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Abstract

The minimal subset of genes required for cellular growth, survival and viability of an organism are classified as essential
genes. Knowledge of essential genes gives insight into the core structure and functioning of a cell. This might lead to more effi-
cient antimicrobial drug discovery, to elucidation of the correlations between genotype and phenotype, and a better under-
standing of the minimal requirements for a (synthetic) cell. Traditionally, constructing a catalog of essential genes for a given
microbe involved costly and time-consuming laboratory experiments. While experimental methods have produced abundant
gene essentiality data for model organisms like Escherichia coli and Bacillus subtilis, the knowledge generated cannot automatic-
ally be extrapolated to predict essential genes in all bacteria. In addition, essential genes identified in the laboratory are by def-
inition ‘conditionally essential’, as they are essential under the specified experimental conditions: these might not resemble
conditions in the microorganisms’ natural habitat(s). Also, large-scale experimental assaying for essential genes is not always
feasible because of the time investment required to setup these assays. The ability to rapidly and precisely identify essential
genes in silico is therefore important and has great potential for applications in medicine, biotechnology and basic biological re-
search. Here, we review the advances made in the use of computational methods to predict microbial gene essentiality, per-
spectives for the future of these techniques and the possible practical applications of essential genes.
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Introduction

Inactivation of essential genes in an otherwise wild type organ-
ism results in lethality. These genes therefore represent the
foundation of cellular life [1, 2]. Identifying essential genes is
therefore valuable and important in biology, industrial

bioprocessing and medicine. For example, it could aid in com-
prehending the basic principles behind how cells function [3],
and the complex relations between genotype and phenotype [4],
which are fundamental questions in biology and genetics.
Understanding the function of essential genes is prerequisite to
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discovering the core components of a minimal cell [5], poten-
tially facilitating reengineering of microorganisms [6] with
desired phenotypical traits for research and biotechnology.
Additionally, because essential genes confer lethal phenotypes
to microorganisms when deleted or inactivated, they form
promising drug targets on which potent antibiotics could be de-
veloped [7, 8]. Knowledge of gene essentiality has been applied
in discovering candidate ‘human disease genes’ (genes with dis-
ease-associated alleles), their mode of inheritance and contribu-
tion to developmental abnormalities or disease [9].

Essential genes have been identified in a number of model
organisms [10–15]. However, as recently reviewed [2], several
studies querying gene essentiality in the same organisms
under similar experimental conditions have produced differ-
ent catalogs of essential genes. This lack of consensus makes
it challenging to determine gene essentiality in model organ-
isms, let alone in non-model or poorly researched organisms.
The differences are possibly a result of ‘conditional or context-
ual’ essentiality: the essentiality of a gene depends on its con-
text, which might be a defined growth media or conditions,
genetic context or a particular developmental stage of a micro-
organism [16]. Moreover, the longer timespans required for
conducting experiments also give enough time for isozymes to
be upregulated, significantly affecting essentiality prediction.
Most studies have consistently deciphered essential genes
under rich media conditions (Supplementary Table 1); in other
words, in the richness of a full complement of vital nutrients
and devoid of environmental stress [8, 11, 13, 14, 17]. Although
laboratory rich media conditions are undoubtedly not a proxy
of conditions in a microorganism’s natural niche, essential
genes determined under these conditions provide a near-
complete representation of genes needed in most in situ niches
[11]. Therefore, for the purpose of this review, we define the
‘essentiality’ of a gene as its indispensability under rich media
conditions.

