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SUMMARY
Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses
to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs bymRNA
sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors
from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary
tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or
PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that
blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics,
possibly enabling clinical advances in blood-based ‘‘liquid biopsies’’.
INTRODUCTION

Cancer is primarily diagnosed by clinical presentation, radiology,

biochemical tests, and pathological analysis of tumor tissue,
Significance

Blood-based ‘‘liquid biopsies’’ provide a means for minimally
tissue acquisition. Early detection of cancer, clinical cancer diag
tant applications of liquid biopsies. Here, we report that mRNA
pan-cancer, multiclass cancer, and companion diagnostics in
of TEPs to pinpoint the location of the primary tumor advances
of this proof-of-principle study indicate that blood platelets are
nostics, using the equivalent of one drop of blood.
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increasingly supported by molecular diagnostic tests. Molecular

profiling of tumor tissue samples has emerged as a potential

cancer classifying method (Akbani et al., 2014; Golub et al.,

1999; Han et al., 2014; Hoadley et al., 2014; Kandoth et al.,
invasive molecular diagnostics, overcoming limitations of
nostics, and companion diagnostics are regarded as impor-
profiles of tumor-educated blood platelets (TEPs) enable for
both localized and metastasized cancer patients. The ability
the use of liquid biopsies for cancer diagnostics. The results
a potential all-in-one platform for blood-based cancer diag-
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2013; Ramaswamy et al., 2001; Su et al., 2001). In order to over-

come limitations of tissue acquisition, the use of blood-based

liquid biopsies has been suggested (Alix-Panabières et al.,

2012; Crowley et al., 2013; Haber and Velculescu, 2014). Several

blood-based biosources are currently being evaluated as liquid

biopsies, including plasma DNA (Bettegowda et al., 2014;

Chan et al., 2013; Diehl et al., 2008; Murtaza et al., 2013;

Newman et al., 2014; Thierry et al., 2014) and circulating tumor

cells (Bidard et al., 2014; Dawson et al., 2013; Maheswaran

et al., 2008; Rack et al., 2014). So far, implementation of liquid

biopsies for early detection of cancer has been hampered by

non-specificity of these biosources to pinpoint the nature of

the primary tumor (Alix-Panabières and Pantel, 2014; Bette-

gowda et al., 2014).

It has been reported that tumor-educated platelets (TEPs) may

enable blood-based cancer diagnostics (Calverley et al., 2010;

McAllister and Weinberg, 2014; Nilsson et al., 2011). Blood

platelets—the second most-abundant cell type in peripheral

blood—are circulating anucleated cell fragments that originate

from megakaryocytes in bone marrow and are traditionally

known for their role in hemostasis and initiation of wound healing

(George, 2000; Leslie, 2010). More recently, platelets have

emerged as central players in the systemic and local responses

to tumor growth. Confrontation of platelets with tumor cells via

transfer of tumor-associated biomolecules (‘‘education’’) is an

emerging concept and results in the sequestration of such

biomolecules (Klement et al., 2009; Kuznetsov et al., 2012;

McAllister and Weinberg, 2014; Nilsson et al., 2011; Quail and

Joyce, 2013). Moreover, external stimuli, such as activation of

platelet surface receptors and lipopolysaccharide-mediated

platelet activation (Denis et al., 2005;Rondina et al., 2011), induce

specific splicing of pre-mRNAs in circulating platelets (Power

et al., 2009; Rowley et al., 2011; Schubert et al., 2014). Platelets

may also undergo queue-specific splice events in response to

signals released by cancer cells and the tumor microenviron-

ment—such as stromal and immune cells. The combination of

specific splice events in response to external signals and the

capacity of platelets to directly ingest (spliced) circulating

mRNA can provide TEPswith a highly dynamicmRNA repertoire,

with potential applicability to cancer diagnostics (Calverley et al.,

2010; Nilsson et al., 2011) (Figure 1A). In this study, we charac-

terize the platelet mRNA profiles of various cancer patients and

healthy donors and investigate their potential for TEP-based

pan-cancer, multiclass cancer, and companion diagnostics.

RESULTS

mRNAProfiles of Tumor-Educated Platelets AreDistinct
from Platelets of Healthy Individuals
We prospectively collected and isolated blood platelets from

healthy donors (n = 55) and both treated and untreated patients

with early, localized (n = 39) or advanced, metastatic cancer

(n = 189) diagnosed by clinical presentation and pathological

analysis of tumor tissue supported by molecular diagnostics

tests. The patient cohort included six tumor types, i.e., non-small

cell lung carcinoma (NSCLC, n = 60), colorectal cancer (CRC,

n = 41), glioblastoma (GBM, n = 39), pancreatic cancer (PAAD,

n = 35), hepatobiliary cancer (HBC, n = 14), and breast cancer

(BrCa, n = 39) (Figure 1B; Table 1; Table S1). The cohort of
Ca
healthy donors covered a wide range of ages (21–64 years old,

Table 1).

Platelet purity was confirmed by morphological analysis of

randomly selected and freshly isolated platelet samples

(contamination is 1 to 5 nucleated cells per 10 million platelets,

see Supplemental Experimental Procedures), and platelet RNA

was isolated and evaluated for quality and quantity (Figure S1A).

