we have LA(co(K+)) ⊆ co(K+) for every A ∈ K+. It 
follows that K+ · co(K+) ⊆ co(K+). In particular, right multiplication RB : A → A by 
B ∈ co(K+) satisfies RB(K+) ⊆ co(K+). As RB is a continuous linear map, it follows 
that RB(co(K+)) ⊆ co(K+). We conclude that co(K+) ·co(K+) ⊆ co(K+), as desired. �
4.2. Sufficient conditions for RP

Using the fact that co(K+) is multiplicatively closed, we obtain the following criterion 
for reflection positivity.

Proposition 4.7. Let A → τ(A) be a continuous, reflection positive functional on A, and 
let K1, K2 ∈ co(K+). Then the functionals
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A → τ(K1A), A → τ(AK2), and A → τ(K1AK2)

are also continuous and reflection positive.

Proof. In light of Proposition 2.18, it suffices to prove that if A ∈ co(K+), then also 
KA, AK, and KAK are in co(K+). This follows from Corollary 4.6. As multiplication is 
separately continuous, continuity of the above three functionals follows from continuity 
of τ . �
Proposition 4.8. Suppose that −H ∈ co(K+), and that the exponential series

exp(−H) − I =
∞∑
k=1

1
k! (−H)k (34)

converges in A. If τ is a continuous, reflection positive functional, then also the Boltz-
mann functional

τH(A) = τ(Ae−H)

is continuous and reflection positive. Its reflection positive inner product dominates that 
of τ ,

〈A,A〉Θ,τH ≥ 〈A,A〉Θ,τ for all A ∈ A+ . (35)

Proof. As −H ∈ co(K+), every term 1
k! (−H)k is in co(K+) by Corollary 4.6. Since 

co(K+) is a convex cone, the same holds for the partial sums in equation (34), and as 
co(K+) is closed, also the limit K2 := e−H − I is in co(K+). If τ is continuous and 
reflection positive, then by Proposition 4.7, the functional A → τ(A(e−H − I)) is also 
continuous and reflection positive. It follows that

τH(Θ(A) ◦A) = τ((Θ(A) ◦A)e−H) ≥ τ(Θ(A) ◦A) ≥ 0 ,

for all A ∈ A+. In particular τH is reflection positive. �
Remark 4.9. We study the reflection-positivity properties of the functional τH(A) =
τ(A e−H) in some detail. Using Proposition 4.7, one sees that similar results hold for the 
functionals

Hτ(A) = τ(e−H A) and H1τH2(A) = τ(e−H1 Ae−H2) .

Theorem 4.10 (Sufficient conditions for RP). Suppose that the exponential series 
exp(A) =

∑∞
k=0

1
k!A

k converges for all A ∈ A, and that exp: A → A is continuous. 
Let τ : A → C be a continuous, neutral, reflection positive functional. Let H ∈ A have 
degree zero, and admit a decomposition
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H = H− + H0 + H+ , (36)

with H+ ∈ A+, with −H0 ∈ co(K+), and with H− = Θ(H+). Then the Boltzmann 
functional τH(A) = τ(A e−H) is continuous and reflection positive.

Proof. For ε > 0, define Hε ∈ A by

Hε = H0 − Θ(ε−1I − εH+)(ε−1I − εH+) .

Let A ∈ A+ be homogeneous. As −Hε ∈ co(K+), Proposition 4.8 yields

τ((Θ(A) ◦A) e−Hε) ≥ 0 .

Note that Hε = H − ε−2I − ε2Θ(H+)H+. By Remark 2.21, the additive constant ε−2I

does not change reflection positivity. Therefore, H ′
ε = H − ε2Θ(H+)H+ satisfies

τ((Θ(A) ◦A) e−H′
ε) ≥ 0 .

Since limε↓0 H
′
ε = H and exp: A → A is continuous, this yields

lim
ε↓0

τ((Θ(A) ◦A) e−H′
ε) = τ((Θ(A) ◦A) e−H) ≥ 0 ,

as required. �
Remark 4.11. In fact, the Boltzmann functional τβH is reflection positive for all β ≥ 0 if 
H satisfies the conditions of Theorem 4.10.

5. Necessary and sufficient conditions for RP

In order to obtain necessary as well as sufficient conditions for reflection positivity, 
we now introduce a more rigid framework. Let A be the q-double of A+, and let τ be 
a neutral, reflection positive functional on A. In addition to the previous assumptions 
Q1–Q3, we now require the following, additional properties, described in more detail in 
§2.7 and §2.8, and in §5.1 below.

Q4. The algebra A+ comes with an antilinear, grading-inverting map � : A+ → A+. We 
require that A+ admits an unconditional, homogeneous Schauder basis.

Q5. The functional τ : A → C factorizes into τ+ and τ−.
Q6. The functional τ+ : A+ → C is strictly positive for �.

These additional assumptions are suitable in the context of statistical physics, where 
one has a uniform background measure or tracial state. This state is generally assumed 
to be faithful, reflection invariant, and factorizing.
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In quantum field theory however, it is necessary to put nearest-neighbor couplings 
into the background measure, in order to define it mathematically. This destroys the 
factorization property; in the case of quantum fields, the results on sufficient conditions 
in the previous section still apply, while the results on necessary conditions in the present 
section need to be strengthened.

5.1. The matrix of coupling constants

Let τ be a factorizing functional such that τ+ is strictly positive. Then the scalar 
product 〈A, B〉 = τ+(A�B) on A+ is nondegenerate.

We require that A+ has a countable, homogeneous Schauder basis. This is a count-
able, ordered set {vI}I∈I of homogeneous elements such that every A ∈ A+ has a unique 
expansion A =

∑
I∈I aIvI . Using the Gram–Schmidt procedure, one can find a homoge-

neous Schauder basis {CI}I∈I of A+ with the following properties:

B1. There is a unit CI0 = 1, for some distinguished index I0 ∈ I.
B2. For all I, J ∈ I, one has τ+(C�

ICJ) = δIJ .
B3. The linear span of {CI}I∈I is dense in A+.

Note that any set {CI}I∈I of homogeneous elements satisfying B1–B3 is a Schauder 
basis; every A ∈ A+ has a unique expansion A =

∑
I∈I aICI , with aI = τ(C�

IA).
We use the orthogonal basis of A+ to construct a basis of A0. If |CI | = |CJ |, define 

the operators BIJ , B̂IJ ∈ A0 by

BIJ = Θ(CI) ◦ CJ , and B̂IJ = Θ(C�
I) ◦ C

�
J . (37)

Lemma 5.1. The operators BIJ and B̂IJ , for |CI | = |CJ |, are dual in the sense that

τ(B̂IJ BI′J ′) = δII′δJJ ′ . (38)

Proof. Using Lemma 4.3, the factorization property of τ , and the fact that � inverts the 
grading, one finds

τ(B̂IJ BI′J ′) = τ(Θ(C�
ICI′) ◦ C�

JCJ ′) (39)

= τ+(C�
I CI′) τ+(C�

J CJ ′) .

The lemma follows since τ+(C�
I CI′) = δII′ , and τ+(C�

J CJ ′) = δJJ ′ . �
As the linear span of A−A+ is dense in A, every A ∈ A0 has a convergent expansion

A =
∑

aIJBIJ , (40)

(I,J)∈I×I
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with aIJ = 0 if |CI | 	= |CJ |. The sum requires an order on I × I, which is obtained in a 
natural way from the order on I.

Proposition 5.2. The expansion (40) of A ∈ A0 is unique, and the coefficients aIJ =
τ(B̂IJA) depend continuously on A.

Proof. The uniqueness and continuity of the coefficients aIJ follow from the explicit 
expression, which is a consequence of Lemma 5.1. �
Proposition 5.3. The operators BIJ satisfy Θ(BIJ ) = BJI . Therefore, A ∈ A0 is reflec-
tion invariant, Θ(A) = A, if and only if the matrix (aIJ)I is Hermitian, aJI = aIJ .

Proof. The second statement follows from the first by uniqueness of the expansion (40). 
The property Θ(BIJ) = BJI follows immediately from Lemma 4.2. �

In particular, every Hamiltonian H ∈ A0 of degree zero has a unique expansion

−H =
∑

(I,J)∈I×I
JIJ Θ(CI) ◦ CJ , (41)

with JIJ = 0 unless |CI | = |CJ |. The matrix (JIJ)I describes the couplings between 
CJ ∈ A+ and Θ(CI) ∈ A−.

Definition 5.4 (The matrix of coupling constants). The matrix (JIJ)I is called the matrix 
of coupling constants.