Gene essentiality studies have advanced significantly in the
past few years owing to a plethora of in vitro, in vivo (laboratory)
and in silico methods. Laboratory methods assess gene essenti-
ality by observing lethal phenotypes ensuing from random or
systematic gene inactivation using transposon mutagenesis
[12], gene knockouts [11, 18], genetic complementation [19] and
RNA interference [20]. However, genomic-scale discovery of es-
sential genes using laboratory techniques is often complex,
costly, time-consuming and is contextual because it can be
influenced by growth conditions as well as genetic context [16].
Therefore, to establish accurate results, a consensus of pre-
dicted essential genes across multiple laboratories is required.
To circumvent these complexities, in silico techniques have been
developed to predict essential genes [21–23]. Computational
methods have gained popularity over the past years for numer-
ous reasons. First, computational methods are less time-
consuming, and they benefit from knowledge obtained from
other organisms. The essential genes identified from several
microorganisms provide seed information for training gene es-
sentiality predictors for less-researched organisms. Second, the
abundance of ‘omics’ data from genomic sequencing projects
provides opportunities for microbial functional genomics.
Finally, bioinformatics has greatly developed over recent years,
significantly advancing tools available to discover essential
genes in sequenced genomes. It is noteworthy that computa-
tional methods cannot (yet) predict conditional essentiality but
rather predict whether a gene is essential.

In this review, we focus on advances made in genome-wide
microbial gene essentiality prediction, particularly using

computational methods. We discuss the fundamental prin-
ciples of computational gene essentiality prediction tools, and
provide an opinion on the choice of method. We also explore
the possible practical applications of essential genes and give a
perspective into the future of computational methods in pre-
dicting gene essentiality.

Computational techniques for gene
essentiality prediction

Many in silico prediction methods have been established to
aid in post hoc analysis of experimental readouts, or mining
‘omics’ data for encoded signatures to identify essential
genes. Below, we discuss approaches commonly used to pre-
dict gene essentiality (Figure 1). They commonly analyze in-
trinsic genomic features, such as localization signals, codon
adaptation indices, guanine cytosine (GC) content, gene
orthologs, rate of gene evolution and phyletic gene retention
[21, 22, 24]. Other integrated approaches such as network
analysis [3, 25] and machine learning (ML) on combinations
of features and approaches [24, 26] are also discussed.

Transposon sequencing methods

Transposons have been widely used in techniques like signa-
ture-tagged mutagenesis [27] to manipulate genes in various
microorganisms [12, 28, 29], albeit with low resolution. Recently
however, various high-throughput techniques including Tn-seq
[15], INSeq [30], HITS [31], TraDIS [32] and variants thereof have
harnessed the power of traditional transposon mutagenesis,
next-generation sequencing (NGS) and post hoc in silico tracking
of the insertions, to explore gene function and higher-order
genome organization [14].

Transposon sequencing and analysis (TSA) techniques com-
monly rely on the construction of transposon mutant libraries
in which nonessential genes contain transposon insertions, fol-
lowed by growth of the mutant libraries in defined in vitro or
in vivo (e.g. host infection models) conditions. The relative fre-
quency of each mutant in the population at the beginning and
the end of the experiment is then determined by means of NGS
at the transposon junctions. Genes that are essential for growth
under a particular condition will not accumulate transposon in-
sertions. From these data, the fitness of every gene to the ex-
perimental conditions to which the transposon libraries were
subjected is quantified [15, 30–32]. The relatedness and differ-
ences between various TSA techniques have comprehensively
been reviewed [33, 34]. Their main advantages are the high lev-
els of accuracy and sensitivity in predicting gene essentiality,
and their ability to be adapted for analyses in a wide range of
species. By using certain regimes to store mutant libraries, it is
also possible to obtain strains with desired gene knockout(s). In
addition, the sequencing protocols used generate short se-
quence reads of millions of DNA molecules simultaneously,
allowing whole genomes to be investigated in a single experi-
ment. Nonetheless, TSA techniques are dependent on strong
molecular amenability of an organism to allow creation of satu-
rated mutant libraries and accurate deep sequencing [8], mak-
ing them expensive for routine use. For this reason,
computational approaches like homology mapping and ML,
which may rely solely on computer-mined essentiality deter-
minants, would be desirable (Figure 1).
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Homology mapping models

