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From blood donor to transfusion recipient 

Need for transfusion chain data 

Undoubtedly blood transfusion has become an essential medical intervention, saving the lives 
of an estimated 20.000 patients per year in the Netherlands [1]. Blood use in the Netherlands is 
steadily decreasing, with the exception of blood plasma used for medicines such as the rhesus-
D prophylaxis. Blood use in the Netherlands is also relatively low compared to other European 
countries [2]. Nonetheless, there may still be transfusions given unnecessarily. Ideally, the use 
of blood should be as efficient as possible without compromising patients’ health, minimizing 
potential adverse effects in patients, the burden placed on blood donors, and costs. The fact 
that there is a substantial difference in the amount of blood transfused, between countries, 
hospitals, and even within hospitals, suggests that blood use is not optimal yet.  

Besides safely reducing blood use, better alignment of donor and product 
characteristics with patient characteristics is desirable as well. The optimal blood product, the 
optimal amount and the optimal moment to transfuse might be different for various patient 
subgroups, potentially requiring different characteristics of blood products and/or donors. 
This also introduces logistical concerns related to the optimal matching strategy between donor 
and patient, and between collection and demand for blood. Examples of questions to be 
answered in this context are: ‘What blood use can we expect in the future for the most 
demanding patient groups, given how their blood use has developed in the past?’ and ‘How 
can we estimate the number of donors to be recruited, given the ageing of the population and 
current shortage of specific donors?’. Analyzing transfusion chain data can help answering 
such questions. 

Research in ‘the blood transfusion chain’ covers a broad spectrum of topics: from 
donor to patient, from study design to validation, and from analysis to policy support. A 
process at the start of the chain is connected to all that follows, and might thus affect later 
outcomes. Therefore, in order to comprehensively study transfusion practice, we need data on 
the complete blood transfusion chain. 
 
Development of the Dutch Transfusion Data warehouse 

As no comprehensive data warehouse existed in the Netherlands, we established the Dutch 
Transfusion Data warehouse (DTD). The data warehouse can be seen as an observational 
cohort which is regularly updated with recent data from hospitals and the national Dutch 
blood bank. The DTD contains information on donors (e.g., age, blood group, antibodies), 
blood products (e.g., type of product, expiration date, storage time), and transfusion recipients 
(e.g., transfusions administered, patient characteristics, diagnosis, surgical procedures, 
laboratory parameters). Linking data from multiple sources and over multiple years is the only 
way to continuously monitor blood use, identify best practices (by benchmarking hospitals), 
and investigate risk factors throughout the complete transfusion chain. A unique asset of the 
DTD is that it offers the opportunity to investigate donor-product-patient associations (for 
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example the potentials effects of storage duration and donor gender on patient health 
outcomes). Before we have valid and useable data however, various aspects need to be 
considered when collecting, processing, analyzing and interpreting data in the donor-recipient 
continuum.  
 
Aspects of transfusion data 

Over 555.000 blood products are transfused every year to patients in Dutch hospitals. Of these 
77% are red blood cells, 12% plasma and 11% platelets. These products are obtained from the 
blood of over 300.000 voluntary donors. These numbers indicate that we are leaning towards 
‘big data’, especially when data over multiple years are collected. One of the problems with 
these data is the abundance of items registered. Many diagnosis and procedure codes are 
collected per patient per hospital admission, whereas our main interest is in the primary 
diagnosis or procedure that necessitated the transfusion(s) given. Other aspects relevant for 
processing the data beside their size, is that they are observational, multisource, national and 
longitudinal. Observational data have the advantage that these can relatively easily be used, also 
when a randomized controlled trial is not possible (i.e., too costly or unethical to withhold 
patients from transfusion) [3]. However, inherently to observational data is the higher risk of 
errors occurring in each processing step they undergo: 
 
 Registration Æ Extraction Æ Interpretation 
 
Clearly, data from many different sources are used: the blood bank, hospitals, the 
hemovigilance organization, and also different databases within hospitals (e.g., laboratory and 
administrative data). As each source might have different (registration) policies that might also 
change over time, it is important to standardize and harmonize the data. The data reflect 
current care processes, which change continuously over time: therapies are constantly evolving, 
new blood products and tests are developed, and new guidelines for transfusion triggers –
stating the conditions for which a transfusion is required– are introduced. As the DTD aims to 
be a national data warehouse, the composition of hospitals included (which changes when new 
hospitals are added) must be considered carefully to ensure representativeness of the data for 
Dutch transfusion practice. It is crucial that the building of a data warehouse accounts for all 
these aspects, by finding appropriate, reproducible and preferably automated solutions.  
 

Aim 

We set out to answer various research questions, for example on trends in blood use in 
hospitals and on prediction of the future size and composition of the anti-RhD donor 
population. In the process of answering these questions however, we identified key 
methodological challenges, which became the primary focus of our research. As this would 
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benefit future research systematically, the methods used for dealing with transfusion data are 
shared in this thesis. The objectives are: 

x to create the Dutch Transfusion Data warehouse (DTD) 
x to validate the quality of the data collected in the DTD and develop a validation 

approach 
x to develop an automated way to use and interpret data on transfusion indications 
x to analyze trends in blood use and the types of recipients who receive blood, and 
x to predict changes in the anti-RhD donor population in order to support recruitment 

decisions 
 

Thesis outline 

This thesis can be roughly divided into two themes: the preparation (Chapters 2-5) and the 
utilization (Chapters 6-7) of transfusion data.  
 In the first part of this thesis, data collection and processing are addressed. Chapter 2 
describes how the Dutch Transfusion Data warehouse was set up, the challenges involved and 
the utilization of the data warehouse. Chapter 3 thoroughly examines the quality of the data, 
resulting in an approach that can be used for validating multisource electronic health record 
(EHR) data more generally. To facilitate the interpretation of the data, Chapter 4 presents an 
automated algorithm that selects the most likely indication for transfusion. In Chapter 5 a 
simulation study compares different strategies for deciding on which hospitals to include for a 
representative selection of Dutch hospitals. 
 In the second part of this thesis, the application of transfusion data is key with 
analyses of trends in blood use and blood donors. In Chapter 6, historical trends in the use of 
red blood cell products (and combinations with other products) are investigated, using 
transfusion recipient data from the previously performed Proton study [4]. In Chapter 7, 
retrospective donor data are modelled to predict how many new donors for anti-RhD 
immunizations are needed annually, given the donor drop-out rate and ageing of the current 
donor population. These last two chapters do not yet utilize the donor-recipient continuum as 
this type of analysis is more powerful when data from a larger number of hospitals are 
available. Still, these applications illustrate how transfusion data can add to the understanding 
of blood use and collection in practice, and have the potential to support decision making.  
 The common thread running through this thesis is transfusion data. All chapters in 
some way describe methods for data collection, interpretation or validation, finally using 
transfusion data to analyze and elucidate aspects of donor recruitment and clinical blood use in 
practice. Chapter 8 reflects on the value of transfusion data, discusses the most important 
lessons learned with respect to acquiring a valid data warehouse and elaborates on the 
interpretation of transfusion indications. We conclude with recommendations for future 
research topics and questions that can be employed using the Dutch transfusion data 
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warehouse and to this end suggest various potential extensions that will enhance the answering 
of these questions. 
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Abstract 
Introduction 

Blood transfusion has health related, economical and safety implications. In order to optimize 
the transfusion chain, comprehensive research data are needed. The Dutch Transfusion Data 
warehouse (DTD) project aims to establish a data warehouse where data from donors and 
transfusion recipients are linked. This paper describes the design of the data warehouse, 
challenges, and illustrative applications. 
 
Methods 

Quantitative data on blood donors (e.g., age, blood group, antibodies) and products (type of 
product, processing, storage time) are obtained from the national blood bank. These are linked 
to data on the transfusion recipients (e.g., transfusions administered, patient diagnosis, surgical 
procedures, laboratory parameters), which are extracted from hospital electronic health 
records. 
 
Applications 

Expected scientific contributions are illustrated for four applications: determine risk factors, 
predict blood use, benchmark blood use and optimize process efficiency. For each application, 
examples are given of research questions and analyses planned. 
 
Conclusion 

The DTD project aims to build a national, continuously updated transfusion data warehouse. 
These data have a broad range of applications, on the donor/production side, recipient studies 
on blood utilization and benchmarking, and donor-recipient studies, which ultimately can 
contribute to the efficiency and safety of blood transfusion.   
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Introduction 

In 1874, a first review, or ‘short resume’, was published about the current evidence regarding 
blood transfusions, concluding that transfusion might be “an effective mean of saving life 
when all other means fail”, yet this subject needed more investigation [1]. To date, it is widely 
accepted that blood transfusions can be lifesaving and can be used for treatment of various 
diseases. However, since blood transfusions may also have serious side effects [2], there is still 
much debate on optimal transfusion triggers [3]. There is growing but inconclusive evidence 
that a restrictive transfusion policy is more beneficial for patients than a more liberal policy 
[4,5] (exceptions might be patients with cardiac disease or oncological surgery [6]). The large 
variation that exists in the use of blood products between countries, between hospitals and 
even within hospitals [7,8,9,10] indicates that –at least in part of the patients– transfusion 
practice is not optimal yet and that there is uncertainty about the optimal transfusion policy. 
Importantly, transfusion policy concerns not only the timing and quantity of the transfusions, 
but also other characteristics of the blood product, the donor and the production process that 
might affect patient outcomes. In order to investigate the magnitude and nature of the 
observed differences as well as gain proficient understanding of efficiency and safety of the 
donor-product-recipient relationship, more data are needed. 

Even though several individual hospitals and blood banks analyze data on donors and 
transfusion recipients [11,12], worldwide initiatives that permanently monitor transfusions on a 
large scale are sparse. The SCANDAT database from Sweden and Denmark, originally 
established in 2002, now covers all donor and transfusion data nationwide since 1968 (Sweden) 
and 1980 (Denmark). It includes 47 years follow-up data on health outcomes regarding 
hospital care, cancer and death [13,14]. The REDS-III program in the United States is 
currently constructing a similar blood donor and transfusion recipient database [15]. Finland 
established a recipient database originating in 2002, covering in the year 2007 70% of all blood 
units delivered for all potentially transfused patients [16]. Recently a Canadian donor-recipient 
study was initiated, containing data from hospitals in a specific region [17]. In the Netherlands, 
the PROTON database was created to identify PROfiles of TransfusiON recipients, with data 
on transfusion recipients in terms of age, sex, main diagnoses and operations, number of 
products per hospitalization [18].  

These initiatives resulted in studies on the epidemiology of both donors and 
recipients, providing evidence on the effect of donation and of transfusion, as well as the link 
between donor and recipient. Examples of this are studies to investigate mortality risk in 
transfusion recipients [19], and length of hospital stay after receiving red blood cell units [20]. 
In the donor-recipient continuum, research topics include the risk of cancer in recipients who 
received a blood transfusion from donors with subclinical cancer [21,22], the effect of the 
match of donor and recipient sex on survival after plasma transfusion [23,24,25], safety of 
ABO-compatible non-identical plasma versus identical plasma [26], and the effect of storage 
duration on recipient survival [27,28]. Nowadays, there is a tendency to modify risk-adverse 
guidelines for donor selection into more liberal guidelines based on new evidence [29]. 
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Although the evidence is yet scarce [30], there are successful examples, such as extending the 
upper age limit for donors without increasing the number of adverse events in patients [31,32]. 
Other results of transfusion data warehouse initiatives include the development of a model to 
predict the impact of demographic changes on the demand of red blood cell units [33]. Such a 
model may guide donor recruitment requirements. Moreover, benchmarking events have been 
organized, for example in Finland for different transfusion practices such as orthopedics, 
gynecology, hematology and heart surgery. Benchmarking discussions have led to adoption of 
best practices in several cases, reflected in the reduction of differences in blood use [34]. 

The Dutch PROTON database included hospital transfusion data starting in the year 
1996 [17]. Unfortunately, data collection stopped after 2006. Also the database contained 
information on transfusion recipients, but not on the corresponding blood donors. In an effort 
to continue this database and expand its scope, the Dutch Transfusion Data warehouse (DTD) 
project started. In this project a data warehouse is developed that is intended for continuous 
storage, management and monitoring of transfusion data, linking donor to recipient. This 
means that the DTD facilitates research on blood utilization in hospitals, but it also offers the 
unique opportunity to study donor and product risk factors for recipient outcomes and 
examine efficiency over the complete transfusion chain. Thereby the creation of the DTD 
infrastructure will allow the comprehensive study of blood transfusion in the Netherlands. The 
four main applications of this data warehouse are to: 

1. Determine risk factors 
2. Predict future blood products needed 
3. Benchmark blood use 
4. Improve process efficiency 

To illustrate how the DTD initiative will be used for these applications, we will propose four 
example studies. The successful completion of this cohort will contribute to the safety of 
transfusion practices, and provide insights that can improve efficiency in the complete blood 
transfusion chain. 
 

Methods 

Data collection and data set 

The data warehouse can be seen as an observational research registry, in which routinely 
registered administrative data are collected continuously. Starting point was the previously 
conducted PROTON study [18], consisting of a single collection of blood transfusion data in 
the Netherlands from 1996-2006. This dataset is further extended further with additional 
recipient, donor and product data.  

In the Netherlands the blood supply is organized at a national level by Sanquin which 
is the sole supplier, enabling a centralized extraction of data on donors and blood products. 
Sanquin provides data on donor demographics, blood groups and laboratory parameters, and 
blood product characteristics such as product type and expiration date (Table 2.1). In this 
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paper, the term blood bank refers to the national blood supplier. The participating hospitals 
provide data related to transfusion recipients from their electronic health records, including 
patient characteristics, hospitalizations, diagnoses, procedures, blood products received, blood 
groups, laboratory parameters and transfusion reactions (Table 2.2). In addition, each hospital 
is requested to provide aggregated information on the total number of patients per indication 
(including non-transfused patients), allowing computation of transfusion rates. Linkage of 
donor and transfusion recipient data is based on the uniquely identifying combination of 
donation identification code and the internationally used ISBT product code [35]. All Dutch 
hospitals (n= 91) are allowed to participate in the project, however in order to meet the 
research objectives, a minimum sample of 15 academic and general Dutch hospitals in total is 
aimed for. Data collection starts from 2010 and will include future transfusions as well. The 
current number of donors in our database is approximately 500,000, with 3,500,000 products 
issued by the blood bank covering the years 2010-2015 (this is a complete set for national 
coverage). These products are linked to recipient data from the participating hospitals. Based 
on inclusion of 15 hospitals, we now estimate that the number of recipients in our data 
warehouse for the years 2010-2015 (including academic, teaching and general hospitals) will be 
150,000, with approximately 1,100,000 transfusions. 

Future fusions of hospitals and shifts in type and complexity of care especially in 
academic hospitals will be monitored closely, as these factors directly affect blood use. 
 
  
Table 2.1. Overview of donor and blood product data collected in the blood bank 

Donor Donor number Donor identification number 
 Date of birth Date of birth 
 Gender Gender 
 AB0 blood group AB0 blood group 
 RhD blood group  RhD blood group  
 Kell blood group Kell blood group 
 Donor entry date Date of registration at the blood bank 
 Date of first donation Date of first donation since 2007 
 Weight Donor weight 
 Length Donor length 
 Number of donations Total number of donations since 2007 
 

Number whole blood donations 
Total number of whole blood donations since 
2007 

 Number plasma donations Total number of plasma donations since 2007 
 Other donations Total number of other donations since 2007 
 Stopping code Stopping code 
 Stopping reason Reason to quit as a donor  



Chapter 2. Design of a national blood transfusion data warehouse from donor to recipient 

18 
 

Donation Donation date Date of donation 
 

DIN 
Donation Identification Number (unique for 
each donation) 

 
Donation type 

Type of donation (whole blood / 
plasmapheresis / erythrocytapheresis / 
plateletpheresis) 

 Donation volume  Volume of the donation (in ml) 
 Hemoglobin level Hemoglobin level (in mmol/L) 
 Platelet count Number of platelets (x 10^9/l) 
 Donation location Blood center location 
 Donation duration Duration of donating 
 apheresis machine Code of the machine used for apheresis 
 Blood pressure Donor blood pressure 
Product 

Product code 

Product code (specifying product type, 
location of the blood bank center, split product 
or not; according to ISBT 28 Standard 
Specification ) 

 
Product modifiers 

Optional attribute of a product (e.g., CMV 
neg./pos.) 

 
Pool DIN 

Product Identification code; applies only to 
pooled products (thrombocytes) 

 Expiration date  Date that the product expires 
 Erythrocyte antibodies Erythrocyte antibodies in donor blood 
 Platelet phenotype HPA phenotype 
 

Date of pooling 
Date of pooling; applies only to pooled 
products (thrombocytes) 

Transport Transport date Date of transport of the blood product 
 Institute Destination of the blood product 
 

Return date  
Date of return of the blood product; only in 
case a blood product is sent back 

 
Return code 

Return code specifying the reason for 
returning the blood product 
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Table 2.2. Overview of the data collected in the participating hospitals 

Patient Patient number 
Encrypted patient identification number as used by the 
hospital 

 Date of birth Patient’s date of birth 
 Gender Patient gender 
Hospitalization Hospital Hospital name or code 

 
Hospitalization 
dates 

Date and time of start and end of hospitalization during 
which a transfusion was given 

Diagnosis Diagnoses All diagnoses** 

 
Hospital 
dismissal status 

Patient status when dismissed from hospital (home / 
dead / institution) 

Procedure Procedures All procedures and procedure dates** 

Transfusion 
Transfusion 
administration 

Date and time of transfusion 

 DIN Donation identification number of the transfused unit 

 Product code 
Product code of the transfused unit (ISBT 128 Standard 
Specification) 

Blood values Hb Patient hemoglobin level* 
 Platelet count Patient platelet count* 
 Hct Patient hematocrit level* 
 PT Patient prothrombin time* 
 PTT Patient partial thromboplastin time* 
 Blood group Patient AB0 blood group 
 RhD Patient RhD 

 
Irregular 
antibodies 

Patient irregular antibodies 

 Troponine Patient troponine level 
Transfusion 
reactions 

Transfusion 
reaction type 

Type of transfusion reaction 

 Date Date of transfusion reaction 
 Severity Severity of transfusion reaction 

 Imputability 
Likelihood that the transfusion reaction is caused by the 
transfusion 

* All laboratory parameters measured during hospitalization, or in case of outpatient transfusion all laboratory 
parameters within the period 72 hours before and after transfusion. All laboratory measurements include time stamps. 
** Diagnoses and procedures can be linked to a hospitalization post hoc, or to outpatient transfusions within a time 
interval around the transfusion. In the Netherlands, instead of one diagnosis date, a start and end date is registered of 
the ‘diagnosis treatment combination’ trajectory. 
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Data quality 

Extracting and combining large amounts of data from electronic hospital and blood bank 
systems is challenging: often the data have to be split into different tables (e.g. by year, 
department or aggregation level), that afterwards have to be linked. In this process, errors can 
occur in the data, therefore validation of the data is very important. This starts with a uniform 
format and filters; we ask the participating centers to deliver the data in the same format for 
every update of the data.  
 In order to check and improve data quality, the data warehouse will be validated on 
the following aspects: completeness, uniqueness, time patterns, uniformity and plausibility. 
Also, external concordance of the number of blood products issued by the blood bank and the 
products transfused by the hospitals is assessed as a validity check. In the Netherlands, the 
blood bank registers donor and product data in one system. In contrast, some of the hospital 
data such as diagnoses and clinical procedures are registered in more heterogeneous ways 
across hospitals and sometimes even across departments within a single hospital. This means 
that more time is needed to validate and harmonize the hospital data. Moreover, as every 
registration system is subject to updates and changes, each time new data are sent to the data 
warehouse, the additional content will have to be validated. We intend to publish the outcomes 
of the validation check or at least make them available for other researchers who use the data 
warehouse. 
 
Indication for transfusion 

In order to facilitate the attribution of the main diagnosis (i.e. indication) for a transfusion, an 
automated algorithm will be developed for the DTD. This algorithm will determine the most 
likely indication for transfusion in the case of multiple diagnoses and/or procedures per 
transfusion event. The algorithm will be developed based on expert opinion regarding the 
prioritization of diagnoses, and will be externally validated by transfusion experts. 
 
Security, ethical and privacy aspects 

The data warehouse is hosted by the data management department of a university medical 
center, in a technical environment that meets ISO-9001:2008 quality requirements. DTD has 
been approved by a hospital medical ethical committee and meets the requirements of Dutch 
privacy law. Donors are asked for permission with a donor questionnaire before each 
donation. Patients are not actively asked for permission but they can opt out for use of their 
medical data for research purposes. Donor and patient data are transferred and stored in an de-
identified format. The encryption is carried out by the contact person of the hospital, and the 
key to reverse encryption is stored exclusively in the hospital. In addition, non-traceability of 
blood donors and recipients is maximized by excluding privacy sensitive information such as 
name and postal code. 
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Organization structure 

The DTD project team, consisting of experienced researchers in the areas of transfusion 
medicine, data modelling and health care research, is responsible for the management of the 
data warehouse. An advisory board, consisting of representatives of all involved disciplines, is 
established to handle all data requests. Main objective of the board is to guarantee that the 
interests of all participating parties are secured. Every data provider has one contact person 
who, for instance, arranges the formal permission for data exchange. Researchers planning a 
project can gain access to the data warehouse by completing a data request form. The advisory 
Board will determine whether the request is granted, thereby guaranteeing the interests of all 
parties involved. 
 
Framework blood supply chain 

The framework as presented in Figure 2.1 provides an overview of the different steps in the 
transfusion chain and can be used to systematically identify and highlight areas with room for 
improvement. The four main applications (see Introduction) are linked to these steps, showing 
which data are necessary for each application. The main contribution of the data warehouse is 
to allow insight in the association between blood donor characteristics and clinical outcomes 
(left broad arrow) and in the link between transfusion triggers and clinical outcomes (right 
broad arrow).  
 

Applications 

The DTD data warehouse will be available for a broad range of purposes. To illustrate 
expected scientific contributions, we describe exemplary studies that could be conducted with 
the DTD dataset. 
 
Application 1: Risk factors 

Example research question: What is the effect of donor characteristics and season on the risk of (febrile) non-
hemolytic transfusion reactions (FNHTR) experienced by recipients? 
Non-hemolytic transfusion reactions are relatively common, especially among hematology 
patients, with median reported rates for FNHTR of 4.6% for platelets and 0.33% for RBCs.36 
This type of transfusion  reaction seems to occur in particular with platelet transfusions but 
also with erythrocytes. With our data we can determine the association of (febrile) non-
hemolytic reactions with season and with certain donor characteristics (age, sex, blood group, 
donation frequency). Donation frequency for example is hypothesized to affect iron storage, 
and might also affect patient outcomes. The primary outcome is risk of non-hemolytic 
transfusion reactions. Secondary outcomes are: risk of infections, other transfusion reactions, 
survival and duration of hospitalization.  
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Figure 2.1. Framework of the blood transfusion chain. Each part of the chain can be linked to one of the four 
applications. 