A total of 100–500 pg of platelet total RNA (the equivalent of

purified platelets in less than one drop of blood) was used for

SMARTer mRNA amplification and sequencing (Ramsköld

et al., 2012) (Figures 1C and S1A). Platelet RNA sequencing

yielded a mean read count of �22 million reads per sample.

After selection of intron-spanning (spliced) RNA reads and

exclusion of genes with low coverage (see Supplemental Exper-

imental Procedures), we detected in platelets of healthy donors

(n = 55) and localized and metastasized cancer patients

(n = 228) 5,003 different protein coding and non-coding RNAs

that were used for subsequent analyses. The obtained platelet

RNA profiles correlated with previously reported mRNA profiles

of platelets (Bray et al., 2013; Kissopoulou et al., 2013; Rowley

et al., 2011; Simon et al., 2014) and megakaryocytes (Chen

et al., 2014) and not with various non-related blood cell mRNA

profiles (Hrdlickova et al., 2014) (Figure S1B). Furthermore,

DAVID Gene Ontology (GO) analysis revealed that the detected

RNAs are strongly enriched for transcripts associated with blood

platelets (false discovery rate [FDR] < 10�126).

Among the 5,003 RNAs, we identified known platelet markers,

such as B2M, PPBP, TMSB4X, PF4, and several long non-cod-

ing RNAs (e.g., MALAT1). A total of 1,453 out of 5,003 mRNAs

were increased and 793 out of 5,003 mRNAs were decreased

in TEPs as compared to platelet samples of healthy donors

(FDR < 0.001), while presenting a strong correlation between

these platelet mRNA profiles (r = 0.90, Pearson correlation)

(Figure 1D). Unsupervised hierarchical clustering based on the

differentially detected platelet mRNAs distinguished two sample

groups with minor overlap (Figure 1E; Table S2). DAVID GO anal-

ysis revealed that the increased TEP mRNAs were enriched for

biological processes such as vesicle-mediated transport and

the cytoskeletal protein binding while decreased mRNAs were

strongly involved in RNA processing and splicing (Table S3).

A correlative analysis of gene set enrichment (CAGE) GO meth-

odology, in which 3,875 curated gene sets of theGSEA database

were correlated to TEP profiles (see Experimental Procedures),

demonstrated significant correlation of TEP mRNA profiles with

cancer tissue signatures, histone deacetylases regulation, and

platelets (Table 2). The levels of 20 non-protein coding RNAs

were altered in TEPs as compared to platelets from healthy

individuals and these show a tumor type-associated RNA profile

(Figure S1C).

Next, we determined the diagnostic accuracy of TEP-based

pan-cancer classification in the training cohort (n = 175), employ-

ing a leave-one-out cross-validation support vector machine

algorithm (SVM/LOOCV, see Experimental Procedures; Figures

S1D andS1E), previously used to classify primary andmetastatic

tumor tissues (Ramaswamy et al., 2001; Su et al., 2001; Vapnik,

1998;Yeanget al., 2001). Briefly, theSVMalgorithm (blindly) clas-

sifies each individual sample as cancer or healthy by comparison

to all other samples (175 � 1) and was performed 175 times to

classify andcross validate all individuals samples. The algorithms
ncer Cell 28, 666–676, November 9, 2015 ª2015 The Authors 667
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Figure 1. Tumor-Educated Platelet mRNA

Profiling for Pan-Cancer Diagnostics

(A) Schematic overview of tumor-educated plate-

lets (TEPs) as biosource for liquid biopsies.

(B) Number of platelet samples of healthy donors

and patients with different types of cancer.

(C) TEP mRNA sequencing (mRNA-seq) workflow,

asstarting from6mlEDTA-coated tubes, toplatelet

isolation, mRNA amplification, and sequencing.

(D) Correlation plot of mRNAs detected in healthy

donor (HD) platelets and cancer patients’ TEPs,

includinghighlighted increased (red) anddecreased

(blue) TEP mRNAs.

(E) Heatmap of unsupervised clustering of platelet

mRNA profiles of healthy donors (red) and patients

with cancer (gray).

(F) Cross-table of pan-cancer SVM/LOOCV

diagnostics of healthy donor subjects and patients

withcancer in trainingcohort (n=175). Indicatedare

sample numbers and detection rates in percent-

ages.

(G) Performance of pan-cancer SVM algorithm in

validation cohort (n = 108). Indicated are sample

numbers and detection rates in percentages.

(H) ROC-curve of SVM diagnostics of training (red),

validation (blue) cohort, and random classifiers,

indicating the classification accuracies obtained by

chance of the training and validation cohort (gray).

(I) Total accuracy ratios of SVM classification in five

subgroups, including corresponding predictive

strengths. Genes, number of mRNAs included in

training of the SVM algorithm.