The term ‘homologs’ refers to two or more genes related by des-
cent from a common ancestral DNA sequence. This relationship
may arise between genes separated by speciation (orthologs) or
genetic duplication (paralogs). Prediction of essential genes
based on sequence homology, especially to known essential
genes, is arguably the simplest and earliest used method in the
genomic era. Shortly after the availability of the first two com-
pletely sequenced bacterial genomes, homology models were
used to predict gene essentiality [35], and to establish the
minimal genome [17] in Haemophilus influenzae and Mycoplasma
genitalium. These models rely on heuristic algorithms embedded
in sequence alignment programs like Muscle [36], Clustal [37–
39], T-Coffee [40] and database search tools like BLAST, to com-
pare query sequences with a library or database of subject se-
quences whose essentiality is known. Sequences that are
similar above defined percentage identity, ‘e-value’ threshold,
and length coverage are grouped as homologs. Homology mod-
els show high confidence levels owing to these metric
thresholds.

Essential genes evolve slowly and tend to be more conserved
than nonessential genes in bacteria [41]. Selection on essential
genes is more stringent than on nonessential genes, increasing
the average likelihood that orthologs of essential genes are con-
served in bacteria [1, 42] and almost certainly essential. This

allows extrapolation of essentiality from one member to an en-
tire group of homologous genes. Many bacterial genomes are
publicly available from genome sequencing projects (Figure 2).
Various homology prediction tools and databases that collate
homologous proteins (Supplementary Table 2) are also publicly
available. This has greatly simplified determining genes that
share ancestry, making homology models attractive for predict-
ing gene essentiality based solely on genomic sequences.

However, they have various limitations. First, they are limited
to conserved orthologs between species, which often account for
a small portion of the genome [43]. Moreover, because the model
only considers computationally determined orthologous genes
based on sequence similarity, highly evolving genes may be over-
looked, consequently leading to underestimation of essential
genes in a genome [5]. Second, orthologs, especially in distantly
related species, often show variations in gene regulations,
posttranslational protein modification, divergence in cellular
pathways, redundancies in processes, gene duplications and
other niche specializations [44], leading to potential multiplicity
in relative gene essentiality. For example, Hutchison and col-
leagues [28] successfully used transposon insertions to disrupt
some of the 256 essential genes predicted using homology [35],
suggesting that they are possibly nonessential. Yu et al. also iden-
tified 787 nonessential Streptococcus sanguinis genes, which had
orthologs in all 48 Streptococcus genomes they analyzed [45].

Figure 1. Summary of the computational methods used in predicting essential genes.

Notes. #The ability to identify conditionally essential genes is usually specific for the training data set. *Prediction of conditional essentiality is
influenced by the quality of the input model and objective function among other factors. **In homology models, the query and subject se-
quences should have maintained enough closeness throughout evolution. In ML models, the study subjects should be close enough (e.g. same
or close species) to the training set, hence disadvantageous while dealing with distantly related species.
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Additionally, the gene encoding alanyl-tRNA synthetase (alaS) is
essential in Escherichia coli but not in Pseudomonas aeruginosa:
probably because of functional redundancy caused by a paralog,
PA2106, in Pseudomonas [26]. For this reason, absence of paralogs
is generally thought to be a strong indicator of essentiality in
cross-species homology analyses [8, 46]. Although it is more
straightforward to predict essentiality for single copy genes, par-
alogous genes could still be essential: deletion of all copies of a
duplicated gene that encodes an essential function should lead
to lethality. Finally, notwithstanding the tendency of essential
genes to be highly conserved, genes conserved across species are
not always essential. Indeed, in model organisms, only <25% of
all conserved genes have experimentally been validated to be es-
sential [29, 47], indicating that similarity of sequences does not
always warrant extrapolation of the essentiality annotation
among homologs.