 

 
Application 2: Predict future blood products needed 

Example research question: What is the expected use of blood (medical versus surgical) in the Netherlands for 
the upcoming years? 
Long-term data from 2010 up to the present will be examined for trends in blood use per 
product type. This information can be used to generate prognoses on the number of blood 
products needed in the future. Increasingly refined and specific predictions can be made by 
distinguishing between surgical and medical use of RBCs, as well as academic, teaching and 
general hospitals. Observed trends in de past will be extrapolated using a regression model. 
Furthermore, corrections for growth and ageing of the general population can be incorporated 
in the predictions of the amount of blood products demanded. 
 
Application 3: Benchmark blood use  

Example research question: What is the variation in blood use between hospitals, corrected for important 
determinants of blood use? 
Differences in blood use between hospitals might be caused by different uses of transfusion 
(Hb) triggers and targets. A benchmark study could compare these triggers between hospitals 
in specified patient groups, while correcting for other determinants of blood use available in 
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the data warehouse, such as: age, sex, comorbidity burden, recent myocardial infarction, 
emergency or elective presentation, medical or surgical admission, diagnosis, type of surgical 
procedure, hospital department, preoperative hematocrit and preoperative or admission 
hemoglobin [9,10,37]. A multilevel random effects model can be specified with the following 
levels: hospital type, hospital, and patient. This allows estimation of the variation in blood use 
between hospitals compared to the variation within hospitals, while controlling appropriately 
for differences in patient characteristics.  
 
Application 4: Improve process efficiency 

Example research question: Is more extensive blood group matching between donor and recipient possible given 
the current donor population and is it cost-effective? 
More extensive matching of donor and recipient blood groups (especially for ethnic minorities) 
would reduce the formation of red cell anti-bodies and ultimately also the risk of transfusion 
reactions. Data on donors and patients (which reflect the availability and consumption of 
blood and blood types) is used to obtain insight in the logistical requirements and limitations, 
costs and (health-)effects of various preventive matching schemes. In the ongoing BloodMatch 
study [38], several scenarios for matching strategies will be evaluated. These scenarios vary in 
the extent of blood type matching between donor and recipient for specific patient groups, and 
its anticipated impact on transfusion complications, the size and composition of the red blood 
cell stocks in both the blood bank and hospitals, as well as the requirements for typing of the 
donor base in order to fulfill the demand for typed red blood cell units. The findings will allow 
balancing various aspects of the blood transfusion chain and therefore provide the means for a 
global optimization of matching strategies. 
 

Discussion 

Importance 

The DTD project aims to build a national, up-to-date transfusion data warehouse, linking 
donor to recipient. By gaining more insight in donor and product related risk factors for 
recipient outcomes, blood transfusions can be more tailored (minimizing risks) and 
unnecessary transfusions avoided, further diminishing transfusion reactions in patients. 
Especially today, facing increasing societal pressure for transparency in quality of care, multiple 
parties may benefit from a continuous feedback structure. For the blood bank, DTD creates 
the possibility to enhance the safety of transfusion on the donor and product side, as well as 
stock management (optimize the availability and minimize wastage of blood products). For 
healthcare institutions, DTD enables insight in efficient and safe use of blood products. 
Moreover, by participating in the project, hospitals can take better control in the way they are 
held accountable for blood use by external parties such as insurers and regulators. For 
researchers from or in collaboration with participating institutions, DTD offers access to 
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essential data as well as a network within the clinical field. Finally, patients benefit from 
optimal and evidence-based quality of care in transfusion medicine. 
 
Applications and future directions 

The data warehouse will be available for different types of users, including the blood bank, 
hospital management, doctors and researchers. In hospitals, blood reduction policies can be 
directly linked to trends in blood use [39,40,41], and new transfusion guidelines and quality 
indicators can be evaluated. Moreover, the availability of laboratory data can shed light on the 
impact and relevance of clinical and laboratory parameters (like hemoglobin level) that are used 
as transfusion triggers and targets. An important step in the overall process is to report 
(benchmark) results back to the caregivers [39]. Whereas the level of detail in the indicators 
themselves is of less importance (especially in complex practices such as heart surgery and 
hematology), the discussion between clinical experts it will instigate that might provide novel 
insights, solutions to existing problems and evolvement of best practices. 
 The data warehouse also enables comparison of transfusion practices internationally. 
A great advantage is that with the presence of various patient and hospitalization 
characteristics, the outcome can be adjusted for factors like age, sex, diagnosis and surgery. 
The scope of variables collected in DTD is similar to the SCANDAT2 database, which also 
focusses on donors’ health using donor hospital information and already has national coverage. 
In the future it will be possible to expand the data warehouse with additional variables, either 
permanently or temporary, such as recipient survival. Additional data on vital signs (pulse, 
temperature and blood pressure) and laboratory parameters can also be included post-hoc, 
depending on the specific research. Moreover, we aim to add data from patients who did not 
receive a blood transfusion at all, in order to calculate transfusion rates and to compare profiles 
of transfused recipients to non-transfused recipients. 
 
Barriers and facilitators 

The advantage of the project’s wide organizational structure is that the collaboration of 
hospitals, clinicians and researchers is facilitating multisite and multidisciplinary research. 
Moreover, the process of data validation needs to be performed only once, and everyone can 
benefit from this. Challenges are found in the rapid development of and changes in registration 
systems, the project financing structure, participation of hospitals and changes in legislation 
with respect to data usage. Currently, electronic health data are primarily registered for clinical 
use and a systematic interpretation for research purposes is often lacking. A related problem is 
the large registration burden on hospital personnel and the current focus on billable ‘health 
products’, which largely determines what is registered and how. These aspects are external 
factors that are mostly out of control of the project, but do complicate regular data extraction 
and therefore pose potential threats to the future of the data warehouse. Projects to improve 
source registration have already been set up in the Netherlands supported by the Federation of 
University medical centers [42], the Dutch Association of general hospitals and specialized 
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institutions [43] and the center of expertise for standardization and eHealth Nictiz [44], and for 
example in the US by the Centers for Medicare & Medicaid Services, promoting meaningful 
use of certified electronic health record (EHR) technology [45]. If uniform registration will be 
successfully implemented in hospitals, standardized source data could be used for the data 
warehouse, allowing real-time data extraction. However the analysis of imperfect data requires 
other solutions. For example, when patients have received multiple transfusions, we must take 
into account the potential for confounding in the analysis. Several analysis methods can be 
used, including restriction to certain cases and statistical correction using standardization or 
maximum likelihood methods [46]. 
 
Conclusion 

The Dutch Transfusion Data warehouse contributes to the optimization of Dutch transfusion 
practice by enabling researchers to identify donor risk factors that affect recipients, monitor 
and benchmark the use of blood products both at national and international levels, and 
evaluate the effect of changes in the supply chain. This will contribute to optimally tailored 
transfusions and fewer transfusion reactions. Joint support from the blood bank, hospitals and 
external parties are key success factors for a future-proof and clinically relevant blood 
transfusion data warehouse. 
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Abstract 

Background 

Although data from electronic health records (EHR) are often used for research purposes, 
systematic validation of these data prior to their use is not standard practice. Existing 
validation frameworks discuss validity concepts without translating these into practical 
implementation steps or addressing the potential influence of linking multiple sources. 
Therefore we developed a practical approach for validating routinely collected data from 
multiple sources and to apply it to a blood transfusion data warehouse to evaluate the usability 
in practice. 
 
Methods 

The approach consists of identifying existing validation frameworks for EHR data or linked 
data, selecting validity concepts from these frameworks and establishing quantifiable validity 
outcomes for each concept. The approach distinguishes external validation concepts (e.g. 
concordance with external reports, previous literature and expert feedback) and internal 
consistency concepts which use expected associations within the dataset itself (e.g. 
completeness, uniformity and plausibility). In an example case, the selected concepts were 
applied to a transfusion dataset and specified in more detail. 
 
Results 

Application of the approach to a transfusion dataset resulted in a structured overview of data 
validity aspects. This allowed improvement of these aspects through further processing of the 
data and in some cases adjustment of the data extraction. For example, the proportion of 
transfused products that could not be linked to the corresponding issued products initially was 
2.2% but could be improved by adjusting data extraction criteria to 0.17%. 
 
Conclusion 

This stepwise approach for validating linked multisource data provides a basis for evaluating 
data quality and enhancing interpretation. When the process of data validation is adopted more 
broadly, this contributes to increased transparency and greater reliability of research based on 
routinely collected electronic health records.  
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Background 

Electronic health databases are vastly expanding in both the amount and scope of the data 
available. For health care researchers it seems very attractive to utilize these data maximally 
[1,2]. Unfortunately, the use of routinely collected electronic health record (EHR) data 
potentially leads to quality issues, resulting from the fact that the data were not registered for 
research purposes but rather for clinical management or financial administration. This affects 
the basic quality of the data for research purpose and the ability to correctly interpret these 
data. Therefore, it is important to validate the quality of the data before they can serve as a 
source for health care research aimed to change clinical practice.  

Data validity has previously been described as whether values ‘make sense’ [3]; data 
are considered valid if the data represent what it claims to represent [4]. In this paper we use 
the term validation to indicate the process of assessing and improving data quality. Benefits of 
performing data validation are that it provides guidance on strategies to improve data quality, 
and, by providing an overview of data quality, enables a fair appreciation and interpretation of 
study results [5]. 
 Ideally a uniform, systematic method should be used to assess, report and improve 
data quality. However, as noted previously [3]: There is currently little consistency or potential 
generalizability in the methods used to assess EHR data. [...] researchers should adopt 
validated, systematic methods of EHR data quality assessment. A review of 35 empirical 
studies that used electronic health care data showed that 66% of the studies evaluated data 
accuracy, 57% data completeness, and 23% data comparability.6 Even if quality measures were 
reported, the accuracy of variables were highly variable, ranging from 45% to almost 100% [6]. 
Also, information about chronic and severely ill patients was more likely to be documented as 
compared to healthier patients [7], which in itself may be a source of bias.  
 Data quality assessment is especially important in studies using data from multiple 
sources, in order to distinguish true variations in care from data quality problems [8]. More 
sources will provide either more cases (multicenter studies) or additional information. Whereas 
adding more cases can be problematic for data harmonization because different sources may 
use different coding systems, linking additional information (for example from external data 
sources) requires that patients (or other entities) can be identified and linked in all sources [9]. 
In each linkage step, non-linking records might result in a selection of the data that is 
incomplete and possibly biased. However, existing validation frameworks rarely address 
multiple sources linkage [10]. Only the RECORD statement, a reporting checklist for 
observational research using routinely-collected health data [11], and a guideline for the 
reporting of studies involving data linkage mention that the percentage of linked records 
should be provided [12]. 

Existing EHR data quality assessment frameworks all have different approaches, with 
partly overlapping dimensions or components of data validity. Fundamental dimensions that in 
some form occur in most frameworks are: completeness, correctness and currency [3]. 
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Although all of these frameworks list important aspects that should be reported, it is rarely 
mentioned how these aspects should be verified or appraised. 

In this paper we aim to further standardize the process of data validation. To this end 
we developed a practical approach for assessing various dimensions of EHR data quality, 
directed specifically at linked data from multiple providers. The approach is applied to the 
Dutch transfusion data warehouse [13] and explicitly shows how to assess the validity 
outcomes. Thereby we provide a detailed example of how this type of data can be validated 
systematically. We hope that this will increase awareness among researchers of the importance 
and benefits of structured data validation.  
 

Methods 

Validation approach 

The validation approach starts with selecting validity concepts from previous literature and 
applying these to the data. First, existing frameworks were identified in the literature, from 
which then relevant concepts were selected, and finally, the concepts were operationalized in 
terms of the final application. Each of the different steps are depicted in Figure 3.1 and further 
described below. 
 
Identification of validation frameworks in literature 
Previous frameworks on the validation of EHR data were identified in literature using the 
search terms ‘data validation’, ‘data validity’ or ‘data quality’, separately and combined with 
‘electronic health record’, ‘routine patient care record’, ‘routinely collected (health) data’, 
‘routine administrative healthcare data’, ‘hospital registry data’, ‘joint registry data’, ‘linked data’, 
‘administrative database’, and via examining the references in those papers, until no new 
concepts seemed to emerge. From this literature, we selected those frameworks that might 
have relevance to EHR or to linked (multisource) data. In total, six data quality frameworks 
and two reporting guidelines were selected from literature [3,8,11,12,15,16,17,18,19].  
 
Selection of data validity concepts  
From the frameworks identified, data validity concepts were selected that were applicable to 
validating EHR data from multiple sources. Excluded were contextual concepts that differ for 
each research question such as currency, timeliness, representativeness, relevance, appropriate 
amount of data, and accessibility; these contextual concepts might eventually be addressed at a 
later stage. Also excluded were concepts that can only be assessed by manually reviewing the 
original medical records; instead only concepts that can be assessed in a more standardized way 
were included. 

The following concepts were included in our approach (between brackets the number 
of frameworks that include these concepts in some form): External concordance (3), Linkage 
(3), Identity (7), Completeness (3), Uniformity (4), Time patterns (2), Plausibility (6) and Event  
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Figure 3.1. Development of the validation approach. First, validity concepts are identified, selected and defined. 
Second, concrete validity outcomes are established, tailored to the specific application or dataset. 

  
 

 
attributes (1). The concept External concordance was split into four separate concepts: 
External concordance with (annual) reports from related organizations, External concordance 
with earlier findings in literature, External concordance with external clinical registries or 
databases, and External concordance with expert feedback. Also, because of the multisource 
character of our application, we added the concept Consistency of hospitals within the data 
warehouse. All selected validity concepts are depicted in a step-wise approach (Figure 3.2). The 
data warehouse is depicted in the center, with arrows leading to the concepts. Broadly, the 
concepts and outcomes can be categorized as either external or internal. External concordance 
(depicted in the upper part of Figure 3.2) is the agreement between aggregated numbers in the 
data warehouse and external sources. For example, the numbers in the data warehouse can be 
compared to (annual) reports from related organizations. Likewise, earlier findings in literature 
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can be used, or external clinical registries or databases might be available for comparison. 
Finally, the numbers and findings can be checked by presenting them to experts in the field. 
Internal consistency outcomes (depicted in the lower part of Figure 3.2) use expectations of 
what are considered valid values, often within one data source, or valid relationships between 
and within variables. Internal consistency concepts are: Linkage of entities occurring in 
multiple data tables within the data warehouse, Identity, Completeness, Uniformity, Times 
patterns, Plausibility, Event attributes and Consistency of results between hospitals within the 
data warehouse. 
 
Defining the selected concepts 
For each concept selected the aim was defined, i.e. what would be perfect validity in terms of 
this concept (Table 3.1 under the column header ‘Aim’). In addition, an order is suggested in 
which to check the concepts that is efficient in identifying errors in the data (numbered steps 
1-12 in Figure 3.2). In general, one would start with concepts that are relatively easy to check, 
and end with concepts that require further processing of the data. Applying this general logic, 
the first step is to start with External concordance of the raw numbers in the data warehouse 
as compared to external data from for instance an annual report (Step 1 in Figure 3.2). If crude 
numbers are incorrect a return visit to the data provider is necessary to check whether the 
correct data can be provided. In Step 2, it should be ensured that entities occurring in multiple 
data tables can be linked, and it must be decided whether records that cannot be linked will be 
excluded or not, before the data on the other concepts are validated. Next the application of 
the Identity (Step 3) and Completeness (Step 4) concepts is straightforward: The requested 
variables should be present, ideally have no missing values and single entities or events should 
be unique. If the dataset is incomplete or in case duplicates exist, this might bias the other 
validity outcomes. When data have no duplicates and is as complete as possible, the remaining 
Internal consistency concepts can be checked: Uniformity, Time patterns, Plausibility and 
Event attributes (Step 5-8). The Uniformity concept (Step 5) checks and ensures that 
measurements across time and departments all have the same units or duration. This is 
especially important for diagnoses and procedures; ideally hospitals should use similar coding 
systems, with the same level of detail, and use them in the same way also over time. Time 
patterns (Step 6) within one variable or linkage patterns between multiple variables might 
reveal the occurrence of registration or extraction errors through large gaps or unexplained 
changes that occur over time. The Plausibility concept (Step 7) examines the data on 
identifiable errors, using expectations of relationships between variables to check the accuracy 
of measurements, for instance the accuracy of date and time values. The Event attributes 
concept (Step 8) requires that for each event (e.g. a hospitalization or procedure) all relevant 
attributes are present (e.g. measurements). Finally, when validity outcomes have been 
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computed for various centers within the data warehouse, the observed differences between 
hospitals from within the data warehouse can be compared (Step 9). This will either support 
the validity of the data when the outcomes between centers are consistent, or might indicate 
errors in the data or findings; unexplained differences between centers might warrant further 
investigation.  

After the Internal consistency concepts have been checked and -if necessary- 
improved, the final External concordance outcomes can be computed. These outcomes require 
some preliminary analyses to be done on the data, and then comparing the findings to previous 
literature (Step 10) and discussing the results with clinical experts (Step 11). Finally, the 
resulting validity outcomes can be placed in context by comparing them to similar databases, if 
available (Step 12). 
 
Example case 

Application 
To apply the concepts to a specific dataset, tangible outcomes per concept need to be defined, 
preferably in quantifiable terms such as percentages or absolute numbers. Outcomes can also 
be yes/no questions, time trend figures, comparisons to reference data or literature, or expert 
feedback. As the outcomes are tailored to the specific application, this step of defining the 
exact outcomes has to be repeated for each unique dataset. 
 
Table 3.2. Hospital characteristics (for the year 2014) 

 Hospital A Hospital B 
Number of beds 1,100 471 
Annual number of RBC 
transfusions 

12,653 6,681 

Presence of typical transfusion 
specialisms  

Hematology, oncology, 
thoracic surgery, trauma 
center 

Hematology, oncology, 
thoracic surgery, trauma 
center (heavy emphasis on 
major vascular / aneurysm 
surgery and obstetrics) 

 
Data 
Data on blood transfusion were used as an example case to illustrate the application of the 
validation approach. These data were collected in the context of the Dutch Transfusion Data 
warehouse (DTD) project [13], in which data from the national blood bank on blood donors 
and products are linked to patient data from two teaching hospitals for the period 2010-2014 
(see Table 3.2 for hospital characteristics). Both hospitals use the national Blood transfusion 
Guideline [14]. Variables include the three most important blood products that are transfused: 
red blood cell (RBC), fresh frozen plasma (FFP) and platelet (PLT) products, as well as clinical 
information on transfusion recipients such as diagnoses, surgeries and laboratory 



Chapter 3. Validation of multisource electronic health record data 
 

44 
 

measurements. After collection, these data need to be validated in order to create a valid 
transfusion data warehouse that can be used for research purposes. As this dataset involves 
multiple centers and linked donor-recipient data, it is especially suitable to serve as an example 
case to illustrate the validation approach. In order to keep the Results table manageable, the 
average outcomes of the two teaching hospitals are shown.  
  

Results 

The validation approach was applied to the transfusion dataset, so that each concept was 
assessed by one or more outcomes (Table 3.1). A selection of outcomes that demonstrate how 
the validation process led to improvements of the data is discussed in more detail below. A 
more extensive discussion of all validity outcomes can be found in Appendix A. 

We first checked the agreement between the number of blood products in the dataset 
and those reported in the annual blood bank report (Step 1: External concordance with 
report), which was 98.7%. The slight disagreement can be explained by potential differences in 
the way of counting composite and split blood products. Of the transfused products, initially 
96.7% could be linked to the corresponding donation (Step 2: Linkage). We traced this 
difference back to a post-hoc modification in the coding of the product identification number 
at the blood bank, leading to different codes existing in the blood bank and the hospital system 
for the same product. When the coding was adjusted, the proportion linked products increased 
to 99.98%. Initially 1% of products were duplicated (Step 3: Identity). Investigation of product 
types revealed that most duplicates were split products. The products were given unique 
identifiers post-hoc, resulting in an improved duplication percentage of 0.14%. Most 
transfusions -98%- could be linked to one or more diagnoses (Step 4: Completeness). In most 
cases the diagnosis was even more than complete: the number of pending diagnoses ranged up 
to 15 diagnoses per transfusion. This means that it will be necessary to make a selection of 
those diagnoses in the future if we want to determine the main indication for a transfusion. 
Diagnoses were defined differently by the two hospitals and therefore had to be recoded using 
a uniform reference table (Step 5: Uniformity). The percentage of diagnosis codes that could 
be linked to the reference table was 96.1%. Investigation of time patterns (Step 6: Time 
patterns) revealed that for the year 2010, an exceptionally high percentage of transfusions 
could not be linked to products issued (2.2% versus 0.07% in other years). This percentage 
could be lowered to 0.17% by including blood bank data from the previous year 2009 (the 
unlinked products were mainly frozen plasma products that were issued in the year before the 
actual transfusion). Plausibility of registered dates and times (Step 7: Plausibility) was checked 
based on a priori expectations. For example hemoglobin (Hb) generally is expected to increase 
after transfusion. Indeed, in 54% of cases Hb did increase, 40% did not clinically change, 
however 6% decreased. This decreasing 6% might indicate incorrect date values, which could 
occur when the registered time of transfusion actually records the moment that a product or 
service (e.g. the blood product) was requested instead of administered. To check this, expert 
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feedback was asked regarding the plausibility of the observed Hb changes (Step 11: 
Concordance with expert feedback). Further investigation of the data showed that most 
recipients with a decrease in Hb had a diagnosis indicating high bleeding risk (87%), explaining 
the observed decrease. Taking this into account, the percentage of all transfusions with an 
unexplained decrease is lower than 1%, which according to the experts is acceptable. Event 
attributes (Step 8) include that each platelet product is attributable to five or six unique 
donations, which was also found in the dataset for 100% of platelet products.  

These are all average outcomes, however a comparison of the two hospitals included 
shows that their validity outcomes were very similar (Step 9: Consistency of hospitals within 
data warehouse; results not shown), supporting the validity of the findings. Also, concordance 
with literature (Step 10) was checked by comparing the distribution of blood products over age 
and gender per product type with the previously reported PROTON study, of which the DTD 
is the successor. Distributions were very similar but platelet use has shifted towards older 
patients, especially men aged 60-80 years (Supplementary file 2). This can be explained in part 
by the ageing of the population and changes in policy in the past ten years; platelet use was 
increased in thorax surgery and hematological disorders, which both are more prevalent in 
men. 