See also Figure S1 and Tables S1, S2, S3, and S4.
we developed use a limited number of different spliced RNAs for

sample classification. To determine the specific input gene lists

for the classifying algorithms we performed ANOVA testing for

differences (as implemented in the R-package edgeR), yielding

classifier-specific gene lists (Table S4). For the specific algorithm
668 Cancer Cell 28, 666–676, November 9, 2015 ª2015 The Authors
of the pan-cancer TEP-based classifier

test we selected 1,072 RNAs (Table S4)

for the n = 175 training cohort, yielding a

sensitivity of 96%, a specificity of 92%,

and an accuracy of 95% (Figure 1F). Sub-

sequent validation using a separate vali-

dation cohort (n = 108), not involved in

input gene list selection and training of

the algorithm, yielded a sensitivity of

97%, a specificity of 94%, and an accu-

racy of 96% (Figure 1G), with an area un-

der the curve (AUC) of 0.986 to detect

cancer (Figure 1H) and high predictive

strength (Figure 1I). In contrast, random

classifiers, as determined by multiple

rounds of randomly shuffling class labels

(permutation) during theSVMtrainingpro-

cess (see Experimental Procedures), had

no predictive power (mean overall accu-

racy: 78%, SD ± 0.3%, p < 0.01), thereby

showing, albeit an unbalanced represen-

tation of both groups in the study cohort,
specificity of our procedure. A total of 100 times random class-

proportional subsampling of the entire dataset in a training and

validation set (ratio 60:40) yielded similar accuracy rates (mean

overall accuracy: 96%, SD: ± 2%), confirming reproducible clas-

sification accuracy in this dataset. Of note, all 39 patients with



Table 1. Summary of Patient Characteristics

Patient

Group

Total (n) Gender M (%)a Age (SD)b Metastasis (%)

Mutation

Presence (%)

Training Validation Training Validation Training Validation Training Validation Training Validation

HD 39 16 21 (54) 6 (38) 41 (13) 38 (16) – – – – –

GBM 23 16 18 (78) 10 (63) 59 (16) 62 (14) 0 (0) 0 (0) – – –

NSCLC 36 24 14 (39) 14 (58) 60 (11) 59 (12) 33 (92) 23 (96) KRAS 15 (42) 11 (46)

EGFR 14 (39) 7 (29)

MET-

overexpression

5 (14) 3 (13)

CRC 25 16 13 (52) 9 (56) 59 (13) 63 (16) 20 (80) 15 (94) KRAS 7 (28) 8 (50)

PAAD 21 14 12 (57) 7 (50) 66 (9) 66 (10) 15 (71) 9 (64) KRAS 13 (62) 9 (64)

BrCa 23 16 0 (0) 0 (0) 59 (11) 59 (11) 16 (70) 9 (56) HER2+ 7 (30) 5 (31)

PIK3CA 6 (26) 2 (13)

triple negative 5 (22) 3 (19)

HBC 8 6 6 (75) 2 (33) 68 (13) 62 (16) 6 (75) 4 (67) KRAS 3 (38) 1 (17)

HD, healthy donors; GBM, glioblastoma; NSCLC, non-small cell lung cancer; CRC, colorectal cancer; PAAD, pancreatic cancer; BrCa, breast cancer;

HBC, hepatobiliary cancer. See also Table S1.
aIndicated are number of male individuals.
bIndicated is mean age in years.
localized tumors and 33 of the 39 patients with primary tumors in

the CNS were correctly classified as cancer patients (Figure 1I).

Visualization of 22 genes previously identified at differential

RNA levels in platelets of patients with various non-cancerous

diseases (Gnatenko et al., 2010; Healy et al., 2006; Lood et al.,

2010; Raghavachari et al., 2007), revealed mixed levels in our

TEPdataset (Figure S1F), suggesting that the platelet RNA reper-

toire in patients with non-cancerous disease is distinct from

patients with cancer.

Tumor-Specific Educational Program of Blood Platelets
Allows for Multiclass Cancer Diagnostics
In addition to the pan-cancer diagnosis, the TEP mRNA profiles

also distinguished healthy donors and patients with specific

types of cancer, as demonstrated by the unsupervised hierar-

chical clustering of differential platelet mRNA levels of healthy

donors and all six individual tumor types, i.e., NSCLC, CRC,

GBM, PAAD, BrCa, and HBC (Figures 2A, all p < 0.0001,

Fisher’s exact test, and S2A; Table S5), and this resulted in

tumor-specific gene lists that were used as input for training

and validation of the tumor-specific algorithms (Table S4). For

the unsupervised clustering of the all-female group of BrCa

patients, male healthy donors were excluded to avoid sample

bias due to gender-specific platelet mRNA profiles (Figure S2B).

SVM-based classification of all individual tumor classes with

healthy donors resulted in clear distinction of both groups in

both the training and validation cohort, with high sensitivity

and specificity, and 38/39 (97%) cancer patients with localized

disease were classified correctly (Figures 2B and S2C). CAGE

GO analysis showed that biological processes differed between

TEPs of individual tumor types, suggestive of tumor-specific

‘‘educational’’ programs (Table S6). We did not detect sufficient

differences in mRNA levels to discriminate patients with non-

metastasized from patients with metastasized tumors, suggest-

ing that the altered platelet profile is predominantly influenced

by the molecular tumor type and, to a lesser extent, by tumor

progression and metastases.
Ca
We next determined whether we could discriminate three