Protein network topology models

Two or more proteins can establish physical contact (protein–
protein interactions; PPIs) as a result of biochemical events and/
or electrostatic forces. These interactions are mainly deter-
mined from quantum chemistry, molecular dynamics, signal
transduction and biochemistry assays among others [48–51]
and in certain cases can be used to predict essentiality. The
abundance of experimental data generated from small-scale
analyses and high-throughput procedures has assisted in defin-
ing PPIs within the interactome (all possible molecular inter-
actions within a cell). Large-scale exploration of the topological
properties of these networks is important in understanding the
organizational and functional principles of individual proteins
in biological pathways [25], and consequently their essentiality.
Various descriptors for centrality of a node in a network have
been effectively applied to identify essential proteins in PPIs [25,
52, 53]. For example, deletion of a hub (highly linked) protein is
more likely to lethally perturb the network than deletion of a
non-hub (peripheral) protein [54]. It is therefore widely agreed
that hub proteins evolve slowly and are most likely to be

essential [53]. However, prediction of gene essentiality in less-
studied genomes using protein networks is expensive and ardu-
ous, primarily because of the limitations of experimental data
(containing missing values, false positives, false negatives or
differing between replicates—suggesting that the data are erro-
neous, incomplete or both) necessary to build and characterize
PPIs [55], and the complexities in computational inference of PPI
networks [56]. Their accuracy also depends on the completeness
of the network, and they cannot be used to predict conditional
essentiality. Moreover, proteins that lack known interactions
with other proteins are completely disregarded in PPI models.

Metabolic network reconstruction and
simulation models

While studying PPI networks gives a basic understanding of
gene and protein interactions, they are limited in elucidating
the complex and dynamic interactions among molecular com-
ponents of cellular networks at genome scale. Whole-genome
metabolic network reconstruction under constraint-based re-
construction and analysis scaffold [57, 58] allows for an in-
depth insight into the metabolic capabilities of an organism,
particularly in correlating the genome with molecular physi-
ology [59]. These methods are based on the following funda-
mental concepts: (1) the burden of physicochemical constraints
to limit quantifiable phenotypes, (2) identification and algebraic
account of evolutionary selective pressures and (3) a genome-
scale perception of cell metabolism that accounts for all cellular
metabolic gene products [60]. Metabolic networks for many
microorganisms have been reconstructed [61] or can be recon-
structed and, to some extent, curated using automated systems
such as model SEED [62], RAST [63] and BiGG [64]. Also, by inte-
grating homology modeling, genome-scale models that show
substantial predictive power in auxotrophy and essentiality pre-
dictions have been created for multiple strains of lesser studied
organisms by starting with the genome-scale model of a well-
studied organism like Escherichia coli K12 MG1655 [65].
Nonetheless, significant efforts are required to manually curate
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Figure 2. The genome project coverage for bacteria.

Approximately 39 442 bacterial genome projects are documented according to Genome OnLine Database (http://www.genomesonline.org) as of
30 June 2015.
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and ascertain the reliability of automatically generated meta-
bolic models for improving their reliability for gene essentiality
prediction. It is noteworthy that following the immense success
in metabolic networks reconstruction, significant efforts are
being made to model transcriptional networks [66], signaling
networks [67] and computing of protein expressions needed to
perform metabolism and proteome synthesis [68]. These efforts
are providing crucial input to extend gene essentiality predic-
tion using network reconstruction modeling from metabolism
to incorporate other non-metabolic cellular processes.