Lastly, the concordance of these findings with validity outcomes reported for other 
databases was investigated (Step 12: Concordance with other databases). The most extensive 
list of validation outcomes were reported by the SCANDAT study [19,20], therefore, these 
outcomes are shown next to the validity outcomes of the DTD (Table 3.3). SCANDAT and 
the DTD show similar results regarding the high external concordance of the data with 
external statistics and the fact that both studies identified missing data by investigating time 
patterns. Different is the proportion of hospitalized patients, which might be due to 
differences between the countries in the registration of patients (we found a consistently higher 
hospitalization rate for both of the DTD hospitals included). The estimated proportion of 
patients with incomplete information due to transference to another hospital was up to 6% for 
the DTD. This might actually be an underestimation, considering the finding that in 
SCANDAT 8.9% of recipients received a blood transfusion in two or more local registers, and 
because our 6% did not include patients who were hospitalized elsewhere prior to being 
hospitalized in our included hospitals. 
 

Discussion 

Being explicit about research methods is important for the reliability, reproducibility and 
credibility of research, and in our opinion this includes being explicit about data validity. We 
recommend that any study that involves electronic health record data should include an 
overview of the steps taken to ensure data validity. This applies in particular to more complex 
routinely registered data that are not designed for research purposes or are complex (for 
example data covering an extensive time period or linkage of several sources). Therefore, we  
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Table 3.3. Comparison of validity outcomes in the SCANDAT study and the current DTD results 

Outcome SCANDAT 1/2 DTD example 
External concordance of database and 
official statistics on the number of 
transfusions 

>97% >98.7% for products 
and 99.96% for 
transfusions  

 
% transfusions linked to the 
corresponding donor 

95% 99.99% 

% transfusions linked to hospitalization 88.7% 99.2% (of which 23.6% 
day admissions) 

% duplicated donations and transfusions 4.9% (donations) and 
9.1% (transfusions) 

0% (donations) and 
0.14% (transfusions) 

% missing or invalid values for 
identification number or date values 

Range between 0.1% to 
3.6% 

0%-0.01% 

Time patterns for donations and 
transfusion counts 

In one year 
approximately 160,000 
transfusions were 
missing; it took two 
years for the number of 
donations and 
transfusions to stabilize 
after the start of a new 
registration system 

In one year the link of 
transfusions to products 
could be made for 
2.2%, however this 
could be improved by 
adding donation data 
from the previous year 

% of recipients had records of receiving 
a blood transfusion in two or more local 
registers 

8.9% 6% of patients are 
transferred to another 
hospital 

 
 
documented a step-wise approach for systematically validating multiple source data from 
electronic health records. The approach integrates concepts from existing guidelines for EHR 
quality assessment with the specific challenges inherent to linked, multisource data. The 
proposed approach is practical as the validity concepts are directly related to what is needed for 
actually carrying out the validation. For some validation steps, data from only one center and 
of a single point in time might be sufficient, other steps require at least two centers or data 
from prolonged periods of time, or require the availability of external information such as 
previous literature or expert opinion.  

The approach was applied to data from the Dutch Transfusion Data warehouse 
(DTD), resulting in an overview of validity outcomes and improvements of the quality of the 
data. In addition to improving the data, the validity outcomes, if made publicly available, 
increase transparency and contributes to the efficient use and reuse of existing sources of 
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information. A clear overview of data validity is informative for researchers who want to use 
an existing database and, vice versa, requests for using the data can be evaluated more easily.  
 
What is ‘good’ quality data? 

It can be argued that no universal cut-off values exist as to whether electronic health data are 
‘valid’ or of ‘high quality’ [26], since the level of data quality required will also depend on the 
purpose of the study concerned. Still, objective measures for relevant quality concepts are 
necessary, and an adequate understanding of how to interpret validity outcomes is desirable.  
 Levels of validity as found in earlier studies might set a -more or less arbitrary but 
realistic- standard. Validation outcomes reported by previous transfusion data warehouse 
studies are sparse and vary greatly. Most often reported was the linkage rate of transfusions to 
donors, varying between 92%-99% [20,21,22,23,24] and, vice versa, estimates of wastage of 
blood products (i.e., issued but not transfused) of 1.3% and 7.7% [21,22]. The percentage 
missing values was also reported by some studies: clinical variables were missing for 13% 
(post-transfusion Hb), 14% (ASA code) [25], and 20% (specialty), with the degree of 
missingness varying between specialties from 2% to 47% [26] (a more extensive overview per 
transfusion database is provided in Supplementary file 3). Comparing the SCANDAT to the 
DTD outcomes, we found similar results regarding the completeness measures and the high 
external concordance of the data with external statistics. In this context, we think the data 
from the DTD shows sufficient validity. This is, however, time-bound; when new data (either 
hospital or external) are included in the future, these data must be validated as well.  
 Although data quality should ideally be checked continuously, such checks may be 
particularly relevant following: the first data extraction from a hospital or other data source, 
inconsistencies present in the data, the introduction of a new hospital information system, or 
reorganization or fusion of hospitals [1]. In order to keep track of changing registration 
systems in individual hospitals, a questionnaire might be submitted once a year on new 
developments in the hospital that could impact the registration or data extraction. Especially 
for the purpose of benchmarking hospitals (or other data sources), it is important that all 
selection and interpretation steps are performed in a similar way for each hospital. After all, the 
impact on the comparison is minimized when bias is similar for each hospital. 
 
Remaining issues and future directions 

The concept Accuracy or Correctness -which is particularly relevant for diagnosis and 
procedure codes- was not yet covered by the approach. As the data warehouse is too large to 
manually check accuracy of diagnoses for each individual patient, a sample of diagnoses and 
procedures will be validated by manual review of patients’ local medical records. 
  It must be noted that it is a choice whether to aggregate the validation outcomes to 
the level of patients, variables, hospitals or even combining all sources in the database. 
Outcomes become less informative for higher aggregation levels, but are still useful for 
detecting large irregularities in the data. To simplify the interpretation of validity outcomes, we 
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encourage adding visualizations or summaries (especially when outcomes are similar), for 
example, Completeness could be summarized by giving the percentage of variables that is at 
least 95% complete [15]. 
 It appears that the process of preparing data for analysis, including data 
harmonization and assessing data quality, is commonly taking place at the intersection of data 
management and research. In practice, part of the validation may be performed by the data 
manager. However, it is the researcher who ultimately is responsible for making and 
communicating any choices made in this process, and the implications for the validity and 
interpretability of study results. 
 

Conclusion 

The proposed approach provides a structure for validating multisource EHR data. By making 
the validation steps explicit and concrete, the applied example shows that the approach is 
feasible, enhances the interpretation of the data and improves data quality. Hopefully this will 
encourage researchers to consider and report data quality, in a way that goes beyond 
conceptual classifications and allows transparent assessment of the potential impact of data 
quality on research findings. 
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Abstract 

Introduction 

To enhance the utility of transfusion data for research, ideally every transfusion should be 
linked to a primary clinical indication. In electronic patient records, many diagnostic and 
procedural codes are registered, but unfortunately it is usually not specified which one was the 
reason for transfusion. Therefore, a method is needed to determine the most likely indication 
for transfusion in an automated way. 
 
Methods 

An algorithm to identify the most likely transfusion indication was developed and evaluated 
against a gold standard based on expert review of 234 cases. In a second step, information on 
misclassification was used to fine-tune the initial algorithm. The adapted algorithm predicts, 
out of all data available, the most likely indication for transfusion, using information on 
medical specialism, surgical procedures, and diagnosis and procedure dates relative to the 
transfusion date. 
 
Results 

The adapted algorithm was able to predict 74.4% of indications in the sample correctly 
(extrapolated to the full dataset 75.5%). A kappa score, which corrects for the number of 
options to choose from, was found of 0.63. This indicates that the algorithm performs 
substantially better than chance-level. 
 
Conclusion 

It is possible to use an automated algorithm to predict the indication for transfusion in terms 
of procedures and/or diagnoses. Before implementation of the algorithm in other datasets, the 
obtained results should be externally validated in an independent hospital dataset. 
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Introduction 

In blood transfusion research, it is important to know the clinical condition of the patient that 
motivated the physician to give the transfusion. Hereby the underlying disease or treatment is 
meant, not the immediate reason for transfusion such as low blood values. Typically, the 
reason for transfusion or transfusion indication, is not routinely registered with the request for 
blood [1], or only temporarily in the context of a study [2,3]. Alternatively, routinely registered 
diagnostic and procedural codes can be used to determine the transfusion indication 
retrospectively. Potentially the primary diagnosis code can be used, but this code is not always 
available and it has been shown that the primary diagnosis in many cases is not the indication 
for transfusion. For example in the EASTR study [4], transfused patients were assigned to 
indication groups based on surgical procedure (43% of all patients), ICD-10 primary diagnosis 
(36%) and ICD-10 secondary diagnosis (12%), with 9% of patients remaining unclassified. As 
each electronic patient record was reviewed by research nurses, this is a highly labor-intensive 
method for determining the transfusion indication. 

The amount of data in transfusion research databases generally is very high, including 
many patient records as well as many diagnoses and procedures per record. Many patients have 
two or more diagnoses at the time of transfusion. As manual review is too time-consuming, an 
algorithm is needed that predicts, out of all diagnoses and procedures registered, the most 
likely indication for transfusion. No method currently exists for determining the main 
indication for transfusion in an automated way. Reported strategies for attributing transfusion 
events to patients’ clinical information are: to classify a transfusion as either medical, surgical, 
or obstetric and gynecological; or to attribute a transfusion to the requesting hospital 
department, specialism or admitting service [1,2,5,6]. Although these broad classifications 
provide information on the global indication, they do not identify an indication as specific as a 
diagnosis or procedure. In addition, this information is not always reliable because patients 
may be transferred to other specialisms during hospitalization. Also, the accuracy of the used 
coding system has to be validated, as reportedly patients with a diagnosis code do not always 
have the condition it represents [7]. Therefore, indications for transfusion should be validated, 
but in practice often they are not [8]. 

The aim of this study is to establish an algorithm for the automated identification of 
transfusion indications and to evaluate the performance of this algorithm using expert 
evaluations. In addition, in order to validate the diagnostic and procedural codes, we checked 
transfusions with a single diagnosis as well as transfusions without any diagnostic information 
registered, to investigate whether the diagnosis was the most likely indication and whether 
information was missing in a systematic way. 
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Methods 

In order to develop the initial version of the algorithm, expert opinions were asked and used to 
establish the rules of the algorithm. Subsequently, the algorithm was applied to hospital data, 
with the result that each transfusion was linked to its predicted most likely indication for 
transfusion. To evaluate the performance of the algorithm, the predicted indications were 
compared with the gold standard, which is the most likely indication for transfusion as 
determined independently by two clinical experts based on the medical record. 
 
Data 

We used data on all transfusions in a teaching hospital in the Netherlands over a 5-year period 
(Isala hospital; 2010-2014; n=86,043). In the Netherlands, diagnoses and procedures are 
currently coded using a national system adopted by all hospitals and are primarily for financial 
reimbursement [9]. Each diagnosis code consists of a specialism code and a more specific 
diagnosis code. For the current study, all diagnoses of a patient that were pending at the time 
of transfusion were selected as potential transfusion indications. Similarly, all surgical 
procedures falling within the hospitalization in which the transfusion was administered were 
selected, with an extra filter to include only procedures within a time interval of -7 and +1 days 
around the transfusion date. Procedures were linked to a specialism using the admitting 
specialism. Diagnoses that were registered at the same day under the same specialism as well as 
surgeries that were performed at the same day under the same specialism, were regarded as 
related and are clustered together into ‘diagnosis clusters’ and ‘procedure clusters’.  
 
Determination of the gold standard by reviewers 

A sample of transfusion cases was manually reviewed by two reviewers (both medical doctors) 
to determine the true indication for transfusion, i.e. the gold standard. The indication always 
consists of a diagnosis, optionally complemented by a procedure. This was decided firstly 
because it reflects the way that this type of information is registered, and secondly because it 
makes sense that some transfusions are necessitated by a disease (i.e. diagnosis) and other 
transfusions are necessitated by a treatment (i.e. procedure) in the follow-up of a disease (i.e. 
diagnosis). 

The reviewers were given a list of patient identification numbers and transfusion 
events (i.e. a transfusion date and the type and amount of products transfused). They were 
instructed to first look into the hospital electronic patient documentation (including electronic 
health records, correspondence and clinical outcomes), and determine the most likely 
indication for transfusion. After they had determined the indication, they looked at the answer 
categories provided (i.e. diagnoses and procedures), and selected the correct indication if 
available, and otherwise selected the option ‘none of these’. A free text field was provided to 
fill in the correct indication. In order to enhance the reliability of the gold standard, the two 
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reviewers reviewed all cases independently of each other and afterwards discussed the cases on 
which they disagreed until consensus was reached on the correct indication. 
 
Sample selection 

The sample of transfusion cases to be presented to the reviewers was selected using a stratified 
random approach. The sample was stratified by the six most important specialisms according 
to experts with high blood use: Cardiopulmonary surgery, Gynecology, Gastroenterology, 
Internal medicine, Surgery, and Orthopedics. All remaining specialisms fell into the seventh 
category ‘Other’. The reason for stratifying by specialism was that this ensures a sufficient 
number of observations per specialism and will provide information as to whether the 
algorithm works for the most prevalent indications. As we did not have information on the 
true specialism yet, we stratified by specialism as predicted by the initial version of the 
algorithm. 

The sample size was based on the expected performance of the algorithm and the 
predefined, acceptable margin of error. For instance, when the algorithm is expected to 
correctly identify the transfusion indication in 90% of cases, a sample size of n=138 would be 
required (assuming power of 0.9 and alpha of 0.05); for an expected proportion of 80% this is 
n=246. We chose for a sample size of 234 cases, resulting in a margin of error of 3.8% for an 
expected proportion of 90% and a margin of error of 5.1% for 80%. The sample was divided 
over nine strata: the seven specialism strata, a ‘data quality check’ stratum of cases with only 
one diagnosis, and a stratum of transfusions that are not linked to any diagnosis or procedure 
at all (which is 3.1% of transfusions in the dataset). These last two strata were also used to 
validate the data: to check whether the single diagnosis was the correct indication, and why 
diagnoses were missing and whether there was a pattern (for example, the absence of a 
diagnosis might be specific for certain specialisms). 
 
Development of the algorithm  

The core of the algorithm is a set of decision rules. Using these rules the algorithm selects a 
diagnosis and if available a procedure as the most likely transfusion indication. These rules are 
based on the recommendations of transfusion experts (two medical doctors, and a doctor 
working in transfusion medicine). The experts were asked to make a list of the most likely 
specialisms to be responsible for transfusion. Similarly, experts were asked to make a 
prioritization based on the time between the diagnosis and procedure dates relative to the 
transfusion date. Based on these prioritizations, a decision tree algorithm was made and 
applied to the data. In a second step, the algorithm was adapted based on the performance of 
the initial algorithm. 
 
Statistical analysis 

The performance of the algorithm was evaluated by computing the percentage agreement 
between the algorithm and the gold standard. This was computed for the sample and also 
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extrapolated to the full dataset based on the sampling fraction per stratum (for the final 
algorithm). A secondary outcome was a quantification of the agreement corrected for 
agreement by chance. This score indicates whether and how much the algorithm performs 
better than random chance. The algorithm chooses between several diagnosis clusters but, due 
to the nature of the data, the number of diagnosis clusters varies per case. When for example 
the choice is between two diagnosis options, the chance-agreement is 50%, whereas a case with 
6 diagnosis options has only a 16.7% chance-agreement. Likewise, a guessing probability equal 
to 1 divided by the number of outcome categories was assigned to each case. The underlying 
assumption was that a priori all outcome categories are equally likely. With this information, 
the total expected chance-level agreement can be calculated and compared with the observed 
proportion agreement. These two measures are used to calculate kappa (k), an agreement 
statistic similar to Cohen’s kappa [10]. The formula for kappa is: 
 
k = (aobs -  achance) / (1- achance),  where  
aobs = number of cases predicted correctly / total number of cases, and 
achance = ∑ (1 / number of outcome categories) / total number of cases 
 
The interpretation of kappa is as follows: kappa=0 indicates chance-agreement, kappa=1 
indicates perfect agreement, kappa<0 indicates lower than chance-agreement, and kappa >0 
indicates agreement better than random chance. The advantage is that kappa corrects for the 
level of difficulty of each case, by taking into account the number of outcome categories. 

As a sensitivity analysis, the data were analyzed both including and excluding cases 
lacking a gold standard. Evaluating only those cases for which a gold standard could be found 
in the data registered might be fairest because the algorithm, which always selects one 
indication, can never match with a missing gold standard. Conversely, an analysis that includes 
all cases better demonstrates the usefulness of the algorithm for the complete dataset. 
  

Results 

Gold standard: Inter-rater consistency 

The two reviewers initially agreed on 223 out of 234 cases (95%). After discussion of the cases 
not agreed upon, consensus was reached for all cases. For diagnoses, the gold standard was 
‘none of these’ for n=15 cases, meaning that none of the diagnoses provided was found likely 
to be the indication for the transfusion. Reasons that the indication could not be found in the 
available diagnoses varied: anemia of unknown cause (n=6), registration lacking (n=6), anemia 
of the critical illness (n=2), or no indication for transfusion according to the reviewers (n=1). 
For procedures, the gold standard was ‘none of these’ for n=14 cases. Reasons that no 
procedure was selected were: supposedly incorrect procedure dates (n=6, these seemed to be 
mainly non-elective surgeries), the correct procedure fell outside the selected time period of -7 
and +1 days around the date of transfusion (n=4), missing registration of the correct 
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procedure (n=3), and based on medical chart review it was not possible to select one 
procedure (n=1).  

As the predicted specialism strata were not always the true strata according to the 
gold standard, the number of observations in each specialism stratum changed somewhat 
(Table 4.1A). Also during the determination of the true indication, the reviewers discovered 
that some of the diagnoses from which the algorithm had to choose, were overlapping or the 
same (n=24). This probably occurred because the same diagnoses were registered by different 
specialisms, resulting in different codes for the same diagnosis (of these cases, n=16 had one 
duplicated diagnosis, n=7 had two, and n=1 had three duplications).  These duplicated 
diagnoses were recoded post hoc to make sure that equal alternatives would also be evaluated 
as such. This slightly changed the number of observations in each stratum, as n=13 clusters 
went from multiple to only one diagnosis cluster and therefore moved to the ‘data quality 
check’ cluster. For procedures, transfusion clusters with only one procedure cluster were 
combined into a ‘data quality check’ stratum (n=47). The n=21 remaining cases with multiple 
procedure clusters were grouped together, as a breakdown by specialisms would result in very 
low sample sizes per stratum. 
 

Table 4.1A. Agreement between initial algorithm and gold standard for diagnoses as observed in the sample (n=234). 
The raw % correct in the sample is shown by specialism and in total, showing cases with only one diagnosis option 
(‘data quality check’), cases without a gold standard, and cases without any diagnostic information as separate strata. 
Kappa provides a measure for chance-adjusted agreement for cases with at least two diagnosis options. 

Stratum (sample size) % correct Kappa 
Cardiopulmonary surgery (n=19) 94.7% 0.91 
Gynecology (n=12) 75% 0.57 
Gastroenterology (n=15) 86.7% 0.78 
Internal medicine (n=61) 44.3%  0.15 
Surgery (n=18) 66.7%  0.50 
Orthopedics (n=16) 75.0%  0.58 
Other (n=15) 20.0%  -0.25 
Total specialisms (n=156) 60.2% 0.37 
Data quality check (n=37) 100%  
Specialisms + data quality check (n=193) 67.9%  
No codes registered (n=26) 0%  
No gold standard (n=15) 0%  
Total (n=234, incl. cases without diagnoses) 56.0%  
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Table 4.1B. Agreement between initial algorithm and gold standard for procedures as observed in the sample (n=234). 
The raw % correct in the sample is shown in total, and separately for cases with only one procedure option (‘data 
quality check’), cases without a gold standard, and cases without a procedure registered in the time selection. Kappa 
provides a measure for chance-adjusted agreement for cases with at least two procedure options, excluding cases 
without gold standard. 

Stratum (sample size) % correct Kappa 
Total specialisms (n=17) 82.4% 0.71 
Data quality check (one procedure) (n=47) 100%  
Specialisms + data quality check (n=64) 95.3%  
No gold standard (n=14) 0%  
Total (n=234, incl. cases without procedures) 92.7%  
 
Initial algorithm 

Rules of the initial algorithm 
The algorithm works like a decision tree (Figure 4.1 and 4.2). First, it selects diagnoses based 
on the prioritization of the specialisms of the available diagnoses (Table 4.2). If the patient 
underwent a procedure, the diagnosis matching the admission specialism (of the department 
the patient is hospitalized) highest in priority (according to ‘Order procedures’ in Table 4.2) 
will be selected. If no procedure was registered for this patient, the diagnosis with the 
specialism highest in priority (according to ‘Order diagnoses’ in Table 4.2) will be selected. 
Second, if after this first selection there is still more than one diagnosis option available, the 
algorithm selects the diagnosis that is closest in time to the transfusion (using the start date of 
the diagnosis). For procedures, the algorithm selects the procedure closest in time to the 
transfusion (prioritizing procedures one day before transfusion over one day after transfusion).  
 
Performance of the initial algorithm: Diagnoses 
For n=208 out of the 234 cases, one or more diagnoses were registered. The overall percentage 
raw agreement of the algorithm diagnoses with the gold standard was 56.0%. Excluding cases 
without a gold standard and those without diagnoses registered, resulted in a higher agreement 
rate of 67.9%. Agreement varied per specialism from 20.0% (for Other) to 94.7% (for 
Cardiopulmonary surgery) (Table 4.1A). Chance-adjusted agreement (excluding cases without a 
gold standard) was 0.37, varying per specialism from -0.25 (Other) to 0.91 (Cardiopulmonary 
surgery). This means that the algorithm performs better than chance level, both overall and for 
each specialism individually (except for the stratum Other). 
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Figure 4.1. Diagnosis selection: initial algorithm rules visualized by a decision tree 

 
 
 
Figure 4.2. Procedure selection: initial algorithm rules visualized by a decision tree 
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Table 4.2. Order of diagnosis and procedure specialisms used for attributing indication to transfusion in the initial 
algorithm and after adjustment in the adapted algorithm, from high to low priority. 

Specialism Order 
diagnoses 

Update 
diagnoses 

Order 
procedures 

Cardiopulmonary Surgery 1 1 1 
Gynecology 2 4 9 
Gastroenterology 3 3 10 
Internal medicine: Hematology 4 2 11 
Surgery: Transplantation 5 5 2 
Surgery: Vascular surgery 6 6 3 
Surgery: Traumatology and first aid 7 7 4 
Surgery: Oncology, lung and gastrointestinal surgery 8 8 5 
Surgery: General surgery and pediatric surgery 9 9 6 
Orthopedics 10 10 7 
Urology 11 11 12 
Anesthesiology 12 21 13 
Neurosurgery 13 13 8 
Throat Nose Ear 14 17 14 
Plastic Surgery 15 12 15 
Pediatrics 16 16 16 
Consultative Psychiatry 17 18 17 
Neurology 18 19 18 
Cardiology 19 20 19 
Internal medicine: Non-Hematology 20 14 20 
Lung medicine 21 15 21 
Ophthalmology 22 22 22 
Clinical geriatrics 23 23 23 
Radiotherapy 24 24 24 
Dermatology 25 25 25 
Rehabilitation medicine 26 26 26 
Geriatric rehabilitation care 27 27 27 
Rheumatology 28 28 28 

 
Performance of the initial algorithm: Procedures 
For n=78 out of the 234 cases, one or more procedures were registered. The overall 
percentage raw agreement of the algorithm with the gold standard was 92.7% (Table 4.1B). 
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Excluding cases without a gold standard, this was 95.3%. Chance-adjusted agreement, 
excluding cases without a procedure, was 0.71. This means that overall the algorithm performs 
substantially better than chance level. 
 