The term JI0I0 in the coupling matrix describes the coefficient of the identity, an 
irrelevant additive constant in H. Since CI0 = 1, the terms JI0J describe couplings 
inside A+. Similarly, the terms JII0 describe couplings inside A−. Finally, the terms JIJ
with I 	= I0 and J 	= I0 describe couplings between A− and A+.

Definition 5.5 (Couplings across the reflection plane). The submatrix (J0
IJ)I\{I0} of 

(JIJ )I , consisting of elements with I, J 	= I0, is called the matrix of coupling constants 
across the reflection plane.

Proposition 5.6. If the matrix of coupling constants (JIJ)I is Hermitian, then H is 
reflection invariant. If it is positive semidefinite, then −H ∈ co(K+).

Proof. The first statement follows from Proposition 5.3. The second follows from Propo-
sition 4.4, since every finite partial sum of (41) is of the form (33) if the matrix (JIJ)I
is positive semidefinite. �
Remark 5.7. In applications, the operator H ∈ A0 is often given in terms of a cou-
pling matrix (JIJ)I , by way of the expansion (41). Combining Proposition 5.6 with 
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Theorem 4.10, we see that τH is reflection positive if (JIJ)I is Hermitian, with posi-
tive semidefinite submatrix (J0

IJ)I\{I0} of couplings across the reflection plane. These 
properties are easy to check in concrete situations.

5.2. Necessary conditions for RP

In this section, we prove necessary conditions on the matrix of coupling constants 
across the reflection plane for the Boltzmann functional τβH to be reflection positive. In 
§5.3, we will show that these are equivalent to the sufficient conditions in §4.

Lemma 5.8. Suppose that the exponential series for exp(−βH) converges, and is differ-
entiable at β = 0. If τβH is reflection positive for all β ∈ [0, ε), then

τ((Θ(A) ◦A)H) ≤ 0 , (42)

for all A ∈ A+ with τ (Θ(A) ◦A) = 0.

Proof. Consider the function F (β) = τ((Θ(A) ◦ A) e−βH) � 0. At β = 0, one finds 
F (0) = τ(Θ(A) ◦A) = 0. Hence

− d

dβ
F (β)

∣∣∣∣
β=0

= τ((Θ(A) ◦A)H) = lim
β↓0

−F (β)
β

� 0 ,

as claimed. �
Theorem 5.9. Suppose that there exists an ε > 0 such that the map β → exp(−βH) is 
well defined on β ∈ [0, ε), and differentiable at β = 0. If τβH is reflection positive for all 
β ∈ [0, ε), then the matrix (J0

IJ)I\{I0} of coupling constants across the reflection plane 
is positive semidefinite.

Proof. Let A ∈ A+ be homogeneous of degree |A| = k, with τ+(A) = 0. Since τ factorizes, 
we have τ (Θ(A) ◦A) = |τ+(A)|2 = 0. Insert the expansion (41) into the expression (42)
obtained in Lemma 5.8, and use Lemma 4.3 to find

0 ≤
∑

I,J∈I
JIJ τ((Θ(A) ◦A)(Θ(CI) ◦ CJ))

=
∑

I,J∈I
JIJ τ (Θ(ACI) ◦ACJ) =

∑
I,J∈I

JIJ αI αJ , (43)

with αI = τ+(ACI). In the last expression, we use the fact that τ factorizes and is 
reflection invariant. Note that αI0 = τ+(A) is zero by assumption, and that αI = 0 if 
|CI | 	= − |A| since τ is neutral.

Since JIJ = 0 unless |CI | = |CJ |, it suffices to check that 0 ≤
∑

I,J JIJχIχJ for 
every homogeneous vector (χI)I which has finitely many nonzero entries. Since we are 
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interested in the positivity of the submatrix (J0
IJ)I\{I0} of couplings across the reflection 

plane, we can restrict attention to vectors for which χI0 = 0. A vector (χI)I is called 
homogeneous of degree k ∈ Zp if every nonzero component χI has |CI | = k.

Let (χI)I be a vector as described above, and set A =
∑

I∈I χIC
�
I . For this choice 

of A, we use τ+(C�
ICJ) = δIJ (assumption B2 in §5.1) to see that αI = τ+(ACI) = χI . 

Combining this with (43), we find that 0 ≤
∑

I,J J0
IJχIχJ , as required. �

5.3. Characterization of RP

Combining the sufficient conditions for reflection positivity in Theorem 4.10 with the 
necessary conditions in Theorem 5.9, we obtain the following characterization of reflection 
positivity. It holds for any q-double A satisfying the properties Q1–Q6, and the further 
requirements that the exponential map exp: A → A is continuous, and β → exp(−βH)
is differentiable at zero.

Theorem 5.10. Let τ be a continuous, neutral, factorizing functional on A, and suppose 
that τ+ is strictly positive with respect to the map � : A+ → A+. Let H ∈ A be a reflection 
invariant operator of degree zero. Then the following are equivalent:

a. The Boltzmann functional τβH is reflection positive for all 0 ≤ β.
b. There exists an ε > 0 such that τβH is reflection positive for 0 ≤ β < ε.
c. The matrix (J0

IJ )I of coupling constants across the reflection plane is positive 
semidefinite.

d. There is a decomposition H = H− +H0 +H+, with H+ ∈ A+, with −H0 ∈ co(K+), 
and with H− = Θ(H+).

Proof. The implication a ⇒ b is clear, and b ⇒ c is Theorem 5.9. For c ⇒ d, note 
that since H ∈ A0 is reflection invariant and (J0

IJ)I\{I0} is positive semidefinite, we can 
decompose H as H = H+ +H0 +H− with −H0 ∈ co(K+), H+ ∈ A0

+, and Θ(H+) = H−. 
The operators H0 and H+ are given in terms of the matrix of coupling constants by

−H0 =
∑

I,J∈I\I0

J0
IJζ

|CI |2Θ(CI)CJ , (44)

−H+ = 1
2JI0I01 +

∑
J∈I\{I0}

JI0JCJ . (45)

Finally, d ⇒ a is Theorem 4.10. �
Remark 5.11. Note the similarity between Theorem 5.10 and Schoenberg’s theorem [37,
38], which states that e−H is a positive definite kernel on a (discrete) set Γ if and only if 
H is conditionally negative definite. Using a limiting argument, we can restrict attention 
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to the case where Γ is finite. We then recover Schoenberg’s theorem by applying Theo-
rem 5.10 to the algebra A = C(Γ × Γ), with the reflection Θ(F )(γ−, γ+) = F (γ+, γ−), 
and the algebra A+ consisting of functions F (γ−, γ+) that depend only on γ+.

Remark 5.12. In the context of modular theory, it was shown by Connes [4, Théorème 3.4]
that τβH is reflection positive for all negative as well as positive β, if and only if H is 
of the form (36) with H0 = 0. By Remark 4.11, the ‘if’ part of this theorem extends to 
the Zp-graded setting. We recover the ‘only if’ part if τ is factorizing, which is generally 
not the case in the context of modular theory. We consider this an indication that there 
should exist interesting extensions of Theorem 5.10 to the case where τ is not factorizing.

6. Lattice statistical physics

We illustrate our general framework with an extensive list of examples in the context 
of statistical physics on a lattice. In this section, we establish fundamental notation that 
we use in §7–10.

A lattice is a countable set Λ, equipped with a reflection ϑ : Λ → Λ satisfying ϑ2 = Id. 
We choose a decomposition Λ = Λ− ∪ Λ+ such that the intersection Λ0 = Λ+ ∩ Λ− is 
the fixed point set of ϑ, and ϑ interchanges Λ+ with Λ−.

To each subset U ⊆ Λ, we associate an algebra AU of observables. The algebra corre-
sponding to a single lattice point λ ∈ Λ is denoted by Aλ. The nature of the algebras Aλ, 
as well as their mutual exchange relations inside the algebra AΛ of observables associated 
to the lattice Λ, depends somewhat on the particular situation. In the examples below, 
A = AΛ will be the q-double of A± = AΛ± .

In most of these examples, we will work with finite lattices. This captures the essence 
of the problem; if one takes the C∗-completion for an infinite lattice, reflection positivity 
carries over to the infinite case. We illustrate this in the case of parafermion algebras and 
CPR algebras in §10, where we treat countable lattices. We will allow for a nontrivial 
fixed point set Λ0 = Λ+ ∩ Λ− unless specified otherwise.