Flux balance analysis (FBA) is the most commonly used con-
strained-based approach for in silico prediction of microbial
phenotypes from metabolic models [69, 70]. It integrates bio-
chemical constraints with the stoichiometry of metabolic and
transport reactions, their reversibility and subcellular localiza-
tion, thereby reducing the intricacy of potential dynamic states
to predict metabolite fluxes at steady state. FBA has been used
to simulate gene knockout and evaluate the associated lethality
on the system, enabling the identification of essential genes
[70]. For a given objective function and each in silico gene dele-
tion, essentiality is evaluated by calculating the optimal produc-
tion of defined biosynthetic precursors: identified auxotrophic
requirements and impaired functions (indicating simulated
gene knockouts, which inhibit in silico production of precursors
contained within the objective function, e.g. alanine production)
are classified as essential for the objective function. FBA relies
on stoichiometric characteristics and does not require kinetic
parameters (which are often difficult to obtain), allowing it to be
used on any fully sequenced and annotated organism [69].
Nevertheless, FBA has important limitations: first, while FBA
could be integrated with modal analyses at steady state, it can-
not be used to investigate genome-scale metabolic reactions
under transient dynamic states without including data on en-
zyme kinetics [71]. Second, FBA cannot be used to directly pre-
dict immediate suboptimal flux states and metabolite
concentration following a genetic perturbation. Organisms nat-
urally adapt to perturbations by readjusting various regulatory
mechanisms, enzyme expressions and fluxes to bypass the ef-
fects. Such immediate changes and the effect of regulatory
mechanisms cannot be explicitly specified in FBA. Some of
these limitations have been addressed in variants of FBA such
as MOMA [72], ROOM [73], MEA [74] and dynamic FBA [71].
Finally, FBA sometimes disagrees with experimental data; these
discrepancies could be addressed by the addition of enzyme re-
actions through ‘gap filling’ [69, 75].

Overall, given the substantial input required and the inabil-
ity to provide direct readout for conditionally essential genes,
metabolic network reconstruction models are undesirable first-
choice methods for exploring gene essentiality in novel
genomes.

Integrated features ML models

Integrative ML models rely on constructing and training a clas-
sifier for predicting gene essentiality. They integrate multiple
characteristics or features encoded in an organism’s genomic
sequence, which are known to be associated with essentiality
[26, 76]. The classifiers are trained and tested using well-
annotated genomes, then applied to identify putatively essen-
tial genes in other (novel) genomes [23–25]. The ever-increasing
number of experimentally determined essential genes has im-
proved the understanding of distinguishing properties of essen-
tial genes. As a result, it is possible to easily select features
toward improving the predictive accuracy of ML models,

making them less laborious. Predictive accuracy of ML classi-
fiers resulting from a combination of different features may
vary, but no specific combinations have been confirmed to be
optimally robust. The reliability of ML models however depends
on the closeness of the training data set to the study data set.
Normally, ML models may be prone to overfitting, potentially
allowing irrelevant information or noise to be presented as valid
predictions. Domingos and colleagues reviewed overfitting as
well as other sources of errors in ML and the possible methods
of combating them [77]. These models may not be suitable for
predicting conditional essentiality. Various experimental, gen-
omic and protein features have been used to train and build
classifier for genes essentiality prediction in different studies
(Table 1). However, no single study has reported use of all the
features in a single predictive model to predict gene essentiality.
The features are often used selectively based on their accuracy
and whether they can patently be determined for the organism
under study.

Applications of essential genes
Discovering potential drug targets

Several diseases are becoming increasingly difficult to control
because of the emergence of drug-resistant pathogenic strains,
necessitating a search for new antimicrobials. Identification
and prioritization of drug targets in novel pathogens is the ini-
tial and one of the most important steps during drug discovery
(Figure 3). Understanding the functions of the target proteins,
and consequently the mechanisms of action (MOA) are import-
ant to design putative inhibitors. As such, drug target discovery
sets a foundation for developing drugs with desired therapeutic
properties. Inhibiting essential proteins will confer bacterio-
static or bactericidal effects. They therefore form promising tar-
gets for discovering potent antibiotics against novel pathogens
[7]. In our recent study, using a high-throughput genome-wide
screening approach, we identified essential genes in bacterial
respiratory pathogens [8]. From these essential genes, add-
itional criteria were applied to prioritize, and experimentally
validate some potential target proteins and pathways that can
be modulated by bioactive agents.