Data validation 

The transfusions that linked to only one diagnosis and/or procedure (the ‘data quality check’ 
stratum, n=26) corresponded to the indication according to the gold standard in 100%. The 
cases without any diagnoses registered (n=26) consisted mostly of neonates (n=25; 96.2%). 
 
Adapted algorithm 

Rules of the adapted algorithm 
In the second step, the results of the initial algorithm, especially the misclassified cases, were 
used to adapt the algorithm (Figure 4.3). The following changes were made: Firstly, instead of 
selecting both a diagnosis and a procedure (if available) as the indication for transfusion, the 
adapted algorithm selects either a procedure or a diagnosis, prioritizing procedures over 
diagnoses. The reason for this is that in the gold standard a procedure, if present, was always 
selected as the indication. With this change in definition of the transfusion indication, the 
classification of cases into strata also changed somewhat (Table 4.3). Secondly, the 
prioritization of specialisms was adapted: diagnoses in Internal medicine-Hematology and 
Gastroenterology are prioritized over Gynecology, because the specialism Internal Medicine  
was misclassified relatively often (44.3% correct, Table 4.1A). In the adapted algorithm, 
Gastroenterology is only selected as indication if the patient underwent surgery under this 
specialism. In this way, a Hematology patient with a Gastroenterology diagnosis but no surgery 
who might not have had a bleeding, will be predicted to have had a Hematological indication 
for transfusion. In addition, both Internal medicine-Non-Hematology and Lung medicine are 
placed higher on the prioritization list (Table 4.2). Based on the results of the data validation, 
cases lacking any diagnostic information were classified by the algorithm as Neonatology. The 
R code of the algorithm is provided in Appendix B. 
 
Performance of the adapted algorithm in the sample 
The overall percentage raw agreement of the adapted algorithm diagnoses with the gold 
standard was 74.4%. Excluding cases without a gold standard and those without any diagnosis 
or procedure registered resulted in an agreement rate of 78.0%. Agreement varied per 
specialism from 38.9% (for Other) to 95.0% (for Cardiopulmonary surgery) (Table 4.3). 
 
Performance of the adapted algorithm extrapolated to the full dataset 
Weighting the agreement by the prevalence of predicted specialisms in the complete hospital 
dataset, the adapted algorithm was estimated to predict the transfusion indication correctly in 
75.5% of transfusion clusters in the full dataset (results not shown). 
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Figure 4.3. Adapted algorithm rules visualized by a decision tree 

 
 
 
Table 4.3. Agreement between adapted algorithm and gold standard for the transfusion indication as observed in the 
sample (n=234). The raw % correct in the sample is shown by specialism and in total, showing cases with only one 
diagnosis option (‘data quality check’), cases without a gold standard, and cases without any diagnostic information as 
separate strata. Kappa provides a measure for chance-adjusted agreement for cases with at least two options. 

Stratum % correct Kappa 
Cardiopulmonary surgery (n=20) 95.0% 0.93 

Gynecology (n=17) 88.2% 0.81 
Gastroenterology (n=16) 75.0% 0.59 
Internal medicine (n=60) 73.3% 0.59 
Surgery (n=22) 77.3% 0.66 
Orthopedics (n=20) 85.0% 0.78 
Other (n=18) 38.9% 0.07 
Total specialisms (n=173) 75.7% 0.63 
Data quality check (n=18) 100%  
Specialisms + data quality check (n=191) 78.0%  
No codes registered (n=26) 96.2%  
No gold standard (n=17) 0%  
Total (n=234, incl. cases without codes registered) 74.4%  
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Discussion 

We presented a systematic approach to develop and test a post-hoc algorithm for identifying 
the indication for transfusion, using expert opinion as starting point and a gold standard to 
validate and improve the algorithm. The final adapted algorithm was able to correctly identify 
the indication for transfusion in 74.4% of cases in the sample (75.5% when extrapolated to the 
full dataset). The algorithm can be utilized by implementing it in the Dutch Transfusion Data 
warehouse (DTD) [11]. Knowledge of transfusion indications not only facilitates the selection 
of specific patient groups for future studies and the studying of reasons for transfusion, but 
also allows benchmarking blood use in patient subpopulations. 
 
Interpretation of results 

As shown by the kappa value of 0.63, the algorithm performed above chance level and was 
able to successfully identify the majority of transfusion indications. Still, for approximately 
25% of cases the algorithm’s predictions did not agree with the gold standard. Part of the 
disagreement can simply be explained by the fact that the algorithm is not perfect; on a more 
detailed level (not available to the algorithm), clinical situations of patients might differ, leading 
to different indications for transfusion. Another part of the disagreement, however, is due to 
data quality issues. The gold standard could not be inferred from the data in some cases 
because of missing registration or suspected incorrect registration dates. For other cases 
however, even with perfect registration, it would be impossible to know the exact indication 
for transfusion. These cases often involve patients with multiple and complex morbidities (e.g. 
resulting in anemia of critical illness), making it impossible even for the treating physician to 
point out one particular disease or procedure that solely necessitated the transfusion. Finally, 
the cases without any diagnostic information registered (approximately 3% of all transfusions), 
showed a clear pattern: almost all were premature neonates. This is comparable to a European 
study in seven hospitals, where neonates also received 3% of all red blood cell units with a 
medical indication [3]. Upon request at the hospital, we found that the reason for missingness 
was that neonates are registered in a separate system. This is a useful outcome of the data 
check; now we know where to find the diagnostic information for this group if required for 
research. 
 
Generalizability 

Other data warehouses might use a similar approach to identify the indication for transfusion. 
Although the exact coding of diagnoses and procedures studied in this paper is specific for the 
Netherlands, the algorithm’s prioritization rules are more generally applicable. The algorithm 
uses the broad category of specialisms and registration dates to select the indication, which is 
basis information that is generally available in hospitals. Moreover, transfusion indications are 
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often major, invasive diseases, which are expected to be registered quite consistently, allowing 
not much room for subjective interpretation of registration codes. In a next step, the 
transfusion indications resulting from the algorithm could be clustered post hoc into indication 
groups (for example [12]). This would increase generalizability and comparability of transfusion 
indications worldwide, if similar categories are used. We generalized the sample results to the 
full dataset by weighting the sample values according to the sampling fraction per stratum. As 
these strata were based on the predicted specialisms, which were not always the true 
specialisms, this might have induced some level of bias if certain specialisms would not end up 
in the sample in sufficient numbers. However, because within each predicted stratum a random 
sample of cases was drawn, the most important specialisms were included in the sample with at 
least n=16 cases. 
 
Future recommendations 

To ensure that the algorithm also works for a different case-mix of patients, the algorithm 
should be validated in one or more external hospital datasets. This validation should be 
performed by developing a gold standard in the external dataset against which the algorithm 
can be checked. If necessary, the algorithm may subsequently be adapted for a particular 
dataset. A way to improve the algorithm is to take into account more detailed patient 
information such as age, gender, previous treatments, and the number and type of blood 
products received. Also, the algorithm might be improved for certain patient groups by 
considering a broader time frame for procedures (we only included procedures within -7 and 
+1 days around transfusion and it is likely that some procedures are missed because of this 
selection). More specifically, the cases that were misclassified by the algorithm often concerned 
patients with chronic conditions like renal dialysis or malignancies. Therefore we prioritized 
internal medicine (Hematology) higher, so that when no surgery was present this indication 
was selected more often. Another solution to select these patients would be to take into 
account the frequency of and interval between transfusions; regular transfusions within a 
broader time interval point to a hematological transfusion indication. Finally, it would be 
interesting to investigate whether supervised machine learning techniques would be able to 
improve the algorithm. Note that such an approach would require more cases with a known 
gold standard in order to train the selection model. 

In the long term, a structural solution for incomplete information on transfusion 
indications would be to nationally improve registration at the source. Projects that try to 
improve source registration have been set up in the Netherlands [13,14], for example 
implementing a diagnosis and procedure thesaurus that corresponds to the international 
standard of SNOMED CT, as well as in the US [15]. In Europe the EUROREC Institute 
(EuroRec), an independent not-for-profit organization, is promoting the use of high quality 
Electronic Health Record systems [16]. In time, projects like these will hopefully lead to 
enhanced data quality through better registration. Ideally, hospitals should register the 
diagnosis and/or procedure that motivated the transfusion for each blood product 
administered. Better registration is not only important for transfusion research, it is also in the 
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direct interest of the patient and care; especially for an in itself risky treatment as blood 
transfusion. 
 
Conclusion 

An expert-based algorithm is able to identify the indication for transfusion accurately for the 
majority of transfusions. The selected indications can be implemented in the Dutch 
Transfusion Data warehouse, where they can serve as a starting point for future studies. Before 
implementation of the algorithm in other datasets, the algorithm should be externally validated 
in one or more independent hospital datasets. The systematic approach can be used to apply, 
evaluate and improve the algorithm in other databases.  
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Abstract 

Introduction 

A ubiquitous issue in research is that of selecting a representative sample from the study 
population. While random (probabilistic) sampling strategies are the gold standard, in practice, 
random sampling of participants is not always feasible nor necessarily the optimal choice. 
Before putting a lot of effort in recruitment or data collection, it may be worthwhile to 
carefully consider potential sampling strategies. In this paper, we evaluate several strategies for 
the case of estimating blood use in Dutch hospitals. 
 
Methods 

Available population-wide data on hospital blood use and number of hospital beds are used to 
simulate sampling strategies. Five pragmatic sampling strategies, both random and purposive, 
result in different samples of hospitals, that are each used to fit a model that predicts blood 
use. The subsequent prediction errors are used to indicate the quality of the sampling strategy. 
 
Results 

The strategy leading to the lowest prediction error in the case study was maximum variation 
sampling, followed by random, regional variation and two regions sampling, with sampling the 
largest hospitals resulting in worst performance. Out of all simulations, maximum variation 
sampling outperformed random sampling on the hospital level in 85% and the national level in 
76%. Whereas a lower sample size increased preference for random strategies, increasing 
sample size did not change the ranking of the strategies and led to only slightly better 
predictions.  
 
Conclusion 

The optimal strategy for estimating blood use was maximum variation sampling. It is possible 
to evaluate probabilistic and non-probabilistic sampling strategies using simulations. The 
results enable researchers to make a more educated choice for an appropriate sampling 
strategy. 
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Introduction 

When choosing a sample of participants, researchers often find themselves with a trade-off 
between the wish for randomization and pragmatic considerations. Random (probabilistic) 
sampling is the gold standard of sampling strategies because of its unbiasedness and the 
possibility to evaluate the reliability (precision) of the resulting estimates [1,2,3,4]. Random 
sampling is not, however, always feasible in practice due to constraints in time, resources and 
costs, and researchers in the medical field often use a ‘convenience’ or a purposive sample, i.e. 
choose participants that are easy to recruit or select participants based on preferences or 
expectations. 

Fortunately, some studies suggests that such non-random strategies can lead to 
representative samples [5,6,7]. Also, the statement that a random sample is unbiased means 
that it will provide a representative estimate on average. The probability of randomly drawing 
an ‘unrepresentative’ sample is large if your population is small; the estimator is not robust, 
since data collection is done only once and not a thousand times. This can be illustrated by a 
study in the medical field that compared a randomized study design with a nonrandomized 
design. The nonrandomized design resulted in a more representative sample in 34% of cases 
[5]. In another study, comparison of several sampling strategies for surveillance of cases of 
injury and poisoning in accident and emergency departments showed that a well-planned 
systematic sampling strategy can generate data of equal quality to surveillance including all 
patients [7]. In a study estimating drug use characteristics, purposive samples were found to be 
sufficiently representative, as compared to probabilistic strategies, when these were drawn 
from a wide cross-section of participants and included a relatively large number of individuals 
[6]. Thus non-probabilistic strategies are sufficient at least in some cases.  

If possible, strategies should be evaluated per study, in line with the ‘fit for use’ 
concept; see [8,9]). Preferably this evaluation should be done prior to the actual data collection 
so that this information can be used to choose the optimal sampling strategy. However, in the 
medical field to our knowledge no (simulation) studies exist on evaluating random versus 
preferential sampling strategies with respect to prediction accuracy before data collection; 
instead, methods exist for generalizing treatment effects in randomized trials from 
unrepresentative samples (see for example [10,5,11,12]), or studies that either compare only 
non-probabilistic [13,14] or only probabilistic strategies [15]. 
 In the present study, in order to find the optimal strategy, we compare five stratified 
probabilistic and non-probabilistic sampling strategies that match real-life strategies used in 
practice. The case used is as follows: We want to study blood use in Dutch hospitals but, since 
the process of obtaining large amounts of data was found to be complicated and time-
consuming, we can only collect data from 12 of the total 89 hospitals. The resulting database 
(containing data from the 12 selected hospitals) must include detailed information on patient 
diagnoses and clinical parameters that can be used to answer several research questions 
concerning blood use. For the simulation, we used a limited amount of data that was already 
available on each hospital before data collection. Five pragmatic sampling strategies were 
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simulated (stratified to hospital type as stratification has been proven beneficial [16]): 1). 
Largest hospitals sampling (resulting in a large database), 2) Maximum variation sampling (only 
hospitals on the most extreme ends of RBC use are sampled), 3) Random sampling, 4), 
Regional variation sampling (hospitals from each region are included) and 5) Two geographic 
regions sampling. Representativeness of the resulting samples is evaluated by performing 
model based inference and computing the prediction errors [17]. We assume that if a sample is 
representative in this restricted dataset, it will also be representative for other relevant 
population outcomes. The results will show whether or not, in the context of estimating blood 
use, the general consensus that non-probabilistic strategies are inferior to probabilistic 
strategies holds. More broadly, the case illustrates a method for evaluating different sample 
strategies. The results can be used to support an informed choice for a sampling strategy. 
 

Methods 

Five pragmatic sampling strategies (see below) are simulated using information that is already 
available prior to the actual data collection. The effect of sampling strategy is evaluated in 
terms of its prediction accuracy of the population estimates and margin of error. 
 
Case and data 

The target population consists of all non-specialized Dutch hospitals (n=89), comprising 8 
academic centers, 28 teaching hospitals and 53 remaining general (smaller) hospitals. 
Specialized centers were excluded (n=3), because the majority of blood transfusions is already 
covered by the academic and peripheral hospitals. Limited data on all hospitals was already 
available and easily accessible. Firstly, the number of beds per hospital was extracted from 
annual hospital reports or the hospital website. Secondly, hospitals were classified by type, as 
described by Dutch Hospital Data [19]: a hospital is either an academic medical center, 
teaching or general hospital. Information on hospital blood use was available as well: Sanquin 
Blood Bank provided the number of issued blood products delivered to each hospital in the 
year 2013 for the three main product types: erythrocytes (RBC), fresh frozen plasma (FFP) and 
platelets (PLT) [18]. The number of issued blood products was used as a proxy for the number 
of transfused blood products. If information on blood use was not available for a hospital, that 
hospital was excluded from analysis (n=1). Classification of hospitals into organizational 
healthcare regions was done according to the Education and Research regions [20]; hospitals 
that were not classified by this structure (n=8) were manually assigned based on their location 
to the nearest region. 
 
Sampling strategies 

The simulation is confined to the following five strategies, which are all stratified to hospital 
type.1) Maximum variation sampling (MAXVAR) was used to sample hospitals that have the 
highest and lowest number of RBC transfusions, so that variation in total number of RBCs is 
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maximized. The theoretical advantage of maximum variation sampling is that extrapolating to 
extreme (impossible) values does not occur because the extremes are already in the sample. 
Selecting hospitals based on their RBC use is also supposedly sufficient for obtaining high 
variation in FFP and PLT use; the respective Spearman’s rank correlations with RBC use are 
.88 (p<.00001) and .92 (p<.00001). 2) Sampling only the largest hospitals (LARG) has the 
obvious advantage that since larger hospitals have more patients, this yields the most data. 3) 
Random sampling (RAND) gives each hospital within a stratum an equal probability of being 
sampled. 4) Regional variation sampling (REGVAR) maximizes the number of randomly 
chosen organizational health care regions included for each stratum, based on the assumption 
that there is considerable variation between regions that must be reflected in the sample. 5) 
Sampling from two organizational health care regions (2REG). Including a large part of all 
hospitals from two regions, allows not only the benchmarking of hospitals, but also the 
benchmarking of (almost) complete regions. This form of sampling is simulated for all 21 
combinations of two regions. If a region contains more hospitals than the preferred sample 
size per stratum, hospitals are selected randomly. In contrast, if a region contained fewer 
hospitals than the preferred sample size within a stratum, all hospitals within that stratum are 
included. Figure 5.1A illustrates which hospitals are sampled when using LARG and 
MAXVAR strategies. Figure 5.1B shows a possible result of sampling when the probabilistic 
RAND, REGVAR and 2REG strategies are used.  
 
Sample size 

Sample size is varied, starting with four hospitals per stratum (n total = 12). In each 
subsequent scenario the added value of including two more of each type of hospital (thus 6 
hospitals per stratum) is examined, as well as the effect of including two hospitals fewer in each 
stratum (see Table 5.1 for all three sample size scenarios). The stratification by hospital type 
ensures a fixed sample size ratio of the strata of 1:1:1. The exception is the strategy of sampling 
two regions; here, since there is usually only one academic hospital per region, the number of 
included academic hospitals is fixed in all scenarios at two (and three when the region Noord-
Holland is included). 
 
Model-based inference 

Model-based inference, as it may provide a viable alternative for design-based methods when 
design information is not available [21], seems most appropriate in case of non-probabilistic 
sampling. Even if a non-probabilistic sample in itself is not representative, the resulting model 
might very well be [22]. In the present case, model based inference was used to predict hospital 
blood use. In short, a data sample drawn according to one of the above strategies was used to 
fit a Poisson regression model that predicts blood use (i.e., the number of RBC, FFP and PLT  
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Figure 5.1. Illustration of sampling strategies. a) Hospitals that are selected when using the non-probabilistic strategies 
of sampling the largest hospitals (LARG) and maximum variation (MAXVAR); b) Possible selection of hospitals when 
the probabilistic RAND, REGVAR and 2REG strategies are conducted (since these methods involve a random 
element, the figure shows only one of many possible samples). 

 
 
per hospital) as a function of hospital size (i.e., number of beds) and hospital type. With the 
obtained prediction models, RBC, FFP and PLT use was estimated for all Dutch hospitals and 
compared to the true population values, which are known for this case. Outcomes, expressed 
as a percentage of the population values, are the prediction error on hospital level (summed 
absolute errors at hospital level) and the national prediction error (absolute deviation of the 
national estimate from the population values). These two prediction errors types are of interest 
for different reasons. National level errors are important from the perspective of the national 
blood bank: since the blood bank produces blood products for the whole of the Netherlands, 
it is relevant to know how much blood is needed in total, for example on a yearly basis. 
However from the perspective of (clinical) studies, it might be considered more important to 
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have accurate predictions also within each hospital (i.e., on hospital level). Obviously, 
individual hospitals are also interested in their own expected blood use. 
 

Table 5.1. Number of hospitals included per type for each sample size scenario 

Scenario N (academic) N (teaching) N (general) N Total (%of 
all Dutch 
hospitals) 

A 4 4 4 12 (13%) 

B 6 6 6 18 (20%) 

C 2 2 2 6 (7%) 

     
Simulations 

For each of the RAND, REGVAR and 2REG strategies, a random sampling process is 
simulated a thousand times. The median error percentages are reported, with the 95% centiles 
and the average error percentages. Since the strategy of sampling two regions encompasses 21 
unique combinations of two regions, the median and average error percentages are taken over 
all sampled combinations. Striking differences between combinations of regions are described 
in the results section. All analyses are performed in R Version 3.0.0. R code that simulates the 
sampling strategies and creates an exemplary data set, is provided in Appendix 5.1. 
 

Results 

Prediction error on hospital level 

Prediction errors for each sampling strategy are shown in Table 5.2, for the scenario of 
sampling 12 hospitals. For RBC, FFP and PLT, maximum variation sampling outperformed 
largest hospitals sampling in terms of hospital level error (Figure 5.2). When comparing the  
probabilistic strategies (RAND, REGVAR and 2REG) with the non-probabilistic strategies 
(LARG and MAXVAR), a mixed picture emerges. MAXVAR sampling resulted in 20% 
prediction error on hospital level for RBC, equal to the full population model. The random 
strategies (stratified random, regional variation and two regions) had a higher median error 
than MAXVAR for RBC (namely 22% for all three random strategies) and for FFP (varying 
from 34% (RAND), 35% (REGVAR) to 43% (2REG) versus 33% for MAXVAR 
respectively), but not for PLT (RAND and REGVAR 37%, 2REG 42%, versus 41% for 
MAXVAR). Of all the simulations, RAND resulted in a lower hospital level error than 
MAXVAR only 15% (RBC) and 29% (FFP) of the time. However for PLT, RAND resulted in 
a lower hospital level prediction error in 85% of the simulations (Table 5.3). Sampling only the 
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largest hospitals resulted in a median hospital level error of 44% for RBC, which is higher than 
the median error for the random strategies.  
 
Prediction error on national level 

Comparing the national level prediction errors of the strategies resulted in a similar pattern, 
with MAXVAR outperforming the random strategies most of the time (Table 5.2 and Figure 
5.2). In fact, random sampling resulted in a lower national level error than MAXVAR in 24% 
(RBC), 3.5% (FFP) and 81% (PLT) of the simulations (Table 5.3). The same pattern was found 
for REGVAR and 2REG. 
 