Remark 6.1 (Reflections in metric spaces). In practice, Λ is usually a discrete subset of a 
metric space M, and the reflection comes from an isometry ϑM : M → M which ‘flips’ 
the ambient space, meaning that ϑ2

M = Id. In that case, Λ0 = Λ ∩ P is the intersection 
of Λ with the fixed point set

P = {m ∈ M ; ϑM(m) = m} .

A typical example is M = R
d, with ϑRd : Rd → R

d the orthogonal reflection in a 
hyperplane P ⊂ R

d with unit normal n̂, and Λ ⊆ R
d is a finite subset with ϑRd(Λ) = Λ. 

Then Λ0 = Λ ∩P is the intersection of Λ with the reflection plane P , and Λ± = {λ ∈ Λ ;
±〈λ, ̂n〉 ≥ 0} is the part of Λ on either side of the reflection plane P , with points on P
included.
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Fig. 1. Lattice on the torus T 2. The fixed point set P under a reflection is the union of 2 copies of T 1.

Another common situation is where M is the d-torus T d = R
d/LZd, and ϑTd is the 

reflection in one of the coordinates, ϑTd(t1, . . . , tn) = (t1, . . . , −ti, . . . tn). In that case, 
the fixed point set

P = {t ∈ T d ; ti ∈ 1
2LZ}

is the disjoint union of two tori of dimension d − 1, separated by a distance L/2 (see 
Fig. 1).

7. Bosonic systems

We specialize our characterization of reflection positivity to bosonic classical and 
quantum systems on a finite lattice.

7.1. Bosonic classical systems

We describe an isolated system at a single lattice point λ by a probability space 
(Ω, Σ, μ). In the absence of interactions, a bosonic classical system on a lattice Λ is 
described by the product ΩΛ =

∏
λ∈Λ Ωλ, with the sigma algebra ΣΛ =

⊗
λ∈Λ Σλ and 

the product measure μΛ. Denote the sigma algebras on ΩΛ±,0 by Σ±,0 =
⊗

λ∈Λ±,0
Σλ, 

and the corresponding product measures by μ±,0.
We now define a reflection Θ of the algebra L∞(ΩΛ, μΛ). Assume that ρ : Ω → Ω is 

a reflection for the state space of a single system, with ρ2 = Id and ρ∗μ = μ. Then 
the reflection θ : ΩΛ → ΩΛ of the full system ΩΛ is defined by θ(ω)λ = ρ(ωϑ(λ)). The 
antilinear reflection Θ: L∞(ΩΛ, μΛ) → L∞(ΩΛ, μΛ) is

Θ(f)(ω) = f(θ(ω)) .
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7.1.1. Reflection positivity
We now review the translation of the notion of reflection positivity from algebras to 

measure spaces.

Definition 7.1. A complex valued measure ν on ΩΛ is called reflection positive if

0 ≤ Eν(Θ(f+)f+) (46)

for all f+ ∈ L∞(ΩΛ, μΛ) that are measurable w.r.t. Σ+.

Proposition 7.2. The measure μΛ on (ΩΛ, ΣΛ) is reflection positive if either ρ = Id or 
Λ0 = ∅.

Proof. If Λ0 = ∅, then since μ = μ− ⊗ μ+ and Eμ−(Θ(f+)) = E+(f+),

Eμ(Θ(f+)f+) = Eμ−(Θ(f+))Eμ+(f+) = |Eμ+(f+)|2

is nonnegative regardless of ρ. If Λ0 	= ∅, let 〈f+〉 ∈ L∞(Ω0, Σ0) be the conditional 
expectation of f+ with respect to the sigma algebra Σ0. Then

Eμ(Θ(f+)f+) =
∫
Ω0

〈f+〉(θ(ω0))〈f+〉(ω0)
∏
λ∈Λ0

μλ(dωλ) .

If ρ = Id, then θ(ω0) = ω0 for all ω0 ∈ Ω0, so the above expression is manifestly 
nonnegative. �
7.1.2. Reflection positivity of Boltzmann measures

If the interaction is given by a Hamiltonian H ∈ L∞(ΩΛ, μΛ), then the system at 
inverse temperature β is described by the Boltzmann measure

μβH = e−βHμ . (47)

If H is real-valued, then μβH is a positive measure, which can be normalized to the 
probability measure Z(β)−1μβH , where Z is the partition sum Z(β) =

∫
ΩΛ e−βHμ(dω). 

In this paper, we allow H and μβH to be complex valued.
We now formulate the necessary and sufficient conditions for reflection positivity of 

μβH . Fix bounded, square integrable elements ci ∈ L∞(Ω, μ), labelled by i ∈ S, with the 
following properties:

– Identity, ci0 = 1 for some label i0 ∈ S.
– Orthogonality, 

∫
Ω ci(ω)cj(ω)μ(dω) = δij .

– The linear span of the ci is dense in L∞(Ω, μ) with respect to the topology of con-
vergence in measure.
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From this, we obtain a basis of L∞(ΩΛ+ , μ+) by

CI(ω+) =
∏

λ∈Λ+

ciλ(ωλ) .

It is labelled by indices I ∈ SΛ+ . Denote by I0 the index that assigns the label i0 to 
every λ ∈ Λ+. Then CI0 = 1 ⊗ . . . ⊗ 1 is the identity function, and Eμ+(CI) = 0 for 
I 	= I0. Further, all CI are bounded, and their span is dense in L∞(ΩΛ+ , μ+) for the 
topology of convergence in measure.

If Λ0 = ∅, then we obtain an orthonormal basis of L2(ΩΛ, μΛ) labelled by (I, J) ∈
SΛ+ × SΛ+ ,

BIJ (ω) = Θ(CI)CJ (ω) =
∏

λ∈λ+

cjλ(ρ(ωϑ(λ))) ×
∏

λ∈Λ+

cjλ(ωλ) .

Again, Θ(CI0)CI0 = 1 and EμΛ(Θ(CI)CJ) = 0 for (I, J) 	= (I0, I0). As the closure of the 
Θ(CI)CJ is dense in L∞(ΩΛ, μΛ), every Hamiltonian H ∈ L∞(ΩΛ, μΛ) can be written 
as

−H =
∑

I,J∈SΛ+

JIJΘ(CI)CJ , (48)

where the sum converges in measure, and (JIJ) is the matrix of coupling constants. Its 
submatrix (J0)IJ of coefficients with I, J 	= I0 is called the matrix of coupling constants 
across the reflection plane. Since Θ(Θ(CI)CJ ) = Θ(CJ )CI , one sees that H is reflection 
invariant, Θ(H) = H, if and only if (JIJ ) is hermitian, JJI = JIJ .

In the case that the lattice Λ does not intersect the reflection plane, we obtain the 
following necessary and sufficient conditions for reflection positivity.

Theorem 7.3. Let H ∈ L∞(ΩΛ, μΛ) be reflection invariant, Θ(H) = H, and suppose that 
Λ0 = ∅. Then the Boltzmann measure μβH = e−βHμ is reflection positive for all β ≥ 0
if and only if the matrix J0

IJ of coupling constants across the reflection plane is positive 
semidefinite.

Proof. Apply Theorem 5.10 to the algebra A = L∞(ΩΛ, μΛ), with A± = L∞(ΩΛ± , μ±)
and Θ(f)(ω) = f(θ(ω)). �

If Λ0 	= ∅, then the expansion (48) is no longer unique. Nonetheless, we have the 
following sufficient conditions for reflection positivity in the general case, with either 
Λ0 = ∅ or ρ = Id.

Theorem 7.4. Suppose that H = H− +H0 +H+, where the element H+ ∈ L∞(ΩΛ+ , μ+)
is measurable w.r.t. Σ+, Θ(H+) = H−, and H0 ∈ L∞(ΩΛ, μΛ) possesses an expansion 



A. Jaffe, B. Janssens / Journal of Functional Analysis 272 (2017) 3506–3557 3539
(48) with a positive semidefinite matrix J0
IJ of coupling constants. Then the Boltzmann 

measure μβH = e−βHμ is reflection positive for all β ≥ 0.

Note that Theorems 7.3 and 7.4 allow for couplings between arbitrarily many lat-
tice points at arbitrary distance. We now specialize these results to the case of pair 
interactions, which is of particular relevance.

7.1.3. Pair interactions and nearest neighbor interactions
In this section and the following one, we make some additional assumptions on the 

form of H, and we give necessary and sufficient conditions for reflection positivity within 
this class of Hamiltonians.

A pair interaction Hamiltonian has the form

−H(ω) =
∑

λ,λ′∈Λ

hλλ′(ωλ, ωλ′) +
∑
λ∈Λ

Vλ(ωλ) . (49)

For general pair interactions, we do not impose any restrictions on the finite lattice Λ
other than the ones in §6.