different types of adenocarcinomas in the gastro-intestinal tract

by analysis of the TEP-profiles, i.e., CRC, PAAD, and HBC. We

developed a CRC/PAAD/HBC algorithm that correctly classified

the mixed TEP samples (n = 90) with an overall accuracy of 76%

(mean overall accuracy random classifiers: 42%, SD: ± 5%,

p < 0.01, Figure 2C). In order to determine whether the TEP

mRNA profiles allowed for multiclass cancer diagnosis across

all tumor types and healthy donors, we extended the SVM/

LOOCV classification test using a combination of algorithms

that classified each individual sample of the training cohort

(n = 175) as healthy donor or one of six tumor types (Figures

S2D and S2E). The results of the multiclass cancer diagnostics

test resulted in an average accuracy of 71% (mean overall accu-

racy random classifiers: 19%, SD: ± 2%, p < 0.01, Figure 2D),

demonstrating significant multiclass cancer discriminative

power in the platelet mRNA profiles. The classification capacity

of the multiclass SVM-based classifier was confirmed in the vali-

dation cohort of 108 samples, with an overall accuracy of 71%

(Figure 2E). An overall accuracy of 71% might not be sufficient

for introduction into cancer diagnostics. However, of the initially

misclassified samples according to the SVM algorithms choice

with strongest classification strength the second ranked classifi-

cation was correct in 60% of the cases. This yields an overall

accuracy using the combined first and second ranked classifica-

tions of 89%. The low validation score of HBC samples can be

attributed to the relative low number of samples and possibly

to the heterogenic nature of this group of cancers (hepatocellular

cancers and cholangiocarcinomas).

Companion Diagnostics Tumor Tissue Biomarkers Are
Reflected by Surrogate TEP mRNA Onco-signatures
Blood provides a promising biosource for the detection of com-

panion diagnostics biomarkers for therapy selection (Bette-

gowda et al., 2014; Crowley et al., 2013; Papadopoulos et al.,

2006). We selected platelet samples of patients with distinct

therapy-guiding markers confirmed in matching tumor tissue.
ncer Cell 28, 666–676, November 9, 2015 ª2015 The Authors 669



Table 2. Pan-Cancer CAGE Gene Ontology

Top 25 GO Correlations

# Lowesta Highesta

Down

Translation 10 �0.865 �0.890

Immune, T cell 5 �0.853 �0.883

Cancer-associated 2 �0.875 �0.887

Viral replication 2 �0.875 �0.878

IL-signaling 2 �0.869 �0.874

RNA processing 1 �0.886

Ago2-Dicer-silencing 1 �0.882

Protein metabolism 1 �0.879

Receptor processing 1 �0.869

Up

Cancer-associated 6 �0.783 �0.906

Infection 3 �0.798 �0.853

HDAC 3 �0.795 �0.852

Platelet 3 �0.837 �0.906

Cytoskeleton 2 �0.801 �0.886

Hypoxia 2 �0.763 �0.937

Protease 1 �0.854

Immunodeficiency 1 �0.812

Differentiation 1 �0.810

Immune differentiation 1 �0.801

Methylation 1 �0.778

Metabolism 1 �0.768

Top-ranking correlations of platelet-mRNA profiles with 3,875 Broad

Institute curated gene sets. CAGE, Correlative Analysis of Gene Set

Enrichment; GO, gene ontology; #, number of hits per annotation; IL,

interleukin; HDAC, histone deacetylase.
aIndicated are lowest and highest correlations per annotation.
Although the platelet mRNA profiles contained undetectable or

low levels of these mutant biomarkers, the TEP mRNA profiles

did allow to distinguish patients with KRAS mutant tumors

from KRAS wild-type tumors in PAAD, CRC, NSCLC, and HBC

patients, and EGFR mutant tumors in NSCLC patients, using

algorithms specifically trained on biomarker-specific input

gene lists (all p < 0.01 versus random classifiers, Figures 3A–

3E; Table S4). Even though the number of samples analyzed is

relatively low and the risk of algorithm overfitting needs to be

taken into account, the TEP profiles distinguished patients with

HER2-amplified, PIK3CA mutant or triple-negative BrCa, and

NSCLC patients with MET overexpression (all p < 0.01 versus

random classifiers, Figures 3F–3I).

We subsequently compared the diagnostic accuracy of

the TEP mRNA classification method with a targeted KRAS

(exon 12 and 13) and EGFR (exon 20 and 21) amplicon deep

sequencing strategy (�5,0003 coverage) on the Illumina Miseq

platform using prospectively collected blood samples of patients

with localized or metastasized cancer. This method did allow for

the detection of individual mutant KRAS and EGFR sequences in

both plasma DNA and platelet RNA (Table S7), indicating

sequestration and potential education capacity of mutant,

tumor-derived RNA biomarkers in TEPs. Mutant KRAS was de-
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tected in 62% and 39%, respectively, of plasma DNA (n = 103,

kappa statistics = 0.370, p < 0.05) and platelet RNA (n = 144,

kappa statistics = 0.213, p < 0.05) of patients with a KRAS

mutation in primary tumor tissue. The sensitivity of the plasma

DNA tests was relatively poor as reported by others (Bettegowda

et al., 2014; Thierry et al., 2014), whichmay partly be attributed to

the loss of plasma DNA quality due to relatively long blood

sample storage (EDTA blood samples were stored up to 48 hr

at room temperature before plasma isolation). To discriminate

KRAS mutant from wild-type tumors in blood, the TEP mRNA

profiles provided superior concordance with tissue molecular

status (kappa statistics = 0.795–0.895, p < 0.05) compared to

KRAS amplicon sequencing analysis of both plasma DNA and

platelet RNA (Table S7). Thus, TEP mRNA profiles can harness

potential blood-based surrogate onco-signatures for tumor

tissue biomarkers that enable cancer patient stratification and

therapy selection.