 
Table 5.2. Comparison of prediction errors for the five sampling strategies, for n=12 (n=4 per hospital type)  

Strategy Prediction error on hospital 
level 

Prediction error on national 
level 

 RBC FFP PLT RBC FFP PLT 
Populationa 20% 32% 35% 444,674 

(0%) 
67,461 
(0%) 

55,572 
(0%) 

LARG 44% 39% 45% 40% 18% 20% 

MAXVAR 20%  33% 41% 2% 1% 17% 

RAND 

(median; 
mean, 95% 
centiles) 

22%; 23% 
(20%-
28%) 

34%; 36% 
(31%-
49%) 

38%; 38% 
(35%-
47%) 

5%; 6% 
(0%-16%) 

9%; 11% 
(0%-30%) 

9%; 10% 
(0%-28%) 

REGVAR 

(median; 
mean, 95% 
centiles) 

22%; 23% 
(20%-
29%) 

35%; 36% 
(31%-
48%) 

37%; 38% 
(35%-
45%) 

5%; 6% 
(0%-17%)  

9%; 11% 
(0%-28%) 

10%; 11% 
(0%-27%)  

2REG 

(median; 
mean, 95% 
centiles) 

22%; 23% 
(20%-
31%) 

37%; 46% 
(31%-
139%) 

39%; 44% 
(35%-
100%) 

5%; 6% 
(0%-17%) 

11%; 19% 
(1%-
118%) 

78%; 13% 
(0%-78%) 

LARG = largest hospitals, MAXVAR = maximum variation in number of RBCs, RAND = random, REGVAR = 
regional variation, 2REG = two regions, RBC = red blood cell products, FFP = fresh frozen plasma products, PLT = 
platelet products. Output for RAND, REGVAR and 2REG is based on the average of 10 times 1000 simulations and 
accompanied by 95% centiles. Outcomes are the prediction error on hospital level (summed absolute errors at hospital 
level) and the national prediction error (absolute deviation of the national estimate from the population values), both 
expressed as a percentage from the population values. a Prediction errors for the models fitted with the complete 
population are shown as anchor point; naturally these are 0% at national level.  
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Figure 5.2. Prediction error on hospital and national level for n(academic)=4, n(teaching)=4 and n(general)=4. Median 
prediction errors of red blood cell (RBC), plasma (FFP) and platelet (PLT) use, for different sampling strategies. 95% 
centiles are provided for the strategies involving a random element. Number of simulations=1000. LARG = largest 
hospitals, MAXVAR = maximum variation in number of RBCs, RAND = random, REGVAR = regional variation, 
2REG = two regions. 

 
 
 
Effect of sample size 

Adding two more academic, two more teaching and two more general hospitals to the sample 
(total n=18) reduced hospital and national level error as well as the 95% percentile error ranges 
by one or two absolute percent points (see Appendix 5.2). Reducing sample size to two 
hospitals per hospital type (total n=6) increased prediction errors considerably in some cases, 
especially for the LARG strategy. For LARG, hospital level error for RBC increased from 44% 
to 94% and national error from 40% to 92%. For MAXVAR, hospital level errors increased 
from 20% to 26% (RBC), 33% to 39% (FFP) and 41% to 42% (PLT); national level errors also 
increased by a few percent points. Similarly, the random strategies yielded moderately higher 
hospital and national errors and wider 95% centile ranges in the low sample size scenario (see  
Appendix 5.3). 

Increasing the sample size did not affect the ranking of the sampling strategies by 
prediction error; the scenarios n=12 and n=18 both resulted in a preference for MAXVAR. 
However in the small sample size scenario of n=6, MAXVAR was outperformed by some of 
the random strategies. That is, when only six hospitals were sampled, hospital level prediction  
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Table 5.3. How often are random strategies (RAND, REGVAR and 2REG) better than purposive strategies 
(MAXVAR and LARG) in terms of hospital and national level prediction error for n=12 (n=4 per hospital type)?  

 

of RBC, FFP and PLT was better for the RAND and/or REGVAR strategies, and national 
level prediction of PLT was better for the RAND, REGVAR and 2REG strategies. 
 

Discussion 

Currently, representativeness of a sample is often only checked after data collection has 
finished. Although such a post-hoc evaluation may provide some insight in the 
representativeness of the already selected sample, unfavourable outcomes can rarely be 
mitigated once the data collection process has ended. Therefore an evaluation of potential 
sampling strategies should ideally be performed prior to data collection. We evaluated five 
pragmatic sampling strategies for the case of estimating blood use in Dutch hospitals. The 
evaluation consists of simulating the sampling processes for five probabilistic and non-
probabilistic strategies, using prior knowledge. Such a simulation study may help in deciding 
whether a random sampling design is necessary or whether variation should be aimed for in 
order to obtain a sample that is likely to be representative of population values. This type of 
evaluation is in theory applicable to a broad array of research fields, provided that there exists a 
relation between a predictor and outcome that can be modelled. 

 RBC FFP PLT RBC FFP PLT 
RAND versus: MAXVAR   LARG   
Lower hospital level 
prediction error for RAND 

15% 29% 85% 100% 80% 96% 

Lower national level 
prediction error for RAND 

24% 4% 81% 100% 81% 88% 

REGVAR versus: MAXVAR LARG 
Lower hospital level 
prediction error for 
REGVAR 

11% 32% 88% 100% 78% 98% 

Lower national level 
prediction error for 
REGVAR 

21% 5% 80% 100% 81% 89% 

2REG versus: MAXVAR LARG 
Lower hospital level 
prediction error for 2REG 

16% 17% 66% 100% 63% 84% 

Lower national level 
prediction error for 2REG 

24% 3% 83% 100% 71% 88% 



Chapter 5. Simulating random versus non-probabilistic strategies for hospital selection 
 

79 
 

 The case study illustrates that random sampling, which is considered the gold 
standard, is not necessarily the optimal sampling strategy. In fact, of the five strategies 
considered, the optimal strategy in our case was maximum variation sampling (MAXVAR). A 
sample selected using the MAXVAR strategy led to better predictions of red blood cell unit 
(RBC) use than a random sample in 85% (hospital level) and 76% (national level) of all 
simulations. In contrast, random sampling did perform much better than sampling only the 
largest hospitals. In general, the same pattern was found for both national and hospital level 
prediction errors, with national errors being lower since under- and overestimation of 
individual hospitals cancel each other out. 

The preference for the non-probabilistic MAXVAR strategy over random sampling 
was not completely expected in the context of previous literature. In a previous study that 
simulated outcomes of a randomized design [5], non-probabilistic sampling was reported to be 
better in only 34% of simulations. Moreover, in a study on modelling species’ distribution, 
non-probabilistic strategies were reportedly inferior to probabilistic strategies [23]. These 
contrasting findings could be due to the use of different measures for evaluating 
representativeness: In the present study a sample is considered representative if it gives us an 
unbiased estimate of the outcome studied, whereas in other studies, representativeness is 
defined in terms of whether participants in the sample have similar characteristics as those in a 
random sample. Moreover, these contrasting findings could be caused by the use of different 
data and models for inference, and the use in the present study of a convenience sample 
instead of systematic purposive samples. However, in line with earlier findings [5], differences 
between the median prediction errors for MAXVAR and the random strategies were quite 
small. This implies a trade-off between the certainty of a known prediction error with 
MAXVAR and the risk of potentially getting a higher (or a lower) error with one of the 
random strategies.  

In the present study, MAXVAR seems the ‘safest’ option. However, MAXVAR was 
not consistently the preferred strategy. In accordance with findings from an ecological study 
[16], preference for either a non-probabilistic or a probabilistic strategy turned out to depend 
on which outcome was modelled. For example, in our study, MAXVAR sampling resulted in 
better predictions than two-regions sampling at national level, but not at hospital level. 
Whether prediction accuracy on hospital or on national level is given more importance 
depends on the aim and perspective of the researcher. From the perspective of the blood bank 
that produces blood products for the whole of the Netherlands, it is important to know how 
much blood is needed nationally on a yearly basis. However from the perspective of (clinical) 
studies and individual hospitals, it would be more important to have accurate predictions also 
within each hospital. In a second inconsistency in outcomes, MAXVAR outperformed random 
sampling for the outcomes RBC and plasma (FFP) use, but this was not the case for platelet 
(PLT) use. This result might be explained by differences in the underlying distributions: 
Whereas MAXVAR led to a selection of hospitals from the entire range of variation of RBC 
use, it did not for PLT use, because PLT use follows a different distribution (PLT use is 
relatively high in the largest hospitals and varies greatly between hospitals, partly due to its high 
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spilling rate and short shelf life). In case of a more or less linear relationship between predictor 
and outcome such as between number of beds and RBC use, MAXVAR will perform well (this 
result obviously also depends on the type of model used for making inferences). However for 
other relationships, such as between number of beds and PLT use, an amended MAXVAR 
strategy might be more suitable. This could for instance maximize the distances between 
subsequent hospitals (instead of sampling at the ends of the distribution). Choosing an 
appropriate variable at which to aim the maximum variation is important, since this choice can 
have substantial consequences for the estimates [16]. 

Increasing sample size from 12 to 18 hospitals did not alter the order of the 
strategies. In contrast, decreasing sample size to 6 hospitals increased preference for the 
random strategies over MAXVAR sampling. Apparently a very low sample size allows outlier 
(combinations of) hospitals to occur in the MAXVAR sample, leading to high prediction errors 
(in this case two academic hospitals which, in case these are sampled together, lead to a 
regression slope much too steep). In comparison, in a study on habitat suitability modelling 
[24], increasing or decreasing sample size did not change the order of strategies, however that 
study did not consider scenarios with a sample size as small as n=6. In that study, prediction 
accuracy increased with sample size, whereas in our study the difference in prediction accuracy 
between the n=12 and n=18 scenarios was quite small (around 1-2 absolute percentage points). 
However, if we had been able to increase sample size by a larger amount, we might also have 
found higher prediction accuracy. Presently, for estimating blood use it is not directly obvious 
that including six additional hospitals would be worth the additional effort. Instead, a more 
accurate prediction of blood use might have been obtained by extending the model with more 
detailed information (predictors), such as the presence of a cardiac center in a hospital and 
number of patients per admission diagnosis or type of surgery. 

An important assumption that underlies our evaluation is that representativeness in 
terms of a known outcome can be used as a proxy for representativeness for other outcomes 
(which will be studied after the actual data collection). The reasoning behind this assumption is 
that if a sample is at least representative for the number of blood products, it is more likely to 
be representative for related outcomes as well. These related outcomes, such as the distribution 
blood products over diagnoses and surgeries, blood use in different patient subgroups, and 
transfusion triggers, are all expected to be related to the predictors hospital type and hospital 
size. Finally, we acknowledge that other considerations such as costs, feasibility, the need to 
include specific regions for benchmarking purposes, specific patient groups, or certain 
hospitals from which historical data are already available (which enables a trend analysis), might 
play a role in selecting potential participants. These conditions can also be included in the 
simulation. Last but certainly not trivial, the success of the data selection depends on the 
cooperation of the potential participants. 
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Conclusion 

A simulation study as described above may offer guidance in choosing an appropriate sampling 
strategy and size before data collection is started. Following this guidance is straightforward 
and can be done with limited resources. Its only requirement is the a priori availability of a 
(limited) nationwide data set, which will often be available as long as the aggregation level is 
sufficiently high. In many situations, especially whenever data collection has large resource 
requirements, such a simulation will be worthwhile and should therefore be considered. 
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Appendix 5.1 (R code). R code that creates an exemplary data set and simulates the sampling 
strategies.  
Appendix 5.2 (Table). Comparison of prediction errors for the five sampling strategies, for 
n=18 (n=6 per hospital type). Prediction errors for n=18 in a similar table as for  n=12. 
Appendix 5.3 (Table). Comparison of prediction errors for the five sampling strategies, for 
n=6 (n=2 per hospital type). Prediction errors for n=6 in a similar table as for  n=12. 
All Appendices available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619525/  
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Abstract 

Background  

While the number of hospitalized patients in Dutch hospitals has increased since 1997, the 
demand for red blood cell units (RBCs) has simultaneously decreased. This implies a dramatic 
change in transfusion practice towards fewer blood transfusions on average per patient.  
 
Objectives 

In order to explain the RBC reduction, different patient groups (surgical, medical, obstetrical, 
specific age groups) were studied retrospectively in relation to RBC use. In addition, the use of 
combinations of RBCs, fresh frozen plasma and platelets during a transfusion episode was 
examined for trends over time. 
 
Methods 

Data from the PROTON database, containing information on all transfusions in 12 Dutch 
hospitals in the period 1996-2005, including corresponding patient data (age, diagnosis, 
treatment, hospitalizations) and blood unit data (type, amount, date) were analyzed. 
 
Results 

The proportion of RBCs used for surgical patients declined from 50% in 1996 to 40% in 2005, 
whereas medical use increased from 47% to 58% (the remaining 2-3% went to obstetrical 
patients). Changes were more marked in the higher age groups. Also, a trend was observed 
towards the use of only one or two RBC units during a transfusion episode rather than three or 
more. Amongst surgical patients who received blood, the use of combinations of blood units, 
as compared to RBCs only, increased from 32% to 39%. 
 
Conclusion 

The results suggest a more restrictive transfusion policy for surgical patients as well as an 
increase in medical indications for transfusion. This fits well with the current focus towards 
more cost-effective transfusion policies. 
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Introduction  

Over the past 18 years, the national Dutch Blood Supply (Sanquin Blood Supply) has been 
confronted with a steady decrease in the demand for red blood cell units (RBCs). During the 
years 1996-2005, the number of issued RBCs decreased by 20% which amounts to 
approximately 155.000 red cell units. This decrease is even more distinct in the most recent 
years (9% over 2012-2013) (Figure 6.1). At the same time, the number of hospitalized patients 
has increased since 1996 with 44% [1], implying a dramatic change in blood use in clinical 
practice. Currently, little is known about the exact reasons why and where these changes occur. 
Insight in the way in which transfusion practice changes is important to discover opportunities 
for restrictive transfusion policy on the one hand and predict future demands on the other 
hand. Therefore, in the present study, RBC use in specific patient groups (surgical, medical and 
obstetrical) was studied for trends, whether these trends could be confined to certain age 
categories, diagnoses or procedures, and whether they were consistent over time and hospital 
type (academic versus general). Furthermore we assessed whether the decrease in blood use 
was due to a reduction per operation. Finally, we identified trends in the practice of combining 
RBCs with fresh frozen plasma (FFP) or platelets (PLT) during a transfusion episode. 
 
Figure 6.1. Total number of red cell components issued in the Netherlands over the past 20 years. Time under 
consideration in this study is 1996-2005 (marked area). 
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Methods 

Data selection 

A subset of data from the PROTON database was used, including information on blood 
transfusions in Dutch hospitals in the years 1996-2005 [2]. This subset was selected from 
PROTON based on completeness of information on diagnosis, procedure and other patient 
characteristics required for our analyses, resulting in a set of 4 academic, 7 general (of which 4 
teaching) hospitals and one cancer hospital. This selected dataset encompasses information on 
187.096 transfusion recipients who received 1.544.025 blood units (1.117.652 RBCs, 276.304 
FFPs and 150.069 PLTs) during the years 1996-2005, comprising 19% (17% of RBCs, 26% of 
FFPs and 32% of PLTs) of total Dutch blood use. 
 
Classification 

The diagnoses and procedures were coded according to the International Classification of 
Diseases (ninth revision, clinical modification: ICD9-CM) and the Classification of Medical 
Specialistic Operations (CSMV) system. Based on these codes, transfusions were classified as 
either surgical, obstetrical of medical. Transfusions were classified as surgical when given 
within two weeks after surgical admission or were linked to a registered surgical procedure. 
Obstetrical patients were operationalized as having an obstetrical procedure and/or the main 
diagnosis ‘complications of pregnancy, childbirth, and the puerperium’. The medical group 
includes patients who were neither surgical nor obstetrical. For surgical as well as obstetrical 
patients, a transfusion episode was defined as the time from admission to discharge. Since 
medical patients were not hospitalized in a large number of cases and trends were studied per 
calendar year, a transfusion episode for medical patients was defined as one calendar year [3]. It 
must be noted that part of the outpatient transfusions (i.e. without a hospitalization) could not 
be linked to patient diagnosis information and could therefore not be classified. As most 
outpatient transfusions would presumably be classified as medical, in the present study the 
proportion medical transfusions is likely underestimated. A detailed description of data quality, 
comprising completeness of transfusions per hospital and both accuracy and occurrence of 
missing values for diagnoses and procedures, is included in Appendix 6.1. 
 
Statistical analysis 

The overall trend in RBC use was modelled with time as predictor for number of RBCs, in 
three different ways which each provide different information about the trend (see upper part 
of Figure 6.2). Firstly, a linear regression model was fitted with the outcome total number of 
RBCs summed over all hospitals per year (M1). M1 provides an estimate of the overall effect 
of time. Secondly, a linear regression model was fitted with the outcome RBC use per hospital 
and including the interaction between time and hospital type (academic/general) (M2). M2 
provides an estimate of the average trend per hospital. Thirdly, a multilevel model was fitted, 
with a fixed effect for time and random intercepts and slopes for each individual hospital (M3). 
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M3 accounts for a potential correlation between measurements within a hospital and estimates 
whether trends are consistent across hospitals.  

In order to reveal changes in the quantity of RBCs used for medical, surgical and 
obstetrical patients, the numbers of RBCs per year were plotted against patient age. Changes 
per year were also identified for the most prevalent main diagnoses and procedures. To 
investigate changes in the number of transfusions given per transfusion episode, the relative 
occurrence of 1, 2, 3-4, 5-8, and 9 or more RBC transfusions per episode was plotted per year. 
Since the decrease in RBC use might also be related to a change in the practice of transfusing 
combinations of RBCs, FFPs and PLTs, the relative occurrence of the combinations during a 
transfusion episode was investigated over time (differences over time tested using the Chi-
Square test of homogeneity). Moreover, the median number of RBC, FFP and PLT transfused 
when given in any combination was visualized over the years. All analyses were performed 
using R version 2.15.1 [4]. 
 
Figure 6.2. A) Overview of three ways of analyzing the trend over time of number of RBCs, resulting in three models: 
M1, M2 and M3, with an increasing level of detail and variation between hospitals taken into account in the model 
(upper part). B) The model coefficients are shown in the ‘Results’ part. **Significant at p<0.01; ***Significant at 
p<0.001. 

 
 
 

Results 

The distributions of age and main diagnosis of all hospitalized patients included in this study 
were, separately for academic and general hospitals, compared to those in the remaining Dutch 
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hospitals (n=82), (Appendix 6.2).1 The similarity of the distributions suggests that the included 
hospitals are representative for Dutch hospitals in general with respect to age and diagnosis. 
The most notable difference was the percentage 65+ patients in academic hospitals, which is 
26% for hospitals included and 23% for the remaining hospitals, whereas all other differences 
are limited to one or two percentage points. 
 
Overall trend in RBC use 

The overall trend in RBC use in the hospitals studied was downwards with a decrease of 1138 
RBCs per year (95% CI -1810; -466, Figure 6.2: M1). However, the trend over time was 
different for academic and general hospitals: the interaction coefficient was +528 for general 
hospitals, indicating an average yearly decrease of 421 for academic hospitals but an average 
increase of 108 for general hospitals (Figure 6.2: M2).2 The fact that the multilevel model 
(Figure 6.2: M3), although showing similar results as M2, is only marginally significant (as 
illustrated by the wide confidence intervals), indicates that the trend was not consistent across 
all hospitals. 
 
Surgical, medical and obstetrical trends 

In 1996, more than half of all RBC transfusions (58%) were administered to surgical patients as 
compared to 40% to medical patients. However, in 2005 this ratio had changed to 47:50% with 
medical transfusions becoming largest in number (see Figure 6.3a for absolute numbers). This 
shift is largely located in the general hospitals (surgical:medical 61%:35% in 1996 and 39%:57% 
in 2005), whereas in academic hospitals usage of both types decreased (Figures 3b and 3c). 
Obstetric transfusions represented 3% of all RBC transfusions and remained quite stable both 
in academic and general hospitals, with a small peak in 2000. 
 
Distribution over age  

For surgical RBC use, the decrease was present over almost the complete age range (except for 
the very young and very old); the absolute decrease was largest for the 65-85 year olds (Figure 
6.4a). For medical transfusions (Figure 6.4b), there was a shift over time to the right, indicating 
an increased RBC use in the higher age groups (55-90 years). For obstetrical patients, 
transfusions also drifted slightly towards older obstetrical patients (Figure 6.4c). 
 
Trends per diagnosis and procedure 

RBC use decreased over time for cardiovascular diagnoses and procedures (-13% for medical 
and -36% for surgical use), as well as for surgery on blood vessels (-36%) and surgery on the 

                                                        
1 The one cancer hospital is excluded in this comparison. 
2 The hospital type ‘cancer hospital’ is in the model but not shown in the results, since it was only one 
hospital. We repeated the analyses without the cancer hospital; this did not change the direction of the 
results. 
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Figure 6.4. Trend in age distribution of RBC recipients for A) surgical, B) medical, C) obstetrical patients in the years 

1996 (∙∙∙), 2001 (---) and 2005 (—) 

 

 
 
Figure 6.5. Trend in transfusion dose per transfusion episode for A) surgical, B) medical, C) obstetrical transfusions 

patients. Legend: 1 (■), 2 (■), 3-4 (■), 5-8 (■) and 9 (■) RBC units 
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musculoskeletal system and connective tissue (-27%). In contrast, an increase in RBC use was 
observed for diseases of blood and blood forming organs (+66%), neoplasms (+17%) and 
digestive system (+15%) (see Appendix 6.3). Neoplasms accounted for the largest medical use 
of RBCs each year, whereas the second to largest source of medical blood use changed from 
cardiovascular diseases (in 1996) to diseases of blood and blood forming organs (in 2005). For 
surgery-related RBC transfusions cardiovascular use decreased as well, whereas diseases of the 
digestive system became more prominent with an increase from 19% (in 1996) to 25% (in 
2005) of all surgical RBCs used. 
 
Dose of RBCs per transfusion episode 

The most likely number of transfusions per episode was two (in 2005 36% for surgical, 35% 
for medical and 44% for obstetrical patients; Figures 5a, b and c). For both surgical and 
obstetrical patients, the use of one unit per transfusion episode increased over time (with 4 and 
8 % points). For medical patients, over time the use of two units increased, whereas the use of 
more than three units decreased. In contrast, for obstetrical transfusion recipients the 
likelihood of receiving nine or more units increased from 2% (in 1996) to 4% (in 2005). 
 
Occurrence and quantity of combinations of transfused units 

During most transfusion episodes only RBC products were given. Over time however, 
combinations of RBC, FFP and PLT increased from 32% to 39% of all surgical 
hospitalizations (Appendix 6.4a). For medical patients, the proportion of transfusion episodes 
with only RBCs remained quite stable over time, whereas combinations of PLTs only and 
RBC&PLT increased (Appendix 6.4b). For obstetrical patients, no consistent trends were 
observed; notably in 2003 the proportion of hospitalizations with PLT only was especially high 
and the proportion of RBC only relatively low, but these both returned to lower occurrences in 
2005 (Appendix 6.4c).  