A Hamiltonian H is of nearest neighbor type if it is of the form (49) with hλλ′ nonzero 
only for |λ− λ′| = 1. We have special results for Hamiltonians describing nearest neigh-
bor interactions on rectangular lattices in Rd or T d = R

d/(LZ)d, of the form

Λ = {−L, . . . , L}d ⊆ R
d or Λ = {0, . . . , (L− 1)}d ⊆ T d . (50)

Here, we assume that the fixed point set P ⊆ R
d is in one of the coordinate planes, and 

that it intersects the lattice nontrivially.

Theorem 7.5. Suppose that Λ is a rectangular lattice of the form (50), intersecting the 
coordinate plane P nontrivially. Let θ(ωλ) = ωϑ(λ). Then for every reflection invariant 
nearest neighbor Hamiltonian H ∈ L∞(ΩΛ, μλ), the Boltzmann measure μβH is reflection 
positive for all β ≥ 0.

Proof. Nearest neighbor Hamiltonians on a lattice that intersects the reflection plane 
are very special, since they allow a decomposition H = H− + H0 + H+ with H0 = 0.

To see this, note that each bond 〈λ, λ′〉 is contained in either Λ+ or Λ−. We can 
thus write the Hamiltonian as H = H− + H+ where H+ is measurable w.r.t. Σ+, and 
H− = Θ(H+). The corollary then follows from Theorem 7.4. To exhibit the splitting, 
define H+ by

−H+ =
∑

λ,λ′∈Λ+

ελλ′hλλ′(ωλ, ωλ′) +
∑
λ∈Λ+

ελVλ(ωλ) , (51)

with ελλ′ = 1
2 if both λ and λ′ are in Λ0, and ελλ′ = 1 otherwise. Similarly, ελ = 1

2
if λ ∈ Λ0 and ελ = 1 if λ ∈ Λ+\Λ0. As H is reflection invariant, it can be written 
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in the form (49) with hϑ(λ),ϑ(λ′) = hλ,λ′ and Vϑ(λ) = V λ. Using this, one verifies that 
H = Θ(H+) + H+, as required. �

Nearest neighbor interactions on a lattice that does not intersect the reflection plane 
are not automatically reflection positive. They are characterized in Remark 7.7.

7.1.4. Long range pair interactions
Suppose that for each lattice site λ, we have k random variables φa ∈ L∞(Ω, μ), with 

a = 1, . . . , k. We require that Eμ(φa) = 0 and Eμ(φaφb) = δab. For example, if Ω is 
the 2-point space {+1, −1} with the counting measure, one can take the single variable 
φ(ω) = ω. If Ω is the block Ω = [−φmax, φmax]k with the normalized Lebesque measure, 
or the k− 1-sphere Ω = Sk−1 ⊆ R

k with the round measure, then one can take φa to be 
the coordinate variables. Consider Hamiltonians of the form (49) with

hλ,λ′ = Jab
λ,λ′φa

λφ
b
λ′ , (52)

where the reflection ρ sends φa to saφa, with sa = ±1. If the reflection plane P ⊆ R
d does 

not intersect the lattice, then necessary and sufficient conditions for reflection positivity 
can be given as follows.

The matrix of couplings across the reflection plane is (saJab 0
ϑ(λ),λ′), with entries labelled 

by (λ, a) and (λ′, b) in Λ+ ×{1, . . . , k}. The following corollary then follows immediately 
from Theorem 7.3.

Corollary 7.6. Suppose that H is a reflection invariant Hamiltonian of the form (49), 
with hλλ′ given by (52). Then μβH is reflection positive for all β ≥ 0 if and only if 
(saJab 0

ϑ(λ)λ′) is positive semidefinite.

Remark 7.7 (Nearest neighbor). Consider a rectangular lattice

Λ = {−2L+1
2 ,−2L−1

2 , . . . , 2L+1
2 }d

that does not intersect the reflection plane P , and a nearest neighbor Hamiltonian given 
by Jab

λλ′ . Then H is reflection invariant, if for every bond 〈θ(λ), λ〉 that crosses the 
reflection plane, the k× k-matrix in a and b given by (saJab 0

θ(λ),λ) is positive semidefinite.

More generally, if Λ ⊆ R
d is any lattice that does not intersect P , and H is a reflection 

invariant Hamiltonian with Jab
λ,λ′ = f(λ − λ′)Jab, then μβH is reflection invariant for all 

β ≥ 0 if and only if saJab is positive semidefinite, and f : Rd → R is OS-positive,

n∑
i,j=1

zizjf(ϑ(λi) − λj) ≥ 0 (53)

for all (zi, λi) ∈ C × R
d,+. (OS stands for Osterwalder–Schrader.) For example, the 

function f(λ) = |λ|−s is OS-positive if s ≥ d − 2 and s ≥ 0. Naturally, we have a similar 
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sufficient condition for reflection positivity in case that Λ0 	= ∅. The only difference is 
that all signs sa equal +1, as ρ must be the identity.

7.2. Bosonic quantum systems

Suppose that the isolated system at each lattice point λ is a bosonic, quantum me-
chanical system with n degrees of freedom. This is described by the matrix algebra 
Aλ = Mn(C). The total system is given by the algebra

A =
⊗
λ∈Λ

Mn(C) .

In the absence of interactions, the background state τ is the normalized tracial state, 
given by

τ(Aλ1 ⊗ . . .⊗Aλk
) = 1

nk
Tr(Aλ1) · · ·Tr(Aλk

) (54)

on the pure tensors. (Here Tr denotes the unnormalized trace.) The reflection Θ: A → A

is the antilinear homomorphism given by

Θ(Aλ) = ρ(A)ϑ(λ) , (55)

where denotes complex conjugation and ρ denotes conjugation by an arbitrary invert-
ible operator R ∈ GLn(C), namely ρ(A) = RAR−1. If R is unitary, then ρ(A∗) = ρ(A)∗, 
but we will not require that this is the case.

For bosonic quantum systems, we only consider the case Λ0 = ∅, meaning that the 
reflection ϑ has no fixed points on Λ. If we define

A± =
⊗
λ∈Λ±

Mn(C) ,

then Θ(A+) = A−, and A is the linear span of A−A+. Since A = A− ⊗ A+, the algebra 
A is the bosonic q-double of A+ (cf. §3.1).

Proposition 7.8 (Primitive reflection positivity). The tracial state τ is faithful, factoriz-
ing, reflection invariant, and reflection positive;

0 ≤ τ(Θ(A)A) , for all A ∈ A+. (56)

Proof. By linearity, it suffices to show reflection invariance on the pure tensors A =
Aλ1 ⊗ . . .⊗Aλk

. This follows from the identity

τ(Θ(A)) = 1
k Tr(RAλ1R

−1) · · ·Tr(RAλk
R−1) = τ(A) . (57)
n
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By (23), the factorization property can be expressed as τ(AB) = τ−(A)τ+(B) for A ∈ A−
and B ∈ A+. This is immediate from (54). The state τ is faithful since it is a finite tensor 
product of faithful states, and reflection positive by Proposition 2.23. �

Fix an orthonormal basis {ci}i∈S of Mn(C) with respect to the inner product (X, Y ) =
Tr(X∗Y ) such that c0 = 1. The basis is labelled by i ∈ S. A usual choice is the basis 
consisting of 1, the matrices Ekk − Ek+1,k+1 for k = 1, . . . , n − 1, and the matrices 
Ekl +Elk and i(Ekl −Elk) for 1 ≤ k < l ≤ n. Here Ekl denotes the matrix with entry 1
in the kl place and 0 elsewhere. In the case of M2(C), these are the Pauli matrices.

From the basis {ci}i∈S for Mn(C), we obtain the tensor product basis

CI =
⊗
λ∈Λ+

ciλ

for A+, labelled by I ∈ SΛ+ . In turn, this yields the basis

BIJ = Θ(CI) ◦ CJ = Θ(CI)CJ =
⊗
κ∈Λ−

Rciθ(κ)R
−1

⊗
λ∈Λ+

cjλ

of A, labelled by (I, J) ∈ SΛ+ × SΛ+ . Every matrix H ∈ A has a unique expansion

−H =
∑

I,J∈SΛ+

JIJBIJ (58)

in the basis BIJ . The basis coefficients form an SΛ+ × SΛ+-matrix (JIJ)SΛ+ , called the 
matrix of coupling constants. The matrix of coupling constants across the reflection plane
is the submatrix (J0

IJ )SΛ+\{0} where neither CI nor CJ is the identity.
The following theorem gives necessary and sufficient conditions for reflection positivity 

of the Boltzmann functional τβH : A → C at inverse temperature β ≥ 0, defined by 
τβH(A) = τ(A e−βH).