TEP-Profiles Provide an All-in-One Biosource for Blood-
Based Liquid Biopsies in Patients with Cancer
Unequivocal discrimination of primary versus metastatic nature

of a tumor may be difficult and hamper adequate therapy

selection. Since the TEP profiles closely resemble the different

tumor types as determined by their organ of origin—regardless

of systemic dissemination—this potentially allows for organ-

specific cancer diagnostics. Hence we selected all healthy

donors and all patients with primary or metastatic tumor burden

in the lung (n = 154), brain (n = 114), or liver (n = 127). We per-

formed ‘‘organ exams’’ and instructed the SVM/LOOCV algo-

rithm to determine for lung, brain, and liver the presence or

absence of cancer (96%, 91%, and 96% accuracy, respec-

tively), with cancer subclassified as primary or metastatic tumor

(84%, 93%, and 90% accuracy, respectively) and in case of

metastases to identify the potential organ of origin (64%,

70%, and 64% accuracy, respectively). The platelet mRNA pro-

files enabled assignment of the cancer to the different organs

with high accuracy (Figure 4). In addition, using the same

TEP mRNA profiles we were able to again indicate the

biomarker status of the tumor tissues (90%, 82%, and 93%

accuracy, respectively) (Figure 4).

DISCUSSION

The use of blood-based liquid biopsies to detect, diagnose,

and monitor cancer may enable earlier diagnosis of cancer,

lower costs by tailoring molecular targeted treatments, improve

convenience for cancer patients, and ultimately supplements

clinical oncological decision-making. Current blood-based

biosources under evaluation demonstrate suboptimal sensi-

tivity for cancer diagnostics, in particular in patients with

localized disease. So far, none of the current blood-based bio-

sources, including plasma DNA, exosomes, and CTCs, have

been employed for multiclass cancer diagnostics (Alix-Pana-

bières and Pantel, 2014; Bettegowda et al., 2014; Skog et al.,

2008), hampering its implementation for early cancer detection.

Here, we report that molecular interrogation of blood platelet

mRNA can offer valuable diagnostics information for all

cancer patients analyzed—spanning six different tumor types.

Our results suggest that platelets may be employable as an
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Figure 2. Tumor-Educated Platelet mRNA Profiles for Multiclass Cancer Diagnostics

(A) Heatmaps of unsupervised clustering of platelet mRNA profiles of healthy donors (HD; n = 55) (red) and patients with non-small cell lung cancer (NSCLC;

n = 60), colorectal cancer (CRC; n = 41), glioblastoma (GBM; n = 39), pancreatic cancer (PAAD, n = 35), breast cancer (BrCa; n = 39; female HD; n = 29), and

hepatobiliary cancer (HBC; n = 14).

(B) ROC-curve of SVM diagnostics of healthy donors and individual tumor classes in both training (left) and validation (right) cohort. Random classifiers, indicating

the classification accuracies obtained by chance, are shown in gray.

(C) Confusion matrix of multiclass SVM/LOOCV diagnostics of patients with CRC, PAAD, and HBC. Indicated are detection rates as compared to the actual

classes in percentages.

(D) Confusion matrix of multiclass SVM/LOOCV diagnostics of the training cohort consisting of healthy donors (healthy) and patients with GBM, NSCLC, PAAD,

CRC, BrCa, and HBC. Indicated are detection rates as compared to the actual classes in percentages.

(E) Confusion matrix of multiclass SVM algorithm in a validation cohort (n = 108). Indicated are sample numbers and detection rates in percentages. Genes,

number of mRNAs included in training of the SVM algorithm.

See also Figure S2 and Tables S4, S5, and S6.
all-in-one biosource to broadly scan for molecular traces of

cancer in general and provide a strong indication on tumor

type and molecular subclass. This includes patients with local-

ized disease possibly allowing for targeted diagnostic confir-

mation using routine clinical diagnostics for each particular

tumor type.
Ca
Since the discovery of circulating tumor material in blood

of patients with cancer (Leon et al., 1977) and the recognition

of the clinical utility of blood-based liquid biopsies, a wealth of

studies has assessed the use of blood for cancer diagnostics,

prognostication and treatment monitoring (Alix-Panabières

et al., 2012; Bidard et al., 2014; Crowley et al., 2013; Haber
ncer Cell 28, 666–676, November 9, 2015 ª2015 The Authors 671
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Figure 3. Tumor-Educated Platelet mRNA Profiles for Molecular Pathway Diagnostics