As shown in Appendix 6.5, patients who received a combination of different types of 
blood units, also received more units in total. For most combinations, the median number of 
blood units largely remained quite stable over time. For surgical patients however, the median 
number of PLTs in the combination RBC&PLT increased (Appendix 6.5a). Also for both 
surgical and medical patients, combinations of RBC&FFP&PLT had a lower median total 
number of blood products over time, primarily due to a decrease in number of RBCs 
(Appendix E6.5a and 6.5b). For obstetrical patients, the combination RBC&FFP&PLT 
showed an increase in median number of products for all types, but this trend was not 
consistent (Appendix 6.5c). 
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Discussion 

In light of the steadily decreasing demand for RBCs in the Netherlands, we examined the 
changes in blood use for different patient groups historically from 1996 to 2005. Our selection 
of hospitals included was, when distinguishing between academic and general hospitals, 
comparable to the Dutch hospitals not included. Over the time period studied, average RBC 
use per hospital decreased with approximately 2.3% per year (equivalent to 421 red cell units). 
This trend however was not consistent across hospitals: Whereas in academic hospitals a large 
absolute decrease in RBC use was found, in general hospitals an average increase was observed 
(mostly due to an increase in the teaching hospitals). This might be an artefact of the particular 
selection of hospitals in our sample caused by fusion of hospitals, changing division of tasks, 
or possibly increased registration of transfusions, but it could also reflect a true increasing 
trend in general hospitals perhaps because of their older patient population and the 
centralization of complex care. Complex care (for example oncological treatments) is 
increasingly centralized in specialized hospitals. Consequently the initial treatment starts in the 
academic hospitals, after which the remaining care is transferred to a general hospital. 
Improved skills of clinicians due to specialization for example in complex surgery likely 
resulted in a decreased surgical RBC use in academic hospitals, whereas the increasing medical 
burden for general hospitals could explain the increase in medical RBCs. Time trends also 
differed between different areas of clinical usage. For surgical patients aged 65-85 years, the 
absolute number of RBCs transfused consistently declined during the ten-year time period, 
especially for surgery on the cardiovascular system, blood vessels, and musculoskeletal system 
and connective tissue. This surgical reduction can be attributed to developments in patient 
blood management strategies including cell saving techniques and non-invasive surgical 
procedures. Furthermore, the decline was likely to be stimulated in 2004 by the introduction in 
the Netherlands of new blood transfusion guidelines using hemoglobin level as a transfusion 
trigger (‘4-5-6-flexinorm’) [5]. Moreover, the use of RBCs only during a surgical hospitalization 
decreased relative to combinations of multiple product types. This might be explained by the 
increased PLT use and indicates that patients who would previously have received one RBC, 
are instead not transfused at all. In contrast, medical use of RBCs has been increasing, 
reflecting the ageing of the population. Since the year 2004, medical use accounts for the 
majority of RBC transfusions, mainly due to increased use for neoplasms, diseases on blood 
and blood forming organs, and the digestive system (of which the latter two also became more 
prominent over time relative to other diagnoses). Not surprisingly, the proportion of RBC 
used for obstetrical patients remained quite stable; postpartum bleedings are less suitable for 
patient management strategies as they are non-elective by nature. The slight shift towards 
higher age in obstetrics might be explained by the fact that the average age of the mother at 
delivery has increased from 30.32 years in 1996 to 31.06 in 2005 [6].  
 A common trend in the surgical, medical and obstetrical groups was that an 
increasing proportion of transfusion recipients received a smaller number of RBCs. We could 
not calculate the proportion of transfused patients (i.e., the ‘transfusion rate’) as only 
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information on transfusion recipients was available. However, we know that nationally the 
number RBCs per inhabitant is continuously decreasing: from 38 per 1,000 inhabitants in 2001, 
to 35 in 2005, and 27 in 2013 [7,8]. Moreover, the total number of hospitalized patients in the 
Netherlands increased, which, by increasing the denominator, leads to a lower transfusion rate. 
Accordingly, for most combinations, the median number of blood units per episode was stable 
or decreased over time. The transfusion rate would be useful to investigate in further studies, 
as it can also be used as a quality metric that is fed back to physicians, leading to less blood 
being transfused [9]. Moreover, collecting (aggregated) information on non-transfused patients 
adds to a more complete view of transfusion determinants. 
 Internationally, similar patterns in blood use have been reported: studies in the North 
of England, Northern Ireland and South Australia all identified medical patients as the main 
users of RBCs. Even though the exact numbers might not be completely comparable (because 
of differences between countries in case-mix of patients as well as differences in coding 
systems and classification of patients), common trends are observable. In roughly the same 
time period as the present study (1999-2009), the total RBC use in the North of England also 
dropped by 20%, due to a reduction in blood use per procedure [10]. In the same direction as 
the Dutch trends, North of England’s RBC use in the years 2000-2009 changed from 41% 
(surgical):52%(medical) to 29%(surgical):64%(medical) (obstetrics and gynecology accounted 
for 6% of all RBC transfusions in both 2000 and 2009) [11,10]. These changes were observed 
only in patients aged between 50-80 years, while in the Netherlands also in the younger age 
groups a decrease in surgical and medical use was observed. In South Australia, medical 
transfusions in 2006 comprised the largest use of RBCs with 48% (Netherlands: 50% in 2005), 
with 46% to surgical patients and, 3.4% of RBC use was obstetrical, almost equal to the 
Netherlands [12]. Accordingly, South Australia found high RBC use for medical diagnoses 
such as hematology, medical oncology and gastroenterology. In Northern Ireland even 71% of 
the transfused were medical patients in 2010, leading to the conclusion that “with a likely 
plateau of efficiency having been reached in the surgical use of red cells, understanding the 
'medical use' of red cells is increasingly imperative” [13]. In that study, surgical patients most 
likely received a single unit per transfusion episode (for comparison: in our present study this 
was two units), whereas medical patients, especially if being treated for cancer, were more likely 
to receive two-units, as in the present study. In Germany, the surgical (in this case also 
including intensive care and trauma patients) and medical use in a typical tertiary care hospital 
in 2008 was 58% (surgical) and 42% (medical), in line with the ratio in Dutch academic 
hospitals. In contrast to the Netherlands, RBC use increased between 2000 and 2009 by 10% 
[14]. Finland used 55% of RBCs for surgical patients (including obstetrical surgery) and 45% 
for medical patients in 2006 [15]. Differences in age distributions of patient populations could 
explain part of the differences between countries in RBC use, as both the surgical:medical ratio 
as well as the number of units transfused per episode is higher in the older age groups 
10,140,15,16]. In addition, transfusion habits and hospital cultures lead to differences in use 
within both hospitals and countries (for example already 70% of the total variation in RBC use 
could be explained by the hospital effect in cardiac procedures [17]). Still these international 



Chapter 6. Historical time trends in red cell component usage in the Netherlands 
 

96 
 

numbers, in conjunction with innovations in the areas of surgery, medication and alternative 
products, suggest that a medical:surgical ratio of 70:30 may be expected in the future. Insight in 
these trends and their impact on the demand for RBCs to be expected is important, as a 
reduced need for RBCs might negatively affect the availability and cost-effectiveness of blood 
products when the need for blood does not match investments of the blood bank in personnel 
and donors. 
 
Conclusion 

Over the period 1996-2005, RBC use in the Netherlands decreased, especially in the academic 
centers and for surgical patients. Transfusion recipients tended to receive fewer RBC units 
during a transfusion episode. For surgical recipients, transfusing combinations of blood 
products instead of only RBCs became more common over time. Similar to other countries, 
the data suggest a consistent trend towards conservative blood use for surgical patients, which 
is in line with the current focus on a restrictive, cost-effective transfusion policy. New data-
warehouse initiatives should consider collecting detailed clinical information about transfusion 
recipients that could clarify blood use, such as hemoglobin status, comorbidities and use of 
medication, and, in order to calculate the transfusion rate, collect aggregated information on 
non-transfused patients.  
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Appendix 6.4 (Figure). Use of combinations per transfusion episode in a) surgical, b) medical, 
c) obstetrical patients by year. 
Appendix 6.5 (Figure). Median number of blood products per transfusion episode, given a 
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Abstract 

Background  

RhesusD (RhD)-negative women pregnant with a RhD-positive child receive prophylactic 
injections to prevent hemolytic disease of the newborn. Because of the success of the 
prophylaxis, the number of naturally immunized women has decreased, thereby also decreasing 
the number of potential donors who provide the plasma from which the prophylaxis is made. 
As the current donor pool is ageing, the availability of the prophylaxis is threatened.  
 
Objectives  

Objectives are to investigate whether the anti-D population and the changes therein can be 
described by a relatively simple model, in order to determine the impact of ageing of the anti-D 
donors on the decline of the population and how many new donors should be recruited to 
meet future supply demand. 
 
Methods 

Data on Dutch anti-D donors in 1994-2013 were used to simulate the donor population size 
and age composition for various donor recruitment scenarios.  
 
Results 

With a continuous influx of 27 new donors per year and a donor stopping rate of 10% per 
year, the population size will stabilize at 195 donors, with 2.3% of donors stopping annually 
due to reaching the donor age limit. A formula is derived to estimate which donor recruitment 
and retention efforts are required to maintain a pre-specified donor pool. 
 
Conclusion 

A relatively simple model can already describe and predict the size of the anti-D donor 
population and the impact of ageing accurately.  
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Background 

In The Netherlands pregnant women undergo rhesus-D (Rh-D) typing around week 12 of 
pregnancy, and the RhD-negative women are tested again at week 27 to type the foetus [1]. 
Each year approximately 27,000 women are found RhD negative, of which 60% are carrying 
an RhD-positive child [2]. To these women, anti-D injections are administered both at week 30 
and within 48 hours after delivery to prevent the mother from producing antibodies against the 
RhD-antigen. These injections prevent hemolytic disease of the newborn when the mother 
becomes pregnant again with a RhD-positive child [3]. Before the introduction of the anti-D 
immunoprophylaxis, this disease was a major cause of perinatal death. Since 1969, women in 
the Netherlands (in some countries earlier) have been receiving the prophylaxis directly after 
delivery and since 1998 also antenatally in the 30th week of pregnancy [1]. This reduces the 
residual risk of immunization to 0,31% [4] (1,5 to 0,2% according to [5]).  

In order to fulfill the need for the anti-D prophylaxis, several strategies (or 
combinations of strategies) can be considered. In the Netherlands the prophylactic anti-D 
immunoglobulins are partly imported and partly obtained from the plasma of immunized 
donors. Whether to be self-sufficient is a trade-off for policy makers between the feasibility of 
recruiting enough donors or immunizing the existing donor base, the desirability and cost of 
importing, and the financial resources available. In this paper we focus on securing an anti-D 
donor population. Sustaining an anti-D donor base is not straightforward as it requires 
recruitment of donors who are RhD negative, aged between 45 and 70 years, and immunized 
(i.e. have antibodies against the RhD antigen), either naturally by giving birth to a RhD positive 
child or intentionally by administering a small amount of D antigen. Apart from these practical 
constraints, the recruitment of anti-D donors is challenging because of the high donation 
frequency required and the burden of immunization. New donors are generally identified 
through targeted recruitment efforts. With a few exceptions, all current female anti-D donors 
are naturally immunized. Since the anti-D prophylaxis is successful in preventing the forming 
of antibodies, it decreases the number of naturally immunized women that would be eligible to 
be an anti-D donor. Women who got pregnant before the introduction of the prophylaxis in 
1969 (when average age of pregnancy was 24 years [6]) will mostly have reached the age of 70 
years between 2010 and 2020, and therefore drop out of the donor pool because of the age 
limit of blood donor eligibility (that is, 70 years in the Netherlands). Another reduction in the 
number of potential future donors is a result of the introduction of the antenatal prophylaxis in 
1998: this further reduced risk of immunization, thereby halving the number of eligible donors 
that are immunized naturally (as the average age of first pregnancy was 29 years in 1998, 
women who were pregnant in 1998 reach the age of 45 as from 2015 [6]). Therefore, it is 
feared that the ageing of the current donor population might jeopardize the continuation of 
the anti-D program.  

In the present study, historical donor records were analyzed in terms of donor age, 
influx of new donors and retention rate. Based on the results, we performed a simulation study 
in which the size and age distribution of the donor population is modelled. The aim was to 
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develop a relatively simple model to (1) examine the effect of ageing on the size of the anti-D 
donor population, and (2) determine how many new donors need to be recruited to stabilize 
the anti-D donor population size at a pre-specified level in order to meet supply demands. 
 

Methods 

Data 

Administrative data on anti-D donors were provided by Sanquin the national blood bank for 
the time period between September 1994 and December 2013. This cohort includes data on 
demographic characteristics of the donors, boosts (injections of RhD positive cells to stimulate 
the production of RhD antibodies) and donations. Donor exclusion criteria for this study were 
age below 45 years as this is the minimum age for hyperimmunization [7], and low titer without 
hyperimmunization (these donors contribute only a small portion of all donations).  
 
Donor classification 

For the analysis, we classified donors as either repeat donor or potential donor.  Repeat donors 
were defined as donors who either had more than four donations in total, or an average of 
more than 2 donations per year (in the years that they donated). Potential donors had both a 
low total number of donations (<=4) and a low yearly donation rate (<=2). In this study, the 
donor population was defined as all repeat donors (excluding potential donors) as they provide 
the vast majority of donations (i.e. 99%). New donors were defined as donors who did not 
donate between September 1994 (starting date of the cohort) and January 1996, in order to 
increase the likelihood that new donors were included from the beginning of their donor 
career and limit the effects of left-censoring. Only donors with their first registered donation in 
1996 or later were considered as new donors and included in the analysis of the drop-out rate. 
In the final simulation of the Dutch anti-D donor population size, also repeat donors who 
donated in 1994 or 1995 (n=216), were included in the population at the start of the 
simulation.  
 
Drop-out rates 

It was checked whether age has an effect on the probability of becoming a potential donor (as 
opposed to a repeat donor) by fitting a linear regression model with age at first donation as a 
predictor of the proportion potential donors. The yearly stopping rate of repeat donors was 
estimated using Cox proportional hazard regression. Donor age was added to the model as a 
predictor to test whether the stopping rate was dependent of age. Taking into consideration 
the fact that that donors reaching the age limit of 70 years are forced to stop donating, donors 
who stop donating at an age over 69 years are considered to be censored. This age constraint is 
later incorporated in the model but does not affect the estimated drop-out rate. The model 
therefore explicitly differentiates between donors who are forced to stop because of age and 
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donors who drop-out for an external reason. Excluded from the analyses were donors who 
only donated in the last observation year 2013. The cumulative hazard and observation times 
resulting from the Cox PH model were used to fit a linear regression model to estimate the 
annual hazard rate. 
 
Simulation 

Combining these parameter values, a Monte Carlo simulation was performed to predict the 
size and age distribution of the donor population from 1996 onwards for the subsequent 50 
years, as a function of the annual donor drop-out rate and the influx of newly recruited donors. 
The model contained the following parameters: the number of repeat donors at the beginning 
of a year, the number and age distribution of new repeat donors for each year, and the 
stopping rate for repeat donors. The outcome of the model was compared to the observed 
population values in order to verify the accuracy of the prediction. For the prediction of the 
future donor population size, assumptions concerning the new donor rate and its associated 
age distribution were required. Different scenarios with a varying number of new donors were 
simulated: In the first scenario it was assumed that 27 new donors are recruited each year 
(which was the average number of new donors per year over the study period). In the second 
scenario 15 new donors per year were assumed, which was the mean number of new donors 
recruited in the last 5 years. Finally, in the third scenario a decreasing number of new donors 
per year was assumed, starting with n=15 and declining by 5% per year (as was actually 
observed in recent years). For each scenario, it was predicted how many donors stop because 
of reaching the maximum age of 70 years, so called ‘old age stoppers’. The simulation was 
repeated 1,000 times, which resulted in convergence of the population size and was therefore 
considered a sufficient number. The 95% confidence intervals around the estimates were 
computed as the 2.5% and 97.5% percentiles from all simulations. All analyses, including 
simulations, were performed using the statistical software program R, Version 3.2.0 [8]. 
 
Theoretical approximation 

In addition, a formula was derived to theoretically approximate the stable population size. The 
formula was applied for several scenarios, varying the number of new donors (20, 40, 60 or 80 
per year) and repeat donor stopping rates (5%, 10%, 15% or 20%). The reason for starting 
with the scenario of 20 new donors per year is that a lower number (as in most recent years) 
would not be enough for securing a stable donor base. The highest recruitment scenario of 80 
new donors per year could be realistic with a recruitment program in place, as illustrated by the 
higher number of newly recruited donors in the past. It was assumed that the age distribution 
of new donors would be constant and similar to that of donors in the past. When both the 
simulation and the formula correctly estimate the size of the donor population their predicted 
stable population size should agree. 
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Results 

Donor characteristics 

In the selected time period from January 1996 up to December 2013, 823 donors were active 
resulting in 28,028 donations registered (Table 7.1). Fifty-seven (0.2%) donations were 
excluded from analyses due to missing donor identification numbers. Repeat donors comprise 
80.4% of the donor population, accounting for 99.0% of all donations. Over 90% of all donors 
are female (90.6% of repeat donors and 96.0% of potential donors). The mean age at first 
donation was 52.8 for repeat donors and 53.4 for potential donors. Figure 7.1(a) clearly shows 
the shift in age of the donor population over time towards higher age. Repeat donors had a 
median of 27 donations in total per donor, with a mean length of donor career of 6.4 years. 
Potential donors delivered a median of one donation, with a mean length of donor career of 
0.3 years.  
 
Table 7.1. Anti-Rh(D) donor characteristics during 1996-2013 

 Repeat donors Potential donors 
N (% of total number of active 
donors) 

662 (80.4%) 161 (19.6%3) 

Total number of donations (% 
of all donations) 

27,810 (99.0%) 272 (1.0%) 

Women (%) 600 (90.6%) 161 (96.0%) 
Mean (SD) and median (IQR) 
age at first registered donation  

52.8 (6.5), 52.0 (46.4-58.0) 53.4 (7.8), 52.4 (46.9-58.7) 

Mean duration donor career in 
years as captured in our 
database in years (SD) 

6.4 (5.1) 0.3 (0.7) 

Mean (SD)  and median (IQR) 
number of donations per donor 
per year 

6.0 (2.6); 27 (11-63) 
 

1 (1-2); 1.6 (0.8)  

 
Drop-out rates 

The probability for new donors to become a potential donor instead of a repeat donor was 
estimated at 31%, with no significant effect of age of -0.08 (p=0.8). This means that 
recruitment efforts should aim at a number of new donors per year that is the desired number 
of donors multiplied by a factor of 1.45 (1/(1-.31)), for a required number of repeat donors to 
                                                        
3Please note that the 19.6% of potential donors in Table 7.1 is unequal to the 31% mentioned under 
Drop-out rates. This is because Table 7.1 additionally includes repeat donors who could not be identified 
as new donors (their first registered donation was at the start of the study period), whereas the 31% is out 
of all new donors. 
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be included. For repeat donors, a constant drop-out rate of 10% per year was derived from the 
hazard rate. There was a clear tendency, but no statistically significant effect of age on drop-out 
risk (the hazard rate increased by factor 1.015 for a one-year increase in age; CI 1.00-1.03; 
p=0.1). 
 
Figure 7.1. A) Observed repeat donor age distribution; B) Simulated donor age distribution per calendar year. In this 
box-percentile plot the proportion of individuals with a higher/lower age than indicated on the Y-axis is represented 
by the width of the bar relative to the median (which is the greatest width for each bar). For ages above the median the 
width of the bar represents the proportion of individuals with a higher age than indicated on the Y-axis, for ages below 
the median the width of the bar represents the proportion of individuals with a lower age than indicated on the Y-axis. 
The two other horizontal lines above and below the median line mark the 25th percentiles. 

 
 
Simulation results 

The simulation seems to predict donor age distribution (Figure 7.1b) and population size 
(Figure 7.2) quite accurately, with the observed population size mostly falling within the 95% 
confidence interval. In scenario 1 (annual number of new donors = 27) a stabilized population 
would consist of 195 donors (95% CI 168-222). Whereas the proportion of donors that 
stopped because of reaching age 70 was 0% in 2000 and initially increased, this proportion of 
old age stoppers is expected to converge to 2.3% of all donors in 2020 (Figure 7.3). In case of 
a steady number of new donors per year, the predicted future population size will stabilize 
(Figure 7.2, scenario 1 and 2), but as long as the number of new donors decreases each year, 
the size of the donor population will continue to decline as well.  
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Figure 7.2. Predicted (−) and observed (○) donor population size for different future donor recruitment scenarios: 
n=27 (─), n=15 (---) and n=15 decreasing with 5% each year (·-·-) (assuming a 10% stopping rate) 

 
Theoretical approximation 

An approximation of the donor population size, provided that there is a stable donor influx, is 
given by Formula 7.1. The input variables are the same as for the simulation: age distribution 
of new repeat donors, stopping rate and number of new donors. This formula results in similar 
estimates as compared to the simulation performed above, for example: In scenario 1 (n=27 
and p=10%), the simulated long-term population size was 195 (95% CI 168-222), according to  
the formula it is 207; similarly the proportion of old age stoppers was 2.3% (95% CI 0.5%-
4.5%) (simulation) and 2.8% (Formula 7.1).  

Generally, as can be inferred from the first part of the formula (N*= nD), when the 
number of new donors increases by a factor of 2, the population size also increases by a factor 
of 2. When the drop-out rate increases, the estimated population size decreases, but not 
proportionally: as the drop-out rate decreases, the increase in population size becomes 
relatively smaller. This is also evident from Table 7.2, which shows the effect of varying the 
new donor rate as well as the stopping rate of repeat donors (which in the above was fixed at 
10%) on the estimated long-term donor population size. 
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Table 7.2. Theoretical approximation of long-term population size in the case of a stable donor recruitment scenario  

Drop-out rate 
per year 

New donors per year 

20 40 60 80 

5% 224 449 673 897 
10% 158 315 473 631 
20% 94 187 281 374 
 
 
Formula 7.1. Theoretical approximation of donor population size N* in the case of a stable donor recruitment 
scenario 

          

where N* is the long term population size, n is the stable number of new repeat donors per 
year, and D is the mean number of years that a new donor will be actively donating. This 
donation time D will depend on the donor stopping rate (p), but also on the age of new 
donors, since their donating is restricted to age < 70. Here n(s) is the number of new donors 
by their age at first donation s. 
 