Theorem 7.9. Let H ∈ A be reflection invariant, Θ(H) = H. Then the Boltzmann func-
tional τβH is reflection positive on A+ for all β ≥ 0 if and only if the matrix (J0

IJ )SΛ+\{0}
of coupling constants across the reflection plane is positive semidefinite.

Proof. This follows from Theorem 5.10. �
This result extends [22, Theorem 5.2] from M2(C) to Mn(C). As a simple example 

of how Theorem 7.9 may be used in a concrete situation, we show that the long range 
antiferromagnetic Heisenberg model is reflection positive at arbitrary spin s, see [6,11,7]. 
The Hamiltonian is

−H = J
∑

′

|λ− λ′|−v
∑

Sa
λ S

a
λ′ ,
λ 
=λ a=x,y,z
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where Sx, Sy, Sz ∈ M2s+1(C) are hermitian spin matrices for spin s. In the highest 
weight representation π : sl(2) → M2s+1(C), these are given by

Sx = 1
2 (π(e) + π(f)), Sy = − i

2 (π(e) − π(f)), and Sz = 1
2π(h) ,

where e, h and f are the usual sl(2)-generators with

[h, e] = 2e, [h, f ] = −2f, and [e, f ] = h .

Since π(e), π(h) and π(f) can be realized as real matrices, the map X → X flips the sign 
of Sy, while leaving Sx and Sz invariant. Since R = exp(iπSy) represents a 180◦-rotation 
around the y-axis, the map X → RXR−1 flips the sign of Sx and Sz, while leaving Sy

invariant.
With the reflection Θ of (55), we therefore find Θ(Sa

λ) = −Sa
ϑ(λ). The matrix of 

coupling constants across the reflection plane is thus given by

J0ab
λλ′ = −J |ϑ(λ) − λ′|−v

δab

for λ, λ′ ∈ Λ+, and a, b ∈ {x, y, z}. If Λ is a ϑ-invariant subset of Rd, then this is a 
positive semidefinite matrix if J ≤ 0 and if v is a nonnegative number with v ≥ d − 2.

8. Fermionic systems

We specialize our characterization of reflection positivity to fermionic classical and 
quantum systems on a lattice.

8.1. Fermionic classical systems

A fermionic classical system is described by the Z2-graded Grassmann algebra A =∧
V , which we have already considered in §3.3. Here V is an oriented, even-dimensional

Hilbert space, which may arise either from a single site λ, or from the full lattice Λ.
For applications in physics, the vector space V corresponding to a single site is either 

V = W (for Weyl spinors) or V = W ⊕W (for Dirac spinors). In the latter case, W is 
identified with W by means of an antilinear isomorphism ψ → ψ. Here W = Ws ⊗WD

is the tensor product of an s-dimensional, unitary representation Ws for spin(d) and 
a D-dimensional unitary representation WD of the relevant gauge group G. The basis 
elements are then labelled by ψαa, with α = 1, . . . , s and a = 1, . . . , D.

The vector space corresponding to the full lattice Λ is V Λ, and the algebra is A =∧
V Λ. The definition of the algebras A− and A+ depends on whether the intersection 

Λ0 of Λ− and Λ+ is empty or not. In case Λ0 = ∅, we simply define V± = V Λ± , and set 
A± =

∧
V Λ± . We allow Λ0 = Λ− ∩ Λ+ to be nonempty only if V = W ⊕ W . In that 

case, we set
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V+ =
⊕
λ∈Λ0

Wλ ⊕
⊕
λ∈Λ+

(Wλ ⊕Wλ) ,

V− =
⊕
λ∈Λ0

Wλ ⊕
⊕
λ∈Λ−

(Wλ ⊕Wλ) ,
(59)

and we define A± =
∧
V±.

Let ρ : V → V be an antilinear isomorphism that squares to the identity. If V =
W ⊕ W , we require that ρ interchanges W and W . The reflection Θ: A → A is the 
unique antilinear homomorphism such that

Θ(ψλ) = ρ(ψϑ(λ))

for all ψλ ∈ Vλ. Note that the Grassmann algebra A is the fermionic q-double of A+, 
cf. §3.3. Recall from Definition 3.1 that the Berezin integral is defined in terms of a 
volume form on V .

Proposition 8.1 (RP of the Berezin integral). Suppose that V is even dimensional, and 
that ρ(μ) = μ. If V = W ⊕W , then we require that W is even dimensional, and that the 
restriction of ρ to W → W is of determinant 1. Then the Berezin integral is a factorizing, 
reflection invariant, reflection positive functional of degree zero.

Proof. Note that an orientation of W defines an orientation on V Λ, V Λ+ and V Λ− . 
A positively oriented volume μ or μ± is obtained by taking the product of μW,λ and 
μW,λ over all the sites λ in the relevant lattice. If λ ∈ Λ0, then μ+ only gets a single 
factor μW,λ, and μ− only gets a single factor μW,λ.

Since the relevant vector spaces are even dimensional, the order of the products is 
immaterial. The assumptions on ρ ensure that θ : V+ → V− is volume preserving, and 
that μ = μ− ∧ μ+. The result then follows from Proposition 3.2. �

We construct a basis of A that is adapted to the reflection. First, choose a basis 
{ψi}i∈T of W and {ψi}i∈S of V . From this, we obtain a basis ψ(λ,i) of V+, labelled by 
(λ, i) ∈ (Λ0 × T ) � (Λ+\ Λ0) × S. By choosing an order on this label set, we obtain an 
ordered basis of A+ =

∧
V+ by setting

CI = ψ(i1,λ1) ∧ . . . ∧ ψ(ik,λk) , (60)

if (λ1, i1) < . . . < (λk, ik) is in increasing order. The basis CI is labelled by the power 
set

I = P
(
(Λ0 × T ) � (Λ+\ Λ0) × S

)
. (61)

If I0 = ∅, we define CI0 = 1 to be the identity. Using the basis CI of A+, we obtain a 
basis BIJ of A0 by
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BIJ =
√
−1|I|

2

Θ(CI)CJ ,

where |I| ∈ Z2 is the cardinality of I modulo 2, and J is restricted to have |I| = |J |
modulo 2. This ensures that BIJ is even. (Note that the factor 

√
−1 = ζ comes from the 

twisted product (18).)
Every H ∈ A0 then has a basis expansion

−H =
∑
I,J

JIJBIJ .

The matrix (JIJ)I is called the matrix of coupling constants, and the submatrix 
(J0

IJ )I\{I0} is called the matrix of coupling constants across the reflection plane.

Theorem 8.2. Let H ∈ A be a reflection invariant element of degree zero. Then the 
Boltzmann functional τβH(A) = τ(A e−βH) is reflection positive on A+ for all β ≥ 0, 
if and only if the matrix of coupling constants across the reflection plane is positive 
semidefinite.

Proof. This follows from Theorem 5.10. The Berezin integral is strictly positive by Propo-
sition 3.3, and it is factorizing and reflection positive by Proposition 8.1. �
8.2. Fermionic quantum systems

Quantum mechanical fermionic systems are described by Clifford algebras, which we 
considered in §3.4. If the vector space associated to a single lattice site is the finite 
dimensional vector space V , then the space associated to the full lattice is V Λ. Corre-
spondingly, the algebra for a single site is Aλ = Cl(V ), and the algebra for the full lattice 
is A = Cl(V Λ).

Let ρ : V → V be an antilinear map that squares to the identity, and satisfies 
hC(ρ(v), ρ(v′)) = hC(v, v′) for all v, v′ ∈ V . This yields an antilinear isomorphism 
θ : V Λ → V Λ by θ(vλ) = ρ(vθ(λ)), and hence an antilinear homomorphism Θ: A → A.

If Λ0 = Λ+∩Λ− is nonzero, then we require that VR = WR⊕WR is an orthogonal direct 
sum, and that ρ is the antilinear complexification of a real orthogonal transformation 
ρR : VR → VR that interchanges the two copies of WR.

Define the vector spaces V± as in (59), and define A± = Cl(V Λ±). Since θ(V+) = V−
and hC(V+, V−) = {0}, the algebra A is the fermionic q-double of A+, cf. §3.4.

Choose orthonormal bases {ci}i∈T of WR, and {ci}i∈S of VR. In the same way as in 
§8.1, we obtain a basis CI of A+, labelled by the index set I of equation (61). It is given 
by CI0 = 1 if I0 = ∅, and by

CI = c(λ1,i1) · · · c(λk,ik) , (62)

if (λ1, i1) < . . . < (λk, ik) is increasing with respect to a chosen order on (Λ0 × T ) �
(Λ+\ Λ0) × S.