Cross tables of SVM/LOOCV diagnostics with the molecular markers KRAS in (A) CRC, (B) PAAD, and (C) NSCLC patients, (D) KRAS in the combined cohort of

patients with either CRC, PAAD, NSCLC, or HBC, (E) EGFR and (F) MET in NSCLC patients, (G) PIK3CAmutations, (H) HER2-amplification, and (I) triple negative

status in BrCa patients. Genes, number of mRNAs included in training of the SVM algorithm. See also Tables S4 and S7.
and Velculescu, 2014). By development of highly sensitive

targeted detection methods, such as targeted deep sequencing

(Newman et al., 2014), droplet digital PCR (Bettegowda et al.,

2014), and allele-specific PCR (Maheswaran et al., 2008; Thierry

et al., 2014), the utility and applicability of liquid biopsies for clin-

ical implementation has accelerated. These advances previously

allowed for a pan-cancer comparison of various biosources and

revealed that in >75% of cancers, including advanced stage

pancreas, colorectal, breast, and ovarian cancer, cell-free DNA

is detectable although detection rates are dependent on the

grade of the tumor and depth of analysis (Bettegowda et al.,

2014). Here, we show that the platelet RNA profiles are affected

in nearly all cancer patients, regardless of the type of tumor,

although the abundance of tumor-associated RNAs seems

variable among cancer patients. In addition, surrogate RNA

onco-signatures of tissue biomarkers, also in 88% of localized

KRAS mutant cancer patients as measured by the tumor-spe-

cific and pan-cancer SVM/LOOCV procedures, are readily

available from a minute amount (100–500 pg) of platelet RNA.

As whole blood can be stored up to 48 hr on room temperature

prior to isolation of the platelet pellet, while maintaining high-

quality RNA and the dominant cancer RNA signatures, TEPs

can be more readily implemented in daily clinical laboratory

practice and could potentially be shipped prior to further blood

sample processing.
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Blood platelets are widely involved in tumor growth and can-

cer progression (Gay and Felding-Habermann, 2011). Platelets

sequester solubilized tumor-associated proteins (Klement

et al., 2009) and spliced and unspliced mRNAs (Calverley

et al., 2010; Nilsson et al., 2011), whereas platelets do also

directly interact with tumor cells (Labelle et al., 2011), neutrophils

(Sreeramkumar et al., 2014), circulating NK-cells (Palumbo et al.,

2005; Placke et al., 2012), and circulating tumor cells (Ting et al.,

2014; Yu et al., 2013). Interestingly, in vivo experiments have

revealed breast cancer-mediated systemic instigation by sup-

plying circulating platelets with pro-inflammatory and pro-angio-

genic proteins, supporting outgrowth of dormant metastatic foci

(Kuznetsov et al., 2012). Using a gene ontology methodology,

CAGE, we correlated TEP-cancer signatures with publicly avail-

able curated datasets. Indeed, we identified widespread correla-

tions with cancer tissues, hypoxia, platelet-signatures, and

cytoskeleton, possibly reflecting the ‘‘alert’’ and pro-tumorigenic

state of TEPs. We observed strong negative correlations with

RNAs implicated in RNA translation, T cell immunity, and inter-

leukin-signaling, implying diminished needs of TEPs for RNAs

involved in these biological processes or orchestrated transla-

tion of these RNAs to proteins (Denis et al., 2005). We observed

that the tumor-specific educational programs in TEPs are pre-

dominantly influenced by tumor type and, to a lesser extent, by

tumor progression and metastases. Although we were not able
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Figure 4. Organ-Focused TEP-Based Can-

cer Diagnostics

SVM/LOOCVdiagnostics of healthy donors (n=55)

and patients with primary or metastatic tumor

burden in the lung (n = 99; totaling 154 tests), brain

(n = 62; totaling 114 tests), or liver (n = 72; totaling

127 tests), to determine thepresenceor absenceof

cancer, with cancer subclassified as primary or

metastatic tumor, in case of metastases the iden-

tified organ of origin, and the correctly identified

molecular markers. Of note, at the exam level of

mutational subtypes some samples were included

in multiple classifiers (i.e., KRAS, EGFR, PIK3CA,

HER2-amplification,MET-overexpression, or triple

negative status), explaining the higher number in

mutational tests than the total number of included

samples. TP, true positive; FP, false positive; FN,

false negative; TN, true negative. Indicated are

sample numbers and detection rates in percent-

ages.
to measure significant differences between non-metastasized

and metastasized tumors, we do not exclude that the use of

larger sample sets could allow for the generation of SVM algo-

rithms that do have the power to discriminate between certain

stages of cancer, including those with in situ carcinomas and

even pre-malignant lesions. In addition, different molecular

tumor subtypes (e.g., HER2-amplified versus wild-type BrCa)

result in different effects on the platelet profiles, possibly caused

by different ‘‘educational’’ stimuli generated by the different

molecular tumor subtypes (Koboldt et al., 2012). Altogether,

the RNA content of platelets in patients with cancer is dependent

on the transcriptional state of the bone-marrow megakaryocyte

(Calverley et al., 2010; McAllister and Weinberg, 2014), comple-

mented by sequestration of spliced RNA (Nilsson et al., 2011),

release of RNA (Clancy and Freedman, 2014; Kirschbaum

et al., 2015; Rak and Guha, 2012; Risitano et al., 2012), and

possibly queue-specific pre-mRNA splicing during platelet

circulation. Partial or complete normalization of the platelet pro-

files following successful treatment of the tumor would enable

TEP-based disease recurrence monitoring, requiring the anal-

ysis of follow-up platelet samples. Future studies will be required

to address the tumor-specific ‘‘educated’’ profiles on both an

(small non-coding) RNA (Laffont et al., 2013; Landry et al.,

2009; Leidinger et al., 2014; Lu et al., 2005) and protein (Burkhart

et al., 2014; Geiger et al., 2013; Klement et al., 2009) level and

determine the ability of gene ontology, blood-based cancer

classification.