            
    

 
                   

 
The older the newly starting donors, and the lower the stopping rate p, the larger the number 
of donors who stop due to reaching the age of 70. 
Proportion stoppers each year of the total population due to reaching age 70: 
 

                     
    

   

 
 

Discussion 

With only three parameters, our model could quite accurately describe the course of the anti-D 
donor population from 1996 to 2013. Moreover, the model allows prediction of the future 
donor population size for various donor recruitment scenarios and drop-out rates. In general 
the repeat donor population (which is 69% of all new donors) is a steady group; the observed 
age-independent stopping rate of 10% means that, 10 years after donor inclusion, 
approximately 35% (i.e., 0.910) are still in the population. However, the fear of being unable to 
sustain a sufficiently large donor population, due to ageing of donors is not unfounded as the 
number of naturally immunized women decreased to an estimated 50 naturally immunized 
women per year (27,000*0.6*0.0031=50,2 women for whom anti-D injections are not  
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Figure 7.3. Percentage old age stoppers of all donors per year assuming a 10% stopping rate and annual number of 
new donors=27 including 95% confidence interval (---) 
 

 

 
effective). Although some external factors such as immigration might increase the number of 
naturally immunized women, the effect on the total supply of plasma will be negligible. In the 
Netherlands, however, it is reassuring that for the current donor population, the proportion of 
donors stopping due to old age has already reached its peak in 2014. It is expected that from 
there on the proportion old age stoppers will decrease, given that a sufficient number of new 
donors will be recruited yearly. More specifically, simulations up to the year 2050 predict that, 
given the current dropout rate and donor population, from the year 2020 onward the 
proportion of old age stoppers will comprise approximately 2.7% of the total donor 
population. This is however provided a similar age distribution of new donors as in the past 
and a 10% drop-out rate. Yet in the future, the increasing need for boosting might lead to 
higher drop-out rates. It is apparent from our results that, for moderately high stopping rates, 
ageing would be less of a problem because donors drop out before reaching the maximum 
donor age. In contrast, a lower dropout rate would demand relatively higher recruitment 
efforts to maintain a stable donor population, as the proportion of old age stoppers would 
become higher. Insight into the reasons for donors to stop or to decline boosting will be 
helpful to sharpen assumptions on retention rates. Currently there is a lack of information on 
profiles of successful repeat anti-D donors.  
 How many donors are actually needed in the Netherlands is a decision for the policy 
makers. In order to meet the national demand for the prophylaxis, approximately 32,000 units 
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are needed corresponding to 3200 donations per year (one donation is sufficient for ten 
products) [9]. Assuming an average of six donations per (repeat) donor per year, 533 donors 
would be required to provide all units. During the study period, the need for the prophylaxis 
has decreased as a result of restricted targeting, first in 2008 by 40% when prophylaxis 
administration was restricted to mothers with children only, and in 2011 by 25% with the 
introduction of RhD determination of the foetus at week 27 [9]. It must be noted that this 
paper focusses on only one strategy for increasing the anti-D yield. Besides increasing the 
number of donors, other aspects of donation policy might be changed: for example in the last 
years, the maximum donation frequency has increased to once a week, a higher plasma volume 
is retrieved per donation, and restrictive exclusion criteria might be loosened. 

The data and formula provided in this paper might be useful for policy makers to 
estimate the effect of recruitment efforts on the size of the donor population. For example, 
when 27 new donors are recruited per year, the simulated population size is 216 (95% CI 198-
235). The uncertainty surrounding this estimate is attributable to the random drop-out of 
donors. If, due to chance, the drop-out is proportionally higher in younger donors, the 
estimated population size will turn out lower; vice versa if more of the elder donors drop-out, 
the population size will be higher. The simulation results agree with the formula, which 
estimated a stable population size of 213 donors. Implementation of the formulas described in 
this paper is available in R (Appendix 7.1). The user can specify the expected stopping rate, the 
expected number of new repeat donors recruited per year and their age distribution; the result 
is an estimate of the long-term population size and the proportion of donors that stop due to 
reaching the maximum donor age. The use of this formula is not restricted to anti-D donors. 
In principle the formula can be applied to all other donor types as well. As the problem of 
ageing has also emerged for whole blood donors in other countries [10,11], this type of 
calculation might be more widely applicable.  

The model could be further refined by making a finer distinction between different 
types of donors and donation patterns [12], and predicting the number of donations instead of 
the number of donors. Still, the total number of donations can be estimated by multiplying the 
number of donors by the average number of donations per donor. Hence, with a relatively 
simple model it is possible to predict the composition of the Dutch anti-D donor population. 
This allows informing management on the efforts required in terms of donor recruitment and 
donor retention to maintain a sufficiently large donor population.  
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Appendix 7.1 (R code of Formulas). Theoretical approximation of donor population size and 
the proportion of donors stopping due to reaching age 70. Available online: 
http://onlinelibrary.wiley.com/store/10.1111/vox.12400/asset/supinfo/vox12400-sup-0001-
SupInfo.txt?v=1&s=e2db583a606ab7877b5fa24bd30040d5a3debeac  
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Many questions still exist regarding blood transfusion, most of which can be gathered under 
the following themes: ‘what is the optimal composition of the blood donor pool (age, gender, 
blood groups)?’; ‘what are optimal characteristics of blood products (type, storage duration, 
processing)?’ and ‘what is the optimal transfusion regime for a patient (which products, how 
many and when exactly)?’.  By ‘optimal’ use of blood we predominantly mean ‘leading to 
favorable patient outcomes’, although other aspects such as feasibility and cost-effectiveness 
may also play a role when evaluating blood use. More long-term strategic questions include 
‘how many blood products are needed in the future to meet hospital demand?’ and related, 
‘how many donors are needed in the future?’. In order to answer the questions above, data on 
the complete transfusion chain from donor to patient are required. Gathering these data, which 
have to be derived and linked from multiple sources, is not trivial and a challenge in itself. 
Within this thesis, we describe the development and validation of the Dutch Transfusion Data 
warehouse (DTD) and we analyzed sets of donor and patient data to answer some specific 
research questions.  

In this Discussion we will reflect on the value of these data and transfusion data in 
general, the interpretation of indications for transfusion, and the most important lessons 
learned with respect to acquiring a valid data warehouse. We conclude with recommendations 
for future research and use of the DTD. 
 

Value of transfusion data 

Evidently, ‘data’ are not equivalent to ‘useful information’. Therefore, one of our goals was to 
increase the usability of routinely registered transfusion data. The idea is that by using the 
DTD (Chapter 2), many processes and risks in the transfusion chain can be quantified, which 
may ultimately contribute to the development of clinical and operational guidelines. Even 
though convincing statistics alone might not be enough to change transfusion practice of 
doctors, valid information should form the foundation for the decision to transfuse a patient 
[1,2]. The prediction models as described in this thesis (Chapters 6 and 7), although based on 
relatively old data, have the potential to support managerial decision making. Currently, the 
production of blood products is a direct response to the request from hospitals. Similarly, the 
frequency with which donors are called to donate and the recruitment of new donors are based 
on the current demand. When the future demand for blood products is known as well, policies 
can timely be adjusted accordingly. For example, it might be investigated whether costly 
recruitment campaigns are necessary, or whether other solutions are more cost-effective, such 
as temporarily increasing donation frequency or donor calling efforts. This may solve shortages 
on the short term while also anticipating an expected future decrease in demand. This 
illustrates how analyses of time trends can be valuable, especially when performed in 
combination with cost-benefit analyses. The same principle holds for hospitals: feedback in 
terms of between- and within-hospital benchmark information on blood use, transfusion 
triggers and patient outcomes, should inform best clinical practice. 
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Clinical indications 

One way to increase the usability of the data and the uniformity of their use, is to expand the 
DTD with an extra layer of information. If we are able to determine the indication for 
transfusion with an acceptable level of accuracy, for example using an automated selection 
algorithm (Chapter 4), this information can be incorporated in the data warehouse as an extra 
variable. First however, the algorithm should be externally validated and its performance in 
academic, teaching and peripheral hospitals should be verified. If necessary the algorithm could 
be adapted to improve the predictions. Ultimately the predicted indications are defined –and 
limited– by the way in which clinical indications are represented in hospital systems. 
 
Representation versus reality  

Clinical indications are forced into the format of the coding systems used by hospitals and this 
affects our way of thinking about and therefore analyzing them. The algorithm we developed 
selects the most likely indication out of all data available and hence is bound by the diagnosis 
and procedure codes in use. The algorithm selects either a procedure or a diagnosis code as the 
transfusion indication. In reality, this representation might be too simplistic and it may be 
worthwhile to investigate whether a more complex representation might better capture the 
right indication. Also, more variables could be included in the algorithm such as patient age, 
gender, previous treatments, and the number and type of blood products received. The added 
value of a more complex decision structure of the algorithm could be explored using machine 
learning techniques. As this would introduce a higher risk of overfitting, external validation is 
especially important to ensure generalizability and identify patient characteristics that affect the 
performance of the algorithm. Moreover, a relatively large sample would be needed that 
includes cases with a known ‘true’ indication; by either creating a gold standard in other 
hospital datasets or, if available, using other databases with a known gold standard to validate 
the indication selection.  
 
Solutions at the source 

A solution at an earlier stage would be to adapt the way clinical information is registered at the 
source. A possibility is to implement a standardized form that pops up whenever a transfusion 
is requested at the hospital, where doctors have to register the indication for the transfusion 
whenever ordering blood products. A barrier for implementing such a system is that 
registration takes extra time. Therefore the system must be as simple and intuitive as possible. 
A transfusion indication form might follow the following structure: first the doctor chooses 
whether the transfusion is necessitated by blood loss, and then whether it is “because of 
surgery”, “because of illness” or “because of treatment of an illness”. In addition, if a low 
hemoglobin value was the direct transfusion trigger, this should be indicated. To determine 
exactly which information is needed and in what format, close communication between 
researchers and clinicians should be leading.   
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Whether a pop-up system like this is more (cost-)effective than an algorithm that 
predicts the indication using routinely registered data is a subject for future research, as this will 
also depend on the potential to derive sufficiently accurate predictions. A balance must be 
found between the benefits of registering more and more precise data and the efforts required 
to turn this information into value. 

Would such a registration be implemented in practice, this provides us with new 
information and potential uses. First, tracking and evaluating appropriate transfusion triggers is 
facilitated [3]. Second, it might even be possible to develop a reverse model: if we know what 
the transfusion indication was, we might be able to develop a model that uses electronic 
patient records to predict whether and when someone needs a transfusion to support clinical 
transfusion decision making. This would require the predictive information to be registered 
and processed before the transfusion is actually needed. 
 

A valid data warehouse: Opportunities and pitfalls 

At present the data included in the Dutch Transfusion Data warehouse seem sufficiently valid, 
also when compared to validity outcomes of similar international databases [5,6,7] (Chapter 3). 
This provides ‘proof of principle’ that developing a donor-recipient data warehouse is feasible 
and will be valuable for answering future research questions. We learned however that a 
thorough validation of the data is necessary and that this should take into account every step in 
data collection and processing. Referring back to the steps of data registration, extraction and 
interpretation, we will discuss several pitfalls and opportunities. 
 
Registration 

As the DTD is built from routinely registered data that originate from multiple sources, 
differences in data recording exist both between and within data providers, and the data 
registered might be inappropriate or insensitive [4]. We assessed and improved data quality 
aspects by examining –among other things– completeness, plausibility, uniformity, level of 
detail of information and time patterns (Chapter 3). Remaining issues include the unreliable 
registration of the time of transfusion and the time of measurement of blood values; such 
variables are more likely to reference the time that the blood product or measurement was 
requested rather than the time that it was administered. Recent developments such as the use 
of a ‘cybertrack’ system might make recordings more accurate in the long run. As the data are 
primarily intended for reimbursement of medical expenses, bias might occur due to selective 
registration. Examples we encountered include registration of only the most expensive 
diagnosis or procedure when there are multiple, procedures that are registered in duplicate 
under different specialisms, and procedures such as bypass surgery that in some cases are 
registered as a diagnosis and in other cases as a procedure. The practice of selective registration 
may lead to biased results, however if bias is similar in all hospitals the data can still be used for 
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benchmarking purposes. This underlines the importance of similar extraction and processing 
of the data in each hospital. 
 
Extraction 

The extraction and selection of data involves deciding which exact variables are collected, the 
time ranges that are included in the extraction and which filters are applied to the data. For 
example, when we want to be able to attribute a transfusion to a procedure, should we extract 
only procedures occurring within the same hospitalization as the transfusion, or all procedures 
within a week before or after transfusion (or for example 1 or 60 days instead)? This selection 
choice can lead –especially when dates are registered incorrectly– to procedures being missed 
in the data extraction. How many procedures are missed should ideally be checked for a 
sample of cases for which a wider selection is available, to determine the effect of different cut-
off points. To overcome missing data due to incorrect registration of dates, the safest solution 
is to extract data with a one-day margin. In addition, subgroups of recipients who receive 
regular blood transfusions and treatment within a broad time interval such as hematological 
patients, should perhaps be extracted using customized selection methods.  

In the final part of data extraction, patient hospital identification numbers are 
encrypted to ensure the patients’ privacy. This makes it impossible to follow a unique patient 
who is transferred to another hospital. As this concerns a substantial proportion of patients, a 
more uniform way to encrypt privacy-sensitive data that enables linkage across centers might 
be worthwhile. Also, in some cases the data are –in light of certain research questions– rather 
outdated at the moment they are extracted. When we are able to further automate data 
extraction with a safe connection for remote transfer, this will facilitate timely use of the data. 
(Semi-)automated extraction will expectedly also facilitate the inclusion of more and more 
diverse centers, which is desirable for maximizing the representativeness of the data and for 
studying rare patient outcomes such as transfusion reactions. Currently successful extraction 
and participation is heavily dependent on the willingness of individual employees in the 
hospitals. Further standardization of extraction and participation by hospitals would be 
stimulated if participation in the DTD would be acknowledged as a quality indicator. 
Participation in the DTD is further promoted by the ongoing DTD consortium initiative, 
intended to initiate transfusion related research within the Dutch blood transfusion 
community.  
 
Interpretation 

For a correct interpretation of transfusion data, knowledge on the underlying processes is 
required such as how blood products are made and how this is registered. To identify a unique 
blood product and to link it from the blood bank to the hospital, information is needed on (the 
coding of) the type of product, the year it was produced, and whether it is split or not. 
Similarly, to interpret hospital data, multidisciplinary collaboration with medical doctors and 
clinical chemists is needed to interpret diagnosis codes and laboratory measurements and the 



Chapter 8. General discussion 
 

120 
 

manner in which these data are registered in each hospital. Factors that might confound the 
interpretation of differences between centers are the presence of case-mix and other contextual 
differences, and chance variability [4]. Chance variability may become important if small 
subgroups of patients are considered, and will play a lesser role when sample size increases, 
which for the DTD will happen over time as more hospitals and years are included. Case-mix 
can be taken into account by correcting for –but first identifying– specific patient subgroups, 
for example using information on the transfusion indication (Chapter 4). This requires more 
complex clinical interpretation of the data (see paragraph ‘Clinical indications’) and appropriate 
analysis techniques such as multilevel models to account for differences between hospitals.  
 
Scope and data validity 

There is a balance between the wish for a wide applicability of the data warehouse and the 
need for a specific formulation of study goals. On the one hand we want the DTD to be useful 
for anyone who will potentially use it, demanding a broad dataset with an extensive range of 
variables and applications. On the other hand the danger in constructing a ‘generic database’ is 
that the targets are too wide, which complicates making decisions regarding the demarcation of 
variables. No straightforward solution exists, but to facilitate future expansions of the DTD 
and to increase its usability, it is imperative to systematically document the selection choices 
made and the outcomes of data validity checks. This is particularly important for a multi-
purpose data warehouse, as every research question might require a slightly different selection. 
Finally, the dynamic nature of a longitudinal, continuous data warehouse implicates that the 
validity of the data may change whenever there is a data update or extension. Therefore 
validation should also be a continuous process. 
 

Recommendations 

Based on our experience acquired during the work performed for this thesis, we recommend 
several future research topics and questions that can be employed using the DTD. In addition, 
to facilitate the answering of these questions, various potential extensions of the DTD are 
suggested to further integrate data registration, extraction and interpretation. 
 
Future research topics 

x Study transfusion triggers and targets –including the evaluation of appropriate 
transfusion triggers and the effect of a restrictive versus a liberal transfusion policy– 
using all clinical information from laboratory and administrative databases, and 
thereby taking advantage of the presence of linked data from different registries 
within hospitals. 
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x Study rare patient outcomes such as adverse transfusion reactions in clinical subgroup 
analyses, and thereby taking advantage of the large number of observations in the 
DTD required for this kind of assessment. 

x Study associations between donor, production or product characteristics (such as 
donor gender and product storage duration) and patient outcomes, and thereby 
taking advantage of the link between donor and patient data that is present in the 
DTD. 

x Externally validate models such as clinical indication selection models and prediction 
models in different centers or years, and thereby taking advantage of the availability 
of longitudinal data from multiple hospitals. 

x Identify recipient subgroups for which data-driven research is needed, in particular 
within the increasingly prominent group of recipients with medical indications; 
collaborate with clinicians and policy makers. 

 
Extending the DTD 

Develop a system for continuously monitoring data validity; this should be a transparent, 
automated system that offers insight for potential users of the DTD into its data validity after 
every update. 

x Expand the DTD with information on patients who did not receive blood 
transfusions; this allows benchmarking of transfusion rates and comparing profiles of 
transfused recipients to non-transfused recipients. These data cannot be extracted by 
default as this dataset comprises almost the complete hospital registration. Therefore 
this expansion is optional for specific studies with well-defined patient groups. 

x Expand the scope of variables with more detailed patient information, such as 
medical history, medicine use, vital signs (pulse, temperature and blood pressure) and 
mortality data; this might be done for a limited number of patient groups for the 
purpose of a specific study. 

x Incorporate a (semi-)automated algorithm or system for the identification of 
transfusion indications. 

x Align data extraction, interpretation and analysis with transfusion data warehouses in 
other countries to improve comparability and allow data synthesis and international 
comparison. 

Finally, which one of these extensions is most valuable should be a topic of research in itself. 
Such an evaluation should anticipate future studies to be conducted using the data warehouse. 
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Concluding remarks 

We aimed to contribute to a more efficient cycle of recording, collecting and using transfusion 
data for research that will benefit transfusion recipients and clinical practice. Future research 
topics that remain relevant for clinical practice include the identification of patient groups who 
receive blood transfusions, determining donor and product characteristics that affect patient 
outcomes, benchmarking blood use in hospitals and monitoring transfusion triggers and 
targets. The Dutch Transfusion Data warehouse project is especially suitable for answering 
these questions as it provides linked, multisource blood transfusion data which are 
supplemented every year with recent donor and recipient data. To improve the usability of the 
DTD, we recommend consideration of standardizing up-to-date validation of the data, 
supplementing the data warehouse with information on non-transfused patients, and 
implementing additional identification of clinical indications for transfusion.  
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Appendix A. Discussion of a more extended list of 
validity outcomes 

1. Concordance with (annual) report 
The agreement between the numbers found in the database and the annual report of the Blood 
bank was >98.7% for number of products (varying slightly for the different product types) and 
99.96% for number of transfusions. 
 
2. Linkage of data sources within the data warehouse 
Linkage of transfused products to products issued by the blood bank was possible for 99.96% 
of all transfusions, using the identification number of the end product. Vice versa, 97.65% of 
products issued could be linked to actual hospital transfusions (indicating the spilling rate). 
Initially, only 96.727% of the products could be linked to their donation(s). We traced this 
back to a post-hoc modification in the coding of the product identification number at the 
blood bank, leading to different codes existing in the blood bank and the hospital system for 
the same product. When the coding was adjusted, the proportion linked products increased to 
99.996%. 
 
3. Identity 
Every blood product should be uniquely identified by the combination of the donation code 
and the product code. In the blood bank data, a small percentage of duplicated products was 
found for RBC products of 0.005%; for FFP and PLT this was 0%. For one hospital, product 
codes were not available, therefore the broader product type was used. Based on donation 
code and product type, initially 1.00% of products were duplicated. It turned out that most 
(71.7%) of these duplicates were split products, which explains why the donation code and 
product type were similar. A potential pitfall is the double registration of events, for example 
multiple procedures that actually occurred must be differentiated from duplications in 
procedures registered for another purpose (e.g. financial registration). Therefore duplicated 
procedures (i.e. within the same patients at the same time) were removed, resulting in 0% 
duplicated procedures. 
 
4. Completeness 
Most important variables are present and non-missing: for the blood bank data (donor 
identification code, date of birth, gender, hemoglobin value, product expiration or production 
date) completeness of at least 98.8% and for hospital data (patient identification code, date of 
birth and gender) at least 99.99% completeness.  
For the outcome regarding completeness of diagnoses, the distribution of number of pending 
diagnoses per transfusion was found to range from 0 diagnoses to up to 15. The percentage of 
transfusions that fall within the start and end date of at least one diagnosis was 98%. This 
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implicates that it will be necessary to make a selection of those diagnoses in the future if we 
want to determine the main indication for a transfusion. 
 
5. Uniformity 
Diagnoses and procedures were recoded into a uniform system, resulting in a linkage 
percentage of diagnosis codes with the reference table of 96.1%. Hb level was was registered 
with the precision of 1 significant decimal for >98.6% for the hospitals and 99.76% for the 
blood bank data. 
 
6. Time patterns 
The time patterns in number of donations, products and donors) reveal no unexpected trends, 
as the observed decrease is in line with the known nationally decreasing trend in RBC use. The 
trends in blood use by product type confirm this and also show a high relative decrease for 
FFP products, for example from 2010 to 2011. This decrease in FFP can be explained by the 
introduction of ROTEM (a method of hemostasis testing in whole blood) for thoracic surgery, 
and different guidelines and consensus. In the time period concerned, use of ROTEM 
followed a reverse trend, increasing where FFP use decreased. 
In 2010 the percentage of transfused products that could not be linked to products issued was 
exceptionally high (2.2% versus 0.07% in other years). This percentage could be lowered to 
0.17% by including blood bank data from the previous year 2009 (the unlinked products were 
mainly frozen plasma products that were issued in the year before). This resulted in an annual 
linkage percentage of 99.8% or higher. 
 
7. Plausibility 
Accurate date and time values are crucial in order to study cause-effect relationships, such as 
transfusion triggers and pre and post transfusion targets. A problem occurs if the registered 
(e.g. transfusion) time actually records the moment that a product or service (e.g. the blood 
product) was requested instead of administered. Generally, hemoglobin (Hb) should increase 
after transfusion. To check this, the difference was computed between the last Hb before and 
first Hb after transfusion (only Hb measurements within one day before or after the 
transfusion were considered). A clinically significant Hb change was defined as an increase or 
decrease of 8.8% relative to the first Hb measurement. This cut-off point was defined using 
the formula for the critical change: 2.77 * √ (CVa2 + CVi2) [27]. Assuming an analytical 
variation (CVa) of 1.5% and an intra-individual biological variation (CVi) of 2.8% [28], the cut-
off value lies at 8.8%. Although we would expect that Hb increases after transfusion, it turned 
out that 40% did not clinically change and 6% even decreased. Recipients with a decrease in 
Hb were further examined and 87% of these patients had a diagnosis indicating high bleeding 
risk such as the diagnosis acute bleeding, justifying the validity of a decreasing Hb value. 
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8. Event attributes 
At the blood bank, blood products made from platelets (PLT) are produced by pooling the 
PLT of five donations and one FFP unit together. These pooled products should therefore be 
linked to five or six donations, which was the case for 100%. Another attribute of a transfusion 
event is a hospitalization; it was found that 99.16% of all patients were also admitted (of which 
23.64% were day admissions), indicating that the remaining transfusions were given in an 
outpatient ward. Finally, an estimate of the proportion of potentially missing information on 
for example transfusions was given by the percentage of patients that were transferred to 
another hospital. According to the 'discharge destination' variable, 6% of patients were, at the 
end of their admission, sent to another hospital.  
 