3546 A. Jaffe, B. Janssens / Journal of Functional Analysis 272 (2017) 3506–3557
Using the basis CI of A+, we define the basis BIJ of A0 by

BIJ = Θ(CI) ◦ CJ =
√
−1|I|

2

Θ(CI)CJ .

Here |I| ∈ Z2 denotes the cardinality of I modulo 2, and J ∈ I is restricted to have 
|J | = |I|. Every H ∈ A0 then has a basis expansion −H =

∑
I,J JIJBIJ . Explicitly, 

there exist unique coefficients

JIJ = J i1
λ1

· · · ik ;
λk ;

i′1
λ′

1
· · · i

′
k′
λ′
k′

such that

−H =
∑

JIJ
√
−1 k2

ρ(cϑ(λ1)i1) · · · ρ(cϑ(λk)ik) cλ′
1i

′
1
· · · cλ′

k′ i
′
k′ .

The matrix (JIJ)I is the matrix of coupling constants, and (J0
IJ)I\{I0} is the matrix of 

coupling constants across the reflection plane.

Theorem 8.3. Let τ : A → C be the tracial state of Definition 3.5, and let H ∈ A be 
a reflection invariant element of degree zero. Then the Boltzmann functional τβH(A) =
τ(A e−βH) is reflection positive on A+ for all β ≥ 0, if and only if the matrix of coupling 
constants across the reflection plane is positive semidefinite.

Proof. This follows from Proposition 3.6 and Theorem 5.10. �
9. Lattice gauge theories: equivariant quantization

We give a characterization of reflection positivity in the context of lattice gauge the-
ories. In particular, this yields a new, gauge equivariant proof for reflection positivity 
of the functional determined by the Wilson action (69), stated in Corollary 9.2. Wilson 
introduced this action to be gauge invariant and have the correct pointwise continuum 
limit. By a miracle, this action also gives a reflection-positive expectation.

In contrast to the proofs in the literature, pioneered by Osterwalder and Seiler [29,
33,39], we do not fix the gauge on bonds that cross the reflection plane. Rather, we 
introduce extra degrees of freedom that put the interaction across the reflection plane 
in a form covered by Theorem 5.10. We deal with the problem of fermion doubling as in 
[27].

Using this method, we are able to prove reflection positivity on the full algebra of 
observables, not just on the gauge invariant part. As a consequence of the quantization 
procedure, any two elements of A+ that differ by a gauge transformation that does not 
involve the reflection plane yield the same state in HΘ.
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Fig. 2. Points in Λ′ are white, points in Λ′′ are black.

9.1. Gauge bosons

Let G be a compact Lie group, and let Λ′ be a hypercubic lattice of width r in Rd or 
T d. Let Λ′′ be the set of midpoints λ′′ = 1

2 (λ′
1 + λ′

2) of nearest neighbors λ′
1, λ

′
2 in Λ′, 

and define the lattice as Λ = Λ′ ∪ Λ′′. (See Fig. 2.)
Denote the set of directed nearest-neighbor bonds in Λ by E = {〈λκ〉 ; |λ− κ| = r/2}, 

and denote the set of undirected bonds by |E| = {{λκ} ; |λ− κ| = r/2}. To describe 
the bosonic degrees of freedom, we associate the variable h〈λκ〉 ∈ G to the directed 
nearest-neighbor bond 〈λκ〉 ∈ E. Note that every nearest-neighbor bond contains one site 
in Λ′, and one in Λ′′. Since h〈λκ〉 represents the holonomy induced by parallel transport 
from λ to κ, we impose h〈κλ〉 = h−1

〈λκ〉 for the bond 〈κλ〉 in the other direction. The Haar 
measure μH on the 1-bond probability space

Ω{λκ} = {(h〈λκ〉, h〈κλ〉) ∈ G×G ; h〈λκ〉 = h−1
〈κλ〉}

is obtained from the Haar measure on G by either one of the two projections to G (the 
result is the same). Similarly, the configuration space of discrete holonomies for the full 
system is

G|E| := {h ∈ GE ; h〈λκ〉 = h−1
〈κλ〉} .

We equip it with the Haar measure obtained from the identification G|E| �∏
{λκ}∈|E| Ω{λκ}. The associated algebra of bosonic observables is AB = L∞(G|E|).
The algebra AB contains functions that depend on the holonomies between every pair 

〈λκ〉 of nearest neighbors in Λ. If we zoom out and consider only the ‘coarse’ lattice 
Λ′ ⊆ Λ (the white points in Fig. 2), then the holonomy between the nearest neighbors 
λ′

1, λ
′
2 in Λ′ is given by hΛ′

λ′
1λ

′
2

= hλ′
1λ

′′
12
hλ′′

12λ
′
2
, where λ′′

12 ∈ Λ′′ is the midpoint between 
λ′

1 and λ′
2. Define

AB
Λ′ ⊆ AB

to be the subalgebra of measurable functions that depend only on the variables hΛ′

λ′
1λ

′
2

for nearest neighbors λ′
1, λ

′
2 in Λ′.

9.1.1. Reflection positivity
Suppose that the reflection ϑ : Λ → Λ flips a single coordinate xσ. Then the reflection 

Θ: AB → AB is the anti-linear homomorphism given by
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Θ(F )(h〈λ,κ〉) = F (h〈ϑ(λ),ϑ(κ)〉) (63)

for all F ∈ AB .
We assume that the fixed point set P is orthogonal to the basis vector �eσ, and intersects 

the lattice Λ halfway between lattice points in Λ′, so P ∩Λ′′ = Λ0. (See Fig. 2.) It follows 
that Λ = Λ−∪Λ+ with Λ−∩Λ+ = Λ0, Λ′ = Λ′

−∪Λ′
+ with Λ′

−∩Λ′
+ = ∅, and E = E−∪E+

with E− ∩ E+ = ∅.
Define AB

± = L∞(G|E±|), and consider AB
± ⊆ AB as the subalgebra of functions 

F : G|E| → C that are measurable with respect to G|E+|, that is, functions that depend 
only on the variables h〈λκ〉 with λ and κ both in Λ±. In this setting, AB is the bosonic 
q-double of AB

+.
As in the previous sections, we construct a basis of AB that is adapted to the reflection. 

To find a basis for L∞(Ω{λκ}) � L∞(G) with respect to the topology of convergence in 
measure, fix a basis (ea)a∈Sρ

for every irreducible unitary representation (ρ, Hρ) of G, 
and consider the matrix coefficients

Uab;ρ
λκ (h) = 〈ea, ρ(h〈λκ〉)eb〉 . (64)

By the Peter–Weyl Theorem, they constitute an orthonormal basis of L2(Ω{λκ}, μH), 
labelled by (ρ, a, b) ∈ Ĝ×Sρ×Sρ. (Since L2-convergence implies convergence in measure, 
this is sufficient.) Note that by unitarity of ρ, we have

Uab;ρ
λκ = U

ba;ρ
κλ . (65)

If we choose a preferred orientation 〈λκ〉 of each unoriented bond {λκ} in |E+|, we 
obtain an orthonormal basis

UI =
⊗

{λκ}∈|E+|
Uab;ρ
λκ (66)

of AB
+, labelled by I ∈ IB = X |E+|, where X = �ρ∈Ĝ Sρ × Sρ. Note that UI0 = 1 if 

I0 ∈ IB assigns to each bond the matrix element 1 of the trivial representation.
By (63), the basis elements Uab;ρ

λ′λ′′ reflect as

Θ(Uab;ρ
λκ ) = U ba;ρ

ϑ(κ)ϑ(λ) . (67)

Since BIJ = Θ(UI)UJ is an orthogonal Schauder basis of AB for the topology of conver-
gence in measure, any action S ∈ AB can be uniquely expressed as

S =
∑

I,J∈I
JIJΘ(UI)UJ . (68)

We denote the matrix of coupling constants by (JIJ)I . The submatrix (J0
IJ)I\I0 of entries 

with I, J 	= I0 is called the matrix of coupling constants across the reflection plane.
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Theorem 9.1. Let μ be the Haar measure on G|E|, let S ∈ AB be a reflection-invariant 
function, and let EβS : AB → C be the expectation

EβS(A) =
∫

G|E|

exp(−βS)A(h)μ(dh)

with respect to the (complex) measure e−βSμ. Then EβS is reflection positive on AB
+

for every β ≥ 0, if and only if the matrix (J0
IJ)I\{I0} of coupling constants across the 

reflection plane is positive semidefinite.