Despite the intensifying research efforts, adoption of the bio-
medical discoveries into developmental stages of drug discov-
ery, and subsequently into marketable products has been
dismal. Indeed, over 80% of all potential products going into the
drug development pipeline never make it to the market [85].
The problem might partly be because of the lack of comprehen-
sive biochemical knowledge of the drug targets and the MOA of
their ‘lead compound’ inhibitors, such that unexpected biolo-
gical effects are not fully assessed before clinical trials [86].
Moreover, taking a drug through research and development to
clinical approval requires immense investments in both time
and cost further exacerbating the problem. In fact, only a hand-
ful of therapeutic molecules have been approved in recent years
by the regulatory agencies in the USA and Europe [85].

Food microbiology and industrial bioprocessing

Numerous food products, including ripened cheese, pickles,
wine, beer, bread, yoghurt and other fermented foods, owe their
production and characteristics to microorganisms [87]. These
foods are to some extent naturally preserved because of the fer-
mentation process. Concurrently, their shelf life is prolonged
significantly over that of the raw materials from which they are
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manufactured. Several biopolymers produced by microorgan-
isms are also used in the food industry [88]. In addition, ‘gener-
ally recognized as safe’ bacteria or probiotics are becoming
increasingly vital in the food industry [89]. However, micro-
organisms also constitute potential food and process contamin-
ants, and foodborne pathogens [90]. Understanding essential
genes is therefore invaluable in optimizing various facets of in-
dustrial fermentation and bioprocessing.

First, given a growth medium containing a defined carbon
source (raw product), metabolic reconstruction can be used to
predict the best processing conditions required for a given
microorganism to maximize production. The ability to evaluate
interactions between microorganisms and relevant metabolic
capabilities in new microbes also provides leads for novel and
safe starter cultures. Moreover, the knowledge gives an insight
into all (conditionally) essential metabolic pathways involved in
producing a given product and co-expressed nonessential path-
ways, which if feasible, could be inactivated to improve effi-
ciency. For example, attempts have been made in using

microbes to produce alginate, a product conventionally isolated
from farmed brown seaweed [91]. Knowledge of (conditional)
gene essentiality was used to pinpoint the interactions between
multiple microorganisms during the course of the fermentation.
To facilitate product optimization strategies, catalogs of (condi-
tionally) essential genes for specific microorganisms in specific
food products can aid in establishing biobanks and bioreposito-
ries. The biobanks can be screened for new ‘safe’ microbes with
desired phenotypic traits and predicted interactions for a given
fermentation, or to create novel fermented products.

Second, while most foodborne pathogens or food spoilage
bacteria and industrial contaminants are cleared by standard
sterilization, cooking and preservatives, including bacterial tox-
ins like nisin, studies have shown that some potentially harm-
ful microorganisms can survive these conventional food
processing methods [92, 93]. Food samples could be tested by
polymerase chain reaction for the presence of general spoiler
marker genes, indicating a possible contamination. Such track-
ing tests are significantly faster than conventional techniques.

Table 1. Features that can be used for in silico prediction of gene essentiality

Feature Rationale Reference

Gene expression profilea Genes that are not expressed under given conditions are less likely to be essential.
Co-expressed genes are often involved in the same pathway or similar cellular function.
Interacting proteins are frequently co-expressed.

[78]

Protein localization and biolo-
gical processes [(enrichment
of Gene Ontology (GO)]b

Essential proteins are enriched in, but not exclusive to the cytoplasm: compared with
essential genes, significantly higher proportions of nonessential genes are located in
the cytoplasmic membrane, periplasm, outer membrane, cell wall and extracellularly.

GO term transcriptional regulation annotations are enriched in essential genes.

[21, 79]

Functional domains The functional units of proteins are domains, most of which are highly conserved in di-
verse genera.

[80, 81]

Total upstream gene sizec Genes with larger upstream sizes (promoter regions) are significantly underrepresented
in indispensable genes.

Genes regulated by multiple transcriptional regulators are likely to have larger up-
stream regions to house the various cis-regulatory elements.