9. Consistency of hospitals within data warehouse 
The validity outcomes for both hospitals were expected to be quite similar as both are teaching 
hospitals. The two hospitals had indeed very similar outcomes, supporting the validity of the 
findings. 
 
10. Concordance with literature 
Comparison of our data with previous literature on the distribution of blood products over age 
and gender categorized by product type [29] revealed that the distributions were quite similar, 
but that platelet use has shifted towards older patients. This can be explained in part by the 
ageing of the population, but also by changes in policy in the past ten years: thorax surgery has 
increased its platelet use, and also treatment of haematological disorders has become more 
intensive, including higher platelet use. As both heart disease and haematological disorders are 
more prevalent in men, there is a peak in platelet use for men aged 60-80 years. Because 
relatively more platelets are transfused to older patients, platelet use for children makes up a 
smaller part of the total use. 
 
11. Concordance with expert feedback 
Expert feedback was asked regarding the accuracy of Hb measurements. The outcomes of Step 
7 (Plausibility) were presented to two clinical chemists from the participating hospitals, in order 
to evaluate whether these numbers seem plausible. The experts concluded that the percentage 
with an unexplained decrease is below 1% of all transfusions, which is acceptable. The finding 
that in patients with high bleeding risk, Hb value sometimes decreases and sometimes increases 
is also plausible; with acute bleeding it is more difficult to measure the Hb, which might lead to 
too much blood being given. 
 
12. Concordance with other databases 
What previous transfusion data warehouse studies have reported in terms of data validation 
varies greatly. The most extensive list of validation outcomes were reported by the SCANDAT 
study [18,19], therefore, these outcomes are shown next to the validity outcomes of the DTD 
(Table 3.3). SCANDAT and DTD show similar results regarding the high external 
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concordance of the data with external statistics and the fact that both studies identified missing 
data by investigating time patterns. Different is the proportion of hospitalized patients, which 
might be due to different registration of patients between the countries (as we found a 
consistently higher hospitalization rate for both of the DTD hospitals included). The estimated 
proportion of patients with incomplete information due to transference from our hospitals 
included to another hospital was up to 6% for the DTD. This might actually be an 
underestimation, because this 6% does not include patients who were hospitalized elsewhere 
prior to being hospitalized in hospitals analyzed, and given the findings that in SCANDAT 
8.9% of recipients received a blood transfusion in two or more local registers. 
 Other transfusion database studies reported only a few outcomes: the linkage rate of 
transfusions to donors between 92%-99% [18,19,20,21,22] and, vice versa, estimates of 
wastage of blood products (i.e., issued but not transfused) of 1.3% and 7.7% [19,20]. The 
percentage missing values was also reported by some studies: clinical variables were missing for 
13% (post-transfusion Hb) [23], 14% (ASA code) [22] and 20% (specialty)[23], the latter 
interestingly varying between specialties from 2% to 47%. 
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Appendix B. R code of the selection algorithm 

The priority and test data files are available upon request. 
 
# load files 
priority <- read.csv("prioritization_specialisms.csv", sep=";") # load 
prioritization 
data <- read.csv("testdata.csv", sep=",") # load data: each row represents 
a diagnosis or procedure linked to a transfusion cluster 
 
# the algorithm function 
select_indication <- function(transfusion.cluster, data, priority) { 
 
  # select transfusion cluster 
  clus <- data[data$tra.clus == transfusion.cluster, ] 
 

# count the number of diagnoses and procedures for this transfusion 
cluster 
number_of_proc <- 
length(unique(clus[!is.na(clus$proc.clus),"proc.clus"])) 
number_of_diag <- 
length(unique(clus[!is.na(clus$diag.clus),"diag.clus"])) 

 
  # create an empty matrix 
  algorithm_result <- vector(length=3) 
  algorithm_result[1] <- transfusion.cluster 
 
  ## procedures: 
  # if no procedures: note NA 
  if (number_of_proc == 0) { 
    algorithm_result[2] <- NA 
  } 
 
  # if 1 procedure: select this procedure 
  else if (number_of_proc == 1) { 
    algorithm_result[2] <- clus$proc.clus[!is.na(clus$proc.clus)] 
  } 
 
  # if >=2 procedures: 
  else if (number_of_proc >= 2) { 
    if (length(which(clus$date.diff.proc == 0))) { 

algorithm_result[2] <- clus$proc.clus[which(clus$date.diff.proc == 
0)] 
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    } else if (length(which(clus$date.diff.proc == -1))) { 
algorithm_result[2] <- clus$proc.clus[which(clus$date.diff.proc == 
-1)] 

    } else if (length(which(clus$date.diff.proc == 1))) { 
algorithm_result[2] <- clus$proc.clus[which(clus$date.diff.proc == 
1)] 

} else if (length(which(clus$date.diff.proc >= -7 & 
clus$date.diff.proc < 0))) { 

cl <- clus[which(clus$date.diff.proc >= -7 & clus$date.diff.proc < 
0), ] 
algorithm_result[2] <-cl$proc.clus[which.max(cl$date.diff.proc)] 

    } else { 
      algorithm_result[2] <- NA 
    } 
  } 
 
  ## diagnoses: 
 
  # if a procedure has already been selected, note NA 
  if (!is.na(algorithm_result[2])) { 
    algorithm_result[3] <- NA 
  } 
 
  else if (is.na(algorithm_result[2])) { 
    # if no diagnosis: note 'Neonatology' 
    if (number_of_diag == 0) { 
      algorithm_result[3] <- "Neonatology" 
    } 
 
    # if 1 diagnosis: select this diagnosis 
    else if (number_of_diag == 1) { 
      algorithm_result[3] <- clus$diag.clus[!is.na(clus$diag.clus)] 
    } 
 
    # if >=2 diagnoses: 
    else if (number_of_diag >= 2) { 
      prior <- priority[priority$specialism %in% clus$diag.spec, ] 
      minspec <- prior$specialism[which.min(prior$order.diagnoses)] 
      clus_multdia <- clus[clus$diag.spec %in% minspec, ]  
      algorithm_result[3] <-        
      clus_multdia$diag.clus[which.min(clus_multdia$date.diff.diag)] 
    } 
  } 
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  return(algorithm_result) 
} 
 
# store all results in one dataframe 
do_all_clusters <- function(data, priority) { 
  cells <- data.frame() 
  for (transfusion.cluster in unique(data$tra.clus)) { 
    cells_for_this_clus <- select_indication(transfusion.cluster, data,  
    priority) 
    cells <- rbind(cells, cells_for_this_clus) 
  } 
  colnames(cells) <- c ("tra.clus","procedure.algo","diagnosis.algo") 
  return(cells) 
} 
 
# apply algorithm 
print(do_all_clusters(data, priority)) 
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Blood transfusion is an important medical treatment for many and diverse patients groups, 
saving lives but sometimes also causing adverse transfusion reactions in transfusion recipients. 
For this reason blood use should ideally be as low as possible. The fact that significant 
differences exist in the amount of blood used between countries, hospitals and even within 
hospitals, indicates that there is room for improvement. Moreover, there are likely to exist 
unrecognized risk factors in donors and blood products that might affect patient outcomes. 
And not only patients are affected by the way in which blood is used; it also has consequences 
for blood donors, doctors, hospitals, the blood bank and policy makers. In order to study these 
various aspects and the interplay between them, data on the complete transfusion chain are 
needed. Therefore we set up the Dutch Transfusion Data warehouse (DTD), in which data from 
the national blood bank and a (growing) number of Dutch hospitals are linked. As the data are 
extracted from electronic health records which are primarily registered for clinical use, a 
systematic annotation and interpretation for research purposes is lacking. Therefore, when 
analyzing data from the DTD the aspects as described in Chapter 1 must be taken into 
account: the data are observational, multisource, intended to be nationally representative, 
longitudinal and continuously updated. This thesis has two main focus points: the 
methodological challenges involved in the collection, validation and interpretation of the data 
(Chapters 2-5), and the actual application of the data in analyses concerning donors and 
recipients (Chapters 6-7).  

The design of the DTD is described in Chapter 2. The collection of the data started 
in the blood bank with data on donors (e.g., age, blood groups, antibodies), products (type of 
product, processing, storage time), which were linked to data from the participating hospitals 
(e.g. patient diagnosis, surgical procedures, laboratory parameters, number of transfusions 
administered). These data have a broad range of applications, four of which are illustrated in 
Chapter 2: identifying risk factors, predicting future blood use, benchmarking blood use, and 
optimizing process efficiency. For example, insight in donor- and product-related risk factors 
for recipient outcomes can help make transfusion more tailored and –by avoiding unnecessary 
transfusions– further diminish the number of transfusion reactions in patients. Before the data 
can be analyzed however, we must first ensure that the data quality is sufficient for a correct 
interpretation. 

A structured stepwise approach to validate the data is developed in Chapter 3, which 
addresses external validity (e.g. concordance with external reports, previous studies and expert 
feedback) and internal validity (e.g. completeness, uniformity and plausibility). Part of the data 
present in the DTD at this time is validated, which resulted in a structured overview of the 
different data validity aspects. This allowed improvement of these aspects through further 
processing of the data and in some cases adjustment of the data extraction process. A crucial 
part of the data warehouse are diagnostic and procedural data which specify the type of 
patients and their clinical indications for a blood transfusion. The validation showed that 
completeness of de diagnosis variable was high: almost every transfusion could be linked to at 
least one diagnosis. In fact, the majority of transfusions could be linked to multiple diagnoses. 
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This however poses a new challenge of identifying the one specific diagnosis or procedure that 
most likely necessitated the transfusion.  

Therefore Chapter 4 describes the development of an algorithm to identify –out of 
all diagnostic and procedural data available– the most likely indication for transfusion. The 
algorithm was evaluated against a gold standard based on expert review of a sample of medical 
records. In a second step, information on misclassification was used to fine-tune the initial 
algorithm. The final algorithm was able to predict the majority of cases correctly (about 75%). 
Although this score is substantially better than a random guess, efforts to improve the 
predictions may be worthwhile for example by taking into account more detailed patient 
information. Also, before implementation of the algorithm, the obtained results should be 
externally validated in independent hospital datasets. When more hospitals are included in the 
DTD, this not only extends opportunities for data validation, but it will also improve the 
representativeness of the data.  

As the DTD is intended to be nationally representative and new hospitals are 
included continuously, in Chapter 5 several strategies for selecting hospitals for inclusion in 
the data warehouse are compared. The main result was that the selection strategy of maximum 
variation between hospitals (in terms of number of beds) is optimal for predicting blood use in 
the Netherlands. In practical terms this would mean for the DTD that especially hospitals at 
the ends of the spectrum (the smallest and largest hospitals) have the highest added value for 
the representativeness of the data. It should be noted however that with an increasing number 
of hospitals included, the differences between the selected selection strategies decrease. 

In Chapters 6 and 7 donor and patient data are analysed. While the number of 
hospitalized patients in Dutch hospitals has been increasing since 1997, as described in 
Chapter 6 the demand for red blood cell units (RBCs) has simultaneously decreased. This 
implies a considerable change in transfusion practice towards on average fewer blood 
transfusions per patient. In order to explain the RBC decrease, various patient groups (surgical, 
medical, obstetrical, specific age groups) were retrospectively studied in relation to RBC use 
between 1996 and 2005. The use of RBCs changed from being predominantly given to surgical 
patients to being given largely to medical patients (a relatively stable low percentage went to 
obstetrical patients). Changes were more marked in the higher age groups. Also a trend was 
observed towards the use of only one or two RBC units during a transfusion episode rather 
than three or more. These results suggest a more restrictive transfusion policy for surgical 
patients as well as an increase in medical indications for transfusion. This fits well with the 
current focus towards more cost-effective transfusion policies.  

Donor data are employed in Chapter 7 to develop a prediction model for anti-
Rhesus D (RhD) donors. Anti-RhD plasma donors provide rhesus antibodies necessary for 
RhD-injections, which are required for RhD-negative women pregnant with a RhD-positive 
child in order to prevent hemolytic disease of the newborn. Due to the success of the RhD 
prevention program, the number of naturally immunized women has decreased, thereby also 
reducing the number of potential donors and threatening the availability of the RhD-injections. 
Data on Dutch anti-RhD donors in 1994-2013 were used to simulate the donor population 
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size and age composition for various donor recruitment scenarios. It was predicted that with a 
continuous influx of 27 new donors per year and a donor stopping rate of 10% per year, the 
population size will stabilize at 195 donors, with 2.3% of donors stopping annually due to 
reaching the donor age limit. With this relatively simple model we can describe and predict the 
size of the anti-RhD donor population and the impact of ageing sufficiently accurately. 

Finally Chapter 8 reflects on the value of transfusion data and potential 
improvements to further increase the utility of these data. Recommendations for research 
topics and possible extensions of the DTD offer a perspective on future applications of the 
data following the process from collection to reflection. 
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Bloedtransfusie is een niet weg te denken medische behandeling voor een groot aantal 
uiteenlopende patiëntgroepen. De toediening van bloed redt levens maar leidt soms ook tot 
nadelige bijwerkingen bij transfusieontvangers. Daarom zou je ideaal gezien het bloedgebruik 
zo laag mogelijk willen houden. Het feit dat er tussen landen, ziekenhuizen en zelfs binnen 
ziekenhuizen aanzienlijke verschillen zijn in bloedverbruik, geeft aan dat er ruimte is voor 
verbetering. Bovendien zijn er mogelijk nog risicofactoren bij donors en bloedproducten die 
van invloed kunnen zijn op patiëntuitkomsten. De manier waarop bloed wordt gebruikt heeft 
niet alleen consequenties voor patiënten, maar ook voor bloeddonors, artsen, ziekenhuizen, de 
bloedbank en beleidsmakers. Om deze verschillende aspecten en de wisselwerking te 
bestuderen, zijn data nodig die de complete transfusieketen van donor tot bloedproduct tot 
patiënt bestrijken. Daarom hebben we het Dutch Transfusion Data warehouse (DTD) opgezet, 
waarin data van de nationale bloedbank worden gekoppeld aan data van een (toenemend) 
aantal Nederlandse ziekenhuizen. Omdat deze data worden geëxtraheerd uit elektronische 
medische dossiers die zijn bedoeld voor klinisch gebruik en administratie, ontbreekt een 
systematische annotatie en interpretatie voor onderzoeksdoeleinden. Bij de analyse van data uit 
het DTD moet daarom rekening worden gehouden met een aantal aspecten zoals beschreven 
in Hoofdstuk 1: de data zijn observationeel, afkomstig van meerdere bronnen, bedoeld om 
nationaal representatief te zijn, longitudinaal en regelmatig aan updates onderhevig. Dit 
proefschrift richt zich op twee belangrijke aandachtspunten: de methodologische uitdagingen 
die komen kijken bij het verzamelen, valideren en interpreteren van de data (Hoofdstuk 2-5), 
en de daadwerkelijke toepassing van de data in analysemodellen over donors en patiënten 
(Hoofdstuk 6-7). 

Het opzetten van het DTD wordt beschreven in Hoofdstuk 2. De dataverzameling 
begon bij de bloedbank met data over donors (zoals leeftijd, bloedgroepen, antistoffen), 
producten (type, bewerking, opslagtijd), welke vervolgens werden gekoppeld aan patiëntdata 
uit de deelnemende ziekenhuizen (zoals diagnose, chirurgische procedure, 
laboratoriummetingen, aantal toegediende transfusies). Deze data hebben een breed 
toepassingsgebied, waarvan er vier zijn weergegeven in Hoofdstuk 2: het identificeren van 
risicofactoren, het voorspellen van toekomstig bloedgebruik, het benchmarken van 
bloedgebruik (onderling vergelijken van ziekenhuizen) en het optimaliseren van de efficiëntie 
van processen. Zo kan bijvoorbeeld inzicht in donor- en product-gerelateerde risicofactoren 
bijdragen aan beter afgestemd transfusiebeleid en –door het vermijden van onnodige 
transfusies– het aantal transfusiereacties bij patiënten verder verminderen. Voordat de data 
echter kunnen worden geanalyseerd, moeten we er allereerst voor zorgen dat de datakwaliteit 
voldoende is. 

Een gestructureerde aanpak om de data te valideren wordt beschreven in Hoofdstuk 
3. We onderscheiden externe validiteit (bijvoorbeeld overeenstemming van de data met externe 
rapporten, eerdere studies en expert meningen) en interne validiteit (bijvoorbeeld compleetheid, 
uniformiteit en plausibiliteit). Een deel van de gegevens aanwezig in het DTD op het moment 
van onderzoek wordt gevalideerd, met als resultaat een gestructureerd overzicht van de 
verschillende validiteitsaspecten. Dit biedt aanknopingspunten om de datakwaliteit te 
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verbeteren door verdere verwerking van de gegevens en eventuele aanpassing van de 
gegevensextractie. Een cruciaal onderdeel van de data zijn diagnose- en proceduregegevens die 
specificeren om welk type patiënten met welke indicaties voor bloedtransfusie het gaat. Uit de 
validatie bleek dat de compleetheid van de diagnosevariabele hoog was; bijna elke transfusie 
kon worden gekoppeld aan tenminste één diagnose. Sterker nog, de meeste transfusies konden 
aan meerdere diagnoses worden gekoppeld. Dit stelt ons voor een nieuwe uitdaging, namelijk 
om te bepalen welke diagnose of procedure de primaire reden (indicatie) voor transfusie was. 

Daarom staat Hoofdstuk 4 in het teken van het ontwikkelen van een 
selectiealgoritme om –uit alle beschikbare diagnostische en procedurele gegevens– op een 
automatische manier de meest waarschijnlijke indicatie voor transfusie te identificeren. Het 
algoritme werd geëvalueerd langs een gouden standaard op basis van expert review van een 
steekproef van medische dossiers. In een tweede stap werden gegevens over misclassificatie 
gebruikt om het oorspronkelijke algoritme te verbeteren. Het uiteindelijke algoritme is in staat 
om de transfusie-indicatie in ongeveer driekwart van de gevallen correct te selecteren. Deze 
score is substantieel beter dan op basis van een willekeurige keuze te verwachten zou zijn, maar 
het kan de moeite waard zijn om de voorspellingen verder te verbeteren door bijvoorbeeld 
meer en gedetailleerdere patiëntinformatie te gebruiken in het algoritme. Bovendien moet er, 
voordat het algoritme kan worden geïmplementeerd in het DTD, externe validatie plaatsvinden 
door het algoritme in onafhankelijke datasets te testen. Wanneer er meer deelnemende 
ziekenhuizen worden opgenomen in het DTD, biedt dit niet alleen meer mogelijkheden voor 
validatie, maar ook voor het verhogen van de mate van representativiteit van de data. 

Omdat het DTD nationaal representatief beoogt te zijn en er continu nieuwe 
ziekenhuizen worden geïncludeerd, worden in Hoofdstuk 5 verschillende strategieën voor het 
selecteren van ziekenhuizen vergeleken op de resulterende representativiteit. Het belangrijkste 
resultaat hiervan was dat met de selectiestrategie van maximale variatie tussen ziekenhuizen 
(wat betreft aantal bedden) het best kan worden voorspeld wat het bloedgebruik voor heel 
Nederland is. Praktisch gezien zou dit voor het DTD betekenen dat met name ziekenhuizen 
aan de uiteindes van het spectrum (de kleinste en grootste ziekenhuizen) toegevoegde waarde 
hebben voor de representativiteit van de data voor heel Nederland. Hierbij moet overigens 
worden opgemerkt dat bij een toenemend aantal geïncludeerde ziekenhuizen de verschillen 
tussen de onderzochte selectiestrategieën afnemen. 

In Hoofdstuk 6 en 7 worden donor- en bloedgebruikdata geanalyseerd. Zoals 
beschreven in Hoofdstuk 6 neemt al sinds 1997 het aantal patiënten dat wordt opgenomen in 
het ziekenhuis toe, terwijl de vraag naar rode bloedcelproducten (RBCs) juist afneemt. Dit 
impliceert een aanzienlijke verandering in de transfusiepraktijk naar gemiddeld minder 
bloedtransfusies per patiënt. Om de RBC-afname te verklaren werden verschillende 
patiëntengroepen (chirurgische, medische, obstetrische, specifieke leeftijdsgroepen) 
retrospectief onderzocht in relatie tot RBC gebruik in de periode tussen 1996 en 2005. In de 
onderzoeksperiode is het gebruik van RBC veranderd van grotendeels chirurgische naar 
voornamelijk medische patiënten (een relatief stabiel laag percentage ging naar verloskundige 
patiënten). Veranderingen waren meer uitgesproken in de hogere leeftijdsgroepen. Ook werd 
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een trend geobserveerd in het gebruik van slechts één of twee RBC producten per transfusie-
episode in plaats van drie of meer. Deze resultaten suggereren een restrictiever transfusiebeleid 
voor chirurgische patiënten en een stijging van medische indicaties voor transfusie. Dit sluit 
goed aan bij de huidige focus op een kosteneffectief transfusiebeleid. 

Donorgegevens worden in Hoofdstuk 7 gebruikt om een voorspellingsmodel te 
maken voor anti-Rhesus D (RhD) donors. Anti-RhD plasmadonors voorzien in antistoffen 
voor de RhD-injecties (‘rhesusprik’), welke noodzakelijk zijn voor RhD-negatieve zwangere 
vrouwen die in verwachting zijn van een RhD-positief kind om hemolytische ziekte van de 
pasgeborene te voorkomen. Vanwege het succes van de rhesusprik is het aantal natuurlijk 
geïmmuniseerde vrouwen in de loop van de jaren afgenomen en daarmee ook het aantal 
potentiële donors, wat mogelijk de beschikbaarheid van de rhesusprik in gevaar brengt. 
Gegevens over Nederlandse anti-RhD donors in 1994-2013 werden gebruikt om de grootte en 
leeftijdsverdeling van de donorpopulatie te simuleren voor verschillende scenario’s van 
donorwerving. De schatting is dat met een continue instroom van 27 nieuwe donors en een 
verlies van 10% van de donors per jaar, de grootte van de populatie zal stabiliseren op 195 
donors, waarbij jaarlijks 2,3% van de donors stopt vanwege het bereiken van de leeftijdsgrens 
voor het donorschap. Met dit relatief eenvoudige model kunnen we de grootte van de anti-
RhD donorpopulatie en de effecten van vergrijzing voldoende accuraat beschrijven en 
voorspellen. 

Tenslotte wordt in Hoofdstuk 8 gereflecteerd op de waarde van transfusiedata en 
wat er nog kan worden verbeterd om deze data zo nuttig mogelijk te gebruiken. Aanbevelingen 
voor onderzoeksonderwerpen en mogelijke uitbreidingen van het DTD bieden perspectief op 
toekomstige toepassingen van de gegevens na het hele proces van verzameling tot interpretatie. 
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