Proof. Since the Haar measure μ is reflection positive by Proposition 7.2, the result 
follows from Theorem 7.3. �
9.2. Lattice Yang–Mills theory

For example, consider the Wilson action for Yang–Mills theory SYM =
∑

P SP
YM , 

where P = 〈λ′
0λ

′
1λ

′
2λ

′
3〉 is an oriented elementary square or ‘plaquette’ in the ‘coarse’ 

lattice Λ′, and

SP
YM =

∑
a0,a1,a2,a3

Ua0a1
λ′

0λ
′
1
Ua1a2
λ′

1λ
′
2
Ua2a3
λ′

2λ
′
3
Ua3a0
λ′

3λ
′
0

(69)

is the trace of the holonomy around P . Here Uab
λ′
iλ

′
j

are the matrix elements of hΛ′

λ′
iλ

′
j

with 

respect to a fixed unitary irreducible representation ρ of G, defined in (64).
Cyclic permutations of the four vertices yield the same plaquette (and the same con-

tribution), and do not contribute to the sum. Changing the orientation from 〈λ′
0λ

′
1λ

′
2λ

′
3〉

to 〈λ′
3λ

′
2λ

′
1λ

′
0〉 changes the oriented plaquette, and yields an extra contribution to the 

sum. Since U
ab

λ′
iλ

′
j

= U ba
λ′
jλ

′
i
, one checks that this is the complex conjugate of the original 

contribution. In particular, SYM is an hermitian element of AΛ
B ⊆ AB .

We now argue that the Wilson action for Yang–Mills theory defines a reflection-
positive function in the sense of Theorem 9.1. The idea of our proof is to use the new 
vertices λ′′ ∈ Λ′′ on the plaquettes, halfway between every pair λ′

i, λ
′
j ∈ Λ′ of neighboring 

old vertices. These are the black vertices in Fig. 3. (Actually, only the extra degrees of 
freedom on the reflection plane are needed, but the other ones are left in for symmetry 
reasons.)

In order to prove reflection positivity, we express SP
YM in terms of the basis BIJ =

Θ(UI)UJ , cf. (68). If λ′′
ij ∈ Λ′′ is the midpoint between λ′

i, λ
′
j ∈ Λ′, then Uab

λ′
iλ

′
j

=∑
c U

ac
λ′
iλ

′′
ij
U cb
λ′′
ijλ

′
j
. Expanding (69) for a plaquette P = 〈λ′

0λ
′
1λ

′
2λ

′
3〉 that intersects the 

reflection plane in λ′′
01 and λ′′

23 and using (67), we find

SP
YM =

∑
Θ
( ∑

Ua01a1
λ′′

01λ
′
1
Ua1a12
λ′

1λ
′′
12
Ua12a2
λ′′

12λ
′
2
Ua2a23
λ′

2λ
′′
23

) ∑
Ua01a1
λ′′

01λ
′
1
Ua1a12
λ′

1λ
′′
12
Ua12a2
λ′′

12λ
′
2
Ua2a23
λ′

2λ
′′
23
.

a01a23 a1,a12,a2 a1,a12,a2
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Fig. 3. Illustration of SP
Y M for a single plaquette. Note that Θ(Uλ′′

01λ
′
1
) = UT

λ′
0λ

′′
01

, . . . , Θ(Uλ′
2λ

′′
23

) = UT
λ′′

23λ
′
3
.

From this, we see that the matrix of coupling constants across the reflection plane for 
SYM is positive semidefinite.

Corollary 9.2. If μ is the Haar measure on G|E|, then the expectation EYM : AB → C

defined by

EYM (A) =
∫

G|E|

exp(− 1
2g2

0
SYM )A(h) μ(dh)

is reflection positive on A+
B for all values of g0.

Proof. This follows from Theorem 9.1 by the previous discussion. �
In particular, the expectation EYM is reflection positive on the subalgebra AB

Λ′ of 
functions that depend only on the bond variables hΛ

λ′κ′ between points λ′, κ′ in the 
‘coarse’ lattice Λ′.

Note that since our derivation does not use gauge invariance, we get reflection posi-
tivity of the full algebra, not just the gauge invariant part.

9.3. Fermions in lattice gauge theory

The fermionic degrees of freedom live only on the ‘coarse’ sublattice Λ′, (the white 
dots in Fig. 2).

To a single site λ′ ∈ Λ′, we associate the Grassmann algebra AF
λ′ =

∧
V . Here V =

W ⊕W ∗, where W = Ws ⊗Wρ is the tensor product of a Cl(R4)-representation Ws and 
a unitary G-representation Wρ. Both G and Cl(R4) act from the left on W , and from 
the right on W ∗.

The algebra of observables for the fermionic part of the theory is

AF =
∧ ⊕

λ′∈Λ′

(W ⊕W ∗) , (70)

and the full algebra of observables is A = AB ⊗ AF .
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Choose a basis ψαa of W , and denote the dual basis of W ∗ by ψαa. The map ψαa →
ψαa extends to an antilinear isomorphism ψ → ψ from W to W ∗. From the basis of 
W ⊕W ∗, we obtain anticommuting generators ψαa and ψαa of AF

λ . Using these, we find 
anticommuting generators ψαa(λ′) and ψαa(κ′) of AF ,

{ψαa(λ′), ψα′a′(κ′)} = {ψαa(λ′), ψα′a′(κ′)} = {ψαa(λ′), ψα′a′(κ′)} = 0 .

9.3.1. The reflection
Assume that ϑ : Λ → Λ flips a single coordinate xσ, and that the fixed point set P

is as in §9.1.1. Then the corresponding reflection Θ: A → A is the unique antilinear 
homomorphism satisfying

Θψλ′ = −iγσψϑ(λ′) (71)

Θψλ′ = −iψϑ(λ′)γσ (72)

Θ(F )(h〈λ,κ〉) = F (h〈ϑ(λ),ϑ(κ)〉) (73)

for all F ∈ AB and ψ ∈ W , ψ ∈ W . Here, the γμ are euclidean Dirac matrices satisfying 
{γμ, γν} = 2δμν and γ†

μ = γμ.

Remark 9.3. Note that we require Θ to be an antilinear homomorphism, satisfying 
Θ(AB) = Θ(A)Θ(B). This deviates slightly from e.g. [33,39], where an antilinear anti-
homomorphism Θa is used, satisfying Θa(AB) = Θa(B)Θa(A). For super-commutative 
algebras such as A, one checks that homomorphisms are related to anti-homomorphisms 
by Θa(A) = i|A|2Θ(A) for homogeneous A ∈ A, cf. Remark 2.2.

The algebra A+ is defined as A+ = AB
+ ⊗ AF

+. Here AB
+ = L∞(G|E+|) as before, and 

AF
+ is the Grassmann algebra

AF
+ =

∧ ⊕
λ′∈Λ′

+

(W ⊕W ∗) .

As usual, we use a basis of A+ to construct a basis of the even subalgebra A0 ⊆ A

that is well adapted to the reflection. Recall that AB
+ has the basis UIB described in 

equation (66), labelled by the set IB = X |E+|. A basis

ΨIF = ψα1a1(λ′
1) ∧ · · · ∧ ψαkak

(λ′
k)

of AF
+ can be constructed as in Section 8.1. Since the fermions only live on the ‘coarse’ 

lattice Λ′ which does not intersect the fixed point set, this basis is labelled by IF in 
IF = P(T � T × Λ′

+), where T is the set of labels (α, a) of basis vectors of W .
Finally, we obtain a basis CI = UIB ⊗ ΨIF of A+, labelled by I = IB × IF . The 

identity is labelled by I0 = (IB0 , IF0 ), where IB0 labels the identity as before, and IF0 = ∅.
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If we set BIJ = i|CI |2Θ(CI)CJ for basis elements CI and CJ of the same Z2-degree, 
then any action S ∈ A0 of degree zero can be uniquely expressed as

S =
∑

I,J∈I
JIJBIJ . (74)

We denote the matrix of coupling constants by (JIJ)I . The submatrix (J0
IJ)I\I0 of entries 

with I, J 	= I0 is called the matrix of coupling constants across the reflection plane.
Let τ : A → C be the tensor product of the Berezin integral τF : AF → C of Section 8.1

and the expectation E : AB → C with respect to the Haar measure on G|E|.

Theorem 9.4. Let S ∈ A be a reflection-invariant action of degree zero. Then the func-
tional τS(A) = τ(e−βSA) is reflection positive for every β ≥ 0, if and only if the matrix 
(J0

IJ )I\{I0} of coupling constants across the reflection plane is positive semidefinite.