Genes with more complex regulation are generally dispensable.

[3, 21, 42, 82]

Phyletic retention measured Essentiality of a gene is extrapolated if the annotated function of that gene can be de-
tected in different genera as opposed to sequence similarity.

Specificity increases with inclusion of diverse genera in the analysis.

[21, 45]

GC content Commonly used to identify genes that are essential under high temperature selection.
The DNA double helix is stabilized primarily by hydrogen bonds between nucleotides

and base-stacking interactions among aromatic nucleobases: the GC pair contains
three hydrogen bonds, whereas the adenine thymine pairs contain two.

DNA with high GC content is believed to be more robust and stable.

[83]

Codon usage The probability of a deleterious substitution in essential proteins is expected to be negli-
gible, resulting in lower nonsynonymous substitution rates.

[41]

Orthology and paralogy In bacteria, essential genes are generally more conserved across species (orthologs)
than nonessential genes.

Duplicated genes within a genome (paralogs) are also less likely to be essential because
the duplicate gene serves as a backup and can replace the original copy. Inactivation
of both copies may however result to lethality.

[41, 46]

Protein connectivity Highly connected proteins in a network evolve slowly and are more likely to be essen-
tial; see PPI networks.

[53, 54]

Strand bias Essential genes tend to be encoded on the leading strand of the circular chromosome. [84]

aAn organism’s genetic code is interpreted by gene expression into functional gene products: Properties of gene expression give rise to a phenotype, often expressed by

synthesis of proteins that act as catalytic enzymes in specific metabolic pathways, or control the organism s physical traits [102].
bEssential functional proteins domains have also been identified and used to predict gene essentiality [80, 81].
cThe connection between regulation complexity, intergenic distance, and gene essentiality has been shown in Drosophila melanogaster and Caenorrhabditis elegans [82].

Since transcription factor binding sites in the promoter region are discovered using laborious experimental methods, the possibility of using easy-to-determine

upstream region size, as a representation for regulatory complexity in integrative models, is advantageous.
dOften confused with conservation; a measure of substitution rate, phyletic gene retention is a measure of the number of organism in which an ortholog is present [21,

45]. It is therefore assumed that most essential genes could be predicted based on the genome annotations. However, the number of essential genes is likely to

decrease with increased diversity in the genera, subsequently leading to under-prediction [45].
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Moreover, unique and essential spoiler genes could be con-
sidered as prime targets for bespoke decontamination strategies
without inversely altering the production pipeline.

Finally, genomics-based determination of gene essentiality
also generates valuable knowledge that can be used for meta-
bolic engineering, optimizing cell factories and development of
novel preservation methods, provided that these solutions are
ethically acceptable.

Bioremediation

Compared with conventional physicochemical strategies, mi-
crobes provide a safe and cheap alternative for environmental
remediation, pollution prevention and waste treatment [94].
Although highly diverse and specialized microbial populations
present in the environment efficiently eliminate many pollu-
tants, the process is normally slow, potentially permitting pol-
lutants to accumulate above hazardous levels. For example,
bioremediation of the ‘Exxon Valdez’ oil spill in Alaska using in-
digenous microflora was cost-effective and scientifically ra-
tional [95]. However, fertilizers had to be applied to accelerate
the process. The fertilizers present a separate environmental
imbalance, albeit minimal compared with the oil spill. Unlike
oil whose constituent hydrocarbons are largely biodegradable,
most recalcitrant compounds, especially heavy metals, contain
structural elements or substituents that seldom occur in nature.
Because of the rarity of these compounds, currently known
microorganisms have probably not evolved appropriate path-
ways to bioaccumulate them. While some xenobiotics are ineffi-
ciently or incompletely biotransformed, or their complex
mixtures inhibit degradation by existing pathways, for others,
derivative pathways have not been described [96]. Knowledge of
(conditional) gene essentiality can therefore aid in identifying
novel biodegradation pathways in (new) microorganisms.
Additionally, the knowledge could facilitate genetic modifica-
tion of microbes to broaden their substrates range, successfully

enhancing cleanup while producing specialized (end- or by-)
products with less ecological harm.