In conclusion, we provide robust evidence for the clinical

relevance of blood platelets for liquid biopsy-based molecular

diagnostics in patients with several types of cancer. Further

validation is warranted to determine the potential of surrogate

TEP profiles for blood-based companion diagnostics, therapy

selection, longitudinal monitoring, and disease recurrence moni-

toring. In addition, we expect the self-learning algorithms to

further improve by including significantly more samples. For

this approach, isolation of the platelet fraction from whole blood

should be performed within 48 hr after blood withdrawal, the

platelet fraction can subsequently be frozen for cancer diag-

nosis. Also, future studies should address causes and antici-
Ca
pated risks of outlier samples identified in this study, such as

healthy donors classified as cancer patients. Systemic factors

such as chronic or transient inflammatory diseases, or cardio-

vascular events and other non-cancerous diseases may also

influence the platelet mRNA profile and require evaluation in

follow-up studies, possibly also including individuals predis-

posed for cancer.
EXPERIMENTAL PROCEDURES

Sample Collection and Study Oversight

Blood was drawn from all patients and healthy donors at the VU University

Medical Center, Amsterdam, the Netherlands, or the Massachusetts General

Hospital (MGH), Boston, in 6 ml purple-cap BD Vacutainers containing the

anti-coagulant EDTA. To minimize effects of long-term storage of platelets at

room temperature and loss of platelet RNA quality and quantity, samples

were processed within 48 hr after blood collection. Blood samples of patients

were collected pre-operatively (GBM) or during follow-up in the outpatient

clinic (CRC, NSCLC, PAAD, BrCa, HBC). Nine cancer patient samples

included were follow-up samples of the same patient collected within months

of the first blood collection (five samples in NSCLC, two samples in PAAD, and

one sample in BrCa andHBC). Localized disease cancer patients were defined

as cancer patients without knownmetastasis from the primary tumor to distant

organ(s), as noticed by the physician or additional imaging and/or pathological

tests. Patients with glioblastoma, a tumor that metastasizes rarely, were

regarded as late-stage (high-grade) cancers. Samples for both training and

validation cohort were collected and processed similarly and simultaneously.

Tumor tissues of patients were analyzed for the presence of genetic alterations

by tissue DNA sequencing, including next-generation sequencing SNaPShot,

assessing 39 genes over 152 exons with an average sequencing coverage of

>500, including KRAS, EGFR, and PIK3CA (Dias-Santagata et al., 2010).

Assessment of MET overexpression in non-small cell lung cancer FFPE slides

was performed by immunohistochemistry (anti-Total cMET SP44 Rabit mono-

clonal antibody (mAb), Ventana, or the A2H2-3 anti-human MET mAb (Gruver

et al., 2014)). The estrogen and progesterone status of BrCa tumor tissues and

the HER2 amplification of BrCa tumor tissue were determined using immuno-

histochemistry and fluorescent in situ hybridization, respectively, and scored

according to the routine clinical diagnostics protocol at the MGH, Boston.

Healthy donors were at the moment of blood collection, or previously, not

diagnosedwith cancer. This study was conducted in accordancewith the prin-

ciples of the Declaration of Helsinki. Approval was obtained from the institu-

tional review board and the ethics committee at each hospital, and informed

consent was obtained from all subjects. Clinical follow-up of healthy donors
ncer Cell 28, 666–676, November 9, 2015 ª2015 The Authors 673



is not available due to anonymization of these samples according to the ethical

rules of the hospitals.

Support Vector Machine Classifier

For binary (pan-cancer) and multiclass sample classification, a support vector

machine (SVM) algorithm was used implemented by the e1071 R-package. In

principal, the SVM algorithm determines the location of all samples in a high-

dimensional space, of which each axis represents a transcript included and the

sample expression level of a particular transcript determines the location on

the axis. During the training process, the SVM algorithm draws a hyperplane

best separating two classes, based on the distance of the closest sample of

each class to the hyperplane. The different sample classes have to be posi-

tioned at each side of the hyperplane. Following, a test sample with masked

class identity is positioned in the high-dimensional space and its class is ‘‘pre-

dicted’’ by the distance of the particular sample to the constructed hyper-

planes. For the multiclass SVM classification algorithm, a One-Versus-One

(OVO) approach was used. Here, each class is compared to all other individual

classes and thus the SVM algorithm defines multiple hyperplanes. To cross

validate the algorithm for all samples in the training cohort, the SVM algorithm

was trained by all samples in the training cohort minus one, while the remaining

sample was used for (blind) classification. This process was repeated for all

samples until each sample was predicted once (leave-one-out cross-valida-

tion [LOOCV] procedure). The percentage of correct predictions was reported

as the classifier’s accuracy. To assess the predictive value of the SVM algo-

rithm on an independent dataset, which is not previously involved in the

SVM training process and thus entirely new for the algorithm, the algorithm

was trained on the training dataset, all SVM parameters were fixed, and the

samples belonging to the validation cohort were predicted. In addition, an

iterative (1003) process was performed in which samples of the dataset

were randomly subsampled in a training and validation set (ratio training:

validation = 60:40 (all cancer classes) or 70:30 (healthy individuals), per sample

class samples were subsampled in this ratio according the total size of the

individual classes (class-proportional, stratified subsampling)) and mean

accuracy of all individual classifications was reported. Internal performance

of the SVM algorithm could be improved by enabling the SVM tuning function,

which implies optimal determination of parameters of the SVM algorithm

(gamma, cost) by randomly subsampling the dataset used for training (‘‘inter-

nal cross-validation’’) of the algorithm. Prior to construction of the SVM algo-

rithm, transcripts with low expression (<5 reads in all samples) were excluded

and read counts were normalized as described in the Supplemental Experi-

mental Procedures (differential expression of transcripts). For each individual

prediction, feature selection (identification of transcripts with notable influence

on the predictive performance) was performed by ANOVA testing for differ-

ences, yielding classifier-specific input gene lists (Table S4). mRNAs with a

LogCPM >3 and a p value corrected for multiple hypothesis testing (FDR) of

<0.95 (pan-cancer KRAS), <0.90 (CRC, PAAD, and NSCLC KRAS and

HER2-amplified BrCa), <0.80 (PIK3CA BrCa), <0.70 (NSCLC EGFR), <0.50

(triple negative-status BrCa), <0.30 (MET-overexpression NSCLC), <0.10

(CRC/PAAD/HBC), <0.0001 (multiclass tumor type and individual tumor

class-healthy), and <0.00005 (pan-cancer/healthy-cancer) were included.

Internal SVM tuning was enabled to improve predictive performance. All

individual tumor class versus healthy donors and molecular pathway SVMs

algorithms were tuned by a (default) 10-fold internal cross-validation. The

pan-cancer/healthy-cancer, multiclass tumor type, and the gastro-intestinal

CRC/PAAD/HBCSVM algorithms were tuned by a 2-fold internal cross-valida-

tion. The training cohort of the pan-cancer and multiclass tumor type, the indi-

vidual tumor classes versus healthy donor tests, the gastro-intestinal CRC/

PAAD/HBC test, and all molecular pathway tests were analyzed using a

LOOCV approach. To increase classification specificity in the multiclass tumor

type test, additional binary and multiclass classifiers algorithms were devel-

oped, namely the pan-cancer test (Figures 1F and 1G), HBC-CRC, HBC-

PAAD, BrCa-CRC, BrCa-CRC-NSCLC, and BrCa-HD-GBM-NSCLC tests,

evaluated in both the training and validation cohort separately, which were

applied sequentially to the multiclass tumor type test. Samples predicted as

either condition of the supplemental classifier were all re-evaluated using the

filter. The latter tumor class classification was regarded as the follow-up clas-

sification. In addition, samples predicted as the all-female breast cancer class,

but of male origin as determined by the gender-specific RNAs (Figure S2B),
674 Cancer Cell 28, 666–676, November 9, 2015 ª2015 The Authors
and samples predicted as healthy, while in the pan-cancer test predicted as

cancer, were automatically assigned to the class with second predictive

strength, as supplemented by the SVM output. To determine the accuracy

rates of the classifiers that can be obtained by chance, class labels of the sam-

ples used by the SVM algorithm for training were randomly permutated

(‘‘random classifiers’’). This process was performed for 100 LOOCV classifica-

tion procedures. P values were determined by counting the overall random

classifier LOOCV-classification accuracies that yielded similar or higher total

accuracy rates compared to the observed total accuracy rate. The predictive

strength was also used as input to generate a receiver operating curve (ROC)

as implemented in the R-package pROC (version 1.7.3). Organ exams were

calculated based on the compiled results of the SVM/LOOCV of the training

cohort and subsequent prediction of the validation cohort, spanning in total

283 samples. The pan-cancer binary SVM, the multiclass SVM, and all molec-

ular pathway SVM algorithms were processed individually. Samples included

for each organ exam (all healthy donors, all samples with primary tumor in a

particular organ, and all samples with known metastases to the particular or-

gan) were selected. Only samples with correct predictions at a particular level

of the organ exam were passed to the next level for evaluation. Counts of cor-

rect and false predictions in the ‘‘mutational subtypes’’-stage were determined

from all individual molecular pathway SVM algorithms in which the selected

samples were included.

Correlative Analysis of Gene Set Enrichment Analysis

Correlative Analyses of Gene Set Enrichment (CAGE) analysis was performed

in the online platform R2 (R2.amc.nl). To enable analyses of RNA-sequencing

read counts in a micro-array-based statistical platform, counts per million

normalized read counts were voom-transformed, using sequencing batch

and sample group as variables, and uploaded in the R2-environment. Highly

correlating mRNAs (FDR < 0.01) of a tumor type or all tumor classes combined

(pan-cancer) compared to all other classes was used to generate a class-

specific gene signature. These individual signatures were subsequently corre-

lated with 3,875 curated gene sets as provided by the Broad Institute (http://

www.broadinstitute.org/gsea). Top 25 ranking correlations were manually

annotated by two independent researchers (M.G.B. and B.A.W.) and shared

annotated terms were after agreement of both researchers reported.

ACCESSION NUMBERS

The accession number for the raw sequencing data reported in this paper is
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