Proof. By Proposition 8.1 with ρ = iγτ , the continuous functional τF is factorizing and 
reflection positive. By Proposition 7.2, the same is true for E, hence also for the functional 
τ : A → C. The result then follows from Theorem 5.10. �
9.4. Lattice QCD

We apply this theorem to the lattice QCD-action S = SYM + SF . Here, the fermion 
action SF = SFM + SFK is the sum of a mass term and a kinetic term,

SFM = 1
2

∑
λ′∈Λ′

ψaα(λ′)Γαβψaβ(λ′) , (75)

SFK = κ

2
∑

〈λ′κ′〉∈EΛ′

ψαa(λ′)Γαβ
κ′−λ′U

ab
λ′κ′ψβb(κ′) . (76)

The first sum is over sites λ′ in the ‘coarse’ lattice Λ′, and the second sum is over all 
oriented nearest neighbor bonds in Λ′. (So every pair gives two contributions.) Recall 
that Uab

λ′κ′ =
∑

c U
ac
λ′λ′′U cb

λ′′κ′ for the site λ′′ ∈ Λ′′ halfway in between λ′, κ′ ∈ Λ′.
We prove reflection positivity for couplings

Γ = (M − 4s)1, Γκ′−λ′ = ±γμ + s1 if κ′ − λ′ = ±r�eμ , (77)

where s = 0 or s = 1. The choice s = 0 corresponds to the ‘naive’ action (which leads to 
fermion doubling in the continuum limit), and the choice s = 1 corresponds to Wilson’s 
action.

Note that SF is reflection symmetric, Θ(SF ) = SF . Indeed, a straightforward cal-
culation shows that this follows from (γσΓγσ)T = Γ for the mass terms, and from 
Γ−ϑ(κ′−λ′) = (γσΓκ′−λ′γσ)T for the kinetic terms.
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By Theorem 9.4, the mass terms in (75) are irrelevant, as they only contain terms in 
either A+ or A−. The same holds for the kinetic terms with both λ′ and κ′ in either Λ′

+
or Λ′

−. Therefore, it suffices to consider terms of the form
∑

α,β,a,b,c

ψαa(λ′
−)Γαβ

λ′
+−λ′

−
Uac
λ′
−λ′′

0
U cb
λ′′

0 λ
′
+
ψβb(λ+) , (78)

with λ′′
0 ∈ Λ0, and either λ′

± = λ′′
0 ± 1

2r�eσ or λ′
± = λ′′

0 ∓ 1
2r�eσ. Note that

Θ
(∑

b

U cb
λ′′

0 λ
′
+
ψβb(λ′

+)
)

= −i
∑
a

ψaα(λ′
−)γαβ

σ Uac
λ′
−λ′′

0
.

If λ′
± ∈ Λ′

± and Γλ′
+−λ′

−
= s1 +γσ, then the expression (78) can be written as iΘ(Xα)Xα, 

where Xα ∈ A+ is given by

Xα = κβαU
cb
λ′′

0 λ
′
+
ψβb(λ′

+) , with κ = 1√
1+s

(1 + sγσ) .

If λ′
± ∈ Λ∓ and Γλ′

+−λ′
−

= s1 − γσ, then (78) can be written as iXαΘ(Xα), where 
Xα ∈ A− is given by

Xα = κβαU
cb
λ′′

0 λ
′
+
ψβb(λ′

+) , with κ = 1√
1+s

(1 − sγσ) .

From this, one concludes that the matrix of coupling constants across the reflection plane 
is positive semidefinite.

Theorem 9.5. For the lattice QCD Lagrangian S = SYM + SF , the linear functional 
τS : A → C defined by A → τ(exp(−S)A) is reflection positive with respect to A+ for 
s ∈ {0, 1}, for all M, g0 ∈ R, and for all κ ≥ 0.

Although this theorem holds for reflections in each of the four coordinate directions, 
the physical Hilbert space HΘ is derived from reflections in the time direction x0. It is 
the completion of A+ with respect to the positive semidefinite inner product

〈A+, B+〉Θ = τ(e−SΘ(A+)B+) .

9.5. Gauge transformations

Denote the 4d-gauge group by GΛ, and the 3d-gauge group by GΛ0 . We identify GΛ0

with the quotient of GΛ by the normal subgroup

N = {g ∈ GΛ ; g|Λ0 = 1|Λ0} .

Every g ∈ GΛ induces an automorphism of A, namely the unique one satisfying 
hλκ → gλhλκg

−1
κ , ψλ′ → ρ(gλ′)ψλ′ , and ψλ′ → ψλ′ρ(g−1

λ′ ). (The fermions transform 
under a unitary representation ρ of G.) Note that ΘαgΘ = αθ(g), with θ(g)λ = gϑ(λ).
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Proposition 9.6. This yields a unitary representation of GΛ on HΘ, which factors through 
the quotient GΛ0 � GΛ/N .

Proof. Since αg maps A+ to A+, we have

〈αg(A+), αg(B+)〉Θ = i|A+|2τ(e−SΘ(αg(A+))αg(B+))

= i|A+|2τ(e−Sαθ(g)(Θ(A+))αg(B+))

= i|A+|2τ(e−Sαg(Θ(A+)(B+)) .

Here g is the gauge transformation with g|Λ+ = g|Λ+ and g|Λ− = θ(g)|Λ− . Since both S
and τ are gauge invariant, this equals 〈A+, B+〉Θ. It follows that the null space of the 
positive semidefinite form is gauge invariant, and that GΛ acts unitarily on HΘ.

We show that g acts trivially if g|Λ0 = 1|Λ0 . For this, note that

‖αg(A+) −A+‖2
Θ = 2〈A+, A+〉Θ − 2Re〈A+, αg(A+)〉Θ .

If g|Λ0 is trivial, then 〈A+, αg(A+)〉Θ = τ(e−SΘ(A+)αg(A+)) is equal to

τ(e−Sαg+(Θ(A+)A+)) = 〈A+, A+〉Θ ,

with g+|Λ+ = g|Λ+ and g|Λ− = 1|Λ− . It follows that αg acts trivially on HΘ for g ∈ N , 
so the representation factors through the quotient GΛ0 � GΛ/N . �
Remark 9.7. In particular, we retain an action of the global gauge group G, which sits 
inside GΛ0 as the group of constant G-valued functions. This allows one to define charge 
operators on HΘ.

10. Parafermions

We characterize reflection positivity for parafermions. Here, we need our lattice Λ to 
be ordered, and the reflection ϑ : Λ → Λ to be order reversing and fixed point free. We 
allow Λ to be either finite or countably infinite, and we define Λ+ ⊆ Λ as the maximal 
subset with ϑ(Λ+) < Λ+. The CPR algebra A(q, Λ), considered in §3.5, is then the 
q-double of the CPR algebra A(q, Λ+). The ‘background functional’ is the tracial state 
τ : A(q, Λ) → C of Proposition 3.12.

The operators CI of equation (27), labelled by I ∈ Z
Λ+
p , constitute a homogeneous 

Schauder basis of A(q, Λ+) with respect to the norm topology, satisfying B1–B3. We can 
thus form a basis BIJ of A0(q, Λ) by

BIJ = Θ(CI) ◦ CJ = ζ |I|
2
Θ(CI)CJ ,
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labelled by I, J ∈ Z
Λ+
p with |I| = |J | ∈ Zp. Here |I| =

∑
Λ+

Iλ denotes the degree of 
CI in Zp. Any element H ∈ A of degree zero therefore has a unique norm convergent 
expansion

−H =
∑

I,J∈Z
Λ+
p

JIJBIJ , (79)

with coupling matrix (JIJ)
Z
Λ+
p

. Denote by (J0
IJ)

Z
Λ+
p \{0} the matrix of couplings across 

the reflection plane, namely the submatrix of entries with I, J 	= 0.

Theorem 10.1. Let H ∈ A(q, Λ) be a reflection invariant operator of degree zero. Then 
the functional τβH(A) = τ(A e−βH) is reflection positive on A(q, Λ+) for all β ≥ 0 if 
and only if the matrix (J0

IJ )
Z
Λ+
p \{0} of coupling constants across the reflection plane is 

positive semidefinite.

Proof. This follows from Proposition 3.12 and Theorem 5.10. �
Remark 10.2. If the lattice is infinite, then the expression (79) for the Hamiltonian H
is usually not a norm convergent sum. One then approximates these expressions by a 
sequence HN of convergent Hamiltonians in A(q, Λ).
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