Genotype–phenotype correlation

Mendel’s classical observations of varied phenotypes in peas
conjured a paradigm of distinct alterations in an organism’s
DNA (genotype) that cause disruptions in gene function and
characteristic phenotype. Ever since, phenotypes have been
used to systematically discover their plausible genetic back-
ground. However, the phenotype of a given strain is not only a
product of its gene content but also its cellular regulatory mech-
anisms [97] and environmental factors [98]. Although genotype–
phenotype association studies do not factor in the effects of
regulatory mechanisms, they allow for straightforward screen-
ing of candidate genotype to phenotype relationships.
Additionally, the natural diversity and adaptive responses of
microbial strains to environmental changes could also be inves-
tigated using knowledge of conditional gene essentiality. For
example, using transcriptomic diversity between strains of
Lactococcus lactis isolated from diary and nondairy niches, the
basis of phenotypic differences observed in fermented food
products at the level of acidification properties has been investi-
gated [99].

Perspectives

Gene essentiality prediction using computational methods will
become more important with the ongoing advances in biology.
Expanding computational methods to predict conditionally es-
sential genes, which are currently predicted exclusively using
laboratory techniques, may soon be realized. Evidently, predict-
ing conditional essentiality requires many experimentally
determined features that cannot be determined computation-
ally yet. In silico reconstruction of microbial genomes with pre-
ferred phenotypic traits also stands to benefit. In fact, the

Target
Selection

•Identifying targets using bioinformatics, proteomics, and genomics
•Essential, accessible by inhibitors, and has no off-target effects

Lead
Discovery

•Test libraries of leads for inhibition capability against the selected drug target(s):
•Testing the in vitro potency and ex vivo efficacy, and adverse effects

Lead 
Optimization

•Perform medical chemoproteomics drug affinity profiling for the prioritized lead compounds:
•Testing the in vitro potency, ex vivo efficacy, and adverse effects.

Pre-clinical
Trials

•Perform pan screening, pharmacology, and toxicology tests on lead compounds
•Testing lead clinical candidates in clinical trials

Figure 3. Schematic representation of the drug discovery pipeline.
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ab initio assembly of a synthetic cell [6], and genome transplant-
ation [100] has been accomplished in Mycoplasma mycoides.
Fabricating viable cells that harbor housekeeping functions and
only genes encoding desired phenotypes is therefore achievable
and can be perfected in the future. There have been genome en-
gineering attempts to improve de novo biosynthesis of vanillin
[101]. With the global demand for natural food ingredients, fla-
vors, fragrances, biopolymers and drugs increasing rapidly, spe-
cialized fabricated microbes that perform ‘natural-like’
bioconversions more efficiently might be desirable. Such pro-
jects will undoubtedly revolutionize processes beyond current
technologies when they are scaled up to industrial size produc-
tion. Additionally, by creating, testing and optimizing special-
ized genetic circuits, our understanding of cell biology will also
advance significantly. In conclusion, it is our believe that future
studies could build on the knowledge reviewed here, and ex-
pand it to improve accuracy and dependability of in silico tools
in predicting essential genes.

Key Points

• Essential genes are fundamental for cellular growth
and viability of an organism.

• They form attractive drug targets and essential com-
ponents of a minimum cell for biotechnology and
basic biological research.

• Supplementing or complementing traditional laboratory
gene essentiality prediction methods with high-through-
put computational approaches is gaining interest.

• Currently, transposon insertion sequencing is the
most reliable but expensive method that combines
wet laboratory and computational tracking to predict
gene essentiality.

• Solely computational methods, including homology
models, ML models, metabolic network reconstruction
and protein–protein interaction models, are reliable
but largely influenced by the quality of data and evo-
lutionary distance between subjects.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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